1
|
Liu Y, Qiu M, Hao Z, Liu Y, Wang S, Chang M, Liu X, Sun W, Teng X, Wang X. The mechanism of lycopene alleviating cadmium-inhibited glucose uptake ability of epithelioma papulosum cyprini cells: miR-375, oxidative stress, and actin cytoskeleton dysfunction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125143. [PMID: 40163924 DOI: 10.1016/j.jenvman.2025.125143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Cadmium (Cd) poses a threat to fish and human health. Carp is the most widely farmed fish, and it is necessary to study the mechanism of Cd toxicity and effective mitigation methods for Cd poisoning in carps. We previously found that Cd up-regulated miR-375 in common carp spleens, and that IRS1, a factor involved in glucose (GLU) uptake, was a potential target gene of miR-375. However, whether Cd can decrease GLU uptake ability in fish remains unknown. Oxidative stress (OS) and actin cytoskeleton dysfunction (ACD) can take part in the mechanisms of GLU uptake ability reduction. Lycopene (Lyc) is a natural plant antioxidant, and epithelioma papulosum cyprini (EPC) cells are a model cell to study carps. Therefore, we conducted experiments with Cd or/and Lyc treatments to investigate the mechanisms of Lyc alleviating Cd-cytotoxicity on EPC cells from the perspectives of miR-375, OS, ACD, and GLU uptake ability. We found that Lyc mitigated Cd-caused miR-375 increase, OS, ACD, and GLU uptake ability reduction. Moreover, miR-375 overexpression/knockdown experiments demonstrated that miR-375 mediated OS, ACD, and GLU uptake ability reduction and targeted regulated IRS1-PI3K-AKT. Furthermore, NAC intervention experiment demonstrated that ROS mediated ACD and the reduction of GLU uptake via ROS/IRS1-PI3K-AKT. Taken together, Lyc alleviated Cd-decreased GLU uptake ability via miR-375-ROS/IRS1-PI3K-AKT and miR-375/IRS1-PI3K-AKT pathways in EPC cells. Our findings highlighted significant role of miR-375 in Cd-induced toxicity and elucidated the mechanism by which Lyc alleviated Cd-induced toxicity. Our study can provide new information and new targets for resisting environmental pollutant stress in animals.
Collapse
Affiliation(s)
- Yuhao Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Minna Qiu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiyu Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuhang Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shaochi Wang
- Institute of Quality Safety and Nutrition of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311799, PR China
| | - Minghang Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, PR China
| | - Wei Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xinquan Wang
- Institute of Quality Safety and Nutrition of Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 311799, PR China.
| |
Collapse
|
2
|
Yang S, Liang Z, Qiu Y, Li X, Tian Y, Liu Y. Association between heavy metals and risk of cardiovascular diseases in US adults with prediabetes from NHANES 2011-2018. BMC Public Health 2025; 25:391. [PMID: 39885432 PMCID: PMC11783919 DOI: 10.1186/s12889-025-21552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The association of plasma metals on the risk of cardiovascular diseases (CVD) in adults with prediabetes remains poorly investigated. To assess the association between plasma metal exposure and the risk of CVD in prediabetic adults in the United States using five plasma metals. METHODS Five cycles of data (2011-2012, 2013-2014, 2015-2016, and 2017-2018) from the NHANES were adopted in this study. The plasma metals were measured in 1088 participants with prediabetes. We utilized multivariate logistic regression, WQS, and BKMR models to evaluate the associations between the five plasma metals and the risk of CVD. RESULTS The risk of CVD in participants with prediabetes were found to link to the 2nd quartile, 3rd and 4th quartiles of cadmium on the basis of multivariate logistic model (OR = 3.03, 95%CI: 1.17-7.82, P<0.01). Moreover, the joint effect of the five metals on the risk of CVD participants with prediabetes were unveiled using WQS and BKMR models (OR = 1.79, 95%CI: 1.15-2.77, P<0.01). In addition, when the concentrations of the other four metals were controlled at the 25th, 50th, and 75th percentile, correspondingly, cadmium had a statistically significant positive association with the risk of CVD. CONCLUSION The exposure of metals documented by the five metals links to the risk of CVD in participants with prediabetes in the United States. Among all the five metals, cadmium has the strongest association with the risk of CVD in participants with prediabetes.
Collapse
Affiliation(s)
- Sijia Yang
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Zhuoshuai Liang
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Yue Qiu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Xiaoyang Li
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Yuyang Tian
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China
| | - Yawen Liu
- Department of Epidemiology and Biostatistics, School of Public Health of Jilin University, Changchun, 130021, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, School of Public Health, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Zhou JX, Zheng ZY, Peng ZX, Yang YT, Ni HG. Predictive model in silicon and pathogenicity mechanism of metabolic syndrome: Impacts of heavy metal exposure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:124001. [PMID: 39746257 DOI: 10.1016/j.jenvman.2024.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/03/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Although the association between heavy metals in human and the development of metabolic syndrome (MetS) have been extensively studied, the pathogenic mechanism of MetS affected by metals is not clear to date. In this study, a predictive model was developed with machine learning base on the large-scale dataset. These proposed models were evaluated via comparatively analysis of their accuracy and robustness. With the optimal model, two metals significantly correlated with MetS were screened and were employed to infer the pathogenicity mechanism of MetS via molecular docking. Significant associations between heavy metals and MetS were found. Molecular docking provided insights into the interactions between metal ions and key protein receptors involved in metabolic regulation, suggesting a mechanism by which heavy metals interfere with metabolic functions. Specifically, Ba and Cd affect the development of MetS thru their interactions with insulin and estrogen receptors. This study attempted to explore heavy metals' potential roles in MetS at the molecular level. These findings emphasize the importance of addressing environmental exposures in the prevention and treatment of MetS.
Collapse
Affiliation(s)
- Jing-Xuan Zhou
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zi-Yi Zheng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhao-Xing Peng
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yu-Ting Yang
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Hasani M, Khazdouz M, Sobhani S, Mardi P, Riahi S, Agh F, Mahdavi-Gorabi A, Mohammadipournami S, Gomnam F, Qorbani M. Association of heavy metals and bio-elements blood level with metabolic syndrome: a systematic review and meta-analysis of observational studies. J Diabetes Metab Disord 2024; 23:1719-1752. [PMID: 39610503 PMCID: PMC11599521 DOI: 10.1007/s40200-024-01500-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 11/30/2024]
Abstract
Background and objectives The literature has reported heavy metals might alter the physiological and biochemical functions of body organs and cause several health problems. So, the present systematic review and meta-analysis aimed to investigate the association of blood levels of essential or non-essential metals with metabolic syndrome (MetS). Methods In this systematic review, some international databases including PubMed, Embase, Scopus, and Web of Science were searched up to February 2024. All observational studies which assessed the association of three heavy metals (cadmium, mercury, lead) and bio-elements (chromium, iron, manganese, and magnesium, copper) with the risk of MetS were included. There was no limitation in the time of publication and language. A random-effects meta-analysis was performed to estimate the pooled effect sizes. Possible sources of heterogeneity were explored by meta-regression analysis. Results Totally, 29 studies were eligible for meta-analysis. Our results showed that increased level of cadmium (pooled OR: 1.24, 95% CI: 1.05, 1.46) and mercury (pooled OR: 1.22, 95% CI: 1.08, 1.38) significantly increased the risk of MetS. In contrast, increased level of chromium significantly reduced the risk of developing MetS (pooled OR: 0.68, 95% CI: 0.56, 0.83). Moreover, association between lead, iron, copper, magnesium, and manganese with MetS was not statistically significant (P > 0.05). However, elevated lead levels in men increased the odds of MetS. Conclusion Our results show a significant association between blood levels of some heavy metals, including cadmium, mercury, and lead, with increased odds of MetS. On the other hand, chromium as a biometal decreased the odds of MetS. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01500-9.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Public Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Khazdouz
- Ali-Asghar Children’s Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sahar Sobhani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Parham Mardi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Shirin Riahi
- Educational Development Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fahimeh Agh
- Saveh University of Medical Sciences, Saveh, Iran
| | - Armita Mahdavi-Gorabi
- Molecular Medicine and Genetics Research Center for Advanced Technologies in Cardiovascular Medicine Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Mohammadipournami
- Student Research Committee, Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fatemeh Gomnam
- Student Research Committee, Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Environmental Health, School of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Epidemiology and Biostatistics, School of Health, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
5
|
Sardar MB, Raza M, Fayyaz A, Nadir MA, Nadeem ZA, Babar M. Environmental Heavy Metal Exposure and Associated Cardiovascular Diseases in Light of the Triglyceride Glucose Index. Cardiovasc Toxicol 2024; 24:1301-1309. [PMID: 39212843 DOI: 10.1007/s12012-024-09913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD), primarily ischemic heart disease and stroke, remain leading global health burdens. Environmental risk factors have a major role in the development of CVD, particularly exposure to heavy metals. The Triglyceride Glucose Index (TyG), a measure of insulin resistance and CVD risk, is the primary focus of this study, which summarizes the most recent findings on the effects of lead (Pb), arsenic (As), and cadmium (Cd) on CVD risk. A higher risk of CVD is correlated with an elevated TyG index, which has been linked to insulin resistance. Exposure to Cd is associated with disturbance of lipid metabolism and oxidative stress, which increases the risk of CVD and TyG. Exposure reduces insulin secretion and signaling, which raises the TyG index and causes dyslipidemia. Pb exposure increases the risk of CVD and TyG index via causing oxidative stress and pancreatic β-cell destruction. These results highlight the need of reducing heavy metal exposure by lifestyle and environmental modifications in order to lower the risk of CVD. To comprehend the mechanisms and create practical management plans for health hazards associated with heavy metals, more study is required.
Collapse
Affiliation(s)
- Muhammad Bilal Sardar
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan.
| | - Mohsin Raza
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Ammara Fayyaz
- Department of Medicine, Central Park Medical College, Lahore, Pakistan
| | - Muhammad Asfandyar Nadir
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore, 54700, Pakistan
| | - Muhammad Babar
- Department of Medicine, Social Security Hospital, Faisalabad, Pakistan
| |
Collapse
|
6
|
Kumar R, Gullapalli RR. Evaluating combined effects of chronic, low-dose exposures of cadmium (CLEC) and hyperglycemia on insulin signaling dysfunction in a hepatocellular model. Toxicology 2024; 508:153929. [PMID: 39191366 PMCID: PMC11573001 DOI: 10.1016/j.tox.2024.153929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The pathophysiological effects of chronic heavy metal exposures on human health remains uncertain. In this study, we developed a novel chronic, low-dose exposure of Cadmium (CLEC) model using the hepatocellular cell lines, HepG2 and HUH7. We modulated cell culture conditions to mimic human normoglycemic (5.6 mM) and hyperglycemic (15 mM) states with concomitant cadmium (Cd) exposures for 24 weeks. CLEC cells undergo non-trivial alterations in glucose signaling and metabolic characteristics within our model. We observe elevated baseline reactive oxygen species (ROS) production and decreased 2-NBDG uptake indicative of glucose metabolic dysfunction. Additionally, induction of metallothionein (MT) expression, increased activation of Akt signaling (via phosphorylation) and reduced IRS-2 protein expression are observed in CLEC cells. Cell line specific changes are observed with HepG2 showing a much higher MT gene induction compared to HUH7 cell line which impacts glucose metabolic dysfunction. Hyperglycemic culture conditions (representing type II diabetes) significantly modulate CLEC effects on cells. In conclusion, pathophysiologically relevant models of chronic heavy metal exposures are urgently needed to gain an in-depth, mechanistic understanding of the long-term impacts of toxic metals (e.g., Cd) on human metabolic health.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Pathology, United States; Department of Chemical and Biological Engineering, Room 333A, MSC08-4640, University of New Mexico, Albuquerque, NM 87131, United States; Center for Metals in Biology and Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Rama R Gullapalli
- Department of Pathology, United States; Department of Chemical and Biological Engineering, Room 333A, MSC08-4640, University of New Mexico, Albuquerque, NM 87131, United States; Center for Metals in Biology and Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
7
|
Sheta B, El-Zahed M, Nawareg M, Elkhiary Z, Sadek S, Hyder A. Nanoremediation of tilapia fish culture using iron oxide nanoparticles biosynthesized by Bacillus subtilis and immobilized in a free-floating macroporous cryogel. BMC Vet Res 2024; 20:455. [PMID: 39385161 PMCID: PMC11462889 DOI: 10.1186/s12917-024-04292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND AND AIM Contamination from increased anthropogenic activities poses a threat to human health as well as the ecosystem. To develop a nanotechnological approach to improve aqua fisheries, we synthesized magnetic hematite nanoparticle-based gel and evaluated its efficacy in a cadmium-polluted closed system to decontaminate water and improve tilapia fish health. METHODS Green iron oxide nanoparticles were biosynthesized by the metabolite of bacillus subtilis and incorporated into polyvinyl alcohol to construct a hydrogel by cryogelation. KEY FINDINGS The cryogel had interconnected macropores with diameters widely ranging between 20 and 200 μm and could be free-floating in water. When applied in cadmium-polluted tilapia culture, this nanogel reduced turbidity and ammonia in the aquarium, adsorbed cadmium from the water with a larger quantity on the gel's outer surface than in its center., and reduced cadmium concentration in tilapia's liver, gills, and muscles. Application of this nano-based cryogel reduced the toxic effects of cadmium on tilapia fish. It maintained hepatic and renal cell nuclear integrity as determined by comet assay. This nano-treatment also reversed the cadmium-induced elevations of plasma lipids, glucose, stress marker cortisol, the hepatic enzymes AST and ALT, and the kidney function marker urea, and improved the lymphocytopenia and other hematological functions in tilapia fish intoxicated by cadmium.
Collapse
Affiliation(s)
- Basma Sheta
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohammed El-Zahed
- Botany & microbiology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mona Nawareg
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Zeinab Elkhiary
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Salahuddin Sadek
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Ayman Hyder
- Zoology departments, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
8
|
Luo J, Lin S. Association between cadmium exposure and serum neurofilament light chain levels: A nationwide population-based survey. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116771. [PMID: 39047369 DOI: 10.1016/j.ecoenv.2024.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Although cadmium exposure had been demonstrated to be toxic to the nervous system, little was known about the link between cadmium exposure and axonal injury. Therefore, the present study aimed to reveal whether there was any correlation between blood cadmium and serum neurofilament light chain (NfL) levels in the general population. METHODS This study included 1040 participants with a median (IQR) age of 47 (35-60) years from the 2013-2014 National Health and Nutrition Examination Survey. Serum NfL levels were measured through immunoassay, and whole blood cadmium concentrations were detected by means of inductively coupled plasma mass spectrometry. Linear regression and restricted cubic spline model was applied to analyze the significance of relationship between blood cadmium and serum NfL levels. RESULTS In the full adjusted model, blood cadmium levels were found to be positively associated with serum NfL levels (Q4 vs Q1, β = 3.35, 95 %CI: 0.41, 6.30, p for trend = 0.014). A potential linear positive dose-effect relationship was discovered between blood cadmium and serum NfL levels (p for non-linearity = 0.15). According to the result of stratified analysis, the significant positive relationship between blood cadmium and serum NfL levels was present only in the population of middle-aged and older adults. CONCLUSION The present study suggested a positive association between blood cadmium and serum NfL levels in the general US population.
Collapse
Affiliation(s)
- Jing Luo
- School of Rehabilitation, Jiangsu College of Nursing, Huaian, Jiangsu 223003, China
| | - Song Lin
- Department of Clinical Nutrition, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China.
| |
Collapse
|
9
|
Mou Y, Sun Y, Liu G, Zhang N, He Z, Gu S. Screening of differentially expressed RNAs and identifying a ceRNA axis during cadmium-induced oxidative damage in pancreatic β cells. Sci Rep 2024; 14:18962. [PMID: 39152192 PMCID: PMC11329516 DOI: 10.1038/s41598-024-69937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Cadmium, a common metal pollutant, has been demonstrated to induce type 2 diabetes by disrupting pancreatic β cells function. In this study, transcriptome microarray was utilized to identify differential gene expression in oxidative damage to pancreatic β cells following cadmium exposure. The results indicated that a series of mRNAs, LncRNAs, and miRNAs were altered. Of the differentially expressed miRNAs, miR-29a-3p exhibited the most pronounced alteration, with an 11.62-fold increase relative to the control group. Following this, the target gene of miR-29a-3p was identified as Col3a1 through three databases (miRDB, miRTarbase and Tarbase), which demonstrated a decrease across the transcriptome microarray. The upstream target gene of miR-29a-3p was identified as NONMMUT036805, with decreased expression observed in the microarray. Finally, the expression trend of NONMMUT036805/miR-29a-3p/Col3a1 was reversed following NAC pretreatment. This was accompanied by a reduction in oxidative damage indicators, MDA/ROS/GSH-Px appeared to be negatively affected to varying degrees. In conclusion, this study has demonstrated that multiple RNAs are altered during cadmium exposure-induced oxidative damage in pancreatic β cells. The NONMMUT036805/miR-29a-3p/Col3a1 axis has been shown to be involved in this process, which provides a foundation for the identification of potential targets for cadmium toxicity intervention.
Collapse
Affiliation(s)
- Yahao Mou
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
- Sichuan Tianfu New Area Public Health Center, Zhengxing Street, Chengdu, Sichuan, 610218, People's Republic of China
| | - Yifei Sun
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
| | - Guofen Liu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
| | - Nan Zhang
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
| | - Zuoshun He
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China
| | - Shiyan Gu
- Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan, 671000, People's Republic of China.
| |
Collapse
|
10
|
Dugandzic R, Konstantelos N, Yu Y, Lavigne E, Srugo S, Lang JJ, Larsen K, Pollock T, Villeneuve P, Thomson EM, MacPherson M, Dales R, Cakmak S. Associations between paediatric obesity, chemical mixtures and environmental factors, in a national cross-sectional study of Canadian children. Pediatr Obes 2024; 19:e13117. [PMID: 38872449 DOI: 10.1111/ijpo.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Whilst single chemical exposures are suspected to be obesogenic, the combined role of chemical mixtures in paediatric obesity is not well understood. OBJECTIVES We aimed to evaluate the potential associations between chemical mixtures and obesity in a population-based sample of Canadian children. METHODS We ascertained biomonitoring and health data for children aged 3-11 from the cross-sectional Canadian Health Measures Survey from 2007 to 2019. Several chemicals of interest were measured in blood or urine and paediatric obesity was defined based on measured anthropometrics. Using quantile-based G computational analysis, we quantified the effects of three chemical mixtures selected a priori. Models were adjusted for sociodemographic and environmental factors identified through a directed acyclic graph. Results are presented through adjusted relative risks (RR) with 95% confidence intervals (95% CI). RESULTS We included 9147 children. Of these, 24.1% were overweight or obese. Exposure to the mixture of bisphenol A, acrylamide, glycidamide, metals, parabens and arsenic increased the risk of childhood overweight or obesity by 45% (95% CI 1.09, 1.93), obesity by 109% (95% CI 1.27, 3.42) and central obesity by 82% (95% CI 1.30, 2.56). CONCLUSIONS Our findings support the role of early childhood chemical exposures in paediatric obesity and the potential combined effects of chemicals.
Collapse
Affiliation(s)
- Rose Dugandzic
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
| | - Natalia Konstantelos
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Yamei Yu
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Eric Lavigne
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sebastian Srugo
- Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Justin J Lang
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Surveillance and Applied Research, Public Health Agency of Canada, Ottawa, Ontario, Canada
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, South Australia, Australia
- Healthy Active Living and Obesity Research Group, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, Ontario, Canada
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
- Department of Geography and Environmental Studies, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Paul Villeneuve
- School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada
| | - Errol M Thomson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Robert Dales
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Sabit Cakmak
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Mukhi S, Manjrekar PA, Srikantiah RM, Harish S, Kotian H, Rao YL, Sherly A. Evaluation of the cognitive, physiological, and biomarker effects of heavy metal exposure in Wistar rats. Vet World 2024; 17:1855-1863. [PMID: 39328457 PMCID: PMC11422626 DOI: 10.14202/vetworld.2024.1855-1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/28/2024] [Indexed: 09/28/2024] Open
Abstract
Background and Aim Individuals exposed to heavy metals are known to experience physiological and biochemical changes, which raise questions regarding possible health effects. In our earlier research, significant concentrations of vanadium (V), mercury (Hg), cadmium (Cd), and arsenic (As) were found in food and medical packaging materials. This study aimed to evaluate the cognitive, physiological, and biomarker effects of select heavy metal exposure in Wistar rats. Materials and Methods Over a 13-week period, five groups of rats (six rats per group, with both males and females) were assessed to study the effects of oral exposure to V, Hg, Cd, and As. The study focused on evaluating physiological, cognitive, and biochemical markers, with the results compared to those of a control group. Results Comparing all groups of rats treated with heavy metals, the study revealed significant deficits in learning and spatial orientation (water maze test); rats treated with V, Cd, and Hg showed signs of depression. Rats treated with As also showed signs of hyperactivity, which may indicate a connection to attention-deficit hyperactivity disorder (rat tail suspension test). The groups exposed to different heavy metals varied in their physiological (water and food intake, urine and feces output) and biochemical responses (enzyme-linked immunosorbent assay, prostate-specific antigen, T3, T4, thyroid-stimulating hormone, carcinoembryonic antigen, and blood glucose analysis), with Hg exhibiting the strongest impacts. Rats given Hg showed signs of hypothyroidism, such as increased food intake and weight gain. Conclusion This study clarifies the complex relationships between exposure to heavy metals and various biological systems, shedding light on their potential health impacts. The findings provide insight into the effects of heavy metals on neural and thyroid tissues, as well as their propensity to cause cellular dedifferentiation. However, the study has certain limitations, such as the relatively short duration of exposure and the use of only a few selected biomarkers. Future research should focus on long-term exposure studies, incorporate a broader range of biomarkers, and explore the underlying mechanisms at a molecular level to better understand the full spectrum of health risks associated with heavy metal exposure.
Collapse
Affiliation(s)
- Senna Mukhi
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Poornima Ajay Manjrekar
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rukmini Mysore Srikantiah
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sindhu Harish
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Himani Kotian
- Department of Community Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Y Lakshmisha Rao
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anita Sherly
- Department of Biochemistry, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Salles FJ, Diaz-Quijano FA, Luz MS, de Almeida GA, Akiba N, de Oliveira AP, Elias ADC, Rogero MM, Olympio KPK. Low levels of potentially toxic elements in workers are associated with self-reported health outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174510. [PMID: 38977094 DOI: 10.1016/j.scitotenv.2024.174510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Occupational exposure to toxic elements can adversely affect health. The current study evaluated blood concentrations of potentially toxic elements (PTE) including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, and Zn in formal and informal workers. Additionally, the study investigated the associations between blood PTE concentrations and reported health outcomes in the study population. The exposed group included women engaged in informal jewelry welding within their homes in Limeira, São Paulo state, Brazil (n = 36) and men who worked at a steel company in Volta Redonda, Rio de Janeiro state, Brazil (n = 22). The control group comprised residents of the same neighborhoods as the workers but without occupational exposure to chemicals (n = 28 in Limeira; n = 27 in Volta Redonda). Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry (TQ ICP-MS) was used to determine PTE concentrations in blood samples. Glycemia, insulin, and lipid profile tests were performed. All participants completed questionnaires on household risk and reported morbidity. The blood concentrations of Cd, As, and Pb, as well as glycemia, were higher in informal workers than in control subjects. No significant differences were observed between formal workers and control subjects. A robust Poisson regression model, adjusted for variables suggested by a Directed Acyclic Graph, disclosed associations of blood lead and arsenic concentrations with the prevalence of neurological manifestations in Limeira. Blood lead levels > 2.6 μg dL-1 were associated with 2.3 times the prevalence of self-reported neurological manifestations (95 % CI: 1.17-4.58; p = 0.02) than lower blood lead concentrations. Furthermore, a positive association between blood cadmium concentrations and glycemia was observed. Informal occupational exposure to these elements may indicate an increased risk of developing diseases. Monitoring exposure and implementing interventions to reduce PTE exposure in the work environment represent significant steps toward prevention.
Collapse
Affiliation(s)
- Fernanda Junqueira Salles
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, CEP 01246-904 Sao Paulo, SP, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, SP, 01246-000, Brazil.
| | - Fredi Alexander Diaz-Quijano
- University of Sao Paulo, School of Public Health, Department of Epidemiology - Laboratório de Inferência Causal em Epidemiologia (LINCE-USP), Av. Dr. Arnaldo, 715, Cerqueira Cesar, CEP 01246-904, Sao Paulo, SP, Brazil.
| | - Maciel Santos Luz
- Laboratory of Metallurgical Process, Institute for Technological Research, Sao Paulo, SP, Brazil.
| | - Gilmar Alves de Almeida
- Laboratory of Metallurgical Process, Institute for Technological Research, Sao Paulo, SP, Brazil.
| | - Naomi Akiba
- Laboratory of Metallurgical Process, Institute for Technological Research, Sao Paulo, SP, Brazil.
| | | | - Aline de Carvalho Elias
- Laboratory of Metallurgical Process, Institute for Technological Research, Sao Paulo, SP, Brazil.
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of Sao Paulo, 01246-904 São Paulo, Brazil.
| | - Kelly Polido Kaneshiro Olympio
- Department of Environmental Health, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira Cesar, CEP 01246-904 Sao Paulo, SP, Brazil; The Human Exposome Research Group/ Expossoma e Saúde do Trabalhador - eXsat, School of Public Health, University of Sao Paulo, Av. Dr. Arnaldo, 715, Cerqueira César, SP, 01246-000, Brazil.
| |
Collapse
|
13
|
Doroudian M, Pourzadi N, Gautam A, Gailer J. Translational toxicology of metal(loid) species: linking their bioinorganic chemistry in the bloodstream to organ damage onset. Biometals 2024; 37:739-753. [PMID: 37815752 DOI: 10.1007/s10534-023-00537-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/08/2023] [Indexed: 10/11/2023]
Abstract
The quantification of arsenic, mercury, cadmium and lead in the human bloodstream is routinely used today to assess exposure to these toxic metal(loid)s, but the interpretation of the obtained data in terms of their cumulative health relevance remains problematic. Seemingly unrelated to this, epidemiological studies strongly suggest that the simultaneous chronic exposure to these environmental pollutants is associated with the etiology of autism, type 2 diabetes, irritable bowel disease and other diseases. This from a public health point of view undesirable situation urgently requires research initiatives to establish functional connections between human exposure to multiple toxic metal(loid) species and adverse health effects. One way to establish causal exposure-response relationships is a molecular toxicology approach, which requires one to unravel the biomolecular mechanisms that unfold after individual toxic metal(loid)s enter the bloodstream/organ nexus as these interactions ultimately determine which metabolites impinge on target organs and thus provide mechanistic links to diseases of unknown etiology. In an attempt to underscore the importance of the toxicological chemistry of metal(loid)s in the bloodstream, this review summarizes recent progress into relevant bioinorganic processes that are implicated in the etiology of adverse organ-based health effects and possibly diseases. A better understanding of these bioinorganic processes will not only help to improve the regulatory framework to better protect humans from the adverse effects of toxic metal(loid) species, but also represents an important starting point for the development of treatments to ameliorate pollution-induced adverse health effects on human populations, including pregnant women, the fetus and children.
Collapse
Affiliation(s)
- Maryam Doroudian
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Negar Pourzadi
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Astha Gautam
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
14
|
Cheng Z, Kong Y, Yang W, Xu H, Tang D, Zuo Y. Association between serum copper and blood glucose: a mediation analysis of inflammation indicators in the NHANES (2011-2016). Front Public Health 2024; 12:1401347. [PMID: 38855446 PMCID: PMC11157037 DOI: 10.3389/fpubh.2024.1401347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The rising prevalence of diabetes underscores the need for identifying effective prevention strategies. Recent research suggests environmental factors, particularly heavy metals like copper, significantly influence health outcomes, including diabetes, through mechanisms involving inflammation and oxidative stress. This study aims to explore how serum copper levels affect blood glucose, employing NHANES data from 2011 to 2016, to provide insights into environmental health's role in diabetes prevention and management. METHODS The study analyzed data from 2,318 NHANES participants across three cycles (2011-2016), focusing on those with available data on serum copper, inflammatory markers, and blood glucose levels. We utilized principal component analysis for selecting inflammatory markers, mediation analysis to examine direct and indirect effects, multiple linear regression for assessing relationships between markers and glucose levels, and weighted quantile sum regression for evaluating individual and collective marker effects, adjusting for demographic variables and serum copper. RESULTS Participants averaged 42.70 years of age, with a near-even split between genders. Average serum copper was 119.50 μg/dL, white blood cell count 6.82 × 109/L, and fasting blood glucose 107.10 mg/dL. Analyses identified significant mediation by inflammatory markers (especially white blood cells: 39.78%) in the copper-blood glucose relationship. Regression analyses highlighted a positive correlation between white blood cells (estimate: 1.077, 95% CI: 0.432 to 2.490, p = 0.013) and copper levels and a negative correlation for monocyte percentage (estimate: -1.573, 95% CI: 0.520 to -3.025, p = 0.003). Neutrophil percentage was notably influential in glucose levels. Sensitive analyses confirmed the study's findings. CONCLUSION Serum copper levels significantly impact blood glucose through inflammatory marker mediation, highlighting the importance of considering environmental factors in diabetes management and prevention. These findings advocate for public health interventions and policies targeting environmental monitoring and heavy metal exposure reduction, emphasizing the potential of environmental health measures in combating diabetes incidence.
Collapse
Affiliation(s)
- Zijing Cheng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuzhe Kong
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haitao Xu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Decheng Tang
- Department of Management Science, School of Management, Fudan University, Shanghai, China
| | - Yu Zuo
- Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Satarug S. Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity? Cells 2023; 13:83. [PMID: 38201287 PMCID: PMC10778334 DOI: 10.3390/cells13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only organ other than liver that produces and releases glucose into the circulation. Also, the kidney is responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic oral Cd administration in neonatal rats. Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain. However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to be independent of adiposity. This review highlights Cd exposure sources and levels associated with diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1 and -2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide, and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition, and hypertension.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
16
|
Arruebarrena MA, Hawe CT, Lee YM, Branco RC. Mechanisms of Cadmium Neurotoxicity. Int J Mol Sci 2023; 24:16558. [PMID: 38068881 PMCID: PMC10706630 DOI: 10.3390/ijms242316558] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Cadmium is a heavy metal that increasingly contaminates food and drink products. Once ingested, cadmium exerts toxic effects that pose a significant threat to human health. The nervous system is particularly vulnerable to prolonged, low-dose cadmium exposure. This review article provides an overview of cadmium's primary mechanisms of neurotoxicity. Cadmium gains entry into the nervous system via zinc and calcium transporters, altering the homeostasis for these metal ions. Once within the nervous system, cadmium disrupts mitochondrial respiration by decreasing ATP synthesis and increasing the production of reactive oxygen species. Cadmium also impairs normal neurotransmission by increasing neurotransmitter release asynchronicity and disrupting neurotransmitter signaling proteins. Cadmium furthermore impairs the blood-brain barrier and alters the regulation of glycogen metabolism. Together, these mechanisms represent multiple sites of biochemical perturbation that result in cumulative nervous system damage which can increase the risk for neurological and neurodegenerative disorders. Understanding the way by which cadmium exerts its effects is critical for developing effective treatment and prevention strategies against cadmium-induced neurotoxic insult.
Collapse
Affiliation(s)
- Madelyn A. Arruebarrena
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Calvin T. Hawe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Young Min Lee
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Rachel C. Branco
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| |
Collapse
|
17
|
El Muayed M, Wang JC, Wong WP, Metzger BE, Zumpf KB, Gurra MG, Sponenburg RA, Hayes MG, Scholtens DM, Lowe LP, Lowe WL. Urinary metal profiles in mother-offspring pairs and their association with early dysglycemia in the International Hyperglycemia and Adverse Pregnancy Outcome Follow Up Study (HAPO-FUS). JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:855-864. [PMID: 36509832 PMCID: PMC10261541 DOI: 10.1038/s41370-022-00511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Variations in dietary intake and environmental exposure patterns of essential and non-essential trace metals influence many aspects of human health throughout the life span. OBJECTIVE To examine the relationship between urine profiles of essential and non-essential metals in mother-offspring pairs and their association with early dysglycemia. METHODS Herein, we report findings from an ancillary study to the international Hyperglycemia and Adverse Pregnancy Outcome Follow-Up Study (HAPO-FUS) that examined urinary essential and non-essential metal profiles from mothers and offspring ages 10-14 years (1012 mothers, 1013 offspring, 968 matched pairs) from 10 international sites. RESULTS Our analysis demonstrated a diverse exposure pattern across participating sites. In multiple regression modelling, a positive association between markers of early dysglycemia and urinary zinc was found in both mothers and offspring after adjustment for common risk factors for diabetes. The analysis showed weaker, positive, and negative associations of the 2-h glucose value with urinary selenium and arsenic respectively. A positive association between 2-h glucose values and cadmium was found only in mothers in the fully adjusted model when participants with established diabetes were excluded. There was a high degree of concordance between mother and offspring urinary metal profiles. Mother-to-offspring urinary metal ratios were unique for each metal, providing insights into changes in their homeostasis across the lifespan. SIGNIFICANCE Urinary levels of essential and non-essential metals are closely correlated between mothers and their offspring in an international cohort. Urinary levels of zinc, selenium, arsenic, and cadmium showed varying degrees of association with early dysglycemia in a comparatively healthy cohort with a low rate of preexisting diabetes. IMPACT STATEMENT Our data provides novel evidence for a strong correlation between mother and offspring urinary metal patterns with a unique mother-to-offspring ratio for each metal. The study also provides new evidence for a strong positive association between early dysglycemia and urinary zinc, both in mothers and offspring. Weaker positive associations with urinary selenium and cadmium and negative associations with arsenic were also found. The low rate of preexisting diabetes in this population provides the unique advantage of minimizing the confounding effect of preexisting, diabetes related renal changes that would alter the relationship between dysglycemia and renal metal excretion.
Collapse
Affiliation(s)
- Malek El Muayed
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Janice C Wang
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Winifred P Wong
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Boyd E Metzger
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Katelyn B Zumpf
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Miranda G Gurra
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rebecca A Sponenburg
- Quantitative Bio-element Imaging Centre, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Lynn P Lowe
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - William L Lowe
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Martins AC, Ferrer B, Tinkov AA, Caito S, Deza-Ponzio R, Skalny AV, Bowman AB, Aschner M. Association between Heavy Metals, Metalloids and Metabolic Syndrome: New Insights and Approaches. TOXICS 2023; 11:670. [PMID: 37624175 PMCID: PMC10459190 DOI: 10.3390/toxics11080670] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Metabolic syndrome (MetS) is an important public health issue that affects millions of people around the world and is growing to pandemic-like proportions. This syndrome is defined by the World Health Organization (WHO) as a pathologic condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Moreover, the etiology of MetS is multifactorial, involving many environmental factors, including toxicant exposures. Several studies have associated MetS with heavy metals exposure, which is the focus of this review. Environmental and/or occupational exposure to heavy metals are a major risk, contributing to the development of chronic diseases. Of particular note, toxic metals such as mercury, lead, and cadmium may contribute to the development of MetS by altering oxidative stress, IL-6 signaling, apoptosis, altered lipoprotein metabolism, fluid shear stress and atherosclerosis, and other mechanisms. In this review, we discuss the known and potential roles of heavy metals in MetS etiology as well as potential targeted pathways that are associated with MetS. Furthermore, we describe how new approaches involving proteomic and transcriptome analysis, as well as bioinformatic tools, may help bring about an understanding of the involvement of heavy metals and metalloids in MetS.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Samuel Caito
- School of Pharmacy, Husson University, Bangor, ME 04401, USA
| | - Romina Deza-Ponzio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia; (A.A.T.)
- IM Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA; (A.C.M.)
| |
Collapse
|
19
|
Nguyen HD. An evaluation of the effects of mixed heavy metals on prediabetes and type 2 diabetes: epidemiological and toxicogenomic analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82437-82457. [PMID: 37326729 DOI: 10.1007/s11356-023-28037-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
The link between mixed heavy metals (mercury, lead, and cadmium), prediabetes, and type 2 diabetes mellitus (T2DM), especially molecular mechanisms, is poorly understood. Thus, we aimed to identify the association between mixed heavy metals and T2DM and its components using a data set from the Korean National Health and Nutrition Examination Survey. We further analyzed the main molecular mechanisms implicated in T2DM development induced by mixed heavy metals using in-silico analysis. Our findings observed that serum mercury was associated with prediabetes, elevated glucose, and ln2-transformed glucose when using different statistical methods. "AGE-RAGE signaling pathway in diabetic complications", "non-alcoholic fatty liver disease", "metabolic Syndrome X", and three miRNAs (hsa-miR-98-5p, hsa-let-7a-5p, and hsa-miR-34a-5p) were listed as the most important molecular mechanisms related to T2DM development caused by mixed heavy metals. These miRNA sponge structures were created and examined, and they may be beneficial in the treatment of T2DM. The predicted cutoff values for three heavy metal levels linked to T2DM and its components were specifically identified. Our results imply that chronic exposure to heavy metals, particularly mercury, may contribute to the development of T2DM. To understand the changes in the pathophysiology of T2DM brought on by a combination of heavy metals, more research is required.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 57922, Jeonnam, Republic of Korea.
| |
Collapse
|
20
|
Khalil WJ, Akeblersane M, Khan AS, Moin ASM, Butler AE. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int J Mol Sci 2023; 24:8870. [PMID: 37240215 PMCID: PMC10219141 DOI: 10.3390/ijms24108870] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
To meet the increased need for food and energy because of the economic shift brought about by the Industrial Revolution in the 19th century, there has been an increase in persistent organic pollutants (POPs), atmospheric emissions and metals in the environment. Several studies have reported a relationship between these pollutants and obesity, and diabetes (type 1, type 2 and gestational). All of the major pollutants are considered to be endocrine disruptors because of their interactions with various transcription factors, receptors and tissues that result in alterations of metabolic function. POPs impact adipogenesis, thereby increasing the prevalence of obesity in exposed individuals. Metals impact glucose regulation by disrupting pancreatic β-cells, causing hyperglycemia and impaired insulin signaling. Additionally, a positive association has been observed between the concentration of endocrine disrupting chemicals (EDCs) in the 12 weeks prior to conception and fasting glucose levels. Here, we evaluate what is currently known regarding the link between environmental pollutants and metabolic disorders. In addition, we indicate where further research is required to improve our understanding of the specific effects of pollutants on these metabolic disorders which would enable implementation of changes to enable their prevention.
Collapse
Affiliation(s)
- William Junior Khalil
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Meriem Akeblersane
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Ana Saad Khan
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Abu Saleh Md Moin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Busaiteen 15503, Bahrain
| |
Collapse
|
21
|
Saedi S, Watson SE, Young JL, Tan Y, Wintergerst KA, Cai L. Does maternal low-dose cadmium exposure increase the risk of offspring to develop metabolic syndrome and/or type 2 diabetes? Life Sci 2023; 315:121385. [PMID: 36634865 PMCID: PMC9912173 DOI: 10.1016/j.lfs.2023.121385] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/31/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Cadmium is a hazardous metal with multiple organ toxicity that causes great harm to human health. Cadmium enters the human body through occupational exposure, diet, drinking water, breathing, and smoking. Cadmium accumulation in the human body is associated with increased risk of developing obesity, cardiovascular disease, diabetes, and metabolic syndrome (MetS). Cadmium uptake is enhanced during pregnancy and can cross the placenta affecting placental development and function. Subsequently, cadmium can pass to fetus, gathering in multiple organs such as the liver and pancreas. Early-life cadmium exposure can induce hepatic oxidative stress and pancreatic β-cell dysfunction, resulting in insulin resistance and glucose metabolic dyshomeostasis in the offspring. Prenatal exposure to cadmium is also associated with increasing epigenetic effects on the offspring's multi-organ functions. However, whether and how maternal exposure to low-dose cadmium impacts the risks of developing type 2 diabetes (T2D) in the young and/or adult offspring remains unclear. This review collected available data to address the current evidence for the potential role of cadmium exposure, leading to insulin resistance and the development of T2D in offspring. However, this review reveals that underlying mechanisms linking prenatal cadmium exposure during pregnancy with T2D in offspring remain to be adequately investigated.
Collapse
Affiliation(s)
- Saman Saedi
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Sara E Watson
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, KY, USA; Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children's Hospital, Louisville, KY, USA
| | - Jamie L Young
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kupper A Wintergerst
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, KY, USA; Division of Endocrinology, Department of Pediatrics, University of Louisville, Norton Children's Hospital, Louisville, KY, USA; The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, KY, USA; Department of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
22
|
Le Mentec H, Monniez E, Legrand A, Monvoisin C, Lagadic-Gossmann D, Podechard N. A New In Vivo Zebrafish Bioassay Evaluating Liver Steatosis Identifies DDE as a Steatogenic Endocrine Disruptor, Partly through SCD1 Regulation. Int J Mol Sci 2023; 24:ijms24043942. [PMID: 36835354 PMCID: PMC9959061 DOI: 10.3390/ijms24043942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which starts with liver steatosis, is a growing worldwide epidemic responsible for chronic liver diseases. Among its risk factors, exposure to environmental contaminants, such as endocrine disrupting compounds (EDC), has been recently emphasized. Given this important public health concern, regulation agencies need novel simple and fast biological tests to evaluate chemical risks. In this context, we developed a new in vivo bioassay called StAZ (Steatogenic Assay on Zebrafish) using an alternative model to animal experimentation, the zebrafish larva, to screen EDCs for their steatogenic properties. Taking advantage of the transparency of zebrafish larvae, we established a method based on fluorescent staining with Nile red to estimate liver lipid content. Following testing of known steatogenic molecules, 10 EDCs suspected to induce metabolic disorders were screened and DDE, the main metabolite of the insecticide DDT, was identified as a potent inducer of steatosis. To confirm this and optimize the assay, we used it in a transgenic zebrafish line expressing a blue fluorescent liver protein reporter. To obtain insight into DDE's effect, the expression of several genes related to steatosis was analyzed; an up-regulation of scd1 expression, probably relying on PXR activation, was found, partly responsible for both membrane remodeling and steatosis.
Collapse
Affiliation(s)
- Hélène Le Mentec
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Emmanuelle Monniez
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Antoine Legrand
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Céline Monvoisin
- UMR 1236-MOBIDIC, INSERM, Université Rennes, Etablissement Français du Sang Bretagne, 35043 Rennes, France
| | - Dominique Lagadic-Gossmann
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
| | - Normand Podechard
- INSERM, EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail)-UMR_S 1085, University of Rennes, 35000 Rennes, France
- Correspondence:
| |
Collapse
|
23
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
24
|
Xing W, Wang L, Gu W, Liang M, Wang Z, Fan D, Zhang B. Association of blood cadmium and metabolic syndrome: a cross-sectional analysis of National Health and Nutrition Examination Survey 2017-2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27150-27162. [PMID: 36378388 DOI: 10.1007/s11356-022-24177-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Previous findings have reported the role of different types of heavy metals in cardiometabolic diseases. In the present research, we aim to evaluate the association between blood cadmium levels and Metabolic Syndrome (MetS) based on the large-sample NHANES data. Public availably data from NHANES 2017-2020 cycle was obtained. Participants were divided into MetS and non-MetS groups according to waist circumference (WC), triglyceride (TG), high-density lipoprotein (HDL), blood pressure (BP) and fasting plasma glucose (FPG) levels based on the National Cholesterol Education Program (NCEP) criteria. Student's t test, Mann-Whitney U test, and Chi-square test were performed for univariate analysis. Multivariate logistic analysis was performed to explore the relationship between blood cadmium and MetS and research findings were presented in forest plot. We also investigated the association of blood cadmium and MetS in subgroups stratified by age, gender and race. Population with MetS had significantly higher levels of blood [0.30 (0.18-0.54) vs. 0.24 (0.15-0.46) ug/L, p < 0.001] and urinary cadmium levels [0.29 (0.17-0.52) vs. 0.20 (0.09-0.42) ug/L, p < 0.001] compared with those without MetS. Higher blood cadmium concentrations were also observed in participants with elevated WC (0.28 vs. 023 ug/L, p < 0.001], TG (0.28 vs. 0.26 ug/L, p = 0.029), BP (0.33 vs. 0.23 ug/L, p < 0.001) and FPG (0.29 vs. 0.24 ug/L, p < 0.001) compared with those with normal metabolic parameters. Multivariate logistic regression showed that one-unit increasement of blood cadmium was associated with 1.25 times higher prevalence ratios for MetS after adjusting potential confounders (95% CI: 1.06-1.48, p = 0.0083). The associations between serum cadmium concentrations and MetS components were then evaluated, and the results showed higher blood cadmium levels were associated with higher risk for elevated TG, low HDL and elevated BP when treated as continuous variable. When treated as categorical variable, only BP was found positively associated with blood cadmium. Stratified multiple logistic regression analysis indicated that the positive association between blood cadmium and MetS remained significant in subjects less than 60 years old and female subgroup. In conclusion, the cross-sectional survey suggested the positive association between blood cadmium levels and risk for MetS, prospective research need to be conducted for further evaluation of the causal relationship between blood cadmium and MetS.
Collapse
Affiliation(s)
- Weilong Xing
- Ministry of Ecology and Environment (MEE), Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China.
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China.
| | - Lei Wang
- Ministry of Ecology and Environment (MEE), Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| | - Wen Gu
- Ministry of Ecology and Environment (MEE), Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| | - Mengyuan Liang
- Ministry of Ecology and Environment (MEE), Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| | - Zhen Wang
- Ministry of Ecology and Environment (MEE), Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| | - Deling Fan
- Ministry of Ecology and Environment (MEE), Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| | - Bing Zhang
- Ministry of Ecology and Environment (MEE), Nanjing Institute of Environmental Sciences, Nanjing, 210042, People's Republic of China
| |
Collapse
|
25
|
Probiotic cultures as a potential protective strategy against the toxicity of environmentally relevant chemicals: State-of-the-art knowledge. Food Chem Toxicol 2023; 172:113582. [PMID: 36581092 DOI: 10.1016/j.fct.2022.113582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Environmentally relevant toxic substances may affect human health, provoking numerous harmful effects on central nervous, respiratory, cardiovascular, endocrine and reproductive system, and even cause various types of carcinoma. These substances, to which general population is constantly and simultaneously exposed, enter human body via food and water, but also by inhalation and dermal contact, while accumulating evidence suggests that probiotic cultures are able to efficiently adsorb and/or degrade them. Cell wall of probiotic bacteria/fungi, which contains structures such as exopolysaccharide, teichoic acid, protein and peptidoglycan components, is considered the main place of toxic substances adsorption. Moreover, probiotics are able to induce metabolism and degradation of various toxic substances, making them less toxic and more suitable for elimination. Other probable in vivo protective effects have also been suggested, including decreased intestinal absorption and increased excretion of toxic substances, prevented gut microbial dysbiosis, increase in the intestinal mucus secretion, decreased production of reactive oxygen species, reduction of inflammation, etc. Having all of this in mind, this review aims to summarize the state-of-the-art knowledge regarding the potential protective effects of different probiotic strains against environmentally relevant toxic substances (mycotoxins, polycyclic aromatic hydrocarbons, pesticides, perfluoroalkyl and polyfluoroalkyl substances, phthalates, bisphenol A and toxic metals).
Collapse
|
26
|
Wu CJ, Ho AC, Chen SY, Pan CH, Chuang HC, Lai CH. Exposure to Heavy Metals and Serum Adiponectin Levels among Workers: A 2-Year Follow-Up Study. Metabolites 2023; 13:metabo13020158. [PMID: 36837777 PMCID: PMC9961065 DOI: 10.3390/metabo13020158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The workers exposed to metal fumes had an increased risk of metabolic syndrome, which was correlated with decreased serum adiponectin. Thus, we aimed to explore whether heavy metal exposure affects the adiponectin level. There were 96 male workers recruited from a shipyard at baseline. Apart from 82 participants completed the follow-up assessments, new participants were recruited in next year. Finally, there were 100 welding workers in the exposure group and 31 office workers in the control group. Inferential statistics on repeated measures were performed using generalized estimating equations. A weighted quantile sum (WQS) regression model was conducted to examine the joint effect of the multimetal exposure with serum adiponectin. Significantly negative associations of metals with adiponectin were detected in the welding workers, including Cr (β = -0.088; 95% CI: -0.148, -0.027), Mn (β = -0.174; 95% CI: -0.267, -0.081), Co (β = -0.094; 95% CI: -0.158, -0.029), Ni (β = -0.108; 95% CI: -0.208, -0.008), Cd (β = -0.067; 95% CI: -0.115, -0.018), and Pb (β = -0.089; 95% CI: -0.163, -0.015). The WQS regression suggested that Pb was the greatest contributor. In conclusion, our findings highlighted that welding workers exposed to heavy metals would reduce serum adiponectin.
Collapse
Affiliation(s)
- Chen-Jung Wu
- Division of Family Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - A-Chuan Ho
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Shih-Ya Chen
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 221, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Huang Lai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- School of Public Health, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
27
|
Janković S, Stošić M, Miljaković EA, Ćurčić M, Đukić Ćosić D, Buha Đorđević A, Bulat Z, Antonijević B. Cadmium dietary exposure assessment in the adult population and pre-school children in the Republic of Serbia. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:67-80. [PMID: 36345249 DOI: 10.1080/19440049.2022.2141467] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cadmium (Cd) is a toxic metal, present in all matrices of the environment and a common food contaminant. Human exposure to it may elicit many diverse health impairments. The aim of this study was to assess the dietary exposure to Cd for the adult population and preschool children in Serbia using probabilistic methodology. We measured Cd in 11,227 food samples belonging to 50 food items on the Serbian market. Cd was detected in 90% of the tested food items, and in 30.8% of the overall tested samples. The food item that contributed the most to total dietary Cd intake was potatoes (median Cd concentration of 7 ng/g) in adults, and fruit and vegetable juices in children (median Cd concentration of 19 ng/g). Weekly Cd intake shown as 50th and 95th percentiles were 2.54 and 4.74 µg/kg bw in the adult population, and 3.29 and 4.93 µg/kg bw in children. The results of this study are rather preliminary and should be considered as an indication of the need for further, more refined research, which would contribute to a more realistic risk assessment as a high-priority approach, especially in the case of vulnerable subpopulations such as children. Abbreviations: AT SDR: Agency for Toxic Substances and Disease Registry; EEA: European Environment Agency; EFSA: European Food Safety Authority; FAO/WHO: Food and Agriculture Organization/World Health Organization; HI: hazard index; IARC: International Agency for Research on Cancer; JECFA: Joint FAO/WHO Expert Committee on Food Additives; LOD: limit of detection; Cd: cadmium; TWI: tolerable weekly intake; UNEP: United Nations Environment Program; WI: weekly intake.
Collapse
Affiliation(s)
- Saša Janković
- Department for Residues Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia
| | - Milena Stošić
- Department of Environmental Engineering and Occupational Safety and Health, Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Evica Antonijević Miljaković
- Department of Toxicology 'Akademik Danilo Soldatović', Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology 'Akademik Danilo Soldatović', Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Danijela Đukić Ćosić
- Department of Toxicology 'Akademik Danilo Soldatović', Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Buha Đorđević
- Department of Toxicology 'Akademik Danilo Soldatović', Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology 'Akademik Danilo Soldatović', Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology 'Akademik Danilo Soldatović', Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Đukić-Ćosić D, Baralić K, Javorac D, Bulat Z, Ćurčić M, Antonijević B, Đorđević V, Repić A, Buha Djordjevic A. Exploring the relationship between blood toxic metal(oid)s and serum insulin levels through benchmark modelling of human data: Possible role of arsenic as a metabolic disruptor. ENVIRONMENTAL RESEARCH 2022; 215:114283. [PMID: 36088992 DOI: 10.1016/j.envres.2022.114283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The major goal of this study was to estimate the correlations and dose-response pattern between the measured blood toxic metals (cadmium (Cd), mercury (Hg), chromium (Cr), nickel (Ni))/metalloid (arsenic (As)) and serum insulin level by conducting Benchmark dose (BMD) analysis of human data. The study involved 435 non-occupationally exposed individuals (217 men and 218 women). The samples were collected at health care institutions in Belgrade, Serbia, from January 2019 to May 2021. Blood sample preparation was conducted by microwave digestion. Cd was measured by graphite furnace atomic absorption spectrophotometry (GF-AAS), while inductively coupled plasma-mass spectrometry (ICP-MS) was used to measure Hg, Ni, Cr and As. BMD analysis of insulin levels represented as quantal data was done using the PROAST software version 70.1 (model averaging methodology, BMD response: 10%). In the male population, there was no correlation between toxic metal/metalloid concentrations and insulin level. However, in the female population/whole population, a high positive correlation for As and Hg, and a strong negative correlation for Ni and measured serum insulin level was established. BMD modelling revealed quantitative associations between blood toxic metal/metalloid concentrations and serum insulin levels. All the estimated BMD intervals were wide except the one for As, reflecting a high degree of confidence in the estimations and possible role of As as a metabolic disruptor. These results indicate that, in the case of As blood concentrations, even values higher than BMD (BMDL): 3.27 (1.26) (male population), 2.79 (0.771) (female population), or 1.18 (2.96) μg/L (whole population) might contribute to a 10% higher risk of insulin level alterations, meaning 10% higher risk of blood insulin increasing from within reference range to above reference range. The obtained results contribute to the current body of knowledge on the use of BMD modelling for analysing human data.
Collapse
Affiliation(s)
- Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Vladimir Đorđević
- First Surgical Clinic, Clinical Center of Serbia, Koste Todorovića 5, 11000, Belgrade, Serbia
| | - Aleksandra Repić
- Institute of Forensic Medicine, Faculty of Medicine University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
29
|
Zhou M, Peng L, Wang J, Cao R, Ou Z, Fang Y. Cadmium exposure and the risk of GDM: evidence emerging from the systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77253-77274. [PMID: 35672642 DOI: 10.1007/s11356-022-21171-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Gestational diabetes mellitus (GDM) has become a global concern for its severe adverse effects on both mother and fetus. Recent epidemiological studies reported inconsistent results of the association between cadmium (Cd) exposure and GDM. Therefore, a systematic review and meta- analysis were performed. PubMed, Web of Science, Scopus, Embase, and SpringerLink were searched up to July 2021. Observational studies containing the adjusted relative risks between Cd exposure and GDM were included in the quantitative synthesis. The retrieval comprised 218 articles out of which 11 met our criteria and 9 were included in the meta-analysis, representing a total of 32,392 subjects (2881 GDM). In total, Cd exposure might increase the risk of GDM in some extent (OR = 1.21, 95% CI [0.89, 1.64]), even without statistical significance in high heterogeneity (Q = 28.45, p < 0.05, I2 = 71.9%). Filtering two outliers indicated by Galbraith plot yielded a similar risk (OR = 1.19, 95% CI [1.02, 1.39]) with statistical significance. However, the heterogeneity among studies was obviously reduced (Q = 11.75, p = 0.068, I2 = 48.9%). Additionally, biological specimen, study design, and diagnostic criteria contributed to the high heterogeneity according to the subgroup analysis. Since some important results do not deny that Cd exposure increases the risk of GDM, high-quality multi-centered large cohort studies are required in the future.
Collapse
Affiliation(s)
- Minqi Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lianqi Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingming Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zixuan Ou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
30
|
Dawud F, Takyi SA, Arko-Mensah J, Basu N, Egbi G, Ofori-Attah E, Bawuah SA, Fobil JN. Relationship between Metal Exposures, Dietary Macronutrient Intake, and Blood Glucose Levels of Informal Electronic Waste Recyclers in Ghana. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12768. [PMID: 36232070 PMCID: PMC9564681 DOI: 10.3390/ijerph191912768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
While metal exposures are generally high among informal electronic waste (e-waste) recyclers, the joint effect of metals and dietary macronutrients on their metabolic health is unknown. Therefore, we investigated the relationship between metal exposures, dietary macronutrients intake, and blood glucose levels of e-waste recyclers at Agbogbloshie using dietary information (48-h recall survey), blood metals (Pb & Cd), and HbA1C levels of 151 participants (100 e-waste recyclers and 51 controls from the Accra, Ghana) in March 2017. A linear regression model was used to estimate the joint relationship between metal exposures, dietary macronutrient intake, and blood glucose levels. Except for dietary proteins, both groups had macronutrient deficiencies. Diabetes prevalence was significantly higher among controls. Saturated fat, OMEGA-3, and cholesterol intake were associated with significant increases in blood glucose levels of recyclers. In a joint model, while 1 mg of cholesterol consumed was associated with a 0.7% increase in blood glucose, 1 g/L of Pb was found to significantly increase blood glucose levels by 0.9% among recyclers. Although the dietary consumption of cholesterol and fat was not high, it is still possible that exposure to Pb and Cd may still increase the risk of diabetes among both e-waste recyclers and the general population.
Collapse
Affiliation(s)
- Fayizatu Dawud
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | - Sylvia Akpene Takyi
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | - John Arko-Mensah
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | | | - Godfred Egbi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
| | - Ebenezer Ofori-Attah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana
| | - Serwaa Akoto Bawuah
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| | - Julius N. Fobil
- School of Public Health, University of Ghana, Legon, Accra P.O. Box LG13, Ghana
| |
Collapse
|
31
|
Zhang J, Yin H, Zhu X, Xiang R, Miao Y, Zhang Y, Song Y, Chen J, Zhang L. Effects of multi-metal exposure on the risk of diabetes mellitus among people aged 40-75 years in rural areas in southwest China. J Diabetes Investig 2022; 13:1412-1425. [PMID: 35340117 PMCID: PMC9340878 DOI: 10.1111/jdi.13797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Metals play an important role in diabetes mellitus. This cross-sectional study aimed to evaluate the overall, individual and interactive effects of multi-metal exposure on the prevalence of diabetes mellitus, impaired fasting glucose (IFG) rate and fasting blood glucose (FBG) levels. MATERIALS AND METHODS The FBG levels of a study population from a cadmium (Cd)-polluted area (n = 250) and an unpolluted area (n = 204), and the metal levels, including magnesium, calcium (Ca), iron (Fe), zinc (Zn), arsenic (As), Cd, copper and lead (Pb) in blood and urine were detected. The study population was divided into a normal fasting glucose group, an IFG group and a diabetes mellitus group on the basis of FBG levels. RESULTS The IFG rate and diabetes mellitus prevalence were negatively associated with blood Cd and urine Zn levels (IFG rate: odds ratio [OR] 0.780, 95% confidence interval [CI] 0.655-0.928; OR 0.622, 95% CI 0.465-0.831. Diabetes mellitus prevalence: OR 0.506, 95% CI 0.288-0.888; OR 0.609, 95% CI 0.395-0.939), the IFG rate was positively associated with urine Fe levels (OR 1.876, 95% CI 1.290-2.778), and diabetes mellitus prevalence was positively associated with urine Pb and blood Fe levels (OR 1.185, 95% CI 1.022-1.376; OR 1.008, 95% CI 1.001-1.014). A linear negative correlation was observed between FBG levels and blood Cd, and non-linear inverted U-shaped associations were found between FBG levels and Zn, Pb and copper in urine. CONCLUSIONS This research suggests that multi-metal exposure, especially Cd, Fe, Zn, copper and Pb, is linked to diabetes mellitus, and the interactive effects of multiple metals require further exploration.
Collapse
Affiliation(s)
- Jing Zhang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan ProvinceSichuan UniversityChengduChina
| | - Huanhuan Yin
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan ProvinceSichuan UniversityChengduChina
| | - Xuemei Zhu
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan ProvinceSichuan UniversityChengduChina
| | - Rong Xiang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan ProvinceSichuan UniversityChengduChina
| | - Yeqiu Miao
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan ProvinceSichuan UniversityChengduChina
| | - Yu Zhang
- Department of Nutrition and Food SafetySichuan Center for Disease Control and PreventionChengduChina
| | - Yang Song
- Department of Nutrition and Food SafetySichuan Center for Disease Control and PreventionChengduChina
| | - Jinyao Chen
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan ProvinceSichuan UniversityChengduChina
| | - Lishi Zhang
- West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan ProvinceSichuan UniversityChengduChina
| |
Collapse
|
32
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
33
|
Hong H, He H, Lin X, Hayuehashi T, Xu J, Zhang J, Xu Y, Tong T, Lu Y, Zhou Z. Cadmium exposure suppresses insulin secretion through mtROS-mediated mitochondrial dysfunction and inflammatory response in pancreatic beta cells. J Trace Elem Med Biol 2022; 71:126952. [PMID: 35183883 DOI: 10.1016/j.jtemb.2022.126952] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cadmium (Cd) exposure is a worldwide environmental threat to the public health and participates in the pathogenesis of multiple diseases. Epidemiologic research have established a direct relation between Cd exposure and diabetes development in humans. Although pancreatic β-cell dysfunction has been considered as the major culprit in the pathogenesis of diabetes, there is a paucity of studies to elucidate the molecular mechanism of Cd toxicity on β-cells. METHODS To unveil the toxic effect and its underlying mechanism of Cd exposure on β-cells, we used an in vitro MIN6 cell model of environment-relevant Cd exposure to elucidate the crucial role of mtROS-mediated mitochondrial dysfunction and inflammatory response in suppression of pancreatic β-cell insulin secretion. RESULTS We uncovered that Cd treatment suppresses cell viability and induces insulin secretion dysfunction in a dose-dependent manner. Moreover, Cd exposure elicits the inflammatory response, as indicated by increased IL-1β, IL-6 and TNF-α expressions. Significant elevations of intracellular ROS and mitochondrial ROS levels were detected as early as 3 h after Cd treatment. In mitochondrial function analysis, we demonstrated that Cd treatment induced mitochondrial dysfunction and disorder of mitochondrial fission indicated by the significant decline in ATP production, the marked depolarization of mitochondrial membrane potential, the decrease in mtDNA copy numbers, the suppressions of mitochondrial transcription factor A (Tfam) and mitochondrial fission-related gene Drp1 expressions. Pretreatment with TEMPO, a specific mitochondrial ROS (mtROS) scavenger, efficiently antagonizes Cd cytotoxicity, which is indicated by attenuating Cd-induced mitochondrial dysfunction, suppressing IL-1β, IL-6 and TNF-α expressions, ameliorating insulin production dysfunction and preserving cell viability in MIN6 cells. CONCLUSION Our study demonstrates that Cd exposure induces an inflammatory response through mtROS-mediated mitochondrial dysfunction. Antagonism of mtROS production might be an effective strategy to prevent pancreatic toxicity from environment-relevant Cd exposure.
Collapse
Affiliation(s)
- Huihui Hong
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiqin Lin
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tali Hayuehashi
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Jingjing Zhang
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China.
| | - Zhou Zhou
- Department of Environmental Medicine and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
34
|
Manić L, Wallace D, Onganer PU, Taalab YM, Farooqi AA, Antonijević B, Buha Djordjevic A. Epigenetic mechanisms in metal carcinogenesis. Toxicol Rep 2022; 9:778-787. [PMID: 36561948 PMCID: PMC9764177 DOI: 10.1016/j.toxrep.2022.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/16/2022] [Accepted: 03/26/2022] [Indexed: 12/25/2022] Open
Abstract
Many metals exhibit genotoxic and/or carcinogenic effects. These toxic metals can be found ubiquitously - in drinking water, food, air, general use products, in everyday and occupational settings. Exposure to such carcinogenic metals can result in serious health disorders, including cancer. Arsenic, cadmium, chromium, nickel, and their compounds have already been recognized as carcinogens by the International Agency for Research on Cancer. This review summarizes a wide range of epigenetic mechanisms contributing to carcinogenesis induced by these metals, primarily including, but not limited to, DNA methylation, miRNA regulation, and histone posttranslational modifications. The mechanisms are described and discussed both from a metal-centric and a mechanism-centric standpoint. The review takes a broad perspective, putting the mechanisms in the context of real-life exposure, and aims to assist in guiding future research, particularly with respect to the assessment and control of exposure to carcinogenic metals and novel therapy development.
Collapse
Affiliation(s)
- Luka Manić
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - David Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, United States
| | - Pinar Uysal Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, UK
| | - Yasmeen M. Taalab
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany,Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, RLMC, Lahore, Pakistan
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia,Correspondence to: Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
35
|
Satarug S. Editorial to Special Issue Toxic Metals, Chronic Diseases and Related Cancers. TOXICS 2022; 10:toxics10030125. [PMID: 35324750 PMCID: PMC8949475 DOI: 10.3390/toxics10030125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Centre for Health Services Research, Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
36
|
Hong H, Xu J, He H, Wang X, Yang L, Deng P, Yang L, Tan M, Zhang J, Xu Y, Tong T, Lin X, Pi H, Lu Y, Zhou Z. Cadmium perturbed metabolomic signature in pancreatic beta cells correlates with disturbed metabolite profile in human urine. ENVIRONMENT INTERNATIONAL 2022; 161:107139. [PMID: 35172228 DOI: 10.1016/j.envint.2022.107139] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Cd exposure has been demonstrated to induce a variety of metabolic disorders accompanied with imbalance of glucose and lipid homeostasis. The metabolic toxicity of Cd exposure at metabolome-wide level remains elusive. In our study, we demonstrated that Cd exposure via drinking water increased blood glucose levels, decreased serum insulin levels, led to glucose intolerance and suppressed insulin expression in the pancreas of C57/6J mice. Cd exposure significantly inhibited cell viability and suppressed insulin secretion in MIN6 cells in vitro. Since pancreatic β-cells are the only source of insulin production in the body and play a pivotal role in modulating glucose and lipid metabolisms, we further delineated the metabolomic signatures of Cd exposure in insulin-secreting MIN6 cells by using non-target metabolomics. PCA and OPLS-DA analysis clearly suggested that Cd exposure led to a marked metabolic alteration in MIN6 cells. 76 perturbed metabolites were identified after Cd exposure. Classification of metabolites suggested that Cd perturbed metabolites belong to nucleosides, nucleotides and analogues, organic acids and derivatives, and lipids and lipid-like molecules. 28 perturbed metabolites existed in mitochondrion, suggesting mitochondrion as the major target organelle in metabolic toxicity of Cd exposure. KEGG pathway analysis revealed that 20 metabolic pathways were disturbed by Cd exposure. Mitochondrial TCA cycle and glycerophospholipid metabolism were remarkably disturbed. The mRNA expressions of genes in mitochondrial TCA cycle and fatty acid oxidation in pancreas and MIN6 cells were significantly dysregulated by Cd exposure. Disturbances in mitochondrial TCA cycle and glycerophospholipid metabolism result in producing perturbed metabolites in pancreatic β-cells. Moreover, 14 perturbed metabolites identified in MIN6 cells co-existed in the urine of Cd exposed workers. 11 biomarkers of diabetes mellitus were also found to be significantly altered in the urine of Cd exposed workers. In conclusion, findings of this study greatly extend our understanding of metabolic toxicity of Cd exposure in pancreatic β-cells at metabolome-wide level and offer some new clues for linking Cd exposure to development of diabetes mellitus. Results of this study also support the notion that Cd induced metabolic toxicity could be monitored by examining perturbed urinary metabolites in humans and highlight the significance of reducing Cd exposure via drinking water at population level.
Collapse
Affiliation(s)
- Huihui Hong
- Department of Emergency Medicine, The First Affiliated Hospital and Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Xu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Wang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lu Yang
- Hunan Province Prevention and Treatment Hospital for Occupational Diseases, Hunan, China
| | - Miduo Tan
- Department of Galactophore, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Jingjing Zhang
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yudong Xu
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiqin Lin
- Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China.
| | - Yuanqiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhou Zhou
- Department of Emergency Medicine, The First Affiliated Hospital and Department of Environmental Medicine, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
37
|
Pérez S, German-Labaume C, Mathiot S, Goix S, Chamaret P. Using Bayesian networks for environmental health risk assessment. ENVIRONMENTAL RESEARCH 2022; 204:112059. [PMID: 34536371 DOI: 10.1016/j.envres.2021.112059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The study investigated the potential relationships between air pollution, socio-economy, and proven pathologies (e.g., respiratory, cardiovascular) within an industrial area in Southern France (Etang de Berre), gathering steel industries, oil refineries, shipping, road traffic and experiencing a Mediterranean climate. A total of 178 variables were simultaneously integrated within a Bayesian model at intra-urban scale. Various unsupervised and supervised algorithms (maximum spanning tree, tree-augmented naive classifier) as well as sensitivity analyses were used to better understand the links between all variables, and highlighted correlations between population exposure to air pollutants and some pathologies. Adverse health effects (bronchus and lung cancers for 15-65 years old people) were observed for hydrofluoric acid at low background concentration (<0.003 μg m-3) while exposure to particulate cadmium (0.210-0.250 μg m-3) disrupts insulin metabolism for people over 65 years-old leading to diabetes. Bronchus and lung cancers for people over 65 years-old occurred at low background SO2 concentration (6 μg m-3) below European limit values. When benzo[k]fluoranthene exceeded 0.672 μg m-3, we observed a high number of hospital admissions for respiratory diseases for 15-65 years-old people. The study also revealed the important influence of socio-economy (e.g., single-parent family, people with no qualification at 15 years-old) on pathologies (e.g., cardiovascular diseases). Finally, a diffuse polychlorinated biphenyl (PCB) pollution was observed in the study area and can potentially cause lung cancers.
Collapse
Affiliation(s)
- Sandra Pérez
- University Côte d'Azur, UMR, 7300, Boulevard E. Herriot, Nice, France.
| | - Catherine German-Labaume
- Centre Intercommunal de l'Action Sociale du Pays de Martigues, Health and Handicap Department, Avenue Louis Sammut, Martigues, France
| | | | - Sylvaine Goix
- Institut Ecocitoyen pour la Connaissance des Pollutions, Centre de vie, La Fossette, Fos-sur-Mer, France
| | - Philippe Chamaret
- Institut Ecocitoyen pour la Connaissance des Pollutions, Centre de vie, La Fossette, Fos-sur-Mer, France
| |
Collapse
|
38
|
Mortoglou M, Buha Djordjevic A, Djordjevic V, Collins H, York L, Mani K, Valle E, Wallace D, Uysal-Onganer P. Role of microRNAs in response to cadmium chloride in pancreatic ductal adenocarcinoma. Arch Toxicol 2022; 96:467-485. [PMID: 34905088 PMCID: PMC8837568 DOI: 10.1007/s00204-021-03196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal and aggressive malignancies with a 5-year survival rate less than 9%. Early detection is particularly difficult due to the lack of symptoms even in advanced stages. microRNAs (miRs/miRNAs) are small (~ 18-24 nucleotides), endogenous, non-coding RNAs, which are involved in the pathogenesis of several malignancies including PDAC. Alterations of miR expressions can lead to apoptosis, angiogenesis, and metastasis. The role of environmental pollutants such as cadmium (Cd) in PDAC has been suggested but not fully understood. This study underlines the role of miRs (miR-221, miR-155, miR-126) in response to cadmium chloride (CdCl2) in vitro. Lethal concentration (LC50) values for CdCl2 resulted in a toxicity series of AsPC-1 > HPNE > BxPC-3 > Panc-1 = Panc-10.5. Following the treatment with CdCl2, miR-221 and miR-155 were significantly overexpressed, whereas miR-126 was downregulated. An increase in epithelial-mesenchymal transition (EMT) via the dysregulation of mesenchymal markers such as Wnt-11, E-cadherin, Snail, and Zeb1 was also observed. Hence, this study has provided evidence to suggest that the environmental pollutant Cd can have a significant role in the development of PDAC, suggesting a significant correlation between miRs and Cd exposure during PDAC progression. Further studies are needed to investigate the precise role of miRs in PDAC progression as well as the role of Cd and other environmental pollutants.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| | | | | | - Hunter Collins
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Lauren York
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Katherine Mani
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Elizabeth Valle
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - David Wallace
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| |
Collapse
|
39
|
Liu L, Li X, Wu M, Yu M, Wang L, Hu L, Li Y, Song L, Wang Y, Mei S. Individual and joint effects of metal exposure on metabolic syndrome among Chinese adults. CHEMOSPHERE 2022; 287:132295. [PMID: 34563779 DOI: 10.1016/j.chemosphere.2021.132295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence suggests that metal exposure contributes to metabolic syndrome (MetS), but little is known about the effects of combined exposure to metal mixtures. This cross-sectional study included 3748 adults who were recruited from the Medical Physical Examination Center of Tongji Hospital, Wuhan, China. The levels of 21 metal(loid)s in urine were measured by inductively coupled plasma mass spectrometry. MetS was diagnosed according to National Cholesterol Education Program's Adult Treatment Panel III recommendations. Multivariate logistic regression model was uesd to explore the effects of single-metal and multi-metal exposures. The elastic net (ENET) regularization with an environmental risk score (ERS) was performed to estimate the joint effects of exposure to metal mixtures. A total of 636 participants (17%) were diagnosed with MetS. In single metal models, MetS was positively associated with zinc (Zn) and negatively associated with nickel (Ni). In multiple metal models, the associations remained significant after adjusting for the other metals. In the joint association analysis, the ENET models selected Zn as the strongest predictor of MetS. Compared to the lowest quartile, the highest quartile of ERS was associated with an elevated risk of MetS (OR = 3.72; 95% CI: 2.77, 5.91; P-trend < 0.001). Overall, we identified that the combined effect of multiple metals was related to an increased MetS risk, with Zn being the major contributor. These findings need further validation in prospective studies.
Collapse
Affiliation(s)
- Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Limei Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hongkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
40
|
Filippini T, Wise LA, Vinceti M. Cadmium exposure and risk of diabetes and prediabetes: A systematic review and dose-response meta-analysis. ENVIRONMENT INTERNATIONAL 2022; 158:106920. [PMID: 34628255 DOI: 10.1016/j.envint.2021.106920] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Cadmium exposure has been associated with increased diabetes risk in several studies, though there is still considerable debate about the magnitude and shape of the association. OBJECTIVE To perform a systematic review and meta-analysis of observational studies investigating the relation between cadmium exposure and risk of type 2 diabetes and prediabetes, and to summarize data on the magnitude and shape of the association. DATA SOURCE After conducting an online literature search through October 1, 2021, we identified 42 eligible studies investigating the association between cadmium exposure and risk of diabetes and prediabetes. STUDY ELIGIBILITY CRITERIA We included studies that assessed cadmium exposure through biomarker levels; examined type 2 diabetes or prediabetes among outcomes; and reported effect estimates for cadmium exposure for meta-analysis only. STUDY APPRAISAL AND SYNTHESIS METHODS Studies were evaluated using ROBINS-E risk of bias tool. We quantitively assessed the relation between exposure and study outcomes using one-stage dose-response meta-analysis with a random effects meta-analytical model. RESULTS In the meta-analysis, comparing highest-versus-lowest cadmium exposure levels, summary relative risks (RRs) for type 2 diabetes were 1.24 (95% confidence interval 0.96-1.59), 1.21 (1.00-1.45), and 1.47 (1.01-2.13) for blood, urinary, and toenail matrices, respectively. Similarly, there was an increased risk of prediabetes for cadmium concentrations in both urine (RR = 1.41, 95% CI: 1.15-1.73) and blood (RR = 1.38, 95% CI: 1.16-1.63). In the dose-response meta-analysis, we observed a consistent linear positive association between cadmium exposure and diabetes risk, with RRs of 1.25 (0.90-1.72) at 2.0 µg/g of creatinine. Conversely for blood cadmium, diabetes risk appeared to increase only above 1 µg/L. Prediabetes risk increased up to approximately 2 µg/g creatinine above which it reached a plateau with RR of 1.42 (1.12-1.76) at 2 µg/g creatinine. LIMITATIONS AND CONCLUSIONS This analysis provides moderate-certainty evidence for a positive association between cadmium exposure (measured in multiple matrices) and risk of both diabetes and prediabetes.
Collapse
Affiliation(s)
- Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, USA
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, USA.
| |
Collapse
|
41
|
Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: Cadmium as an example. Immunol Lett 2021; 240:106-122. [PMID: 34688722 DOI: 10.1016/j.imlet.2021.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/10/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) represents a unique hazard because of the long biological half-life in humans (20-30 years). This metal accumulates in organs causing a continuum of responses, with organ disease/failure as extreme outcome. Some of the cellular and molecular alterations in target tissues can be related to immune-modulating potential of Cd. This metal may cause adverse responses in which components of the immune system function as both mediators and effectors of Cd tissue toxicity, which, in combination with Cd-induced alterations in homeostatic reparative activities may contribute to tissue dysfunction. In this work, current knowledge concerning inflammatory/autoimmune disease manifestations found to be related with cadmium exposure are summarized. Along with epidemiological evidence, animal and in vitro data are presented, with focus on cellular and molecular immune mechanisms potentially relevant for the disease susceptibility, disease promotion, or facilitating development of pre-existing pathologies.
Collapse
|
42
|
McCall JL, Blair HC, Blethen KE, Hall C, Elliott M, Barnett JB. Prenatal cadmium exposure does not induce greater incidence or earlier onset of autoimmunity in the offspring. PLoS One 2021; 16:e0249442. [PMID: 34478449 PMCID: PMC8415597 DOI: 10.1371/journal.pone.0249442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
We previously demonstrated that exposure of adult mice to environmental levels of cadmium (Cd) alters immune cell development and function with increases in anti-streptococcal antibody levels, as well as decreases in splenic natural regulatory T cells (nTreg) in the adult female offspring. Based on these data, we hypothesized that prenatal Cd exposure could predispose an individual to developing autoimmunity as adults. To test this hypothesis, the effects of prenatal Cd on the development of autoimmune diabetes and arthritis were investigated. Non-obese diabetic (NOD) mice were exposed to Cd in a manner identical to our previous studies, and the onset of diabetes was assessed in the offspring. Our results showed a similar time-to-onset and severity of disease to historical data, and there were no statistical differences between Cd-exposed and control offspring. Numerous other immune parameters were measured and none of these parameters showed biologically-relevant differences between Cd-exposed and control animals. To test whether prenatal Cd-exposure affected development of autoimmune arthritis, we used SKG mice. While the levels of arthritis were similar between Cd-exposed and control offspring of both sexes, the pathology of arthritis determined by micro-computed tomography (μCT) between Cd-exposed and control animals, showed some statistically different values, especially in the female offspring. However, the differences were small and thus, the biological significance of these changes is open to speculation. Overall, based on the results from two autoimmune models, we conclude that prenatal exposure to Cd did not lead to a measurable propensity to develop autoimmune disease later in life.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Harry C. Blair
- Department of Pathology, Pittsburgh VA Medical Center, Pittsburgh, PA, United States of America
- Department of Cell Biology, the and the University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kathryn E. Blethen
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Casey Hall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Meenal Elliott
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - John B. Barnett
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
43
|
Anđelković M, Djordjevic AB, Miljaković EA, Javorac D, Čolaković N, Oprić S, Petričević S, Granić M, Kotur-Stevuljević J, Antonijević B, Bulat Z. Cadmium tissue level in women diagnosed with breast cancer - A case control study. ENVIRONMENTAL RESEARCH 2021; 199:111300. [PMID: 34015299 DOI: 10.1016/j.envres.2021.111300] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 05/25/2023]
Abstract
Breast cancer is at the forefront of female malignancy and the leading cause of cancer death among women. Gender, age, hormone therapy, smoking, exposure to endocrine disruptors and family history are significant breast cancer risk factors according to epidemiological data. Considering metalloestrogenic Cd property and a plethora of research work on hormone involvement in breast cancer the study aimed to determine Cd concentration in three compartments of breast cancer patients in relation to their blood hormone status. Further, as oxidative stress is a critical mechanism of Cd toxicity, the objective of this study was to determine potential changes in oxidative status homeostasis. The study enrolled 55 patients with breast cancer diagnosis and 41 healthy women with benign breast changes. Concentration of Cd was determined using graphite furnace atomic absorption spectrometry. Cadmium concentration in tumor tissue was significantly higher than control and almost four times higher than Cd concentration in the healthy surrounding tissue. Strong positive correlation was observed between Cd concentrations in changed breast tissue and FSH and LH levels, while the correlation was negative with estradiol level. Cancer patients had significantly increased blood total antioxidative status while total oxidative status did not significantly differ between study groups. The study revealed Cd implication in breast cancer onset following a significant odd ratio for Cd levels in changed tissue samples. Moreover, presented data confirmed sex hormone and oxidative status imbalance caused by Cd presence, closely related to cancer development.
Collapse
Affiliation(s)
- Milena Anđelković
- Health Center Kosovska Mitrovica, 38220, Kosovska Mitrovica, Serbia; Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Aleksandra Buha Djordjevic
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Evica Antonijević Miljaković
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Dragana Javorac
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Nataša Čolaković
- University Hospital Medical Center Bezanijska Kosa, 11080, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, 11211, Belgrade, Serbia.
| | - Svetlana Oprić
- University Hospital Medical Center Bezanijska Kosa, 11080, Belgrade, Serbia; Faculty of Dentistry Pančevo, University Business Academy Novi Sad, 26000, Pančevo, Serbia.
| | - Simona Petričević
- University Hospital Medical Center Bezanijska Kosa, 11080, Belgrade, Serbia.
| | - Miroslav Granić
- University Hospital Medical Center Bezanijska Kosa, 11080, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, 11211, Belgrade, Serbia.
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221, Belgrade, Serbia.
| | - Biljana Antonijević
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| | - Zorica Bulat
- Department of Toxicology ″Akademik Danilo Soldatović″, Faculty of Pharmacy, University of Belgrade, 11211, Belgrade, Serbia.
| |
Collapse
|
44
|
Salcedo-Bellido I, Gómez-Peña C, Pérez-Carrascosa FM, Vrhovnik P, Mustieles V, Echeverría R, Fiket Ž, Pérez-Díaz C, Barrios-Rodríguez R, Jiménez-Moleón JJ, Arrebola JP. Adipose tissue cadmium concentrations as a potential risk factor for insulin resistance and future type 2 diabetes mellitus in GraMo adult cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146359. [PMID: 34030321 DOI: 10.1016/j.scitotenv.2021.146359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Adipose tissue has been recently highlighted as a promising matrix for evaluation of cadmium's (Cd) long-term exposure although not frequently considered in epidemiological studies. The association between Cd exposure and type 2 Diabetes Mellitus (T2DM) remains unclear. This work aimed to explore the association between adipose tissue Cd levels and T2DM incidence over a 16-year follow-up in an adult cohort from Southern Spain considering smoking status. We also performed complementary cross-sectional analyses focused on subclinical markers of glucose homeostasis at recruitment. Clinical information was obtained from hospital databases. Socio-demographic characteristics, lifestyle and diet were collected by face-to-face interviews. Homeostatic model assessment (HOMA) values of insulin sensitivity/resistance and β-cell function were calculated using fasting serum glucose, insulin, and C-peptide levels at recruitment. Adipose tissue Cd concentrations were quantified by inductively coupled plasma mass spectrometry. Statistical analyses were performed by means of Cox-regression and multivariable linear regression models. Participants in the 4th quartile (Q4) of Cd concentrations showed a non statistically-significant increased T2DM risk (Hazard Ratio (HR) Q4 vs Q1: 1.97; 95% Confidence Interval (CI): 0.69, 5.66). This association was particularly strong and suggestive in current smokers (HR: 2.19; 95% CI: 0.98, 4.98). Interestingly, smokers in the 2nd tertile (T2) of adipose tissue Cd levels showed increased log-transformed insulin resistance (beta T2 vs T1: 0.52; 95% CI: 0.07, 0.97), as well as higher log-transformed insulin levels (beta T2 vs T1: 0.52; 95% CI: 0.08, 0.95). We found evidences supporting that Cd exposure, particularly from tobacco smoking, could be a risk factor for T2DM. In addition, our results support the potential relevance of adipose tissue as a matrix for Cd exposure assessment.
Collapse
Affiliation(s)
- Inmaculada Salcedo-Bellido
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Celia Gómez-Peña
- Unidad de Gestión Clínica de Farmacia Hospitalaria, Hospital Universitario San Cecilio, Granada, Spain
| | - Francisco M Pérez-Carrascosa
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; Radiation Oncology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Petra Vrhovnik
- Slovenian National Building and Civil Engineering Institute (ZAG), Ljubljana, Slovenia
| | - Vicente Mustieles
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain; University of Granada, Center for Biomedical Research (CIBM), Granada, Spain
| | - Ruth Echeverría
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Željka Fiket
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | - Celia Pérez-Díaz
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain
| | - Rocío Barrios-Rodríguez
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.
| | - José Juan Jiménez-Moleón
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Juan Pedro Arrebola
- Universidad de Granada. Departamento de Medicina Preventiva y Salud Pública, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.
| |
Collapse
|
45
|
El-Sikaily A, Helal M. Environmental pollution and diabetes mellitus. World J Meta-Anal 2021; 9:234-256. [DOI: 10.13105/wjma.v9.i3.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chromic metabolic disease that affects a large segment of the population worldwide. Physical inactivity, poor nutrition, and genetic predisposition are main risk factors for disease development. In the last decade, it was clear to the scientific community that DM development is linked to a novel disease inducer that was later defined as diabetogenic factors of pollution and endocrine disrupting agents. Environmental pollution is exponentially increasing in uncontrolled manner in several countries. Environmental pollutants are of diverse nature and toxicities, including polyaromatic hydrocarbons (PAHs), pesticides, and heavy metals. In the current review, we shed light on the impact of each class of these pollutants and the underlined molecular mechanism of diabetes induction and biological toxicities. Finally, a brief overview about the connection between coronavirus disease 2019 and diabetes pandemics is presented.
Collapse
Affiliation(s)
- Amany El-Sikaily
- National Institute of Oceanography and Fisheries (NIOF), Cairo 21513, Egypt
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries (NIOF), Cairo 21513, Egypt
| |
Collapse
|
46
|
Schulz MC, Sargis RM. Inappropriately sweet: Environmental endocrine-disrupting chemicals and the diabetes pandemic. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:419-456. [PMID: 34452693 DOI: 10.1016/bs.apha.2021.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Afflicting hundreds of millions of individuals globally, diabetes mellitus is a chronic disorder of energy metabolism characterized by hyperglycemia and other metabolic derangements that result in significant individual morbidity and mortality as well as substantial healthcare costs. Importantly, the impact of diabetes in the United States is not uniform across the population; rather, communities of color and those with low income are disproportionately affected. While excessive caloric intake, physical inactivity, and genetic susceptibility are undoubted contributors to diabetes risk, these factors alone fail to fully explain the rapid global rise in diabetes rates. Recently, environmental contaminants acting as endocrine-disrupting chemicals (EDCs) have been implicated in the pathogenesis of diabetes. Indeed, burgeoning data from cell-based, animal, population, and even clinical studies now indicate that a variety of structurally distinct EDCs of both natural and synthetic origin have the capacity to alter insulin secretion and action as well as global glucose homeostasis. This chapter reviews the evidence linking EDCs to diabetes risk across this spectrum of evidence. It is hoped that improving our understanding of the environmental drivers of diabetes development will illuminate novel individual-level and policy interventions to mitigate the impact of this devastating condition on vulnerable communities and the population at large.
Collapse
Affiliation(s)
- Margaret C Schulz
- School of Public Health, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, United States
| | - Robert M Sargis
- School of Public Health, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, IL, United States; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States.
| |
Collapse
|
47
|
Baralić K, Živančević K, Jorgovanović D, Javorac D, Radovanović J, Gojković T, Buha Djordjevic A, Ćurčić M, Mandinić Z, Bulat Z, Antonijević B, Đukić-Ćosić D. Probiotic reduced the impact of phthalates and bisphenol A mixture on type 2 diabetes mellitus development: Merging bioinformatics with in vivo analysis. Food Chem Toxicol 2021; 154:112325. [PMID: 34097988 DOI: 10.1016/j.fct.2021.112325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022]
Abstract
Linkage between bis(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), and bisphenol A (BPA) co-exposure and type 2 diabetes mellitus (T2DM), as well as ability of multi-strained probiotic to reduce DEHP, DBP and BPA mixture-induced oxidative damage in rat pancreas were investigated. The Comparative Toxicogenomics Database, Cytoscape software and ToppGene Suite were used for data-mining. Animals were sorted into seven groups (n = 6): (1) Control group: corn oil, (2) P: probiotic: Saccharomyces boulardii + Lactobacillus rhamnosus + Lactobacillus plantarum LP 6595 + Lactobacillus plantarum HEAL9; (3) DEHP: 50 mg/kg b.w./day, (4) DBP: 50 mg/kg b.w./day, (5) BPA: 25 mg/kg b.w./day, and (6) MIX: 50 mg/kg b.w./day DEHP + 50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA; (7) MIX + P. Rats were sacrificed after 28 days of oral exposure. In silico investigation highlighted 44 DEHP, DBP and BPA mutual genes linked to the T2DM, while apoptosis and oxidative stress were highlighted as the main mechanisms of DEHP, DBP and BPA mixture-linked T2DM. In vivo experiment confirmed the presence of significant changes in redox status parameters (TOS, SOD and SH groups) only in the MIX group, indicating possible additive effects, while probiotic ameliorated mixture-induced redox status changes in rat pancreatic tissue.
Collapse
Affiliation(s)
- Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Katarina Živančević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragica Jorgovanović
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Dragana Javorac
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Jelena Radovanović
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia; Department of Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Tamara Gojković
- Department of Medical Biochemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Zoran Mandinić
- Clinic for Paediatric and Preventive Dentistry, School of Dental Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
48
|
Jain RB. Associations between concentrations of selected perfluoroalkyl acids and concentrations of blood cadmium, lead, and total mercury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26537-26544. [PMID: 33483932 DOI: 10.1007/s11356-021-12493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Data (N = 2552) from National Health and Nutrition Examination Survey for US adults aged ≥ 20 years for 2011-2016 were analyzed to estimate the associations between the concentrations of blood cadmium, lead, and total mercury and the concentrations of seven perfluoroalkyl acids (PFAA), namely, 2-(N-Methyl-perfluorooctane sulfonamido) acetic acid (MPAH), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS). Concentrations of blood cadmium were negatively associated with the concentrations of PFHxS (β = - 0.05428, p < 0.01) and PFOS (β = - 0.0212, p = 0.02). Concentrations of blood lead were positively associated with the concentrations of MPAH (β = 0.03301, p < 0.01), PFOA (β = 0.04783, p = 0.01), PFNA (β = 0.11761, p < 0.01), PFDA (β = 0.08007, p < 0.01), PFUA (β = 0.11382, p < 0.01), and PFOS (β = 0.04996, p = 0.02). Percent increases in the concentration of blood lead were 0.32%, 0.46%, 1.13%, 0.77%, 1.09%, and 0.48% for 10% increases in the concentrations of MPAH, PFOA, PFNA, PFDA, PFUA, and PFOS, respectively. Concentrations of blood total mercury were positively associated with the concentrations of PFNA (β = 0.37105, p < 0.01), PFDA (β = 0.46875, p < 0.01), PFUA (β = 0.56934, p < 0.01), and PFOS (β = 0.17557, p < 0.01). Percent increases in the concentration of blood total mercury were 3.6%, 4.57%, 5.58%, and 1.69% for 10% increases in the concentrations of PFNA, PFDA, PFUA, and PFOS, respectively. Associations between the concentrations of PFAAs with blood total mercury were substantially stronger than the concentrations with blood lead. Higher the carbon chain length for PFAAs, stronger were the associations between PFAAs with lead and mercury.
Collapse
Affiliation(s)
- Ram B Jain
- 2959 Estate View Court, Dacula, GA, 30019, USA.
| |
Collapse
|
49
|
Fatema K, Shoily SS, Ahsan T, Haidar Z, Sumit AF, Sajib AA. Effects of arsenic and heavy metals on metabolic pathways in cells of human origin: Similarities and differences. Toxicol Rep 2021; 8:1109-1120. [PMID: 34141598 PMCID: PMC8188178 DOI: 10.1016/j.toxrep.2021.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022] Open
Abstract
There are distinctive overlaps in different heavy metal affected metabolic pathways. Affected pathways vary according to the tissue origin and maturity of the cell. Arsenic appears to have relatively more pleiotropic effects on metabolic pathways. Some of the arsenic affected pathways are associated with diabetes. Various anthropogenic and natural events over the years have gradually increased human exposure to various heavy metals. Several of these heavy metals including cadmium, mercury, nickel, chromium, and the metalloid arsenic among others, have created major public health concerns for their high level of toxicities. Identification of the general as well as the differentially affected cellular metabolic pathways will help understanding the molecular mechanism of different heavy metal-induced toxicities. In this study, we analyzed 25 paired (control vs. treated) transcriptomic datasets derived following treatment of various human cells with different heavy metals and metalloid (arsenic, cadmium, chromium, iron, mercury, nickel and vanadium) to identify the affected metabolic pathways. The effects of these metals on metabolic pathways depend not only on the metals per se, but also on the nature of the treated cells. Tissue of origin, therefore, must be considered while assessing the effects of any particular heavy metal or metalloid. Among the metals and metalloid, arsenic appears to have relatively more pleiotropic influences on cellular metabolic pathways including those known to have association with diabetes. Although only two stem cell derived datasets are included in the current study, effects of heavy metals on these cells appear to be different from other mature cells of similar tissue origin. This study provides useful information about different heavy metal affected pathways, which may be useful in further exploration using wet-lab based techniques.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sabrina Samad Shoily
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Tamim Ahsan
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Zinia Haidar
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Ahmed Faisal Sumit
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
50
|
The Role of Toxic Metals and Metalloids in Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10050630. [PMID: 33918986 PMCID: PMC8142989 DOI: 10.3390/antiox10050630] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), an emerging regulator of cellular resistance to oxidants, serves as one of the key defensive factors against a range of pathological processes such as oxidative damage, carcinogenesis, as well as various harmful chemicals, including metals. An increase in human exposure to toxic metals via air, food, and water has been recently observed, which is mainly due to anthropogenic activities. The relationship between environmental exposure to heavy metals, particularly cadmium (Cd), lead (Pb), mercury (Hg), and nickel (Ni), as well as metaloid arsenic (As), and transition metal chromium (Cr), and the development of various human diseases has been extensively investigated. Their ability to induce reactive oxygen species (ROS) production through direct and indirect actions and cause oxidative stress has been documented in various organs. Taking into account that Nrf2 signaling represents an important pathway in maintaining antioxidant balance, recent research indicates that it can play a dual role depending on the specific biological context. On one side, Nrf2 represents a potential crucial protective mechanism in metal-induced toxicity, but on the other hand, it can also be a trigger of metal-induced carcinogenesis under conditions of prolonged exposure and continuous activation. Thus, this review aims to summarize the state-of-the-art knowledge regarding the functional interrelation between the toxic metals and Nrf2 signaling.
Collapse
|