1
|
Fišere I, Edelmers E, Svirskis Š, Groma V. Utilisation of Deep Neural Networks for Estimation of Cajal Cells in the Anal Canal Wall of Patients with Advanced Haemorrhoidal Disease Treated by LigaSure Surgery. Cells 2025; 14:550. [PMID: 40214502 PMCID: PMC11989036 DOI: 10.3390/cells14070550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Interstitial cells of Cajal (ICCs) play a key role in gastrointestinal smooth muscle contractions, but their relationship with anal canal function in advanced haemorrhoidal disease (HD) remains poorly understood. This study uses deep neural network (DNN) models to estimate ICC presence and quantity in anal canal tissues affected by HD. Haemorrhoidectomy specimens were collected from patients undergoing surgery with the LigaSure device. A YOLOv11-based machine learning model, trained on 376 immunohistochemical images, automated ICC detection using the CD117 marker, achieving a mean average precision (mAP50) of 92%, with a recall of 86% and precision of 88%. The DNN model accurately identified ICCs in whole-slide images, revealing that one-third of grade III HD patients and 60% of grade IV HD patients had a high ICC density. Preoperatively, pain was reported in 35% of grade III HD patients and 41% of grade IV patients, with a significant reduction following surgery. A significant decrease in bleeding (p < 0.0001) was also noted postoperatively. Notably, patients with postoperative bleeding, diagnosed with stage IV HD, had high ICC density in their anorectal tissues (p = 0.0041), suggesting a potential link between ICC density and HD severity. This AI-driven model, alongside clinical data, may enhance outcome prediction and provide insights into HD pathophysiology.
Collapse
Affiliation(s)
- Inese Fišere
- Department of Doctoral Studies, Rīga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia;
- Surgery Clinic, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, LV-1002 Riga, Latvia
| | - Edgars Edelmers
- Medical Education Technology Centre, Rīga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia
- Faculty of Computer Science Information Technology and Energy, Riga Technical University, LV-1048 Riga, Latvia
- Institute of Electronics and Computer Science, Dzerbenes Street 14, LV-1006 Riga, Latvia
| | - Šimons Svirskis
- Institute of Microbiology and Virology, Rīga Stradiņš University, Ratsupītes Street 5, LV-1067 Riga, Latvia;
| | - Valērija Groma
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Dzirciema Street 16, LV-1007 Riga, Latvia
| |
Collapse
|
2
|
Enslin S, Kaul V. Past, Present, and Future: A History Lesson in Artificial Intelligence. Gastrointest Endosc Clin N Am 2025; 35:265-278. [PMID: 40021228 DOI: 10.1016/j.giec.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Over the past 5 decades, artificial intelligence (AI) has evolved rapidly. Moving from basic models to advanced machine learning and deep learning systems, the impact of AI on various fields, including medicine, has been profound. In gastroenterology, AI-driven computer-aided detection and computer-aided diagnosis systems have revolutionized endoscopy, imaging, and pathology detection. The future promises further advancements in diagnostic precision, personalized treatment, and clinical research. However, challenges such as transparency, liability, and ethical concerns must be addressed. By fostering collaboration, robust governance and development of quality metrics, AI can be leveraged to enhance patient care and advance scientific knowledge.
Collapse
Affiliation(s)
- Sarah Enslin
- Division of Gastroenterology and Hepatology, Center for Advanced Therapeutic Endoscopy, University of Rochester Medical Center, 601 Elmwood Avenue, Box 646, Rochester, NY 14642, USA
| | - Vivek Kaul
- Division of Gastroenterology and Hepatology, Center for Advanced Therapeutic Endoscopy, University of Rochester Medical Center, 601 Elmwood Avenue, Box 646, Rochester, NY 14642, USA.
| |
Collapse
|
3
|
Chen S, Ding P, Guo H, Meng L, Zhao Q, Li C. Applications of artificial intelligence in digital pathology for gastric cancer. Front Oncol 2024; 14:1437252. [PMID: 39529836 PMCID: PMC11551048 DOI: 10.3389/fonc.2024.1437252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Gastric cancer is one of the most common cancers and is one of the leading causes of cancer-related deaths in worldwide. Early diagnosis and treatment are essential for a positive outcome. The integration of artificial intelligence in the pathology field is increasingly widespread, including histopathological images analysis. In recent years, the application of digital pathology technology emerged as a potential solution to enhance the understanding and management of gastric cancer. Through sophisticated image analysis algorithms, artificial intelligence technologies facilitate the accuracy and sensitivity of gastric cancer diagnosis and treatment and personalized therapeutic strategies. This review aims to evaluate the current landscape and future potential of artificial intelligence in transforming gastric cancer pathology, so as to provide ideas for future research.
Collapse
Affiliation(s)
- Sheng Chen
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
| | - Ping’an Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Big Data Analysis and Mining Application for Precise Diagnosis and Treatment of Gastric Cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Honghai Guo
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Big Data Analysis and Mining Application for Precise Diagnosis and Treatment of Gastric Cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Lingjiao Meng
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Big Data Analysis and Mining Application for Precise Diagnosis and Treatment of Gastric Cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Big Data Analysis and Mining Application for Precise Diagnosis and Treatment of Gastric Cancer Hebei Provincial Engineering Research Center, Shijiazhuang, Hebei, China
| | - Cong Li
- School of Clinical Medicine, Hebei University, Affiliated Hospital of Hebei University, Baoding, China
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
4
|
Mubarak M, Rashid R, Sapna F, Shakeel S. Expanding role and scope of artificial intelligence in the field of gastrointestinal pathology. Artif Intell Gastroenterol 2024; 5:91550. [DOI: 10.35712/aig.v5.i2.91550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/08/2024] Open
Abstract
Digital pathology (DP) and its subsidiaries including artificial intelligence (AI) are rapidly making inroads into the area of diagnostic anatomic pathology (AP) including gastrointestinal (GI) pathology. It is poised to revolutionize the field of diagnostic AP. Historically, AP has been slow to adopt digital technology, but this is changing rapidly, with many centers worldwide transitioning to DP. Coupled with advanced techniques of AI such as deep learning and machine learning, DP is likely to transform histopathology from a subjective field to an objective, efficient, and transparent discipline. AI is increasingly integrated into GI pathology, offering numerous advancements and improvements in overall diagnostic accuracy, efficiency, and patient care. Specifically, AI in GI pathology enhances diagnostic accuracy, streamlines workflows, provides predictive insights, integrates multimodal data, supports research, and aids in education and training, ultimately improving patient care and outcomes. This review summarized the latest developments in the role and scope of AI in AP with a focus on GI pathology. The main aim was to provide updates and create awareness among the pathology community.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Rahma Rashid
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Fnu Sapna
- Department of Pathology, Montefiore Medical Center, The University Hospital for Albert Einstein School of Medicine, Bronx, NY 10461, United States
| | - Shaheera Shakeel
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
5
|
Iacucci M, Maeda Y, Ghosh S. A Baby Step or a Real Giant Stride: Histomic Enabled by Artificial Intelligence to Predict Treatment Response in Pediatric Patients With Ulcerative Colitis. Gastroenterology 2024; 166:730-732. [PMID: 38460608 DOI: 10.1053/j.gastro.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Affiliation(s)
- Marietta Iacucci
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland.
| | - Yasuharu Maeda
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Chandwar K, Prasanna Misra D. What does artificial intelligence mean in rheumatology? Arch Rheumatol 2024; 39:1-9. [PMID: 38774703 PMCID: PMC11104749 DOI: 10.46497/archrheumatol.2024.10664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 05/24/2024] Open
Abstract
Intelligence is the ability of humans to learn from experiences to ascribe conscious weights and unconscious biases to modulate their outputs from given inputs. Transferring this ability to computers is artificial intelligence (AI). The ability of computers to understand data in an intelligent manner is machine learning. When such learning is with images and videos, which involves deeper layers of artificial neural networks, it is described as deep learning. Large language models are the latest development in AI which incorporate self-learning into deep learning through transformers. AI in Rheumatology has immense potential to revolutionize healthcare and research. Machine learning could aid clinical diagnosis and decision-making, and deep learning could extend this to analyze images of radiology or positron emission tomography scans or histopathology images to aid a clinician's diagnosis. Analysis of routinely obtained patient data or continuously collected information from wearables could predict disease flares. Analysis of high-volume genomics, transcriptomics, proteomics, or metabolomics data from patients could help identify novel markers of disease prognosis. AI might identify newer therapeutic targets based on in-silico modelling of omics data. AI could help automate medical administrative work such as inputting information into electronic health records or transcribing clinic notes. AI could help automate patient education and counselling. Beyond the clinic, AI has the potential to aid medical education. The ever-expanding capabilities of AI models bring along with them considerable ethical challenges, particularly related to risks of misuse. Nevertheless, the widespread use of AI in Rheumatology is inevitable and a progress with great potential.
Collapse
Affiliation(s)
- Kunal Chandwar
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|