1
|
Agrawal H, Tanwar H, Gupta N. Revolutionizing hepatobiliary surgery: Impact of three-dimensional imaging and virtual surgical planning on precision, complications, and patient outcomes. Artif Intell Gastroenterol 2025; 6:106746. [DOI: 10.35712/aig.v6.i1.106746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/01/2025] [Accepted: 04/11/2025] [Indexed: 06/06/2025] Open
Abstract
BACKGROUND Hepatobiliary surgery is complex and requires a thorough understanding of the liver’s anatomy, biliary system, and vasculature. Traditional imaging methods such as computed tomography (CT) and magnetic resonance imaging (MRI), although helpful, fail to provide three-dimensional (3D) relationships of these structures, which are critical for planning and executing complicated surgeries.
AIM To explore the use of 3D imaging and virtual surgical planning (VSP) technologies to improve surgical accuracy, reduce complications, and enhance patient recovery in hepatobiliary surgeries.
METHODS A comprehensive review of studies published between 2017 and 2024 was conducted through PubMed, Scopus, Google Scholar, and Web of Science. Studies selected focused on 3D imaging and VSP applications in hepatobiliary surgery, assessing surgical precision, complications, and patient outcomes. Thirty studies, including randomized controlled trials, cohort studies, and case reports, were included in the final analysis.
RESULTS Various 3D imaging modalities, including multidetector CT, MRI, and 3D rotational angiography, provide high-resolution views of the liver’s vascular and biliary anatomy. VSP allows surgeons to simulate complex surgeries, improving preoperative planning and reducing complications like bleeding and bile leaks. Several studies have demonstrated improved surgical precision, reduced complications, and faster recovery times when 3D imaging and VSP were used in complex surgeries.
CONCLUSION 3D imaging and VSP technologies significantly enhance the accuracy and outcomes of hepatobiliary surgeries by providing individualized preoperative planning. While promising, further research, particularly randomized controlled trials, is needed to standardize protocols and evaluate long-term efficacy.
Collapse
Affiliation(s)
- Himanshu Agrawal
- Department of Surgery, University College of Medical Sciences, University of Delhi, GTB Hospital, Delhi 110095, India
| | - Himanshu Tanwar
- Department of Surgery, University College of Medical Sciences, University of Delhi, GTB Hospital, Delhi 110095, India
| | - Nikhil Gupta
- Department of Surgery, Atal Bihari Vajpayee Institute of Medical Sciences, Dr. Ram Manohar Lohia Hospital, Delhi 110001, India
| |
Collapse
|
2
|
Karageorgos FF, Karolos IA, Pettas T, Tsioukas V, Pikridas C, Tsoulfas G. The Role of 3D Printing and Augmented Reality in the Management of Hepatic Malignancies. Technol Cancer Res Treat 2025; 24:15330338251323138. [PMID: 39980434 PMCID: PMC11843687 DOI: 10.1177/15330338251323138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Introduction: 3-dimensional (3D) printing and augmented reality (AR) are emerging technologies that are used in a wide variety of scientific fields. Among them, medicine is one of the most promising fields of application since these technologies can benefit not only surgeons, but also medical/surgical trainees, patients and can potentially benefit health care systems with better educated staff working on personalized solutions for the patients. Thus, potentially reducing intra-operative and post operative complications and overall costs for the health care systems. Hepatic malignancy surgeries are some of the most demanding surgeries that could a general surgeon perform. The intra-operative and post-operative risks and complications render them demanding. In literature there are cases of research studies including applications of 3D printing and augmented reality in hepatic malignancies. Methods: For this, a comprehensive literature search was conducted on Scopus and Pubmed databases (latest search September 5, 2024). Research studies that included applications of 3D printing and AR in hepatic malignancies were eligible for the review. Results: Herein, twelve papers have been included and presented, which either include the use of 3D printing or the use of AR. There are some cases where both technologies were used simultaneously. 3D printing technology and AR can be used alone or in combination together to aid in the management of hepatic malignancies. Conclusion: Encouraging results (eg, efforts to reduce cost of 3D printing, proper surgical pre-planning, usefulness in education of medical personnel and patients) from the use of these technologies, not only qualitatively but also quantitatively, show that the medical staff can help patients and improve their part of the health system. Yet much more studies need to validate whether the use of these two technologies provides positive results on the surgeries or not.
Collapse
Affiliation(s)
- Filippos F. Karageorgos
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki, Greece
| | - Ion-Anastasios Karolos
- Department of Geodesy and Surveying, School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Pettas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki, Greece
| | - Vassilios Tsioukas
- Department of Geodesy and Surveying, School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Pikridas
- Department of Geodesy and Surveying, School of Rural and Surveying Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Center for Research and Innovation in Solid Organ Transplantation, Aristotle University School of Medicine, Thessaloniki, Greece
| |
Collapse
|
3
|
Lu Y, Chen X, Han F, Zhao Q, Xie T, Wu J, Zhang Y. 3D printing of self-healing personalized liver models for surgical training and preoperative planning. Nat Commun 2023; 14:8447. [PMID: 38114507 PMCID: PMC10730511 DOI: 10.1038/s41467-023-44324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
3D printing can produce intuitive, precise, and personalized anatomical models, providing invaluable support for precision medicine, particularly in areas like surgical training and preoperative planning. However, conventional 3D printed models are often significantly more rigid than human organs and cannot undergo repetitive resection, which severely restricts their clinical value. Here we report the stereolithographic 3D printing of personalized liver models based on physically crosslinked self-healing elastomers with liver-like softness. Benefiting from the short printing time, the highly individualized models can be fabricated immediately following enhanced CT examination. Leveraging the high-efficiency self-healing performance, these models support repetitive resection for optimal trace through a trial-and-error approach. At the preliminary explorative clinical trial (NCT06006338), a total of 5 participants are included for preoperative planning. The primary outcomes indicate that the negative surgery margins are achieved and the unforeseen injuries of vital vascular structures are avoided. The 3D printing of liver models can enhance the safety of hepatic surgery, demonstrating promising application value in clinical practice.
Collapse
Affiliation(s)
- Yahui Lu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xing Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Fang Han
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingjun Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Ningbo Innovation Center, Zhejiang University, Ningbo, 315807, China.
| | - Yuhua Zhang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
4
|
Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol 2022; 14:765-793. [PMID: 35582107 PMCID: PMC9048537 DOI: 10.4251/wjgo.v14.i4.765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/24/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes the fifth most frequent malignancy worldwide and the third most frequent cause of cancer-related deaths. Currently, treatment selection is based on the stage of the disease. Emerging fields such as three-dimensional (3D) printing, 3D bioprinting, artificial intelligence (AI), and machine learning (ML) could lead to evidence-based, individualized management of HCC. In this review, we comprehensively report the current applications of 3D printing, 3D bioprinting, and AI/ML-based models in HCC management; we outline the significant challenges to the broad use of these novel technologies in the clinical setting with the goal of identifying means to overcome them, and finally, we discuss the opportunities that arise from these applications. Notably, regarding 3D printing and bioprinting-related challenges, we elaborate on cost and cost-effectiveness, cell sourcing, cell viability, safety, accessibility, regulation, and legal and ethical concerns. Similarly, regarding AI/ML-related challenges, we elaborate on intellectual property, liability, intrinsic biases, data protection, cybersecurity, ethical challenges, and transparency. Our findings show that AI and 3D printing applications in HCC management and healthcare, in general, are steadily expanding; thus, these technologies will be integrated into the clinical setting sooner or later. Therefore, we believe that physicians need to become familiar with these technologies and prepare to engage with them constructively.
Collapse
Affiliation(s)
- Chrysanthos D Christou
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| | - Georgios Tsoulfas
- Department of Transplantation Surgery, Hippokration General Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki 54622, Greece
| |
Collapse
|
5
|
Wang Y, Cao D, Chen SL, Li YM, Zheng YW, Ohkohchi N. Current trends in three-dimensional visualization and real-time navigation as well as robot-assisted technologies in hepatobiliary surgery. World J Gastrointest Surg 2021; 13:904-922. [PMID: 34621469 PMCID: PMC8462083 DOI: 10.4240/wjgs.v13.i9.904] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
With the continuous development of digital medicine, minimally invasive precision and safety have become the primary development trends in hepatobiliary surgery. Due to the specificity and complexity of hepatobiliary surgery, traditional preoperative imaging techniques such as computed tomography and magnetic resonance imaging cannot meet the need for identification of fine anatomical regions. Imaging-based three-dimensional (3D) reconstruction, virtual simulation of surgery and 3D printing optimize the surgical plan through preoperative assessment, improving the controllability and safety of intraoperative operations, and in difficult-to-reach areas of the posterior and superior liver, assistive robots reproduce the surgeon's natural movements with stable cameras, reducing natural vibrations. Electromagnetic navigation in abdominal surgery solves the problem of conventional surgery still relying on direct visual observation or preoperative image assessment. We summarize and compare these recent trends in digital medical solutions for the future development and refinement of digital medicine in hepatobiliary surgery.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Di Cao
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Si-Lin Chen
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yu-Mei Li
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Yun-Wen Zheng
- Institute of Regenerative Medicine, and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, and School of Biotechnology and Heath Sciences, Wuyi University, Jiangmen 529020, Guangdong Province, China
- School of Medicine, Yokohama City University, Yokohama 234-0006, Kanagawa, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
6
|
Lang Q, Zhong C, Liang Z, Zhang Y, Wu B, Xu F, Cong L, Wu S, Tian Y. Six application scenarios of artificial intelligence in the precise diagnosis and treatment of liver cancer. Artif Intell Rev 2021. [DOI: 10.1007/s10462-021-10023-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Kwon Kim J, Ryu H, Kim M, Kwon EK, Lee H, Joon Park S, Byun SS. Personalised three-dimensional printed transparent kidney model for robot-assisted partial nephrectomy in patients with complex renal tumours (R.E.N.A.L. nephrometry score ≥7): a prospective case-matched study. BJU Int 2020; 127:567-574. [PMID: 33064867 DOI: 10.1111/bju.15275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate the effectiveness of a three-dimensional (3D) printed transparent kidney model as a surgical navigator for robot-assisted partial nephrectomy (RPN) in patients with complex renal tumours, defined by a R.E.N.A.L. (Radius, Exophytic/Endophytic, Nearness, Anterior/Posterior, Location) nephrometry score of ≥7. PATIENTS AND METHODS A total of 80 patients who underwent RPN were included in the present prospective case-matched study (case group [n = 40, application of 3D-printed transparent kidney model during RPN] vs matching group [n = 40, routine protocol]). The RPNs were performed by a single experienced surgeon. The RPN procedure consisted of six steps: (i) preparation of the renal hilar vessel for clamping, (ii) tumour detection and dissection, (iii) robotic ultrasonography, (iv) tumour resection, (v) calyx repair and haemostasis, and (vi) renorrhaphy. The time for each step, console time, and warm ischaemia time were compared between the two groups as a surrogate marker for surgical effectiveness. RESULTS Both groups were well-balanced for all baseline characteristics. The use of the model reduced the console time by ~20% compared to the matched group (64.6 vs 78.5 min, P = 0.001). On multivariate logistic regression analysis, tumour radius (P < 0.001) and application of the model (P = 0.009) were identified as significant predictors of a console time of ≤70 min. CONCLUSION We established the usefulness of a personalised 3D-printed transparent kidney model for more effective RPNs. Use of the 3D-printed transparent kidney model reduced the operative time even for complex renal tumours and would be expected to broaden the indications for PN.
Collapse
Affiliation(s)
- Jung Kwon Kim
- Department of Urology, Seoul National University Bundang Hospital, Seongnam,, Korea
| | - Hoyoung Ryu
- Department of Urology, Ewha Womans University Medical Center, Seoul, Korea
| | - Myong Kim
- Department of Urology, Ewha Womans University School of Medicine, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Eun-Kyung Kwon
- Department of Urology, Seoul National University Bundang Hospital, Seongnam,, Korea
| | - Hakmin Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam,, Korea
| | - Sang Joon Park
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| | - Seok-Soo Byun
- Department of Urology, Seoul National University Bundang Hospital, Seongnam,, Korea.,Department of Urology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|