Systematic Reviews
Copyright ©The Author(s) 2025.
Artif Intell Gastroenterol. Jun 8, 2025; 6(1): 106149
Published online Jun 8, 2025. doi: 10.35712/aig.v6.i1.106149
Table 1 Summary of metanalysis included in this systemic review
Ref.
Study design
Year of publication
Number of study and participants
Type of the study
Overall heterogeneity
Soleymanjahi et al[25]Comparison of CADe-versus conventional colonoscopy performance202433 studies, 27404 participantsMixedI² = 74%
Makar et al[17]Impact of CADe systems on key colonoscopy quality indicators202428 RCTs, 23861 participantsRCTI² = 48%
Lee et al[15]Evaluation of how study characteristics influence outcomes in AI-assisted polyp detection202424 RCTs, 17413 participantsRCTI² = 53%
Patel et al[26]Assessment of benefits and harms associated with CADe in real-world colonoscopy20248 studies, m9782 participantsNon-RCTI² = 83%
Lou et al[18]Prospective advantages and disadvantages of AI-assistance systems in colonoscopy202412 studies, 11660 participantsNon-RCTI² = 87%
Barua et al[27]Comparison of ADR with and without AI utilization202333 RCTs, 27404 participantsRCTI² = 38.33%
Mehta et al[28]Effectiveness of CADs in early colorectal cancer diagnosis compared to conventional colonoscopy202315 studies, 174602 participantsMixed Not mentioned
Shiha et al[29]Effectiveness of CADe in adenoma and polyp detection rates202312 RCTs, 11340 participantsRCTI2 = 64%
Zhang et al[30]Accuracy measurement of AI-assisted colonoscopy20238 RCTs, 2984 participantsRCTModerate to high heterogeneity
Nazarian et al[31]Utilizing CADs for polyp detection and characterization202313 RCTs, 15334 participantsRCTI2 = 86%
Adiwinata et al[32]Impact of AI colonoscopyon increasing ADR202313 studies, 2958 participantsMixedI2 = 57%
Vadhwana et al[33]Assessment of AI colonoscopy in real-time histological prediction202380 studies, 25304 participantsRCTModerate to high heterogeneity
Hassan et al[34]Summary of RCTs on CADe systems for colorectal neoplasia detection202128 studies, 29079 participantsMixed
(RCTs and preclinical studies)
I2 = 42.1%
Lui et al[35]AI's role in histology prediction and colorectal polyp detection202110 RCTs, 6629 participantsRCTI2 = 38.33%
Huang et al[36]Evaluation of AI's impact on colonoscopy outcome metrics20215 studies, 4311 participantsRCTI2 = 36%
Li et al[37]Evaluation of AI's effect on ADR202126 RCT, 17413 participantsMixedI2 = 39.2%
Wang et al[38]AI-assisted polyp detection and classification20216 RCTs, 5058 participantsRCTI2 = 69%
Ashat et al[39]Determining the statistical significance of AI polyp detection for clinical adoption20216 RCTs, 4996 participantsRCTI2 = 28%
Deliwala et al[40]Comparison of colorectal cancer detection between standard and AI-assisted colonoscopies20215 RCTs, 4354 participantsRCTI2 = 70%
Hassan et al[41]Diagnostic accuracy of CADe systems in colorectal neoplasia detections20205 RCTs, 4311 ParticipantsRCTI2 = 42%
Wei et al[42]Analysis of CADe's effect on ADR and adenoma detection reproducibility202018 studies, 969318 participantsMixedI2 = 91%
Mohan et al[43]Comparison of ADR between CADe assisted colonoscopy and standard colonoscopy20206 RCTs, 4962 participantsRCTI2 = 56%
Table 2 Result of artificial intelligence colonoscopy on polyp detection and missing rate
Ref.
Adenoma detection with AI
Adenoma detection without AI
Heterogeneity I2
Adenoma missing rate
False positive
Soleymanjahi et al[25]44.7% (RR: 1.21, 95%CI: 1.15-1.28)37%76%AI: 16.1%, Conv: 35.3% (RR: 0.47, 95%CI: 0.36-0.60, I2 = 35%)
Makar et al[17]20% (RR: 1.20, 95%CI: 1.14-1.27)Lower than AI aid64%55% reduction (RR: 0.45, 95%CI: 0.37-0.54, I2 = 22.44%)39% increase in total (RR: 1.39, 95%CI: 1.23-1.57, I2 = 1.81%)
Lee et al[15]RR: 1.24, 95%CI: 1.17-1.31Lower than AI aid53%RR: 0.44 (95%CI: 0.35-0.56, I2= 41%)
Patel et al[26]44% (RR: 1.11, 95%CI: 0.97-1.28)38%83%
Lou et al[18]RR 1.24, 95%CI: 115-1.33 78.87%50.5% decrease (RR: 0.495, 95%CI: 0.390–0.627, I2 = 48.76%)12.2% increase in total. Range (7.5%–16.9%)
Barua et al[27]29.6% (RR: 1.52, 95%CI: 1.31-1.77)19%48%11.2% increase in total. Range (7.1%-20.1%)
Mehta et al[28]37.3% (OR: 1.91, 95%CI: 1.32–2.18)30%
Shiha et al[29]33.7% (RR: 1.76, 95%CI: 1.55-2.00)23%28%
Zhang et al[30]33% (OR: 1.52- 1.72)
Nazarian et al[31]34% (OR: 1.53, 95%CI: 1.32-1.77)Lower than AI aid45%
Adiwinata et al[32]OR: 1.58 (95%CI: 1.37-1.82)Lower than AI aid
Vadhwana et al[33]No improvement74%
Hassan et al[34]44.0% (RR: 1.24, 95%CI: 1.16-1.33)36%70%16% decrease (RR: 0.45, 95%CI: 0.35-0.58, I2 = 49%)0.52 increase per colonoscopy, Mean Difference 018 polypectomies (95%CI: 0.11-0.26, I2 = 92%)
Lui et al[35]24.2% (RR: 1.242, 95%CI: 1.159-1.332)78%50.5% decrease (RR: 0.495, 95%CI: 0.390-0.627, I2 = 48.76%)12.20% increase in total
Huang et al[36]35.4% (RR: 1.43, 95%CI: 1.33-1.53)25%36%10.5% increase in total. Range (7.1%-17.3%)
Li et al[37]OR: 1.75, 95%CI: 1.52-2.0139%
Wang et al[38]10% (AUC 0.79, 95%CI: 0.79-0.82)90%
Ashat et al[39]33.7% (OR 1.76, 95%CI: 1.55-2.00)30%28%
Deliwala et al[40]77% (OR: 1.77, 95%CI: 1.50-2.08)35%
Hassan et al[41]36.6% (RR: 1.44, 95%CI: 1.27-1.62)25%42%
Wei et al[42]36.3% (RR: 1.13, 95%CI: 1.01-1.28)36%64%
Mohan et al[43]32.8% (RR: 1.5, 95%CI: 1.33-1.51)21%56%10.3% increase in total (I2 = 93%)
Table 3 Subgroup analysis of factors affecting adenoma detection rate in artificial intelligence colonoscopy
Ref.Pooled adenoma detection rateADR based on subgroup
Size
Polyp location
Polyp morphology
diminutive lesions (≤ 5 mm)
Small lesions (6–9 mm)
Large lesions (≥ 10 mm), distal
Distal
Proximal cecum
Polypoid
Non polypoid
SSL
Soleymanjahi et al[25]RR: 1.21, 95%CI: 1.15–1.28, Heterogeneity: I² = 76%
Makar et al[17] RR: 1.20, 95%CI: 1.14-1.27, I² = 64%46% increase in detection (IRR: 1.46, 95%CI: 1.19–1.80, P < 0.001, I² = 86.06%)No significant improvement detection. IRR: 1.11, 95%CI: 0.94–1.31, P = 0.20, I² = 51.23%No significant improvement detection. IRR: 1.24, 95%CI: 0.94–1.62, P = 0.12, I² = 31.35%No significant improvement detection. RR: 1.10,
P = 0.27
Lee et al[15]RR: 1.24, 95%CI: 1.17–1.31, I² = 53%, P < 0.001
Patel et al[26]RR: 1.11, 95%CI: 0.97–1.28, I² = 83%No significant difference. RR: 0.84, 95%CI: 0.59–1.20, I² = 65%No significant improvement. RR: 1.01, 95%CI: 0.84–1.20, I² = 0%
Lou et al[18]RR: 1.13, 95%CI: 1.01-1.28, I² = 64%
Barua et al[27]RR: 1.242, 95%CI: 1.159–1.332, I² = 78.87%Largest improvement. RR: 1.27, 95%CI: 1.13–1.42, I² = 62%Moderate improvement. RR: 1.24, 95%CI: 1.10–1.39, I² = 76%No significant improvement. RR: 1.09, 95%CI: 0.98–1.21, I² = 84%Smaller improvement. RR: 1.13, 95%CI: 1.05–1.22, I² = 51%Significant improvement. RR: 1.19, 95%CI: 1.13–1.24, I² = 63%
Mehta et al[28]RR: 1.76, 95%CI: 1.55-2.00Largest improvement. OR: 2.07, 95%CI: 1.81–2.36, P < 0.001, I² = 27%No significant improvement. OR: 14.7, 95%CI: 1.19–1.82, P = 0.004, I² = 0%Moderate improvement. OR: 1.79, 95%CI: 1.27–2.53, P < 0.001, I² = 12%Smaller improvement. OR: 1.96, 95%CI: 1.70–2.27, P < 0.001,
I² = 0%
Moderate improvement. OR: 1.81, 95%CI: 1.57–2.10, P < 0.001, I² = 22%
Shiha et al[29] OR: 1.52-1.72Largest improvement. Weighted mean difference = -0.48, 95%CI: -0.81 to -0.15, P = 0.004, I² = 0%AI detected fewer pedunculated polyps. OR: 0.64, 95%CI: 0.49–0.83, P < 0.001,
I² = 0%
Zhang et al[30]OR: 1.58, 95%CI 1.37-1.82, P = 0.003Largest improvement. RR: 1.269, 95%CI: 1.133–1.421, I² = 62.34%Moderate improvement. RR: 1.238, 95%CI: 1.009–1.520, I² = 75.76%Moderate improvement. RR: 1.287, 95%CI: 0.984–1.684, I² = 83.66%Smaller improvement. RR = 1.291, 95%CI: 1.092–1.526, I² = 50.91%Moderate improvement. RR: 1.187, 95%CI: 1.134–1.242, I² = 9.79%Smaller improvement. RR = 1.230, 95%CI: 1.050–1.441, I² = 63.37%Better improvement. RR = 1.419, 95%CI: 1.204–1.671, I² = 57.63%
Nazarian et al[31]No improvement
Adiwinata et al[32] RR 1.24, 95%CI: 1.16-1.33Largest improvement (medium differences = 0.167)No improvement.No improvementSmall improvement. Improvement (medium
differences = 0.105)
Small improvement. (medium differences = 0.091)Slight Improvement but statistically not significant
Vadhwana et al[33]OR: 1.53, 95%CI 1.32–1.77, P < 0.001, I² = 45.5, P = 0.088
Hassan et al[34]RR: 1.43, 95%CI: 1.33-1.53RR: 1.71, 95%CI: 1.45–2.02, P < 0.001, I² = 42%RR: 1.45, 95%CI: 1.23–1.71, P < 0.001, I²= 50%RR: 1.73, 95%CI: 1.38–2.17, P < 0.00, I² = 55%Moderate improvement. RR: 1.70, 95%CI: 1.40-2.06, P < 0.001, I² = 50%No significant improvement. RR: 1.28, 95%CI: 0.92–1.78, P = 0.48No significant improvement. RR: 1.13, 95%CI: 0.86-1.48, P = 0.37, I² = 60%Significant improvement. RR: 2.00, 95%CI: 1.60 2.50, P < 0.001, I² = 50%Moderate improvement. RR: 1.75, 95%CI: 1.50–2.04, P < 0.001,
I² = 40%
Lui et al[35]OR: 1.75, 95%CI: 1.52–2.01
Huang et al[36]OR: 1.75, 95%CI: 1.36–2.25Sensitivity 95%. I² = 96.86%
Li et al[37]OR: 1.76, 95%CI: 1.55-2.00Significantly improved. OR: 2.07, 95%CI: 1.81–2.36, I² = 27%Improved. OR: 1.47, 95%CI: 1.19–1.82, I² = 0%Significantly improved. OR: 1.79, 95%CI: 1.27–2.53. Heterogeneity. I² = 12%Significantly improved. OR: 1.96, 95%CI: 1.70–2.27, I² = 0%Significantly improved. OR: 1.81, 95%CI: 1.57–2.10, I² = 22%
Wang et al[38]OR: 1.77, 95%CI: 1.50–2.08, P < 0.001Significant improvement. OR: 1.33, 95%CI: 1.12–1.59, P < 0.001No improvement. OR: 0.96, 95%CI: 0.96-1.33, P = 0.79No improvement. OR: 1.43, 95%CI: .0.87-1.78, P = 0.24No improvement. OR: 0.19, 95%CI: 1.88-1.43, P = 0.25No improvement. OR: 1.00, 95%CI: 0.76–1.32, P = 0.99
Ashat et al[39]RR: 1.44, 95%CI: 1.27-1.62Significant improvement. RR: 1.69, 95%CI: 1.48–1.84, I² = 63%Moderate improvement. RR: 1.44, 95%CI: 1.19–1.75, I² = 4%Moderate improvement. RR: 1.46, 95%CI: 1.04–2.06, I² = 0%Moderate improvement. RR: 1.68, 95%CI: 1.50–1.88, I² = 0%Moderate improvement. RR: 1.59, 95%CI: 1.34–1.88, I² = 55%Moderate improvement. RR: 1.54, 95%CI: 1.40–1.68, I² = 0%Moderate improvement. RR: 1.78, 95%CI: 1.47–2.15, I² = 71%No improvement. RR: 1.52, 95%CI: 1.14–2.02, I² = 0%,
P = 0.33
Deliwala et al[40]95%CI: 22.2%–37.0%Significant improvement. Mean difference: = +0.15, 95%CI: 0.12–0.18, P < 0.001, I² = 0.02%Minimal improvement. Mean difference: +0.03, 95%CI: 0.01–0.05, P = 0.01, I² = 0.04%No improvement. Mean difference: +0.01. 95%CI: 0.00–0.02, P = 0.76, I² = 0.19%
Hassan et al[41]OR: 1.75, 95%CI: 1.52–2.01, I² = 39.2%, P = 0.160Significant improvement. AUC = 0.98, sensitivity = 93.5%, specificity = 90.8%
Wei et al[42]RR: 1.42, 95%CI: 1.33–1.51, P < 0.00001, I² = 9%Significant improvement. RR: 1.39, 95%CI: 1.15–1.69, P = 0.0008Moderate improvement. RR: 1.56, 95%CI: 1.12–2.19, P = 0.009Moderate improvement. RR: 1.56, 95%CI: 1.12–2.19, P = 0.009Significant improvement. RR: 1.36, 95%CI: 1.18–1.58, P < 0.0001Moderate improvement. RR: 1.75, 95%CI: 1.54–1.98, P = 0.07
Mohan et al[43]RR: 1.5, 95%CI: 1.33-1.51, I² = 32.8%
Table 4 Subgroup analysis of factors affecting adenoma detection rate in artificial intelligence colonoscopy
Ref.
ADR based on endoscopist
Indication for colonoscopy
Baseline ADR < 25%
Baseline ADR ≥ 40%
Screening
Surveillance
Soleymanjahi et al[25]RR: 1.39, 95%CI: 1.18-1.63. Similar improvements in ADR, but data were less stratifiedRR: 1.14, 95%CI: 1.08-1.21. (> 1000 colonoscopies): ADR improved by 19%. (RR: 1.19, 95%CI: 1.11–1.27, P < 0.001, I2 = 24.51%)Significant improvement. RR: 1.21, 95%CI: 1.15-1.28, I2 = 76%Less improvement. RR: 1.14, 95%CI: 1.05-1.24, I2 = 65%
Makar et al[17]Improvement. RR: 1.23, 95%CI: 1.16–1.32, I2 = 0%, P < 0.001Improvement. RR: 1.24, 95%CI: 1.15–1.34, I2 = 45%, P < 0.001Improvement. RR: 1.13, 95%CI: 1.07–1.19, I2 = 15%, P < 0.001Improvement. RR: 1.33, 95%CI: 1.23–1.45, I2 = 42%, P < 0.001
Lee et al[15]No significant improvement. RR: 1.01, 95%CI: 0.84–1.2016% increase in ADR compared to standard colonoscopy, but the result was not statistically significant. RR for ADR: 1.16, 95%CI: 0.83–1.62, I2 = 77%5% increase in ADR but the result was not statistically significant. RR for ADR: 1.05, 95%CI: 0.92–1.19, I2 = 62%
Lou et al[18]Significant improvement. RR: 1.42, 95%CI: 1.28–1.58, I2 = 65%Minimal improvement. RR: 1.12, 95%CI: 1.03–1.22, I2 = 52%
Deliwala et al[40]Significantly improved. AUC: 0.97, 95%CI: 0.96–0.98, P < 0.01Moderate improved. AUC: 0.90, 95%CI: 0.87–0.93, P < 0.01
Table 5 Overview of commercially available artificial intelligence systems and the key distinctions among them
Characteristics
GI genius
CAD EYE
EndoScreener
ENDO-AID
SOKUT
Endoangel
Developer MedtronicFujifilmBeijing-based company weiming vision technologyOlympusIterativeWuhan endoangel medical technology co
AI function CADe CADe + CADxCADeCADe + CADxCADeCADe + CADx
System description Real-time polyp detection with visual/audio alerts. Integrated with HD colonoscopesOptimized for Fujifilm scopes. Useful for optical biopsyCompatible with multiple endoscope brands. High sensitivity for small polyps. Validated in Chinese populationsFocuses on adenoma detection. Trained for sessile adenoma. Validated in United States multicenter trialsFocus in adenoma detection and diagnosis. Can assess bowel preparation quality. Additional benefit in diagnosis gastric neoplasm
Regulatory approvalUnited States Food and Drug Administration Europe, Select markets in Asia, Australia, and the Middle EastPharmaceuticals and Medical Devices Agency (Japan). United States Food and Drug Administration National Medical Products Administration (China)Europe, Middle East, Africa. United States Food and Drug AdministrationUnited States Food and Drug AdministrationNational Medical Products Administration (China)
Workflow integrationFlexible Fujifilm-onlyFlexible Olympus-onlyFlexible Flexible
Clinical adaptionUnited State. Europe JapanChinaJapan. Europe United State China
ADR improvement Consistent ADR. Lower non-neoplastic resection. Prolonged withdrawal time. No improvement with SSLPrioritize large/advanced adenoma. Less sensitive over subtle and small adenoma. No improvement with SSLImprovement in ADR. Increase non-neoplastic resectionConsistent ADR. Significant SSL benefitsImprovement in ADR. Increase non-neoplastic resection Real-time detection and withdrawal time monitoring. Alerts for suboptimal technique. Improves withdrawal technique. Reduces miss rates