Review
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Meta-Anal. Mar 28, 2020; 8(2): 78-88
Published online Mar 28, 2020. doi: 10.13105/wjma.v8.i2.78
Hypoxia and oxidative stress: The role of the anaerobic gut, the hepatic arterial buffer response and other defence mechanisms of the liver
Samapriya Pasan Hewawasam
Samapriya Pasan Hewawasam, Department of Physiology, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka
Author contributions: Hewawasam SP performed the literature review, developed the prototypic view on the effect on hypoxia as a defence mechanism against oxidative stress, and wrote and edited the article.
Conflict-of-interest statement: The author has nothing to disclose.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Samapriya Pasan Hewawasam, MBBS, MD, Freelancing Philosopher, Senior Lecturer, Board Certified Gastroenterologist, Department of Physiology, Faculty of Medicine, University of Ruhuna, Karapitiya, Galle 80000, Sri Lanka. spasanhewawasam@yahoo.com
Received: September 17, 2019
Peer-review started: September 17, 2019
First decision: November 4, 2019
Revised: February 3, 2020
Accepted: February 28, 2020
Article in press: February 28, 2020
Published online: March 28, 2020
Core Tip

Core tip: This review presents a prototypic view of the role of hypoxia as a regulator and a defence mechanism against oxidative stress in the gastrointestinal tract, including in the liver. The functional significance of having an anaerobic gut lumen for the preservation of energy sources is described in the article. Furthermore, the significance of the hepatic arterial buffer response in the maintenance of the hypoxic microenvironment of hepatocytes to regulate the oxidative stress generated by the enormous catalytic potential of the liver and other hypoxia-mediated defences against this oxidative stress are described.