1
|
Ma T, Liu GQ, Guo J, Ji R, Shao XJ, Li YQ, Li Z, Zuo XL. Artificial intelligence-aided optical biopsy improves the diagnosis of esophageal squamous neoplasm. World J Gastroenterol 2025; 31:104370. [PMID: 40248066 PMCID: PMC12001168 DOI: 10.3748/wjg.v31.i13.104370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Early detection of esophageal squamous neoplasms (ESN) is essential for improving patient prognosis. Optical diagnosis of ESN remains challenging. Probe-based confocal laser endomicroscopy (pCLE) enables accurate in vivo histological observation and optical biopsy of ESN. However, interpretation of pCLE images requires histopathological expertise and extensive training. Artificial intelligence (AI) has been widely applied in digestive endoscopy; however, AI for pCLE diagnosis of ESN has not been reported. AIM To develop a pCLE computer-aided diagnostic system for ESN and assess its diagnostic performance and assistant efficiency for nonexpert endoscopists. METHODS The intelligent confocal laser endomicroscopy (iCLE) system consists of image recognition (based on inception-ResNet V2), video diagnosis, and quality judgment modules. This system was developed using pCLE images and videos and evaluated through image and prospective video recognition tests. Patients between June 2020 and January 2023 were prospectively enrolled. Expert and non-expert endoscopists and the iCLE independently performed diagnoses for pCLE videos, with histopathology as the gold standard. Thereafter, the non-expert endoscopists performed a second assessment with iCLE assistance. RESULTS A total of 25056 images from 2803 patients were selected for iCLE training and validation. Another 2442 images from 226 patients were used for testing. iCLE achieved a high accuracy of 98.3%, sensitivity of 95.3% and specificity of 98.8% for diagnosing ESN images. A total of 2581 patients underwent upper gastrointestinal pCLE examination and were prospectively screened; 54 patients with suspected ESN were enrolled. Overall, 187 videos from 67 lesions were assessed by iCLE, three nonexpert and three expert endoscopists. iCLE achieved a high accuracy, sensitivity and specificity of 90.9%, 92.0%, and 90.2%, respectively. Compared to experts, iCLE showed significantly higher sensitivity (92.0% vs 80.4%; P < 0.001) and negative predictive value (94.4% vs 87.7%; P = 0.003). With iCLE assistance, nonexpert endoscopists showed significant improvements in accuracy (from 83.6% to 88.6%) and sensitivity (from 76.0% to 89.8%). CONCLUSION iCLE system demonstrated high diagnostic performance for ESN. It can assist nonexpert endoscopists in improving the diagnostic efficiency of pCLE for ESN and has the potential for reducing unnecessary biopsies.
Collapse
Affiliation(s)
- Tian Ma
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Guan-Qun Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jing Guo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Rui Ji
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xue-Jun Shao
- Qingdao Medicon Digital Engineering Company Limited, Qingdao 266000, Shandong Province, China
| | - Yan-Qing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Xiu-Li Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| |
Collapse
|
2
|
Nathani P, Sharma P. Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach. Gastrointest Endosc Clin N Am 2025; 35:319-353. [PMID: 40021232 DOI: 10.1016/j.giec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of lesions. This review describes the available artificial intelligence (AI) technology and the current data on AI tools for screening esophageal squamous cell cancer, Barret's esophagus-related neoplasia, and gastric cancer. These tools outperformed endoscopists in many situations. Recent randomized controlled trials have demonstrated the successful application of AI tools in clinical practice with improved outcomes.
Collapse
Affiliation(s)
- Piyush Nathani
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Prateek Sharma
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA; Kansas City Veteran Affairs Medical Center, Kansas City, MO, USA
| |
Collapse
|
3
|
Li B, Du YY, Tan WM, He DL, Qi ZP, Yu HH, Shi Q, Ren Z, Cai MY, Yan B, Cai SL, Zhong YS. Effect of computer aided detection system on esophageal neoplasm diagnosis in varied levels of endoscopists. NPJ Digit Med 2025; 8:160. [PMID: 40082585 PMCID: PMC11906877 DOI: 10.1038/s41746-025-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025] Open
Abstract
A computer-aided detection (CAD) system for early esophagus carcinoma identification during endoscopy with narrow-band imaging (NBI) was evaluated in a large-scale, prospective, tandem, randomized controlled trial to assess its effectiveness. The study was registered at the Chinese Clinical Trial Registry (ChiCTR2100050654, 2021/09/01). Involving 3400 patients were randomly assigned to either routine (routine-first) or CAD-assisted (CAD-first) NBI endoscopy, followed by the other procedure, with targeted biopsies taken at the end of the second examination. The primary outcome was the diagnosis of 1 or more neoplastic lesion of esophagus during the first examination. The CAD-first group demonstrated a significantly higher neoplastic lesion detection rate (3.12%) compared to the routine-first group (1.59%) with a relative detection ratio of 1.96 (P = 0.0047). Subgroup analysis revealed a higher detection rate in junior endoscopists using CAD-first, while no significant difference was observed for senior endoscopists. The CAD system significantly improved esophageal neoplasm detection, particularly benefiting junior endoscopists.
Collapse
Affiliation(s)
- Bing Li
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Yan-Yun Du
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Wei-Min Tan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China
| | - Dong-Li He
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhi-Peng Qi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Hon-Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau SAR, China
| | - Qiang Shi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Zhong Ren
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Ming-Yan Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Bo Yan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China.
| | - Shi-Lun Cai
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Yun-Shi Zhong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Xuhui Hospital, Zhongshan Hospital of Fudan University, Shanghai, China.
- Endoscopy Center, Shanghai Geriatric Medical Center, Shanghai, China.
| |
Collapse
|
4
|
Zhou N, Yuan X, Liu W, Luo Q, Liu R, Hu B. Artificial intelligence in endoscopic diagnosis of esophageal squamous cell carcinoma and precancerous lesions. Chin Med J (Engl) 2025:00029330-990000000-01442. [PMID: 40008787 DOI: 10.1097/cm9.0000000000003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Indexed: 02/27/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) poses a significant global health challenge, necessitating early detection, timely diagnosis, and prompt treatment to improve patient outcomes. Endoscopic examination plays a pivotal role in this regard. However, despite the availability of various endoscopic techniques, certain limitations can result in missed or misdiagnosed ESCCs. Currently, artificial intelligence (AI)-assisted endoscopic diagnosis has made significant strides in addressing these limitations and improving the diagnosis of ESCC and precancerous lesions. In this review, we provide an overview of the current state of AI applications for endoscopic diagnosis of ESCC and precancerous lesions in aspects including lesion characterization, margin delineation, invasion depth estimation, and microvascular subtype classification. Furthermore, we offer insights into the future direction of this field, highlighting potential advancements that can lead to more accurate diagnoses and ultimately better prognoses for patients.
Collapse
Affiliation(s)
- Nuoya Zhou
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianglei Yuan
- Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qi Luo
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruide Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
5
|
Jiang Q, Yu Y, Ren Y, Li S, He X. A review of deep learning methods for gastrointestinal diseases classification applied in computer-aided diagnosis system. Med Biol Eng Comput 2025; 63:293-320. [PMID: 39343842 DOI: 10.1007/s11517-024-03203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
Recent advancements in deep learning have significantly improved the intelligent classification of gastrointestinal (GI) diseases, particularly in aiding clinical diagnosis. This paper seeks to review a computer-aided diagnosis (CAD) system for GI diseases, aligning with the actual clinical diagnostic process. It offers a comprehensive survey of deep learning (DL) techniques tailored for classifying GI diseases, addressing challenges inherent in complex scenes, clinical constraints, and technical obstacles encountered in GI imaging. Firstly, the esophagus, stomach, small intestine, and large intestine were located to determine the organs where the lesions were located. Secondly, location detection and classification of a single disease are performed on the premise that the organ's location corresponding to the image is known. Finally, comprehensive classification for multiple diseases is carried out. The results of single and multi-classification are compared to achieve more accurate classification outcomes, and a more effective computer-aided diagnosis system for gastrointestinal diseases was further constructed.
Collapse
Affiliation(s)
- Qianru Jiang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Yulin Yu
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Yipei Ren
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Sheng Li
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China
| | - Xiongxiong He
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, P.R. China.
| |
Collapse
|
6
|
Li S, Xu M, Meng Y, Sun H, Zhang T, Yang H, Li Y, Ma X. The application of the combination between artificial intelligence and endoscopy in gastrointestinal tumors. MEDCOMM – ONCOLOGY 2024; 3. [DOI: 10.1002/mog2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
AbstractGastrointestinal (GI) tumors have always been a major type of malignant tumor and a leading cause of tumor‐related deaths worldwide. The main principles of modern medicine for GI tumors are early prevention, early diagnosis, and early treatment, with early diagnosis being the most effective measure. Endoscopy, due to its ability to visualize lesions, has been one of the primary modalities for screening, diagnosing, and treating GI tumors. However, a qualified endoscopist often requires long training and extensive experience, which to some extent limits the wider use of endoscopy. With advances in data science, artificial intelligence (AI) has brought a new development direction for the endoscopy of GI tumors. AI can quickly process large quantities of data and images and improve diagnostic accuracy with some training, greatly reducing the workload of endoscopists and assisting them in early diagnosis. Therefore, this review focuses on the combined application of endoscopy and AI in GI tumors in recent years, describing the latest research progress on the main types of tumors and their performance in clinical trials, the application of multimodal AI in endoscopy, the development of endoscopy, and the potential applications of AI within it, with the aim of providing a reference for subsequent research.
Collapse
Affiliation(s)
- Shen Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research, Sichuan University Chengdu Sichuan China
| | - Yuanling Meng
- West China School of Stomatology Sichuan University Chengdu Sichuan China
| | - Haozhen Sun
- College of Life Sciences Sichuan University Chengdu Sichuan China
| | - Tao Zhang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Hanle Yang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Yueyi Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Xuelei Ma
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| |
Collapse
|
7
|
Rai HM, Yoo J, Razaque A. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. EXPERT SYSTEMS WITH APPLICATIONS 2024; 255:124838. [DOI: 10.1016/j.eswa.2024.124838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
8
|
Zhang WY, Chang YJ, Shi RH. Artificial intelligence enhances the management of esophageal squamous cell carcinoma in the precision oncology era. World J Gastroenterol 2024; 30:4267-4280. [PMID: 39492825 PMCID: PMC11525855 DOI: 10.3748/wjg.v30.i39.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/31/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common histological type of esophageal cancer with a poor prognosis. Early diagnosis and prognosis assessment are crucial for improving the survival rate of ESCC patients. With the advancement of artificial intelligence (AI) technology and the proliferation of medical digital information, AI has demonstrated promising sensitivity and accuracy in assisting precise detection, treatment decision-making, and prognosis assessment of ESCC. It has become a unique opportunity to enhance comprehensive clinical management of ESCC in the era of precision oncology. This review examines how AI is applied to the diagnosis, treatment, and prognosis assessment of ESCC in the era of precision oncology, and analyzes the challenges and potential opportunities that AI faces in clinical translation. Through insights into future prospects, it is hoped that this review will contribute to the real-world application of AI in future clinical settings, ultimately alleviating the disease burden caused by ESCC.
Collapse
Affiliation(s)
- Wan-Yue Zhang
- School of Medicine, Southeast University, Nanjing 221000, Jiangsu Province, China
| | - Yong-Jian Chang
- School of Cyber Science and Engineering, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Rui-Hua Shi
- Department of Gastroenterology, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
9
|
Bou Jaoude J, Al Bacha R, Abboud B. Will artificial intelligence reach any limit in gastroenterology? Artif Intell Gastroenterol 2024; 5:91336. [DOI: 10.35712/aig.v5.i2.91336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 08/08/2024] Open
Abstract
Endoscopy is the cornerstone in the management of digestive diseases. Over the last few decades, technology has played an important role in the development of this field, helping endoscopists in better detecting and characterizing luminal lesions. However, despite ongoing advancements in endoscopic technology, the incidence of missed pre-neoplastic and neoplastic lesions remains high due to the operator-dependent nature of endoscopy and the challenging learning curve associated with new technologies. Artificial intelligence (AI), an operator-independent field, could be an invaluable solution. AI can serve as a “second observer”, enhancing the performance of endoscopists in detecting and characterizing luminal lesions. By utilizing deep learning (DL), an innovation within machine learning, AI automatically extracts input features from targeted endoscopic images. DL encompasses both computer-aided detection and computer-aided diagnosis, assisting endoscopists in reducing missed detection rates and predicting the histology of luminal digestive lesions. AI applications in clinical gastrointestinal diseases are continuously expanding and evolving the entire digestive tract. In all published studies, real-time AI assists endoscopists in improving the performance of non-expert gastroenterologists, bringing it to a level comparable to that of experts. The development of DL may be affected by selection biases. Studies have utilized different AI-assisted models, which are heterogeneous. In the future, algorithms need validation through large, randomized trials. Theoretically, AI has no limit to assist endoscopists in increasing the accuracy and the quality of endoscopic exams. However, practically, we still have a long way to go before standardizing our AI models to be accepted and applied by all gastroenterologists.
Collapse
Affiliation(s)
- Joseph Bou Jaoude
- Department of Gastroenterology, Levant Hospital, Beirut 166830, Lebanon
| | - Rose Al Bacha
- Department of Gastroenterology, Levant Hospital, Beirut 166830, Lebanon
| | - Bassam Abboud
- Department of General Surgery, Geitaoui Hospital, Faculty of Medicine, Lebanese University, Lebanon, Beirut 166830, Lebanon
| |
Collapse
|
10
|
Tao Y, Fang L, Qin G, Xu Y, Zhang S, Zhang X, Du S. Efficiency of endoscopic artificial intelligence in the diagnosis of early esophageal cancer. Thorac Cancer 2024; 15:1296-1304. [PMID: 38685604 PMCID: PMC11147664 DOI: 10.1111/1759-7714.15261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND The accuracy of artificial intelligence (AI) and experts in diagnosing early esophageal cancer (EC) and its infiltration depth was summarized and analyzed, thus identifying the advantages of AI over traditional manual diagnosis, with a view to more accurately assisting doctors in evaluating the patients' conditions and improving their cure and survival rates. METHODS The PubMed, EMBASE, Cochrane, Google, and CNKI databases were searched for relevant literature related to AI diagnosis of early EC and its invasion depth published before August 2023. Summary analysis of pooled sensitivity, specificity, summary receiver operating characteristics (SROC) and area under the curve (AUC) of AI in diagnosing early EC were performed, and Review Manager and Stata were adopted for data analysis. RESULTS A total of 19 studies were enrolled with a low to moderate total risk of bias. The pooled sensitivity of AI for diagnosing early EC was markedly higher than that of novices and comparable to that of endoscopists. Moreover, AI predicted early EC with markedly higher AUCs than novices and experts (0.93 vs. 0.74 vs. 0.89). In addition, pooled sensitivity and specificity in the diagnosis of invasion depth in early EC were higher than that of experts, with AUCs of 0.97 and 0.92, respectively. CONCLUSION AI-assistance can diagnose early EC and its infiltration depth more accurately, which can help in its early intervention and the customization of personalized treatment plans. Therefore, AI systems have great potential in the early diagnosis of EC.
Collapse
Affiliation(s)
- Yongkang Tao
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Long Fang
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Geng Qin
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Yingying Xu
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| | - Shuang Zhang
- Beijing University of Chinese MedicineBeijingChina
| | | | - Shiyu Du
- Department of GastroenterologyChina‐Japan Friendship HospitalBeijingChina
| |
Collapse
|
11
|
Qi JH, Huang SL, Jin SZ. Novel milestones for early esophageal carcinoma: From bench to bed. World J Gastrointest Oncol 2024; 16:1104-1118. [PMID: 38660637 PMCID: PMC11037034 DOI: 10.4251/wjgo.v16.i4.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/28/2024] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer worldwide, and esophageal squamous cell carcinoma (ESCC) accounts for the majority of cases of EC. To effectively diagnose and treat ESCC and improve patient prognosis, timely diagnosis in the initial phase of the illness is necessary. This article offers a detailed summary of the latest advancements and emerging technologies in the timely identification of ECs. Molecular biology and epigenetics approaches involve the use of molecular mechanisms combined with fluorescence quantitative polymerase chain reaction (qPCR), high-throughput sequencing technology (next-generation sequencing), and digital PCR technology to study endogenous or exogenous biomolecular changes in the human body and provide a decision-making basis for the diagnosis, treatment, and prognosis of diseases. The investigation of the microbiome is a swiftly progressing area in human cancer research, and microorganisms with complex functions are potential components of the tumor microenvironment. The intratumoral microbiota was also found to be connected to tumor progression. The application of endoscopy as a crucial technique for the early identification of ESCC has been essential, and with ongoing advancements in technology, endoscopy has continuously improved. With the advancement of artificial intelligence (AI) technology, the utilization of AI in the detection of gastrointestinal tumors has become increasingly prevalent. The implementation of AI can effectively resolve the discrepancies among observers, improve the detection rate, assist in predicting the depth of invasion and differentiation status, guide the pericancerous margins, and aid in a more accurate diagnosis of ESCC.
Collapse
Affiliation(s)
- Ji-Han Qi
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Ling Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
12
|
Waddingham W, Graham DG, Banks MR. Latest Advances in Endoscopic Detection of Oesophageal and Gastric Neoplasia. Diagnostics (Basel) 2024; 14:301. [PMID: 38337817 PMCID: PMC10855581 DOI: 10.3390/diagnostics14030301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Endoscopy is the gold standard for the diagnosis of cancers and cancer precursors in the oesophagus and stomach. Early detection of upper GI cancers requires high-quality endoscopy and awareness of the subtle features these lesions carry. Endoscopists performing surveillance of high-risk patients including those with Barrett's oesophagus, previous squamous neoplasia or chronic atrophic gastritis should be familiar with endoscopic features, classification systems and sampling techniques to maximise the detection of early cancer. In this article, we review the current approach to diagnosis of these conditions and the latest advanced imaging and diagnostic techniques.
Collapse
Affiliation(s)
- William Waddingham
- Department of Gastroenterology, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
| | - David G. Graham
- Department of Gastroenterology, University College London NHS Foundation Trust, London NW1 2BU, UK
| | - Matthew R. Banks
- Department of Gastroenterology, University College London NHS Foundation Trust, London NW1 2BU, UK
| |
Collapse
|
13
|
Yuan XL, Liu W, Lin YX, Deng QY, Gao YP, Wan L, Zhang B, Zhang T, Zhang WH, Bi XG, Yang GD, Zhu BH, Zhang F, Qin XB, Pan F, Zeng XH, Chaudhry H, Pang MY, Yang J, Zhang JY, Hu B. Effect of an artificial intelligence-assisted system on endoscopic diagnosis of superficial oesophageal squamous cell carcinoma and precancerous lesions: a multicentre, tandem, double-blind, randomised controlled trial. Lancet Gastroenterol Hepatol 2024; 9:34-44. [PMID: 37952555 DOI: 10.1016/s2468-1253(23)00276-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Despite the usefulness of white light endoscopy (WLE) and non-magnified narrow-band imaging (NBI) for screening for superficial oesophageal squamous cell carcinoma and precancerous lesions, these lesions might be missed due to their subtle features and interpretation variations among endoscopists. Our team has developed an artificial intelligence (AI) system to detect superficial oesophageal squamous cell carcinoma and precancerous lesions using WLE and non-magnified NBI. We aimed to evaluate the auxiliary diagnostic performance of the AI system in a real clinical setting. METHODS We did a multicentre, tandem, double-blind, randomised controlled trial at 12 hospitals in China. Eligible patients were aged 18 years or older and underwent sedated upper gastrointestinal endoscopy for screening, investigation of gastrointestinal symptoms, or surveillance. Patients were randomly assigned (1:1) to either the AI-first group or the routine-first group using a computerised random number generator. Patients, pathologists, and statistical analysts were masked to group assignment, whereas endoscopists and research assistants were not. The same endoscopist at each centre did tandem upper gastrointestinal endoscopy for each eligible patient on the same day. In the AI-first group, the endoscopist did the first examination with the assistance of the AI system and the second examination without it. In the routine-first group, the order of examinations was reversed. The primary outcome was the miss rate of superficial oesophageal squamous cell carcinoma and precancerous lesions, calculated on a per-lesion and per-patient basis. All analyses were done on a per-protocol basis. This trial is registered with the Chinese Clinical Trial Registry (ChiCTR2100052116) and is completed. FINDINGS Between Oct 19, 2021, and June 8, 2022, 5934 patients were randomly assigned to the AI-first group and 5912 to the routine-first group, of whom 5865 and 5850 were eligible for analysis. Per-lesion miss rates were 1·7% (2/118; 95% CI 0·0-4·0) in the AI-first group versus 6·7% (6/90; 1·5-11·8) in the routine-first group (risk ratio 0·25, 95% CI 0·06-1·08; p=0·079). Per-patient miss rates were 1·9% (2/106; 0·0-4·5) in AI-first group versus 5·1% (4/79; 0·2-9·9) in the routine-first group (0·37, 0·08-1·71; p=0·40). Bleeding after biopsy of oesophageal lesions was observed in 13 (0·2%) patients in the AI-first group and 11 (0·2%) patients in the routine-first group. No serious adverse events were reported by patients in either group. INTERPRETATION The observed effect of AI-assisted endoscopy on the per-lesion and per-patient miss rates of superficial oesophageal squamous cell carcinoma and precancerous lesions under WLE and non-magnified NBI was consistent with substantial benefit through to a neutral or small negative effect. The effectiveness and cost-benefit of this AI system in real-world clinical settings remain to be further assessed. FUNDING National Natural Science Foundation of China, 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University, and Chengdu Science and Technology Project. TRANSLATION For the Chinese translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Xiang-Lei Yuan
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Liu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Xiu Lin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian-Yi Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Ping Gao
- Department of Gastroenterology, Meishan People's Hospital, Meishan, China
| | - Ling Wan
- Department of Gastroenterology, Shimian People's Hospital, Ya'an, China
| | - Bin Zhang
- Department of Gastroenterology, Nanbu People's Hospital, Nanchong, China
| | - Tao Zhang
- Department of Gastroenterology, Nanchong Central Hospital, Nanchong, China
| | - Wan-Hong Zhang
- Department of Gastroenterology, Cangxi People's Hospital, Guangyuan, China
| | - Xiao-Gang Bi
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, China
| | - Guo-Dong Yang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Bi-Hui Zhu
- Department of Gastroenterology, Zizhong People's Hospital, Neijiang, China
| | - Fan Zhang
- Department of Gastroenterology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Xiao-Bo Qin
- Department of Gastroenterology, The First Veterans Hospital of Sichuan Province, Chengdu, China
| | - Feng Pan
- Department of Gastroenterology, Huai'an First People's Hospital, Huai'an, China
| | - Xian-Hui Zeng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Hunza Chaudhry
- Department of Internal Medicine, University of California San Francisco-Fresno, CA, USA
| | - Mao-Yin Pang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Juliana Yang
- Department of Gastroenterology and Hepatology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jing-Yu Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Guidozzi N, Menon N, Chidambaram S, Markar SR. The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: a systematic review and meta-analysis. Dis Esophagus 2023; 36:doad048. [PMID: 37480192 PMCID: PMC10789250 DOI: 10.1093/dote/doad048] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Early detection of esophageal cancer is limited by accurate endoscopic diagnosis of subtle macroscopic lesions. Endoscopic interpretation is subject to expertise, diagnostic skill, and thus human error. Artificial intelligence (AI) in endoscopy is increasingly bridging this gap. This systematic review and meta-analysis consolidate the evidence on the use of AI in the endoscopic diagnosis of esophageal cancer. The systematic review was carried out using Pubmed, MEDLINE and Ovid EMBASE databases and articles on the role of AI in the endoscopic diagnosis of esophageal cancer management were included. A meta-analysis was also performed. Fourteen studies (1590 patients) assessed the use of AI in endoscopic diagnosis of esophageal squamous cell carcinoma-the pooled sensitivity and specificity were 91.2% (84.3-95.2%) and 80% (64.3-89.9%). Nine studies (478 patients) assessed AI capabilities of diagnosing esophageal adenocarcinoma with the pooled sensitivity and specificity of 93.1% (86.8-96.4) and 86.9% (81.7-90.7). The remaining studies formed the qualitative summary. AI technology, as an adjunct to endoscopy, can assist in accurate, early detection of esophageal malignancy. It has shown superior results to endoscopists alone in identifying early cancer and assessing depth of tumor invasion, with the added benefit of not requiring a specialized skill set. Despite promising results, the application in real-time endoscopy is limited, and further multicenter trials are required to accurately assess its use in routine practice.
Collapse
Affiliation(s)
- Nadia Guidozzi
- Department of General Surgery, University of Witwatersrand, Johannesburg, South Africa
| | - Nainika Menon
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
| | - Swathikan Chidambaram
- Academic Surgical Unit, Department of Surgery and Cancer, Imperial College London, St Mary’s Hospital, London, UK
| | - Sheraz Rehan Markar
- Department of General Surgery, Oxford University Hospitals, Oxford, UK
- Nuffield Department of Surgery, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Dong Z, Tao X, Du H, Wang J, Huang L, He C, Zhao Z, Mao X, Ai Y, Zhang B, Liu M, Xu H, Jiang Z, Sun Y, Li X, Liu Z, Chen J, Song Y, Liu G, Luo C, Li Y, Zeng X, Liu J, Zhu Y, Wu L, Yu H. Exploring the challenge of early gastric cancer diagnostic AI system face in multiple centers and its potential solutions. J Gastroenterol 2023; 58:978-989. [PMID: 37515597 DOI: 10.1007/s00535-023-02025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/10/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Artificial intelligence (AI) performed variously among test sets with different diversity due to sample selection bias, which can be stumbling block for AI applications. We previously tested AI named ENDOANGEL, diagnosing early gastric cancer (EGC) on single-center videos in man-machine competition. We aimed to re-test ENDOANGEL on multi-center videos to explore challenges applying AI in multiple centers, then upgrade ENDOANGEL and explore solutions to the challenge. METHODS ENDOANGEL was re-tested on multi-center videos retrospectively collected from 12 institutions and compared with performance in previously reported single-center videos. We then upgraded ENDOANGEL to ENDOANGEL-2022 with more training samples and novel algorithms and conducted competition between ENDOANGEL-2022 and endoscopists. ENDOANGEL-2022 was then tested on single-center videos and compared with performance in multi-center videos; the two AI systems were also compared with each other and endoscopists. RESULTS Forty-six EGCs and 54 non-cancers were included in multi-center video cohort. On diagnosing EGCs, compared with single-center videos, ENDOANGEL showed stable sensitivity (97.83% vs. 100.00%) while sharply decreased specificity (61.11% vs. 82.54%); ENDOANGEL-2022 showed similar tendency while achieving significantly higher specificity (79.63%, p < 0.01) making fewer mistakes on typical lesions than ENDOANGEL. On detecting gastric neoplasms, both AI showed stable sensitivity while sharply decreased specificity. Nevertheless, both AI outperformed endoscopists in the two competitions. CONCLUSIONS Great increase of false positives is a prominent challenge for applying EGC diagnostic AI in multiple centers due to high heterogeneity of negative cases. Optimizing AI by adding samples and using novel algorithms is promising to overcome this challenge.
Collapse
Affiliation(s)
- Zehua Dong
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao Tao
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongliu Du
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junxiao Wang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Huang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chiyi He
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, Anhui, People's Republic of China
| | - Zhifeng Zhao
- Department of Digestive Endoscopy, The Fourth Hospital of China Medical University, Shenyang, 110032, Liaoning Province, People's Republic of China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yaowei Ai
- Department of Gastroenterology, The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, China
| | - Beiping Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Xu
- Department of Endoscopy, The First Hospital of Jilin University, Changchun, China
| | - Zhenyu Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yunwei Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University, Gubei Branch, Shanghai, People's Republic of China
| | - Xiuling Li
- Department of Gastroenterology, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, Zhengzhou, Henan, China
| | - Zhihong Liu
- Department of Gastroenterology, Jilin City People's Hospital, Jilin, China
| | - Jinzhong Chen
- Endoscopy Center, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Ying Song
- Department of Gastroenterology, Xi'an Gaoxin Hospital, Xi'an, 710032, Shaanxi Province, China
| | - Guowei Liu
- Yi Xin Clinic, Changzhou, Jiangsu, China
| | - Chaijie Luo
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxia Li
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoquan Zeng
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Liu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijie Zhu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China.
| | - Honggang Yu
- Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
16
|
Jiang S, Wang T, Zhang KH. Data-driven decision-making for precision diagnosis of digestive diseases. Biomed Eng Online 2023; 22:87. [PMID: 37658345 PMCID: PMC10472739 DOI: 10.1186/s12938-023-01148-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Modern omics technologies can generate massive amounts of biomedical data, providing unprecedented opportunities for individualized precision medicine. However, traditional statistical methods cannot effectively process and utilize such big data. To meet this new challenge, machine learning algorithms have been developed and applied rapidly in recent years, which are capable of reducing dimensionality, extracting features, organizing data and forming automatable data-driven clinical decision systems. Data-driven clinical decision-making have promising applications in precision medicine and has been studied in digestive diseases, including early diagnosis and screening, molecular typing, staging and stratification of digestive malignancies, as well as precise diagnosis of Crohn's disease, auxiliary diagnosis of imaging and endoscopy, differential diagnosis of cystic lesions, etiology discrimination of acute abdominal pain, stratification of upper gastrointestinal bleeding (UGIB), and real-time diagnosis of esophageal motility function, showing good application prospects. Herein, we reviewed the recent progress of data-driven clinical decision making in precision diagnosis of digestive diseases and discussed the limitations of data-driven decision making after a brief introduction of methods for data-driven decision making.
Collapse
Affiliation(s)
- Song Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| |
Collapse
|
17
|
Pan Y, He L, Chen W, Yang Y. The current state of artificial intelligence in endoscopic diagnosis of early esophageal squamous cell carcinoma. Front Oncol 2023; 13:1198941. [PMID: 37293591 PMCID: PMC10247226 DOI: 10.3389/fonc.2023.1198941] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive tract. The most effective method of reducing the disease burden in areas with a high incidence of esophageal cancer is to prevent the disease from developing into invasive cancer through screening. Endoscopic screening is key for the early diagnosis and treatment of ESCC. However, due to the uneven professional level of endoscopists, there are still many missed cases because of failure to recognize lesions. In recent years, along with remarkable progress in medical imaging and video evaluation technology based on deep machine learning, the development of artificial intelligence (AI) is expected to provide new auxiliary methods of endoscopic diagnosis and the treatment of early ESCC. The convolution neural network (CNN) in the deep learning model extracts the key features of the input image data using continuous convolution layers and then classifies images through full-layer connections. The CNN is widely used in medical image classification, and greatly improves the accuracy of endoscopic image classification. This review focuses on the AI-assisted diagnosis of early ESCC and prediction of early ESCC invasion depth under multiple imaging modalities. The excellent image recognition ability of AI is suitable for the detection and diagnosis of ESCC and can reduce missed diagnoses and help endoscopists better complete endoscopic examinations. However, the selective bias used in the training dataset of the AI system affects its general utility.
Collapse
Affiliation(s)
- Yuwei Pan
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lanying He
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Weiqing Chen
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongtao Yang
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
18
|
Yuan XL, Zeng XH, Liu W, Mou Y, Zhang WH, Zhou ZD, Chen X, Hu YX, Hu B. Artificial intelligence for detecting and delineating the extent of superficial esophageal squamous cell carcinoma and precancerous lesions under narrow-band imaging (with video). Gastrointest Endosc 2023; 97:664-672.e4. [PMID: 36509114 DOI: 10.1016/j.gie.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/04/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Although narrow-band imaging (NBI) is a useful modality for detecting and delineating esophageal squamous cell carcinoma (ESCC), there is a risk of incorrectly determining the margins of some lesions even with NBI. This study aimed to develop an artificial intelligence (AI) system for detecting superficial ESCC and precancerous lesions and delineating the extent of lesions under NBI. METHODS Nonmagnified NBI images from 4 hospitals were collected and annotated. Internal and external image test datasets were used to evaluate the detection and delineation performance of the system. The delineation performance of the system was compared with that of endoscopists. Furthermore, the system was directly integrated into the endoscopy equipment, and its real-time diagnostic capability was prospectively estimated. RESULTS The system was trained and tested using 10,047 still images and 140 videos from 1112 patients and 1183 lesions. In the image testing, the accuracy of the system in detecting lesions in internal and external tests was 92.4% and 89.9%, respectively. The accuracy of the system in delineating extents in internal and external tests was 88.9% and 87.0%, respectively. The delineation performance of the system was superior to that of junior endoscopists and similar to that of senior endoscopists. In the prospective clinical evaluation, the system exhibited satisfactory performance, with an accuracy of 91.4% in detecting lesions and an accuracy of 85.9% in delineating extents. CONCLUSIONS The proposed AI system could accurately detect superficial ESCC and precancerous lesions and delineate the extent of lesions under NBI.
Collapse
Affiliation(s)
- Xiang-Lei Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xian-Hui Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wan-Hong Zhang
- Department of Gastroenterology, Cangxi People's Hospital, Guangyuan, Sichuan, China
| | - Zheng-Duan Zhou
- Department of Gastroenterology, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| | - Xin Chen
- The First People's Hospital of Shuangliu District, Chengdu, Sichuan, China
| | - Yan-Xing Hu
- Xiamen Innovision Medical Technology Co, Ltd, Xiamen, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|