Copyright
©The Author(s) 2025.
Artif Intell Gastroenterol. Jun 8, 2025; 6(1): 106149
Published online Jun 8, 2025. doi: 10.35712/aig.v6.i1.106149
Published online Jun 8, 2025. doi: 10.35712/aig.v6.i1.106149
Table 1 Summary of metanalysis included in this systemic review
Ref. | Study design | Year of publication | Number of study and participants | Type of the study | Overall heterogeneity |
Soleymanjahi et al[25] | Comparison of CADe-versus conventional colonoscopy performance | 2024 | 33 studies, 27404 participants | Mixed | I² = 74% |
Makar et al[17] | Impact of CADe systems on key colonoscopy quality indicators | 2024 | 28 RCTs, 23861 participants | RCT | I² = 48% |
Lee et al[15] | Evaluation of how study characteristics influence outcomes in AI-assisted polyp detection | 2024 | 24 RCTs, 17413 participants | RCT | I² = 53% |
Patel et al[26] | Assessment of benefits and harms associated with CADe in real-world colonoscopy | 2024 | 8 studies, m9782 participants | Non-RCT | I² = 83% |
Lou et al[18] | Prospective advantages and disadvantages of AI-assistance systems in colonoscopy | 2024 | 12 studies, 11660 participants | Non-RCT | I² = 87% |
Barua et al[27] | Comparison of ADR with and without AI utilization | 2023 | 33 RCTs, 27404 participants | RCT | I² = 38.33% |
Mehta et al[28] | Effectiveness of CADs in early colorectal cancer diagnosis compared to conventional colonoscopy | 2023 | 15 studies, 174602 participants | Mixed | Not mentioned |
Shiha et al[29] | Effectiveness of CADe in adenoma and polyp detection rates | 2023 | 12 RCTs, 11340 participants | RCT | I2 = 64% |
Zhang et al[30] | Accuracy measurement of AI-assisted colonoscopy | 2023 | 8 RCTs, 2984 participants | RCT | Moderate to high heterogeneity |
Nazarian et al[31] | Utilizing CADs for polyp detection and characterization | 2023 | 13 RCTs, 15334 participants | RCT | I2 = 86% |
Adiwinata et al[32] | Impact of AI colonoscopyon increasing ADR | 2023 | 13 studies, 2958 participants | Mixed | I2 = 57% |
Vadhwana et al[33] | Assessment of AI colonoscopy in real-time histological prediction | 2023 | 80 studies, 25304 participants | RCT | Moderate to high heterogeneity |
Hassan et al[34] | Summary of RCTs on CADe systems for colorectal neoplasia detection | 2021 | 28 studies, 29079 participants | Mixed (RCTs and preclinical studies) | I2 = 42.1% |
Lui et al[35] | AI's role in histology prediction and colorectal polyp detection | 2021 | 10 RCTs, 6629 participants | RCT | I2 = 38.33% |
Huang et al[36] | Evaluation of AI's impact on colonoscopy outcome metrics | 2021 | 5 studies, 4311 participants | RCT | I2 = 36% |
Li et al[37] | Evaluation of AI's effect on ADR | 2021 | 26 RCT, 17413 participants | Mixed | I2 = 39.2% |
Wang et al[38] | AI-assisted polyp detection and classification | 2021 | 6 RCTs, 5058 participants | RCT | I2 = 69% |
Ashat et al[39] | Determining the statistical significance of AI polyp detection for clinical adoption | 2021 | 6 RCTs, 4996 participants | RCT | I2 = 28% |
Deliwala et al[40] | Comparison of colorectal cancer detection between standard and AI-assisted colonoscopies | 2021 | 5 RCTs, 4354 participants | RCT | I2 = 70% |
Hassan et al[41] | Diagnostic accuracy of CADe systems in colorectal neoplasia detection | s2020 | 5 RCTs, 4311 Participants | RCT | I2 = 42% |
Wei et al[42] | Analysis of CADe's effect on ADR and adenoma detection reproducibility | 2020 | 18 studies, 969318 participants | Mixed | I2 = 91% |
Mohan et al[43] | Comparison of ADR between CADe assisted colonoscopy and standard colonoscopy | 2020 | 6 RCTs, 4962 participants | RCT | I2 = 56% |
Table 2 Result of artificial intelligence colonoscopy on polyp detection and missing rate
Ref. | Adenoma detection with AI | Adenoma detection without AI | Heterogeneity I2 | Adenoma missing rate | False positive |
Soleymanjahi et al[25] | 44.7% (RR: 1.21, 95%CI: 1.15-1.28) | 37% | 76% | AI: 16.1%, Conv: 35.3% (RR: 0.47, 95%CI: 0.36-0.60, I2 = 35%) | |
Makar et al[17] | 20% (RR: 1.20, 95%CI: 1.14-1.27) | Lower than AI aid | 64% | 55% reduction (RR: 0.45, 95%CI: 0.37-0.54, I2 = 22.44%) | 39% increase in total (RR: 1.39, 95%CI: 1.23-1.57, I2 = 1.81%) |
Lee et al[15] | RR: 1.24, 95%CI: 1.17-1.31 | Lower than AI aid | 53% | RR: 0.44 (95%CI: 0.35-0.56, | |
Patel et al[26] | 44% (RR: 1.11, 95%CI: 0.97-1.28) | 38% | 83% | ||
Lou et al[18] | RR 1.24, 95%CI: 115-1.33 | 78.87% | 50.5% decrease (RR: 0.495, 95%CI: 0.390–0.627, I2 = 48.76%) | 12.2% increase in total. Range (7.5%–16.9%) | |
Barua et al[27] | 29.6% (RR: 1.52, 95%CI: 1.31-1.77) | 19% | 48% | 11.2% increase in total. Range (7.1%-20.1%) | |
Mehta et al[28] | 37.3% (OR: 1.91, 95%CI: 1.32–2.18) | 30% | |||
Shiha et al[29] | 33.7% (RR: 1.76, 95%CI: 1.55-2.00) | 23% | 28% | ||
Zhang et al[30] | 33% (OR: 1.52- 1.72) | ||||
Nazarian et al[31] | 34% (OR: 1.53, 95%CI: 1.32-1.77) | Lower than AI aid | 45% | ||
Adiwinata et al[32] | OR: 1.58 (95%CI: 1.37-1.82) | Lower than AI aid | |||
Vadhwana et al[33] | No improvement | 74% | |||
Hassan et al[34] | 44.0% (RR: 1.24, 95%CI: 1.16-1.33) | 36% | 70% | 16% decrease (RR: 0.45, 95%CI: 0.35-0.58, I2 = 49%) | 0.52 increase per colonoscopy, Mean Difference 018 polypectomies (95%CI: 0.11-0.26, I2 = 92%) |
Lui et al[35] | 24.2% (RR: 1.242, 95%CI: 1.159-1.332) | 78% | 50.5% decrease (RR: 0.495, 95%CI: 0.390-0.627, I2 = 48.76%) | 12.20% increase in total | |
Huang et al[36] | 35.4% (RR: 1.43, 95%CI: 1.33-1.53) | 25% | 36% | 10.5% increase in total. Range (7.1%-17.3%) | |
Li et al[37] | OR: 1.75, 95%CI: 1.52-2.01 | 39% | |||
Wang et al[38] | 10% (AUC 0.79, 95%CI: 0.79-0.82) | 90% | |||
Ashat et al[39] | 33.7% (OR 1.76, 95%CI: 1.55-2.00) | 30% | 28% | ||
Deliwala et al[40] | 77% (OR: 1.77, 95%CI: 1.50-2.08) | 35% | |||
Hassan et al[41] | 36.6% (RR: 1.44, 95%CI: 1.27-1.62) | 25% | 42% | ||
Wei et al[42] | 36.3% (RR: 1.13, 95%CI: 1.01-1.28) | 36% | 64% | ||
Mohan et al[43] | 32.8% (RR: 1.5, 95%CI: 1.33-1.51) | 21% | 56% | 10.3% increase in total (I2 = 93%) |
Table 3 Subgroup analysis of factors affecting adenoma detection rate in artificial intelligence colonoscopy
Ref. | Pooled adenoma detection rate | ADR based on subgroup | |||||||
Size | Polyp location | Polyp morphology | |||||||
diminutive lesions (≤ 5 mm) | Small lesions (6–9 mm) | Large lesions (≥ 10 mm), distal | Distal | Proximal cecum | Polypoid | Non polypoid | SSL | ||
Soleymanjahi et al[25] | RR: 1.21, 95%CI: 1.15–1.28, Heterogeneity: I² = 76% | ||||||||
Makar et al[17] | RR: 1.20, 95%CI: 1.14-1.27, I² = 64% | 46% increase in detection (IRR: 1.46, 95%CI: 1.19–1.80, P < 0.001, I² = 86.06%) | No significant improvement detection. IRR: 1.11, 95%CI: 0.94–1.31, P = 0.20, I² = 51.23% | No significant improvement detection. IRR: 1.24, 95%CI: 0.94–1.62, P = 0.12, I² = 31.35% | No significant improvement detection. RR: 1.10, P = 0.27 | ||||
Lee et al[15] | RR: 1.24, 95%CI: 1.17–1.31, I² = 53%, P < 0.001 | ||||||||
Patel et al[26] | RR: 1.11, 95%CI: 0.97–1.28, I² = 83% | No significant difference. RR: 0.84, 95%CI: 0.59–1.20, I² = 65% | No significant improvement. RR: 1.01, 95%CI: 0.84–1.20, I² = 0% | ||||||
Lou et al[18] | RR: 1.13, 95%CI: 1.01-1.28, I² = 64% | ||||||||
Barua et al[27] | RR: 1.242, 95%CI: 1.159–1.332, I² = 78.87% | Largest improvement. RR: 1.27, 95%CI: 1.13–1.42, I² = 62% | Moderate improvement. RR: 1.24, 95%CI: 1.10–1.39, I² = 76% | No significant improvement. RR: 1.09, 95%CI: 0.98–1.21, I² = 84% | Smaller improvement. RR: 1.13, 95%CI: 1.05–1.22, I² = 51% | Significant improvement. RR: 1.19, 95%CI: 1.13–1.24, I² = 63% | |||
Mehta et al[28] | RR: 1.76, 95%CI: 1.55-2.00 | Largest improvement. OR: 2.07, 95%CI: 1.81–2.36, P < 0.001, I² = 27% | No significant improvement. OR: 14.7, 95%CI: 1.19–1.82, P = 0.004, I² = 0% | Moderate improvement. OR: 1.79, 95%CI: 1.27–2.53, P < 0.001, I² = 12% | Smaller improvement. OR: 1.96, 95%CI: 1.70–2.27, P < 0.001, I² = 0% | Moderate improvement. OR: 1.81, 95%CI: 1.57–2.10, P < 0.001, I² = 22% | |||
Shiha et al[29] | OR: 1.52-1.72 | Largest improvement. Weighted mean difference = -0.48, 95%CI: -0.81 to -0.15, P = 0.004, I² = 0% | AI detected fewer pedunculated polyps. OR: 0.64, 95%CI: 0.49–0.83, P < 0.001, I² = 0% | ||||||
Zhang et al[30] | OR: 1.58, 95%CI 1.37-1.82, P = 0.003 | Largest improvement. RR: 1.269, 95%CI: 1.133–1.421, I² = 62.34% | Moderate improvement. RR: 1.238, 95%CI: 1.009–1.520, I² = 75.76% | Moderate improvement. RR: 1.287, 95%CI: 0.984–1.684, I² = 83.66% | Smaller improvement. RR = 1.291, 95%CI: 1.092–1.526, I² = 50.91% | Moderate improvement. RR: 1.187, 95%CI: 1.134–1.242, I² = 9.79% | Smaller improvement. RR = 1.230, 95%CI: 1.050–1.441, I² = 63.37% | Better improvement. RR = 1.419, 95%CI: 1.204–1.671, I² = 57.63% | |
Nazarian et al[31] | No improvement | ||||||||
Adiwinata et al[32] | RR 1.24, 95%CI: 1.16-1.33 | Largest improvement (medium differences = 0.167) | No improvement. | No improvement | Small improvement. Improvement (medium differences = 0.105) | Small improvement. (medium | Slight Improvement but statistically not significant | ||
Vadhwana et al[33] | OR: 1.53, 95%CI 1.32–1.77, P < 0.001, I² = 45.5, P = 0.088 | ||||||||
Hassan et al[34] | RR: 1.43, 95%CI: 1.33-1.53 | RR: 1.71, 95%CI: 1.45–2.02, P < 0.001, I² = 42% | RR: 1.45, 95%CI: 1.23–1.71, P < 0.001, I²= 50% | RR: 1.73, 95%CI: 1.38–2.17, P < 0.00, I² = 55% | Moderate improvement. RR: 1.70, 95%CI: 1.40-2.06, P < 0.001, I² = 50% | No significant improvement. RR: 1.28, 95%CI: 0.92–1.78, P = 0.48 | No significant improvement. RR: 1.13, 95%CI: 0.86-1.48, P = 0.37, I² = 60% | Significant improvement. RR: 2.00, 95%CI: 1.60 2.50, P < 0.001, I² = 50% | Moderate improvement. RR: 1.75, 95%CI: 1.50–2.04, P < 0.001, I² = 40% |
Lui et al[35] | OR: 1.75, 95%CI: 1.52–2.01 | ||||||||
Huang et al[36] | OR: 1.75, 95%CI: 1.36–2.25 | Sensitivity 95%. I² = 96.86% | |||||||
Li et al[37] | OR: 1.76, 95%CI: 1.55-2.00 | Significantly improved. OR: 2.07, 95%CI: 1.81–2.36, I² = 27% | Improved. OR: 1.47, 95%CI: 1.19–1.82, I² = 0% | Significantly improved. OR: 1.79, 95%CI: 1.27–2.53. Heterogeneity. I² = 12% | Significantly improved. OR: 1.96, 95%CI: 1.70–2.27, I² = 0% | Significantly improved. OR: 1.81, 95%CI: 1.57–2.10, | |||
Wang et al[38] | OR: 1.77, 95%CI: 1.50–2.08, P < 0.001 | Significant improvement. OR: 1.33, 95%CI: 1.12–1.59, P < 0.001 | No improvement. OR: 0.96, 95%CI: 0.96-1.33, | No improvement. OR: 1.43, 95%CI: .0.87-1.78, | No improvement. OR: 0.19, 95%CI: 1.88-1.43, P = 0.25 | No improvement. OR: 1.00, 95%CI: 0.76–1.32, P = 0.99 | |||
Ashat et al[39] | RR: 1.44, 95%CI: 1.27-1.62 | Significant improvement. RR: 1.69, 95%CI: 1.48–1.84, I² = 63% | Moderate improvement. RR: 1.44, 95%CI: 1.19–1.75, I² = 4% | Moderate improvement. RR: 1.46, 95%CI: 1.04–2.06, I² = 0% | Moderate improvement. RR: 1.68, 95%CI: 1.50–1.88, I² = 0% | Moderate improvement. RR: 1.59, 95%CI: 1.34–1.88, I² = 55% | Moderate improvement. RR: 1.54, 95%CI: 1.40–1.68, I² = 0% | Moderate improvement. RR: 1.78, 95%CI: 1.47–2.15, I² = 71% | No improvement. RR: 1.52, 95%CI: 1.14–2.02, I² = 0%, P = 0.33 |
Deliwala et al[40] | 95%CI: 22.2%–37.0% | Significant improvement. Mean difference: = +0.15, 95%CI: 0.12–0.18, P < 0.001, I² = 0.02% | Minimal improvement. Mean difference: +0.03, 95%CI: 0.01–0.05, P = 0.01, I² = 0.04% | No improvement. Mean difference: +0.01. 95%CI: 0.00–0.02, P = 0.76, I² = 0.19% | |||||
Hassan et al[41] | OR: 1.75, 95%CI: 1.52–2.01, I² = 39.2%, P = 0.160 | Significant improvement. AUC = 0.98, sensitivity = 93.5%, specificity = 90.8% | |||||||
Wei et al[42] | RR: 1.42, 95%CI: 1.33–1.51, P < 0.00001, I² = 9% | Significant improvement. RR: 1.39, 95%CI: 1.15–1.69, P = 0.0008 | Moderate improvement. RR: 1.56, 95%CI: 1.12–2.19, P = 0.009 | Moderate improvement. RR: 1.56, 95%CI: 1.12–2.19, P = 0.009 | Significant improvement. RR: 1.36, 95%CI: 1.18–1.58, P < 0.0001 | Moderate improvement. RR: 1.75, 95%CI: 1.54–1.98, P = 0.07 | |||
Mohan et al[43] | RR: 1.5, 95%CI: 1.33-1.51, I² = 32.8% |
Table 4 Subgroup analysis of factors affecting adenoma detection rate in artificial intelligence colonoscopy
Ref. | ADR based on endoscopist | Indication for colonoscopy | ||
Baseline ADR < 25% | Baseline ADR ≥ 40% | Screening | Surveillance | |
Soleymanjahi et al[25] | RR: 1.39, 95%CI: 1.18-1.63. Similar improvements in ADR, but data were less stratified | RR: 1.14, 95%CI: 1.08-1.21. (> 1000 colonoscopies): ADR improved by 19%. (RR: 1.19, 95%CI: 1.11–1.27, P < 0.001, I2 = 24.51%) | Significant improvement. RR: 1.21, 95%CI: 1.15-1.28, I2 = 76% | Less improvement. RR: 1.14, 95%CI: 1.05-1.24, I2 = 65% |
Makar et al[17] | Improvement. RR: 1.23, 95%CI: 1.16–1.32, I2 = 0%, P < 0.001 | Improvement. RR: 1.24, 95%CI: 1.15–1.34, I2 = 45%, P < 0.001 | Improvement. RR: 1.13, 95%CI: 1.07–1.19, I2 = 15%, P < 0.001 | Improvement. RR: 1.33, 95%CI: 1.23–1.45, I2 = 42%, P < 0.001 |
Lee et al[15] | No significant improvement. RR: 1.01, 95%CI: 0.84–1.20 | 16% increase in ADR compared to standard colonoscopy, but the result was not statistically significant. RR for ADR: 1.16, 95%CI: 0.83–1.62, I2 = 77% | 5% increase in ADR but the result was not statistically significant. RR for ADR: 1.05, 95%CI: 0.92–1.19, I2 = 62% | |
Lou et al[18] | Significant improvement. RR: 1.42, 95%CI: 1.28–1.58, I2 = 65% | Minimal improvement. RR: 1.12, 95%CI: 1.03–1.22, I2 = 52% | ||
Deliwala et al[40] | Significantly improved. AUC: 0.97, 95%CI: 0.96–0.98, P < 0.01 | Moderate improved. AUC: 0.90, 95%CI: 0.87–0.93, P < 0.01 |
Table 5 Overview of commercially available artificial intelligence systems and the key distinctions among them
Characteristics | GI genius | CAD EYE | EndoScreener | ENDO-AID | SOKUT | Endoangel |
Developer | Medtronic | Fujifilm | Beijing-based company weiming vision technology | Olympus | Iterative | Wuhan endoangel medical technology co |
AI function | CADe | CADe + CADx | CADe | CADe + CADx | CADe | CADe + CADx |
System description | Real-time polyp detection with visual/audio alerts. Integrated with HD colonoscopes | Optimized for Fujifilm scopes. Useful for optical biopsy | Compatible with multiple endoscope brands. High sensitivity for small polyps. Validated in Chinese populations | Focuses on adenoma detection. Trained for sessile adenoma. Validated in United States multicenter trials | Focus in adenoma detection and diagnosis. Can assess bowel preparation quality. Additional benefit in diagnosis gastric neoplasm | |
Regulatory approval | United States Food and Drug Administration Europe, Select markets in Asia, Australia, and the Middle East | Pharmaceuticals and Medical Devices Agency (Japan). United States Food and Drug Administration | National Medical Products Administration (China) | Europe, Middle East, Africa. United States Food and Drug Administration | United States Food and Drug Administration | National Medical Products Administration (China) |
Workflow integration | Flexible | Fujifilm-only | Flexible | Olympus-only | Flexible | Flexible |
Clinical adaption | United State. Europe | Japan | China | Japan. Europe | United State | China |
ADR improvement | Consistent ADR. Lower non-neoplastic resection. Prolonged withdrawal time. No improvement with SSL | Prioritize large/advanced adenoma. Less sensitive over subtle and small adenoma. No improvement with SSL | Improvement in ADR. Increase non-neoplastic resection | Consistent ADR. Significant SSL benefits | Improvement in ADR. Increase non-neoplastic resection | Real-time detection and withdrawal time monitoring. Alerts for suboptimal technique. Improves withdrawal technique. Reduces miss rates |
- Citation: Aleissa MA, Luca M, Singh JP, Chitragari G, Drelichman ER, Mittal VK, Bhullar JS. Current status of artificial intelligence colonoscopy on improving adenoma detection rate based on systematic review of multiple metanalysis. Artif Intell Gastroenterol 2025; 6(1): 106149
- URL: https://www.wjgnet.com/2644-3236/full/v6/i1/106149.htm
- DOI: https://dx.doi.org/10.35712/aig.v6.i1.106149