1
|
Shen L, Cao F, Liu Y, Nuerhashi G, Lin L, Tan H, Wen C, Wang Y, Chen S, Zou H, Xie L, Fan W. Hepatic artery infusion of FOLFOX chemotherapy plus camrelizumab combined with sorafenib for advanced hepatocellular carcinoma in Barcelona Clinic Liver Cancer stage C (Double-IA-001): a phase II trial. BMC Med 2025; 23:275. [PMID: 40346494 PMCID: PMC12065160 DOI: 10.1186/s12916-025-04110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/28/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Hepatic arterial infusion chemotherapy (HAIC) with a combination of oxaliplatin, fluorouracil, and leucovorin (FOLFOX) has shown excellent local control for patients with Barcelona Clinic Liver Cancer (BCLC) stage C hepatocellular carcinoma (HCC). In China, both camrelizumab (a programmed cell death-1 [PD-1] inhibitor) and sorafenib have been approved for the first-line treatment of advanced HCC. This study aimed to investigate the efficacy and safety of hepatic artery infusion of FOLFOX chemotherapy plus camrelizumab combined with sorafenib in BCLC stage C advanced HCC. METHODS This was a single-arm phase II trial (ChiCTR2100041874) with a Simon's two-stage design. Eligible patients were given a maximum of 6 cycles of hepatic artery infusion with FOLFOX chemotherapy plus camrelizumab (200 mg once every 3 weeks). Sorafenib (400 mg orally twice daily) was given since day 3 after the completion of the first cycle of hepatic artery infusion until disease progression, intolerable toxicity, or conversion to surgical resection. The primary endpoint was objective response rate (ORR) based on the modified Response Evaluation Criteria In Solid Tumors (mRECIST). RESULTS Between January 4, 2021, and December 11, 2023, 25 patients were enrolled. Eleven patients had partial response, with an ORR of 44.0% (95% CI, 24.6-63.5%). The primary endpoint was not met, and the study failed to enter the second stage. Median progression-free survival was 4.87 months (95% CI, 2.07-7.66), with a 12-month rate of 23.2%. Median overall survival was 8.87 months (95% CI, 8.17-9.57), with 12- and 24-month rates of 40.3% and 26.9%, respectively. Two (8.0%) patients received curative resection after the study treatment. Grade ≥ 3 treatment-related adverse events occurred in 19 (76.0%) patients, with the most common being decreased lymphocyte count (13 [52.0%]), increased aspartate aminotransferase (11 [44.0%]), and increased alanine aminotransferase (seven [28.0%]). CONCLUSIONS Hepatic artery infusion of FOLFOX chemotherapy plus camrelizumab combined with oral sorafenib shows manageable safety profile but modest antitumor activity in patients with BCLC stage C advanced HCC.
Collapse
MESH Headings
- Humans
- Sorafenib/administration & dosage
- Sorafenib/therapeutic use
- Sorafenib/adverse effects
- Male
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/mortality
- Female
- Middle Aged
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/mortality
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Fluorouracil/administration & dosage
- Fluorouracil/therapeutic use
- Fluorouracil/adverse effects
- Infusions, Intra-Arterial
- Hepatic Artery
- Aged
- Adult
- Leucovorin/administration & dosage
- Leucovorin/therapeutic use
- Leucovorin/adverse effects
- Organoplatinum Compounds/administration & dosage
- Organoplatinum Compounds/therapeutic use
- Neoplasm Staging
Collapse
Affiliation(s)
- Lujun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Fei Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ying Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
- Department of Medical Oncology, Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510006, China
| | - Gulijiayina Nuerhashi
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Letao Lin
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Hontong Tan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Chunyong Wen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yujia Wang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Shuanggang Chen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Hongliang Zou
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Xie
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Weijun Fan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Liang C, Ye M, Yu L, Zhang P, Guo X, Meng X, Zeng H, Hu S, Zhang D, Sun Q, Shen Y, Cai J, Li S, Chen Z, Shi Y, Ke A, Shi YG, Zhou J, Fan J, Wu F, Huang X, Shi G, Tang Z, Lu J. Lysine-specific demethylase 1 deletion reshapes tumour microenvironment to overcome acquired resistance to anti-programmed death 1 therapy in liver cancer. Clin Transl Med 2025; 15:e70335. [PMID: 40356247 PMCID: PMC12069797 DOI: 10.1002/ctm2.70335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Immune checkpoint blockade, particularly targeting programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), shows promise in treating hepatocellular carcinoma (HCC). However, acquired resistance, especially in patients with 'hot tumours', limits sustained benefits. Lysine-specific demethylase 1 (LSD1) plays a role in converting 'cold tumours' to 'hot tumours', but its involvement in PD-1 inhibitor resistance in HCC is unclear. METHODS LSD1 and PD-L1 expression, along with CD8+ T cell infiltration, were assessed using immunohistochemistry in HCC tissues, correlating these markers with patient prognosis. The impact of LSD1 deletion on tumour cell proliferation and CD8+ T cell interactions was examined in vitro. Mouse models were used to study the combined effects of LSD1 inhibition and anti-PD-1 therapy on tumour growth and the tumour microenvironment (TME). The clinical relevance of LSD1, CD74 and effector CD8+ T cells was validated in advanced HCC patients treated with PD-1 blockade. RESULTS LSD1 overexpression in HCC patients correlated with reduced PD-L1 expression, less CD8+ T cell infiltration and poorer prognosis. LSD1 deletion increased PD-L1 expression, boosted effector CD8+ T cells in vitro and inhibited tumour growth in vivo. While anti-PD-1 monotherapy initially suppressed tumour growth, it led to relapse upon antibody withdrawal. In contrast, combining LSD1 inhibition with anti-PD-1 therapy effectively halted tumour growth and prevented relapse, likely through TME remodelling, enhanced CD8+ T cell activity and improved CD74-mediated antigen presentation. Clinically, low LSD1 expression was associated with better response to anti-PD-1 therapy. CONCLUSION LSD1 deletion reshapes the TME, enhances CD8+ T cell function and prevents acquired resistance to anti-PD-1 therapy in HCC. The combination of LSD1 inhibitors and PD-1 blockade offers a promising strategy for overcoming resistance in advanced HCC. KEY POINTS Uncovering the synthetic lethality resulting from LSD1 deletion and PD1 inhibitor co-administration, evaluating their combined effects on tumour growth and TME remodelling. Elucidating the mechanism underlying the combined therapy of LSD1 deletion with PD1 inhibition for HCC. Exploring the implications of LSD1, CD74 and effector CD8+ T cell expression levels in advanced HCC patients undergoing anti-PD1 treatment.
Collapse
Affiliation(s)
- Chen Liang
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Mu Ye
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
| | - Lei Yu
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of ChinaShanghaiChina
| | - Peng‐Fei Zhang
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
- Department of Medical OncologyShanghai Geriatric Medical Center (Zhongshan Hospital, Fudan University Minhang Meilong)ShanghaiChina
| | - Xiao‐Jun Guo
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Xian‐Long Meng
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hai‐Ying Zeng
- Department of PathologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Shu‐Yang Hu
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Dao‐Han Zhang
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Qi‐Man Sun
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ying‐Hao Shen
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Jia‐Bin Cai
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Shuang‐Qi Li
- Key Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Zhen Chen
- Clinical Research Unit, Institute of Clinical ScienceZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ying‐Hong Shi
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Ai‐Wu Ke
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yujiang G. Shi
- Key Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jian Zhou
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of ChinaShanghaiChina
| | - Jia Fan
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Fei‐Zhen Wu
- Key Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Xiao‐Yong Huang
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education of the People's Republic of ChinaShanghaiChina
| | - Guo‐Ming Shi
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
- Clinical Research Unit, Institute of Clinical ScienceZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Zheng Tang
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Jia‐Cheng Lu
- Department of Liver Surgery and TransplantationZhongshan Hospital, Fudan UniversityShanghaiChina
- Liver Cancer InstituteZhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Lu JL, Cheng Y, Xu ZL, Qian GX, Wei MT, Jia WD. Immune checkpoint inhibitors plus anti-angiogenesis in patients with resected high-risk hepatitis B virus-associated hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:101371. [PMID: 40235869 PMCID: PMC11995358 DOI: 10.4251/wjgo.v17.i4.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Currently, there is a lack of effective adjuvant therapies for patients at high-risk of recurrent hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) after radical resection. Given the efficacy of anti-programmed death 1/anti-programmed death ligand 1 plus anti-vascular endothelial growth factor receptor agents in advanced HCC, we conducted this study to investigate the efficacy of this combination regimen in the postoperative adjuvant treatment of patients with HBV-HCC. AIM To evaluate the value of postoperative combined therapy (PCT) with anti-programmed death 1/anti-programmed death ligand 1 and anti-vascular endothelial growth factor receptor agents in patients with HBV-HCC. METHODS Patients with HBV-HCC who underwent radical resection surgery at Anhui Provincial Hospital Affiliated to Anhui Medical University between July 2020 and April 2023 were included. Recurrence-free survival (RFS) and overall survival were assessed using propensity score matching and inverse probability of treatment weighting. Cox regression analysis was used to identify factors affecting recurrence, and subgroup analysis was conducted to investigate the impact of medications on different populations. Treatment-related adverse events and liver function measurements were evaluated. RESULTS A total of 150 patients were recruited, of whom 30 underwent PCT and 120 did not. After adjusting for confounders, patients who underwent PCT had better RFS at 6 and 12 months than those who did not (P > 0.05). Similar results were observed in the Kaplan-Meier curves after propensity score matching or inverse probability of treatment weighting, although the difference was not statistically significant (P > 0.05). A maximum diameter of > 5 cm, vascular invasion, satellite nodules, and high gamma-glutamyl transferase levels were independent risk factors for recurrence (P < 0.05). No significant interaction effects were observed in subgroup analyses. The most prevalent adverse event was hypertension (66.7%). PCT was associated with an increased risk of hepatic impairment which may predict RFS rates (P = 0.041). CONCLUSION The recurrence rate was not significantly reduced in patients who underwent PCT. Hepatic impairment during treatment may indicate recurrence, and close monitoring of liver function and HBV infection is recommended.
Collapse
Affiliation(s)
- Jian-Lin Lu
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Yuan Cheng
- Department of Hepatic Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Zi-Ling Xu
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Gui-Xiang Qian
- Department of Hepatic Surgery, Anhui Provincial Hospital, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Ming-Tong Wei
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
| | - Wei-Dong Jia
- Department of Hepatic Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei 230001, Anhui Province, China
| |
Collapse
|
4
|
Fu L, Li S, Mei J, Li Z, Yang X, Zheng C, Li N, Lin Y, Cao C, Liu L, Huang L, Shen X, Huang Y, Yun J. BIRC2 blockade facilitates immunotherapy of hepatocellular carcinoma. Mol Cancer 2025; 24:113. [PMID: 40223121 PMCID: PMC11995630 DOI: 10.1186/s12943-025-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The effectiveness of immunotherapy in hepatocellular carcinoma (HCC) is limited, however, the molecular mechanism remains unclear. In this study, we identified baculoviral IAP repeat-containing protein 2 (BIRC2) as a key regulator involved in immune evasion of HCC. METHODS Genome-wide CRISPR/Cas9 screening was conducted to identify tumor-intrinsic genes pivotal for immune escape. In vitro and in vivo models demonstrated the role of BIRC2 in protecting HCC cells from immune killing. Then the function and relevant signaling pathways of BIRC2 were explored. The therapeutic efficacy of BIRC2 inhibitor was examined in different in situ and xenograft HCC models. RESULTS Elevated expression of BIRC2 correlated with adverse prognosis and resistance to immunotherapy in HCC patients. Mechanistically, BIRC2 interacted with and promoted the ubiquitination-dependent degradation of NFκB-inducing kinase (NIK), leading to the inactivation of the non-canonical NFκB signaling pathway. This resulted in the decrease of major histocompatibility complex class I (MHC-I) expression, thereby protecting HCC cells from T cell-mediated cytotoxicity. Silencing BIRC2 using shRNA or inhibiting it with small molecules increased the sensitivity of HCC cells to immune killing. Meanwhile, BIRC2 blockade improved the function of T cells both in vitro and in vivo. Targeting BIRC2 significantly inhibited tumor growth, and enhanced the efficacy of anti-programmed death protein 1 (PD-1) therapy. CONCLUSIONS Our findings suggested that BIRC2 blockade facilitated immunotherapy of HCC by simultaneously sensitizing tumor cells to immune attack and boosting the anti-tumor immune response of T cells.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jie Mei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ziteng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Chengyou Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Nai Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yansong Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Chao Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lixuan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Liyun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xiujiao Shen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Goodsell KE, Tao AJ, Park JO. Neoadjuvant therapy for hepatocellular carcinoma-priming precision innovations to transform HCC treatment. Front Surg 2025; 12:1531852. [PMID: 40115081 PMCID: PMC11922951 DOI: 10.3389/fsurg.2025.1531852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is increasing in prevalence globally, and cure remains limited with non-operative treatment. Surgical intervention, through resection or transplantation, offers a potential for cure for select patients. However, many patients present with advanced or unresectable disease, and recurrence rates remain high. Recent advances in systemic therapies, particularly immune checkpoint inhibitors, have demonstrated promise in treating unresectable HCC and as adjuvant therapy. Evidence from adjuvant trials highlights the synergistic potential of combined liver-directed and systemic therapies. These findings have ignited growing interest in neoadjuvant therapy across various scenarios: (1) as a bridging strategy while awaiting transplantation, (2) for downstaging disease to enable transplantation, (3) for converting unresectable disease to a resectable state, or (4) as neoadjuvant treatment in operable cases. Early-stage trials of neoadjuvant therapy in resectable HCC have reported promising outcomes. To realize the potential of neoadjuvant treatment for HCC, thoughtfully designed, adequately powered, multi-center clinical trials are essential.
Collapse
Affiliation(s)
- Kristin E Goodsell
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Alice J Tao
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - James O Park
- Department of Surgery, University of Washington, Seattle, WA, United States
- Department of Surgery, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
6
|
Yang L, Tan W, Wang M, Wei Y, Xie Z, Wang Q, Zhang Z, Zhuang H, Ma X, Wang B, Jiang J, Chen Y, Shang C. circCCNY enhances lenvatinib sensitivity and suppresses immune evasion in hepatocellular carcinoma by serving as a scaffold for SMURF1 mediated HSP60 degradation. Cancer Lett 2025; 612:217470. [PMID: 39826668 DOI: 10.1016/j.canlet.2025.217470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Lenvatinib is the standard first-line therapy for advanced hepatocellular carcinoma (HCC), but drug resistance significantly hampers its efficacy. Increasing evidence has shown that circular RNAs (circRNAs) play critical roles in HCC pathogenesis. However, the underlying mechanisms of lenvatinib sensitivity regulated by circRNAs remain largely unclear. The present study aims to identify circRNAs involved in lenvatinib resistance, as well as to elucidate the underlying mechanisms. High-throughput sequencing revealed that hsa_circ_0000235 (circCCNY) was downregulated in matched HCC tumor tissues and lenvatinib-resistant cells. Both in vitro and in vivo experiments revealed that downregulation of circCCNY could induce lenvatinib resistance in HCC cells. Subsequently, RNA pull-down, mass spectrometry, and RNA immunoprecipitation techniques were employed to investigate the interactions between circCCNY, HSP60, and the E3 ubiquitin ligase SMURF1. Briefly, circCCNY bounds to HSP60, subsequently leading to HSP60 ubiquitination and degradation through its interaction with the E3 ubiquitin ligase SMURF1. As a result, HSP60 degradation released Raf kinase inhibitor protein (RKIP), leading to the inactivation of the MAPK signaling pathway, and subsequently enhanced the anti-tumor effect of lenvatinib against HCC. Moreover, we also demonstrated that circCCNY could enhance CD8+ T-cell infiltration and suppress immune evasion through inhibiting the MAPK/c-Myc/PD-L1 signaling pathway. Our findings revealed that circCCNY enhances HCC sensitivity to lenvatinib and suppresses immune evasion by inhibiting the MAPK signaling pathway in HCC. This suggests that circCCNY could serve as a promising therapeutic target in HCC treatment and a potential biomarker for predicting HCC sensitivity to lenvatinib.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Phenylurea Compounds/pharmacology
- Phenylurea Compounds/therapeutic use
- Quinolines/pharmacology
- Quinolines/therapeutic use
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Animals
- Drug Resistance, Neoplasm/genetics
- Mice
- Cell Line, Tumor
- Tumor Escape/drug effects
- Gene Expression Regulation, Neoplastic
- Xenograft Model Antitumor Assays
- Male
- Mice, Nude
- Female
- Ubiquitination
Collapse
Affiliation(s)
- Lei Yang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, Anhui, China
| | - Wenliang Tan
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital, Hainan Medical University, Haikou, 570311, Hai Nan, China
| | - Yingcheng Wei
- Department of Hepatopancreatobiliary Surgery, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516621, Guangdong, China
| | - Zhiqin Xie
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, 412000, Hunan, China
| | - Qingbin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Ziyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Hongkai Zhuang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Xiaowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Bingkun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Jiahao Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Yajin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| | - Changzhen Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China; Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
7
|
Yang ZX, Zhang LT, Liu XJ, Peng XB, Mao XR. Interleukin-17A facilitates tumor progression via upregulating programmed death ligand-1 expression in hepatocellular carcinoma. World J Gastrointest Oncol 2025; 17:97831. [PMID: 39817127 PMCID: PMC11664623 DOI: 10.4251/wjgo.v17.i1.97831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/02/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an inflammation-associated tumor with a dismal prognosis. Immunotherapy has become an important treatment strategy for HCC, as immunity is closely related to inflammation in the tumor microenvironment. Inflammation regulates the expression of programmed death ligand-1 (PD-L1) in the immunosuppressive tumor microenvironment and affects immunotherapy efficacy. Interleukin-17A (IL-17A) is involved in the remodeling of the tumor microenvironment and plays a protumor or antitumor role in different tumors. We hypothesized that IL-17A participates in tumor progression by affecting the level of immune checkpoint molecules in HCC. AIM To investigate the effect and mechanism of action of IL-17A on PD-L1 expression and to identify attractive candidates for the treatment of HCC. METHODS The upregulation of PD-L1 expression in HCC cells by IL-17A was assessed by reverse transcription PCR, western blotting, and flow cytometry. Mechanistic studies were conducted with gene knockout models and pathway inhibitors. The function of IL-17A in immune evasion was explored through coculture of T cells and HCC cells. The effects of IL-17A on the malignant biological behaviors of HCC cells were evaluated in vitro, and the antitumor effects of an IL-17A inhibitor and its synergistic effects with a PD-L1 inhibitor were studied in vivo. RESULTS IL-17A upregulated PD-L1 expression in HCC cells in a dose-dependent manner, whereas IL-17A receptor knockout or treatment with a small mothers against decapentaplegic 2 inhibitor diminished the PD-L1 expression induced by IL-17A. IL-17A enhanced the survival of HCC cells in the coculture system. IL-17A increased the viability, G2/M ratio, and migration of HCC cells and decreased the apoptotic index. Cyclin D1, VEGF, MMP9, and Bcl-1 expression increased after IL-17A treatment, whereas BAX expression decreased. The combination of IL-17A and PD-L1 inhibitors showed synergistic antitumor efficacy and increased cluster of differentiation 8 + T lymphocyte infiltration in an HCC mouse model. CONCLUSION IL-17A upregulates PD-L1 expression via the IL-17A receptor/phosphorylation-small mothers against decapentaplegic 2 signaling pathway in HCC cells. Blocking IL-17A enhances the therapeutic efficacy of PD-L1 antibodies in HCC in vivo.
Collapse
Affiliation(s)
- Zhong-Xia Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Li-Ting Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xiao-Jun Liu
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xue-Bin Peng
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xiao-Rong Mao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
8
|
Montagner A, Arleo A, Suzzi F, D’Assoro AB, Piscaglia F, Gramantieri L, Giovannini C. Notch Signaling and PD-1/PD-L1 Interaction in Hepatocellular Carcinoma: Potentialities of Combined Therapies. Biomolecules 2024; 14:1581. [PMID: 39766289 PMCID: PMC11674819 DOI: 10.3390/biom14121581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Immunotherapy has shown significant improvement in the survival of patients with hepatocellular carcinoma (HCC) compared to TKIs as first-line treatment. Unfortunately, approximately 30% of HCC exhibits intrinsic resistance to ICIs, making new therapeutic combinations urgently needed. The dysregulation of the Notch signaling pathway observed in HCC can affect immune cell response, reducing the efficacy of cancer immunotherapy. Here, we provide an overview of how Notch signaling regulates immune responses and present the therapeutic rationale for combining Notch signaling inhibition with ICIs to improve HCC treatment. Moreover, we propose using exosomes as non-invasive tools to assess Notch signaling activation in hepatic cancer cells, enabling accurate stratification of patients who can benefit from combined strategies.
Collapse
Affiliation(s)
- Annapaola Montagner
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Andrea Arleo
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Fabrizia Suzzi
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
| | - Antonino B. D’Assoro
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55902, USA;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (A.A.); (F.S.); (F.P.); (C.G.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| |
Collapse
|
9
|
Nguyen MT, Lee GJ, Kim B, Kim HJ, Tak J, Park MK, Kim EJ, Kang GJ, Rho SB, Lee H, Lee K, Kim SG, Lee CH. Penfluridol suppresses MYC-driven ANLN expression and liver cancer progression by disrupting the KEAP1-NRF2 interaction. Pharmacol Res 2024; 210:107512. [PMID: 39643070 DOI: 10.1016/j.phrs.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024]
Abstract
Hepatocellular carcinoma (HCC) comprises the majority of primary liver cancers and possesses a low 5-year survival rate when in the advanced stages. Anillin (ANLN), a key player in cell growth and cytokinesis, is implicated in HCC development. Currently, no treatment agents are known to suppress ANLN. Analysis of The Cancer Genome Atlas data showed that high ANLN expression is associated with poor prognosis and survival in HCC patients. ANLN knockdown was shown to inhibit proliferation, cell cycle progression, and PD-L1 expression in liver cancer cells. The antipsychotic drug penfluridol was identified to suppress ANLN expression in the Connectivity Map analysis. Penfluridol downregulated ANLN at both the mRNA and protein levels, leading to G2/M cell cycle arrest and reduced colony formation in liver cancer cells. Mechanistically, penfluridol inhibited the transcription factor MYC from binding to an E-box motif in the ANLN promoter. This process was mediated by penfluridol-induced upregulation of NRF2, which competitively bound and sequestered MYC away from the ANLN promoter. Penfluridol inhibited the interaction between NRF2 and KEAP1, increasing NRF2. In a syngeneic mouse model, penfluridol suppressed liver tumour growth accompanied by increased NRF2 and decreased MYC and ANLN expression. These findings suggest penfluridol can be applied as the first ANLN blocker to modulate the MYC/NRF2/KEAP1 axis.
Collapse
Affiliation(s)
- Minh Tuan Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jihoon Tak
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyung Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
10
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
11
|
Martín-Sierra C, Martins R, Coucelo M, Abrantes AM, Caetano Oliveira R, Tralhão JG, Botelho MF, Furtado E, Domingues MR, Paiva A, Laranjeira P. Tumor Resection in Hepatic Carcinomas Restores Circulating T Regulatory Cells. J Clin Med 2024; 13:6011. [PMID: 39408071 PMCID: PMC11478317 DOI: 10.3390/jcm13196011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Cholangiocarcinoma (CCA) and hepatocellular carcinoma (HCC) represent major primary liver cancers, affecting one of the most vital organs in the human body. T regulatory (Treg) cells play an important role in liver cancers through the immunosuppression of antitumor immune responses. The current study focuses on the characterization of circulating natural killer (NK) cells and T cell subsets, including Treg cells, in CCA and HCC patients, before and after surgical tumor resection, in order to understand the effect of tumor resection on the homeostasis of peripheral blood NK cells and T cells. Methods: Whole blood assays were performed to monitor immune alterations and the functional competence of circulating lymphocytes in a group of ten healthy individuals, eight CCA patients, and twenty HCC patients, before and one month after the surgical procedure, using flow cytometry, cell sorting, and qRT-PCR. Results: Before tumor resection, both HCC and CCA patients display increased percentages of CD8+ Treg cells and decreased frequencies of circulating CD4+ Treg cells. Notwithstanding, no functional impairment was detected on circulating CD4+ Treg cells, neither in CCA nor in HCC patients. Interestingly, the frequency of peripheral CD4+ Treg cells increased from 0.55% ± 0.49 and 0.71% ± 0.54 (in CCA and HCC, respectively) at T0 to 0.99% ± 0.91 and 1.17% ± 0.33 (in CCA and HCC, respectively) at T1, following tumor resection. Conclusions: Our results suggest mechanisms of immune modulation induced by tumor resection.
Collapse
Affiliation(s)
- Carmen Martín-Sierra
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Margarida Coucelo
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Unidade Funcional de Hematologia Molecular, Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Ana Margarida Abrantes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Rui Caetano Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
- Serviço de Anatomia Patológica, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - José Guilherme Tralhão
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
- Serviço de Cirurgia Geral, Unidade HBP, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Maria Filomena Botelho
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- University of Coimbra, Faculty of Medicine, Biophysics Institute, 3000-548 Coimbra, Portugal
| | - Emanuel Furtado
- Unidade Transplantação Hepática Pediátrica e de Adultos, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal;
| | - Maria Rosário Domingues
- CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - Paula Laranjeira
- Flow Cytometry Unit, Department of Clinical Pathology, Hospitais da Universidade de Coimbra, Unidade Local de Saúde de Coimbra, 3000-076 Coimbra, Portugal;
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal; (R.M.); (M.C.); (A.M.A.); (R.C.O.); (J.G.T.); (M.F.B.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3000-061 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
12
|
Zhang H, Pei S, Li J, Zhu J, Li H, Wu G, Weng R, Chen R, Fang Z, Sun J, Chen K. Insights about exosomal circular RNAs as novel biomarkers and therapeutic targets for hepatocellular carcinoma. Front Pharmacol 2024; 15:1466424. [PMID: 39444611 PMCID: PMC11496148 DOI: 10.3389/fphar.2024.1466424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most prevalent pathological types of Primary Liver Cancer (PLC) is the Hepatocellular Carcinoma (HCC) poses a global health issue. The high recurrence and metastasis rate of HCC, coupled with a low 5-year survival rate, result in a bleak prognosis. Exosomes, small extracellular vesicles released by various cells, contain diverse non-coding RNA molecules, including circular RNAs (circRNAs), which play a significant role in intercellular communication and can impact HCC progression. Studies have revealed the potential clinical applications of exosomal circRNAs as biomarkers and therapeutic targets for HCC. These circRNAs can be transferred via exosomes to nearby non-cancerous cells, thereby regulating HCC progression and influencing malignant phenotypes, such as cell proliferation, invasion, metastasis, and drug resistance. This review provides a comprehensive overview of the identified exosomal circRNAs, highlighting their potential as non-invasive biomarkers for HCC, and suggesting new perspectives for HCC diagnosis and treatment. The circRNA from exosomal organelles promotes metastasis and immune scape because of their unique chirality which is different from the Biomolecular Homochirality.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Zhejiang Chinese Medical University, Shuren College, Hangzhou, China
| | - Shanshan Pei
- School of Pharmacy, Beihua University, Jilin, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiajie Zhu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Hongyu Li
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruiqi Weng
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhongbiao Fang
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jingbo Sun
- School of Pharmacy, Beihua University, Jilin, China
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
13
|
Zhu G, Zeng L, Yang L, Zhang X, Tang J, Pan Y, Li B, Chen M, Wu T. Is atezolizumab plus bevacizumab as first-line therapy for unresectable hepatocellular carcinoma superior to lenvatinib? a systematic review and meta‑analysis. Eur J Clin Pharmacol 2024; 80:1425-1434. [PMID: 38907884 DOI: 10.1007/s00228-024-03718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND This meta-analysis was dedicated to evaluating the effectiveness and safety of Atezolizumab plus Bevacizumab (Atez/Bev) and Lenvatinib (LEN) as first-line systematic therapy for unresectable hepatocellular carcinoma (u-HCC). METHODS The prospective protocol for this study was registered with the PROSPERO (Registration number: CRD42022356874). Literature searches were conducted in PubMed, EMBASE database Cochrane Library, and Web Science to determine all clinical controlled studies that reported Atez/Bev and LEN for treating u-HCC. We. evaluated as primary end-point overall survival (OS) and progression-free survival (PFS), as well as other outcomes such as tumor response and adverse events (AEs).Quality assessment and data extraction of studies were conducted independently by three reviewers. Mean difference (MD) and odds ratio (OR) with 95% confidence interval (CI) were calculated using a fixed-effects or random-effects model. The meta-analysis was performed with RevMan 5.3 software. RESULTS 12 retrospective cohort studies (RCSs) involving a total of 4948 patients were finally included. The results showed that compared with LEN, Atez/Bev can improve the patient's PFS (HR = 0.80, 95% CI: 0.72 ~ 0.88; p < 0.0001) and reduce the rate of overall AEs (OR = 0.46 95% CI: 0.38 ~ 0.55, p < 0.00001) and grade ≥ 3 AEs (OR = 0.43; 95% CI: 0.36 ~ 0.51, p < 0.00001), while there is no difference between OS and treatment responses rate (objective response rate, disease control rate, complete response, partial response, progressive disease, and stable disease) between two groups. In addition, the subgroup analysis shows that Atez/Bev can promote the OS of patients with viral hepatitis. (HR = 0.79, 95% CI: 0.67 ~ 0.95; p = 0.01), while LEN has an advantage in improving OS in patients with Child-Pugh grade B liver function (HR = 1.98, 95% CI: 1.50 ~ 2.63; p < 0.00001). CONCLUSION Current evidence shows that compared with LEN, Atez/Bev has more advantages in PFS and safety in treating u-HCC and can improve the OS of patients with viral. LEN has advantages in improving the OS of patients with grade B liver function. However, more multicenter randomized controlled experiments are needed in the future to verify our results.
Collapse
Affiliation(s)
- Gang Zhu
- Department of Hepatobiliary Pancreatic and Splenic Surgery, Luzhou Peoples Hospital, Luzhou, 646000, China
| | - Longfei Zeng
- Department of Hepatobiliary Pancreatic and Splenic Surgery, Luzhou Peoples Hospital, Luzhou, 646000, China
| | - Liu Yang
- Department of Hepatobiliary Pancreatic and Splenic Surgery, Luzhou Peoples Hospital, Luzhou, 646000, China
| | - Xin Zhang
- Department of Hepatobiliary Pancreatic and Splenic Surgery, Luzhou Peoples Hospital, Luzhou, 646000, China
| | - Jinquan Tang
- Department of Hepatobiliary Pancreatic and Splenic Surgery, Luzhou Peoples Hospital, Luzhou, 646000, China
| | - Yong Pan
- Department of Hepatobiliary Pancreatic and Splenic Surgery, Luzhou Peoples Hospital, Luzhou, 646000, China
| | - Bo Li
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Mengchen Chen
- Department of Hepatobiliary Pancreatic and Splenic Surgery, Luzhou Peoples Hospital, Luzhou, 646000, China.
| | - Tao Wu
- Department of Hepatobiliary Pancreatic and Splenic Surgery, Luzhou Peoples Hospital, Luzhou, 646000, China.
| |
Collapse
|
14
|
Zhang J, Song Y, Ahn AR, Park HS, Park SH, Moon YJ, Kim KM, Jang KY. PAK4 Is Involved in the Stabilization of PD-L1 and the Resistance to Doxorubicin in Osteosarcoma and Predicts the Survival of Diagnosed Patients. Cells 2024; 13:1444. [PMID: 39273017 PMCID: PMC11394300 DOI: 10.3390/cells13171444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
PAK4 and PD-L1 have been suggested as novel therapeutic targets in human cancers. Moreover, PAK4 has been suggested to be a molecule closely related to the immune evasion of cancers. Therefore, this study evaluated the roles of PAK4 and PD-L1 in the progression of osteosarcomas in 32 osteosarcomas and osteosarcoma cells. In human osteosarcomas, immunohistochemical positivity for the expression of PAK4 (overall survival, p = 0.028) and PD-L1 (relapse-free survival, p = 0.002) were independent indicators for the survival of patients in a multivariate analysis. In osteosarcoma cells, the overexpression of PAK4 increased proliferation and invasiveness, while the knockdown of PAK4 suppressed proliferation and invasiveness. The expression of PAK4 was associated with the expression of the molecules related to cell cycle regulation, invasion, and apoptosis. PAK4 was involved in resistance to apoptosis under a treatment regime with doxorubicin for osteosarcoma. In U2OS cells, PAK4 was involved in the stabilization of PD-L1 from ubiquitin-mediated proteasomal degradation and the in vivo infiltration of immune cells such as regulatory T cells and PD1-, CD4-, and CD8-positive cells in mice tumors. In conclusion, this study suggests that PAK4 is involved in the progression of osteosarcoma by promoting proliferation, invasion, and resistance to doxorubicin and stabilized PD-L1 from proteasomal degradation.
Collapse
Affiliation(s)
- Junyue Zhang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.Z.); (Y.S.); (A.-R.A.); (H.S.P.); (K.M.K.)
| | - Yiping Song
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.Z.); (Y.S.); (A.-R.A.); (H.S.P.); (K.M.K.)
| | - Ae-Ri Ahn
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.Z.); (Y.S.); (A.-R.A.); (H.S.P.); (K.M.K.)
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.Z.); (Y.S.); (A.-R.A.); (H.S.P.); (K.M.K.)
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Young Jae Moon
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea;
- Department of Orthopedic Surgery, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.Z.); (Y.S.); (A.-R.A.); (H.S.P.); (K.M.K.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea; (J.Z.); (Y.S.); (A.-R.A.); (H.S.P.); (K.M.K.)
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
15
|
Landwehr LS, Altieri B, Sbiera I, Remde H, Kircher S, Olabe J, Sbiera S, Kroiss M, Fassnacht M. Expression and Prognostic Relevance of PD-1, PD-L1, and CTLA-4 Immune Checkpoints in Adrenocortical Carcinoma. J Clin Endocrinol Metab 2024; 109:2325-2334. [PMID: 38415841 PMCID: PMC11319003 DOI: 10.1210/clinem/dgae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 02/29/2024]
Abstract
CONTEXT Adrenocortical carcinoma (ACC) is a rare endocrine malignancy with poor prognosis in advanced stages. While therapies targeting the checkpoint molecules programmed cell death 1 (PD-1), its ligand PD-L1, and the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have revolutionized treatment in many cancers, the results in ACCs were heterogeneous. OBJECTIVE Their expression in ACC has not been systematically studied and might explain the variable response to immune checkpoint inhibitors. METHODS The expression of PD-1, PD-L1 and CTLA-4 was examined in 162 tumor samples from 122 patients with ACC by immunohistochemistry (threshold of >1%) and correlated with tumoral T lymphocyte infiltration and clinical endpoints. Finally, univariate and multivariate analyses of progression-free and overall survival were performed. RESULTS PD-1 and PD-L1 were expressed in 26.5% and 24.7% of samples, respectively, with low expression in most tumor samples (median positive cells: 2.1% and 21.7%). In contrast, CTLA-4 expression was observed in 52.5% of ACC with a median of 38.4% positive cells. Positive PD-1 expression was associated with longer progression-free survival (HR 0.50, 95% CI 0.25-0.98, P = .04) even after considering prognostic factors. In contrast, PD-L1 and CTLA-4 did not correlate with clinical outcome. Additionally, PD-1 and PD-L1 expression correlated significantly with the amount of CD3+, CD4+, FoxP3+, and CD8+ T cells. CONCLUSION The heterogeneous expression of PD1, PD-L1, and CTLA-4 in this large series of well-annotated ACC samples might explain the heterogeneous results of the immunotherapies in advanced ACC. In addition, PD-1 expression is a strong prognostic biomarker that can easily be applied in routine clinical care and histopathological assessment.
Collapse
Affiliation(s)
- Laura-Sophie Landwehr
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Iuliu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Hanna Remde
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Stefan Kircher
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Julie Olabe
- Institute GReD (Genetics, Reproduction and Development), University Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 München, Germany
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
16
|
Yin Y, Feng W, Chen J, Chen X, Wang G, Wang S, Xu X, Nie Y, Fan D, Wu K, Xia L. Immunosuppressive tumor microenvironment in the progression, metastasis, and therapy of hepatocellular carcinoma: from bench to bedside. Exp Hematol Oncol 2024; 13:72. [PMID: 39085965 PMCID: PMC11292955 DOI: 10.1186/s40164-024-00539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with high incidence, recurrence, and metastasis rates. The emergence of immunotherapy has improved the treatment of advanced HCC, but problems such as drug resistance and immune-related adverse events still exist in clinical practice. The immunosuppressive tumor microenvironment (TME) of HCC restricts the efficacy of immunotherapy and is essential for HCC progression and metastasis. Therefore, it is necessary to elucidate the mechanisms behind immunosuppressive TME to develop and apply immunotherapy. This review systematically summarizes the pathogenesis of HCC, the formation of the highly heterogeneous TME, and the mechanisms by which the immunosuppressive TME accelerates HCC progression and metastasis. We also review the status of HCC immunotherapy and further discuss the existing challenges and potential therapeutic strategies targeting immunosuppressive TME. We hope to inspire optimizing and innovating immunotherapeutic strategies by comprehensively understanding the structure and function of immunosuppressive TME in HCC.
Collapse
Affiliation(s)
- Yue Yin
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Weibo Feng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Jie Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Xilang Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Guodong Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiao Xu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Kaichun Wu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
| | - Limin Xia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China.
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
17
|
Du G, Dou C, Sun P, Wang S, Liu J, Ma L. Regulatory T cells and immune escape in HCC: understanding the tumor microenvironment and advancing CAR-T cell therapy. Front Immunol 2024; 15:1431211. [PMID: 39136031 PMCID: PMC11317284 DOI: 10.3389/fimmu.2024.1431211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Abstract
Liver cancer, which most commonly manifests as hepatocellular carcinoma (HCC), is the sixth most common cancer in the world. In HCC, the immune system plays a crucial role in the growth and proliferation of tumor cells. HCC achieve immune escape through the tumor microenvironment, which significantly promotes the development of this cancer. Here, this article introduces and summarizes the functions and effects of regulatory T cells (Tregs) in the tumor microenvironment, highlighting how Tregs inhibit and regulate the functions of immune and tumor cells, cytokines, ligands and receptors, etc, thereby promoting tumor immune escape. In addition, it discusses the mechanism of CAR-T therapy for HCC and elaborate on the relationship between CAR-T and Tregs.
Collapse
Affiliation(s)
- Guangtan Du
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Cunmiao Dou
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medical Department of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Leina Ma
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| |
Collapse
|
18
|
Li Y, Chen Y, Wang D, Wu L, Li T, An N, Yang H. Elucidating the multifaceted role of MGAT1 in hepatocellular carcinoma: integrative single-cell and spatial transcriptomics reveal novel therapeutic insights. Front Immunol 2024; 15:1442722. [PMID: 39081317 PMCID: PMC11286416 DOI: 10.3389/fimmu.2024.1442722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Background Glycosyltransferase-associated genes play a crucial role in hepatocellular carcinoma (HCC) pathogenesis. This study investigates their impact on the tumor microenvironment and molecular mechanisms, offering insights into innovative immunotherapeutic strategies for HCC. Methods We utilized cutting-edge single-cell and spatial transcriptomics to examine HCC heterogeneity. Four single-cell scoring techniques were employed to evaluate glycosyltransferase genes. Spatial transcriptomic findings were validated, and bulk RNA-seq analysis was conducted to identify prognostic glycosyltransferase-related genes and potential immunotherapeutic targets. MGAT1's role was further explored through various functional assays. Results Our analysis revealed diverse cell subpopulations in HCC with distinct glycosyltransferase gene activities, particularly in macrophages. Key glycosyltransferase genes specific to macrophages were identified. Temporal analysis illustrated macrophage evolution during tumor progression, while spatial transcriptomics highlighted reduced expression of these genes in core tumor macrophages. Integrating scRNA-seq, bulk RNA-seq, and spatial transcriptomics, MGAT1 emerged as a promising therapeutic target, showing significant potential in HCC immunotherapy. Conclusion This comprehensive study delves into glycosyltransferase-associated genes in HCC, elucidating their critical roles in cellular dynamics and immune cell interactions. Our findings open new avenues for immunotherapeutic interventions and personalized HCC management, pushing the boundaries of HCC immunotherapy.
Collapse
Affiliation(s)
- Yang Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Yuan Chen
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danqiong Wang
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Ling Wu
- Tumor Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Tao Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Na An
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Haikun Yang
- The Gastroenterology Department, Shanxi Provincial People Hospital, Taiyuan, China
| |
Collapse
|
19
|
Afshari AR, Sanati M, Ahmadi SS, Kesharwani P, Sahebkar A. Harnessing the capacity of phytochemicals to enhance immune checkpoint inhibitor therapy of cancers: A focus on brain malignancies. Cancer Lett 2024; 593:216955. [PMID: 38750720 DOI: 10.1016/j.canlet.2024.216955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024]
Abstract
Brain cancers, particularly glioblastoma multiforme (GBM), are challenging health issues with frequent unmet aspects. Today, discovering safe and effective therapeutic modalities for brain tumors is among the top research interests. Immunotherapy is an emerging area of investigation in cancer treatment. Since immune checkpoints play fundamental roles in repressing anti-cancer immunity, diverse immune checkpoint inhibitors (ICIs) have been developed, and some monoclonal antibodies have been approved clinically for particular cancers; nevertheless, there are significant concerns regarding their efficacy and safety in brain tumors. Among the various tools to modify the immune checkpoints, phytochemicals show good effectiveness and excellent safety, making them suitable candidates for developing better ICIs. Phytochemicals regulate multiple immunological checkpoint-related signaling pathways in cancer biology; however, their efficacy for clinical cancer immunotherapy remains to be established. Here, we discussed the involvement of immune checkpoints in cancer pathology and summarized recent advancements in applying phytochemicals in modulating immune checkpoints in brain tumors to highlight the state-of-the-art and give constructive prospects for future research.
Collapse
Affiliation(s)
- Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Wang M, Xu X, Wang K, Diao Y, Xu J, Gu L, Yao L, Li C, Lv G, Yang T. Conversion therapy for advanced hepatocellular carcinoma in the era of precision medicine: Current status, challenges and opportunities. Cancer Sci 2024; 115:2159-2169. [PMID: 38695305 PMCID: PMC11247552 DOI: 10.1111/cas.16194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 07/13/2024] Open
Abstract
Hepatocellular carcinoma (HCC), the most prevalent malignancy of the digestive tract, is characterized by a high mortality rate and poor prognosis, primarily due to its initial diagnosis at an advanced stage that precludes any surgical intervention. Recent advancements in systemic therapies have significantly improved oncological outcomes for intermediate and advanced-stage HCC, and the combination of locoregional and systemic therapies further facilitates tumor downstaging and increases the likelihood of surgical resectability for initially unresectable cases following conversion therapies. This shift toward high conversion rates with novel, multimodal treatment approaches has become a principal pathway for prolonged survival in patients with advanced HCC. However, the field of conversion therapy for HCC is marked by controversies, including the selection of potential surgical candidates, formulation of conversion therapy regimens, determination of optimal surgical timing, and application of adjuvant therapy post-surgery. Addressing these challenges and refining clinical protocols and research in HCC conversion therapy is essential for setting the groundwork for future advancements in treatment strategies and clinical research. This narrative review comprehensively summarizes the current strategies and clinical experiences in conversion therapy for advanced-stage HCC, emphasizing the unresolved issues and the path forward in the context of precision medicine. This work not only provides a comprehensive overview of the evolving landscape of treatment modalities for conversion therapy but also paves the way for future studies and innovations in this field.
Collapse
Affiliation(s)
- Ming‐Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical University (Navy Medical University)ShanghaiChina
| | - Xue‐Jun Xu
- Department of Hepatobiliary SurgeryGeneral Hospital of Xinjiang Military Region of PLAUrumuqiXinjiangChina
| | - Ke‐Chun Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical University (Navy Medical University)ShanghaiChina
| | - Yong‐Kang Diao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical University (Navy Medical University)ShanghaiChina
| | - Jia‐Hao Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical University (Navy Medical University)ShanghaiChina
| | - Li‐Hui Gu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical University (Navy Medical University)ShanghaiChina
| | - Lan‐Qing Yao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical University (Navy Medical University)ShanghaiChina
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical University (Navy Medical University)ShanghaiChina
| | - Guo‐Yue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterFirst Hospital of Jilin UniversityChangchunJilinChina
| | - Tian Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery HospitalSecond Military Medical University (Navy Medical University)ShanghaiChina
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterFirst Hospital of Jilin UniversityChangchunJilinChina
| |
Collapse
|
21
|
Tanaka T, Koga H, Suzuki H, Iwamoto H, Sakaue T, Masuda A, Nakamura T, Akiba J, Yano H, Torimura T, Kawaguchi T. Anti-PD-L1 antibodies promote cellular proliferation by activating the PD-L1-AXL signal relay in liver cancer cells. Hepatol Int 2024; 18:984-997. [PMID: 37553470 DOI: 10.1007/s12072-023-10572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are emerging treatments for advanced hepatocellular carcinoma (HCC); however, evidence has shown they may induce hyperprogressive disease via unexplained mechanisms. METHODS In this study, we investigated the possible stimulative effect of ICIs on programmed cell death-ligand 1 (PD-L1)-harboring liver cancer cells under immunocompetent cell-free conditions. RESULTS The sarcomatous HAK-5 cell line displayed the highest expression of PD-L1 among 11 human liver cancer cell lines used in this study. HLF showed moderate expression, while HepG2, Hep3B, and HuH-7 did not show any. Moreover, sarcomatous HCC tissues expressed high levels of PD-L1. We observed approximately 20% increase in cell proliferation in HAK-5 cells treated with anti-PD-L1 antibodies, such as durvalumab and atezolizumab, for 48 h compared with that of those treated with the control IgG and the anti-PD-1 antibody pembrolizumab. No response to durvalumab or atezolizumab was shown in PD-L1-nonexpressing cells. Loss-of-function and gain-of-function experiments for PD-L1 in HAK-5 and HepG2 cells resulted in a significant decrease and increase in cell proliferation, respectively. Phosphorylated receptor tyrosine kinase array and immunoprecipitation revealed direct interactions between PD-L1 and AXL in tumor cells. This was stabilized by extrinsic anti-PD-L1 antibodies in a glycosylated PD-L1-dependent manner. Activation of AXL, triggering signal relay to the Akt and Erk pathways, boosted tumor cell proliferation both in vitro and in xenografted tumors in NOD/SCID mice. CONCLUSION Collectively, this suggests that anti-PD-L1 antibodies stimulate cell proliferation via stabilization of the PD-L1-AXL complex in specific types of liver cancer, including in HCC with mesenchymal components. SIGNIFICANCE Therapeutic anti-PD-L1 antibodies promote cell proliferation by stabilizing the PD-L1-AXL complex in PD-L1-abundant neoplasms, including in HCC with mesenchymal components. Such a mechanism may contribute to the development of hyperprogressive disease.
Collapse
MESH Headings
- Humans
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/immunology
- Cell Proliferation/drug effects
- B7-H1 Antigen/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Mice
- Animals
- Cell Line, Tumor
- Signal Transduction
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Receptor Protein-Tyrosine Kinases/immunology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Proto-Oncogene Proteins/metabolism
- Axl Receptor Tyrosine Kinase
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Toshimitsu Tanaka
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hironori Koga
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan.
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan.
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hideki Iwamoto
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takahiko Sakaue
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Atsutaka Masuda
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Toru Nakamura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
- Liver Cancer Research Division, Research Center for Innovative Cancer Therapy, Kurume University, 67 Asahi-machi, Kurume, 830-0011, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan
| |
Collapse
|
22
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
23
|
Ali FEM, Ibrahim IM, Althagafy HS, Hassanein EHM. Role of immunotherapies and stem cell therapy in the management of liver cancer: A comprehensive review. Int Immunopharmacol 2024; 132:112011. [PMID: 38581991 DOI: 10.1016/j.intimp.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Liver cancer (LC) is the sixth most common disease and the third most common cause of cancer-related mortality. The WHO predicts that more than 1 million deaths will occur from LC by 2030. Hepatocellular carcinoma (HCC) is a common form of primary LC. Today, the management of LC involves multiple disciplines, and multimodal therapy is typically selected on an individual basis, considering the intricate interactions between the patient's overall health, the stage of the tumor, and the degree of underlying liver disease. Currently, the treatment of cancers, including LC, has undergone a paradigm shift in the last ten years because of immuno-oncology. To treat HCC, immune therapy approaches have been developed to enhance or cause the body's natural immune response to specifically target tumor cells. In this context, immune checkpoint pathway inhibitors, engineered cytokines, adoptive cell therapy, immune cells modified with chimeric antigen receptors, and therapeutic cancer vaccines have advanced to clinical trials and offered new hope to cancer patients. The outcomes of these treatments are encouraging. Additionally, treatment using stem cells is a new approach for restoring deteriorated tissues because of their strong differentiation potential and capacity to release cytokines that encourage cell division and the formation of blood vessels. Although there is no proof that stem cell therapy works for many types of cancer, preclinical research on stem cells has shown promise in treating HCC. This review provides a recent update regarding the impact of immunotherapy and stem cells in HCC and promising outcomes.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan.
| | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
24
|
Hu Z, Yuan L, Yang X, Yi C, Lu J. The roles of long non-coding RNAs in ovarian cancer: from functions to therapeutic implications. Front Oncol 2024; 14:1332528. [PMID: 38725621 PMCID: PMC11079149 DOI: 10.3389/fonc.2024.1332528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are multifunctional and participate in a variety of biological processes and gene regulatory networks. The deregulation of lncRNAs has been extensively implicated in diverse human diseases, especially in cancers. Overwhelming evidence demonstrates that lncRNAs are essential to the pathophysiological processes of ovarian cancer (OC), acting as regulators involved in metastasis, cell death, chemoresistance, and tumor immunity. In this review, we illustrate the expanded functions of lncRNAs in the initiation and progression of OC and elaborate on the signaling pathways in which they pitch. Additionally, the potential clinical applications of lncRNAs as biomarkers in the diagnosis and treatment of OC were emphasized, cementing the bridge of communication between clinical practice and basic research.
Collapse
Affiliation(s)
- Zhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Lijin Yuan
- Department of Obstetrics and Gynecology, Huangshi Puren Hospital, Huangshi, Hubei, China
| | - Xiu Yang
- Department of Obstetrics and Gynecology, Huangshi Central Hospital, Huangshi, Hubei, China
| | - Cunjian Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jinzhi Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
25
|
Deng R, Tian R, Li X, Xu Y, Li Y, Wang X, Li H, Wang L, Xu B, Yang D, Tang S, Xue B, Zuo C, Zhu H. ISG12a promotes immunotherapy of HBV-associated hepatocellular carcinoma through blocking TRIM21/AKT/β-catenin/PD-L1 axis. iScience 2024; 27:109533. [PMID: 38591006 PMCID: PMC11000115 DOI: 10.1016/j.isci.2024.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/16/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatitis B virus (HBV) infection generally elicits weak type-I interferon (IFN) immune response in hepatocytes, covering the regulatory effect of IFN-stimulated genes. In this study, low level of IFN-stimulated gene 12a (ISG12a) predicted malignant transformation and poor prognosis of HBV-associated hepatocellular carcinoma (HCC), whereas high level of ISG12a indicated active NK cell phenotypes. ISG12a interacts with TRIM21 to inhibit the phosphorylation activation of protein kinase B (PKB, also known as AKT) and β-catenin, suppressing PD-L1 expression to block PD-1/PD-L1 signaling, thereby enhancing the anticancer effect of NK cells. The suppression of PD-1-deficient NK-92 cells on HBV-associated tumors was independent of ISG12a expression, whereas the anticancer effect of PD-1-expressed NK-92 cells on HBV-associated tumors was enhanced by ISG12a and treatments of atezolizumab and nivolumab. Thus, tumor intrinsic ISG12a promotes the anticancer effect of NK cells by regulating PD-1/PD-L1 signaling, presenting the significant role of innate immunity in defending against HBV-associated HCC.
Collapse
Affiliation(s)
- Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Xinran Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Yan Xu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Yongqi Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Xintao Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Biaoming Xu
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| |
Collapse
|
26
|
Lee JA, Choi HG, Eun HS, Bu J, Jang TM, Lee J, Son CY, Kim MS, Rou WS, Kim SH, Lee BS, Kim HN, Lee TH, Jeon HJ. Programmed Death 1 and Cytotoxic T-Lymphocyte-Associated Protein 4 Gene Expression in Peripheral Blood Mononuclear Cells Can Serve as Prognostic Biomarkers for Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:1493. [PMID: 38672574 PMCID: PMC11048418 DOI: 10.3390/cancers16081493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive form of liver cancer with poor prognosis. The lack of reliable biomarkers for early detection and accurate diagnosis and prognosis poses a significant challenge to its effective clinical management. In this study, we investigated the diagnostic and prognostic potential of programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) expression in peripheral blood mononuclear cells (PBMCs) in HCC. PD-1 and CTLA-4 gene expression was analyzed comparatively using PBMCs collected from HCC patients and healthy individuals. The results revealed higher PD-1 gene expression levels in patients with multifocal tumors, lymphatic invasion, or distant metastasis than those in their control counterparts. However, conventional serum biomarkers of liver function do not exhibit similar correlations. In conclusion, PD-1 gene expression is associated with OS and PFS and CTLA-4 gene expression is associated with OS, whereas the serum biomarkers analyzed in this study show no significant correlation with survival in HCC. Hence, PD-1 and CTLA-4 expressed in PBMCs are considered potential prognostic biomarkers for patients with HCC that can facilitate prediction of malignancy, response to currently available HCC treatments, and overall survival.
Collapse
Affiliation(s)
- Ji Ah Lee
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (J.A.L.); (J.B.)
| | - Hei-Gwon Choi
- Department of Medical Science, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (H.-G.C.); (H.S.E.); (H.N.K.)
| | - Hyuk Soo Eun
- Department of Medical Science, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (H.-G.C.); (H.S.E.); (H.N.K.)
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jiyoon Bu
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (J.A.L.); (J.B.)
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (T.M.J.); (C.Y.S.)
| | - Tae Min Jang
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (T.M.J.); (C.Y.S.)
| | - Jeongdong Lee
- Department of Biomedical Laboratory Science, Daegu Health College, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea; (J.L.); (M.S.K.)
| | - Chae Yeon Son
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; (T.M.J.); (C.Y.S.)
| | - Min Seok Kim
- Department of Biomedical Laboratory Science, Daegu Health College, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea; (J.L.); (M.S.K.)
| | - Woo Sun Rou
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong 30099, Republic of Korea
| | - Seok Hyun Kim
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Byung Seok Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Ha Neul Kim
- Department of Medical Science, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (H.-G.C.); (H.S.E.); (H.N.K.)
| | - Tae Hee Lee
- Department of Biomedical Laboratory Science, Daegu Health College, 15 Yeongsong-ro, Buk-gu, Daegu 41453, Republic of Korea; (J.L.); (M.S.K.)
| | - Hong Jae Jeon
- Department of Internal Medicine, College of Medicine, Chungnam National University, 266, Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea; (W.S.R.); (S.H.K.); (B.S.L.)
- Department of Internal Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong 30099, Republic of Korea
| |
Collapse
|
27
|
Kumar V, Sethi B, Staller DW, Shrestha P, Mahato RI. Gemcitabine elaidate and ONC201 combination therapy for inhibiting pancreatic cancer in a KRAS mutated syngeneic mouse model. Cell Death Discov 2024; 10:158. [PMID: 38553450 PMCID: PMC10980688 DOI: 10.1038/s41420-024-01920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Approximately 90% of pancreatic cancer (PC) contain KRAS mutations. Mutated KRAS activates the downstream oncogenic PI3K/AKT and MEK signaling pathways and induces drug resistance. However, targeting both pathways with different drugs can also lead to excessive toxicity. ONC201 is a dual PI3K/AKT and MEK pathway inhibitor with an excellent safety profile that targets death receptor 5 (DR5) to induce apoptosis. Gemcitabine (GEM) is a first-line chemotherapy in PC, but it is metabolically unstable and can be stabilized by a prodrug approach. In this study, phospho-Akt, phospho-mTOR, and phospho-ERK protein expressions were evaluated in patient PDAC-tissues (n = 10). We used lipid-gemcitabine (L_GEM) conjugate, which is more stable and enters the cells by passive diffusion. Further, we evaluated the efficacy of L_GEM and ONC201 in PC cells and "KrasLSL-G12D; p53LoxP; Pdx1-CreER (KPC) triple mutant xenograft tumor-bearing mice. PDAC patient tissues showed significantly higher levels of p-AKT (Ser473), p-ERK (T202/T204), and p-mTOR compared to surrounding non-cancerous tissues. ONC201 in combination with L_GEM, showed a superior inhibitory effect on the growth of MIA PaCa-2 cells. In our in-vivo study, we found that ONC201 and L_GEM combination prevented neoplastic proliferation via AKT/ERK blockade to overcome chemoresistance and increased T-cell tumor surveillance. Simultaneous inhibition of the PI3K/AKT and MEK pathways with ONC201 is an attractive approach to potentiate the effect of GEM. Our findings provide insight into rational-directed precision chemo and immunotherapy therapy in PDAC.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Bharti Sethi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dalton W Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prakash Shrestha
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
28
|
Zhong S, Zhang Y, Lu X, Meftahpour V. The Therapeutic Potential of Cytokine-Induced Killer in Patients with Cancer. J Interferon Cytokine Res 2024; 44:99-110. [PMID: 38488758 DOI: 10.1089/jir.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Despite the promising results of immunotherapy, further experiments need to be considered because of several factors ranging from physical barriers to off-tumor adverse effects. It is surprising that adoptive cellular immunotherapy, particularly dendritic cell and cytokine-induced killer (DC-CIK) therapy, is far less emphasized in the treatment of cancer diseases. DC-CIK therapy in cancer patients presents auspicious results with low or no side effects, which should not be overlooked. More interestingly, almost all DC-CIK clinical trials are ongoing in China that highlight the limitations of therapeutic strategies and require large-scale research. To date, it is advisable to consider combination therapy with chemotherapy since it has shown promising outcomes with higher efficacy. In this article, the efficacy of DC-CIK therapy in patients with cancer is summarized by underscoring the lack of experiments on soft cancers on an unprecedented scale. In brief, DC-CIK therapy is a safe and effective therapeutic agent for malignant and nonmalignant diseases that enhances short-term and long-term effects.
Collapse
Affiliation(s)
- Sixun Zhong
- Hai'an People's Hospital, Department of Oncology, Nantong City, Jiangsu Province, China
| | - Yan Zhang
- Hai'an People's Hospital, Department of Oncology, Nantong City, Jiangsu Province, China
| | - Xiaomin Lu
- Hai'an People's Hospital, Department of Oncology, Nantong City, Jiangsu Province, China
| | - Vafa Meftahpour
- Medical Immunology, Cellular and Molecular Research Center, Medical Sciences Department, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
29
|
Oh N, Rhu J, Kim JM, Han S, Jo SJ, An S, Park S, Yoon SO, Lim M, Yang J, Kwon J, Choi GS, Joh JW. Reply: Does therapeutic plasma exchange really have a role in the treatment of hepatocellular carcinoma? Liver Transpl 2024; 30:E16-E17. [PMID: 38153315 DOI: 10.1097/lvt.0000000000000324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Namkee Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim W, Ye Z, Simonenko V, Shahi A, Malikzay A, Long S, Xu JJ, Lu A, Horng JH, Wu CR, Chen PJ, Lu P, Evans DM. Codelivery of TGFβ and Cox2 siRNA inhibits HCC by promoting T-cell penetration into the tumor and improves response to Immune Checkpoint Inhibitors. NAR Cancer 2024; 6:zcad059. [PMID: 38204925 PMCID: PMC10776204 DOI: 10.1093/narcan/zcad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Upregulation of TGFβ and Cox2 in the tumor microenvironment results in blockade of T-cell penetration into the tumor. Without access to tumor antigens, the T-cell response will not benefit from administration of the immune checkpoint antibodies. We created an intravenous polypeptide nanoparticle that can deliver two siRNAs (silencing TGFβ and Cox2). Systemic administration in mice, bearing a syngeneic orthotopic hepatocellular carcinoma (HCC), delivers the siRNAs to various cells in the liver, and significantly reduces the tumor. At 2 mg/kg (BIW) the nanoparticle demonstrated a single agent action and induced tumor growth inhibition to undetectable levels after five doses. Reducing the siRNAs to 1mg/kg BIW demonstrated greater inhibition in the presence of PD-L1 mAbs. After only three doses BIW, we could still recover a smaller tumor and, in tumor sections, showed an increase in penetration of CD4+ and CD8+ T-cells deeper into the remaining tumor that was not evident in animals treated with non-silencing siRNA. The combination of TGFβ and Cox2 siRNA co-administered in a polypeptide nanoparticle can act as a novel therapeutic alone against HCC and may augment the activity of the immune checkpoint antibodies. Silencing TGFβ and Cox2 converts an immune excluded (cold) tumor into a T-cell inflamed (hot) tumor.
Collapse
Affiliation(s)
- Wookhyun Kim
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Zhou Ye
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Vera Simonenko
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Aashirwad Shahi
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Asra Malikzay
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Steven Z Long
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - John J Xu
- Suzhou Sirnaomics Pharmaceuticals, Ltd., Biobay, Suzhou, China
| | - Alan Lu
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - Jau-Hau Horng
- National Taiwan University College of Medicine, No. 1, Section 1, Ren’ai Rd, Zhongzheng District, Taipei City 100, Taiwan
| | - Chang-Ru Wu
- National Taiwan University College of Medicine, No. 1, Section 1, Ren’ai Rd, Zhongzheng District, Taipei City 100, Taiwan
| | - Pei-Jer Chen
- National Taiwan University College of Medicine, No. 1, Section 1, Ren’ai Rd, Zhongzheng District, Taipei City 100, Taiwan
| | - Patrick Y Lu
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| | - David M Evans
- Sirnaomics Inc., 20511 Seneca Meadows Parkway, Suite 200, Germantown, MD 20876, USA
| |
Collapse
|
31
|
Huynh JC, Cho M, Monjazeb A, Al-Obeidi E, Singh A, Tam K, Lara F, Martinez A, Garcia L, Kim EJ. Phase I/II trial of BMS-986,205 and nivolumab as first line therapy in hepatocellular carcinoma. Invest New Drugs 2024; 42:35-43. [PMID: 38038862 PMCID: PMC10891185 DOI: 10.1007/s10637-023-01416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Indoleamine-2,3-dioxygenase (IDO) helps orchestrate immune suppression and checkpoint inhibitor resistance in hepatocellular carcinoma (HCC). BMS-986,205 is a novel oral drug that potently and selectively inhibits IDO. This Phase I/II study evaluated the safety and tolerability of BMS-986,205 in combination with nivolumab as first-line therapy in advanced HCC. METHODS Adults with untreated, unresectable/metastatic HCC received BMS-986,205 at two dose levels (50-100 mg orally daily) in combination with fixed dose nivolumab (240mg/m2 IV on Day 1 of each 14-day cycle). The primary objective was to determine the safety and tolerability of this combination; secondary objectives were to obtain preliminary efficacy. RESULTS Eight patients received a total of 91 treatment cycles in the dose escalation phase. All patients were Child Pugh A and 6 patients had underlying viral hepatitis. In the 6 evaluable patients, no dose-limiting toxicities (DLTs) were observed. The most common treatment-related adverse events (TRAEs) were aspartate transaminase (AST) and alanine transaminase (ALT) elevation (3 patients) and diarrhea, maculopapular rash and increased alkaline phosphatase (2 patients each). Grade 3 events were diarrhea and AST elevation (1 patient), and hyperglycemia and pancreatitis requiring treatment discontinuation (1 patient). No grade 4-5 events occurred. Partial response was observed in 1 patient (12.5%) and stable disease in 3 patients (37.5%), yielding a disease control rate of 50%. Median PFS was 8.5 weeks; median OS was not reached. CONCLUSION Combination BMS-986,205 and nivolumab showed a manageable safety profile with durable benefit as first-line therapy in a meaningful subset of advanced HCC patients.
Collapse
Affiliation(s)
- Jasmine C Huynh
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - May Cho
- Division of Hematology and Oncology, Irvine Comprehensive Cancer Center, University of California, Orange, CA, 92868, USA
| | - Arta Monjazeb
- Department of Radiation Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Ebaa Al-Obeidi
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Amisha Singh
- Department of Internal Medicine, University of California, Davis Medical Center, Sacramento, CA, 95817, USA
| | - Kit Tam
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Frances Lara
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Anthony Martinez
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Leslie Garcia
- Office of Clinical Research, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA
| | - Edward J Kim
- Division of Hematology and Oncology, Davis Comprehensive Cancer Center, University of California, Sacramento, CA, 95817, USA.
| |
Collapse
|
32
|
Cho S, Kim W, Yoo D, Han Y, Hwang H, Kim S, Kim J, Park S, Park Y, Jo H, Pyun JC, Lee M. Impact of glucose metabolism on PD-L1 expression in sorafenib-resistant hepatocellular carcinoma cells. Sci Rep 2024; 14:1751. [PMID: 38243049 PMCID: PMC10798953 DOI: 10.1038/s41598-024-52160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality worldwide. Programmed cell death ligand-1 (PD-L1) is an immune checkpoint protein that binds to programmed cell death-1 (PD-1), which is expressed in activated T cells and other immune cells and has been employed in cancer therapy, including HCC. Recently, PD-L1 overexpression has been documented in treatment-resistant cancer cells. Sorafenib is a multikinase inhibitor and the only FDA-approved treatment for advanced HCC. However, several patients exhibit resistance to sorafenib during treatment. This study aimed to assess the effect of glucose deprivation on PD-L1 expression in HCC cells. We used PD-L1-overexpressing HepG2 cells and IFN-γ-treated SK-Hep1 cells to explore the impact of glycolysis on PD-L1 expression. To validate the correlation between PD-L1 expression and glycolysis, we analyzed data from The Cancer Genome Atlas (TCGA) and used immunostaining for HCC tissue analysis. Furthermore, to modulate PD-L1 expression, we treated HepG2, SK-Hep1, and sorafenib-resistant SK-Hep1R cells with rapamycin. Here, we found that glucose deprivation reduced PD-L1 expression in HCC cells. Additionally, TCGA data and immunostaining analyses confirmed a positive correlation between the expression of hexokinase II (HK2), which plays a key role in glucose metabolism, and PD-L1. Notably, rapamycin treatment decreased the expression of PD-L1 and HK2 in both high PD-L1-expressing HCC cells and sorafenib-resistant cells. Our results suggest that the modulation of PD-L1 expression by glucose deprivation may represent a strategy to overcome PD-L1 upregulation in patients with sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Sua Cho
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Wonjin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dayoung Yoo
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonju Han
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyemin Hwang
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seunghwan Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jimin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sanghee Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yusun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - HanHee Jo
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
33
|
Wen Y, Ye S, Li Z, Zhang X, Liu C, Wu Y, Zheng R, Xu C, Tian J, Shu L, Yan Q, Ai F, Ma J. HDAC6 inhibitor ACY-1215 enhances STAT1 acetylation to block PD-L1 for colorectal cancer immunotherapy. Cancer Immunol Immunother 2024; 73:7. [PMID: 38231305 PMCID: PMC10794344 DOI: 10.1007/s00262-023-03624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024]
Abstract
The search for effective combination therapy with immune checkpoint inhibitors (ICI) has become important for cancer patients who do not respond to the ICI well. Histone deacetylases (HDACs) inhibitors have attracted wide attention as anti-tumor agents. ACY-1215 is a selective inhibitor of HDAC6, which can inhibit the growth of a variety of tumor. We previously revealed that HDAC family is highly expressed in colorectal cancer specimens and mouse models. In this study, ACY-1215 was combined with anti-PD1 to treat tumor-bearing mice associated with colorectal cancer. ACY-1215 combined with anti-PD1 effectively inhibited the colorectal tumor growth. The expression of PD-L1 in tumor of mice were inhibited by ACY-1215 and anti-PD1 combination treatment, whereas some biomarkers reflecting T cell activation were upregulated. In a co-culture system of T cells and tumor cells, ACY-1215 helped T cells to kill tumor cells. Mechanically, HDAC6 enhanced the acetylation of STAT1 and inhibited the phosphorylation of STAT1, thus preventing STAT1 from entering the nucleus to activate PD-L1 transcription. This study reveals a novel regulatory mechanism of HDAC6 on non-histone substrates, especially on protein acetylation. HDAC6 inhibitors may be of great significance in tumor immunotherapy and related combination strategies.
Collapse
Affiliation(s)
- Yuqing Wen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengshuo Li
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Xiaoyue Zhang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Can Liu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Yangge Wu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Run Zheng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Chenxiao Xu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Junrui Tian
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Lanjun Shu
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feiyan Ai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China.
| | - Jian Ma
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis, Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, Hunan, China.
| |
Collapse
|
34
|
Xu X, Wang MD, Xu JH, Fan ZQ, Diao YK, Chen Z, Jia HD, Liu FB, Zeng YY, Wang XM, Wu H, Qiu W, Li C, Pawlik TM, Lau WY, Shen F, Lv GY, Yang T. Adjuvant immunotherapy improves recurrence-free and overall survival following surgical resection for intermediate/advanced hepatocellular carcinoma a multicenter propensity matching analysis. Front Immunol 2024; 14:1322233. [PMID: 38268916 PMCID: PMC10806403 DOI: 10.3389/fimmu.2023.1322233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND & AIMS The effectiveness of adjuvant immunotherapy to diminish recurrence and improve long-term prognosis following curative-intent surgical resection for hepatocellular carcinoma (HCC) is of increased interest, especially among individuals at high risk of recurrence. The objective of the current study was to investigate the impact of adjuvant immunotherapy on long-term recurrence and survival after curative resection among patients with intermediate/advanced HCC. METHODS Using a prospectively-collected multicenter database, patients who underwent curative-intent resection for Barcelona Clinic Liver Cancer (BCLC) stage B/C HCC were identified. Propensity score matching (PSM) analysis was used to compare recurrence-free survival (RFS) and overall survival (OS) between patients treated with and without adjuvant immune checkpoint inhibitors (ICIs). Multivariate Cox-regression analysis further identified independent factors of RFS and OS. RESULTS Among the 627 enrolled patients, 109 patients (23.3%) received adjuvant immunotherapy. Most ICI-related adverse reactions were grading I-II. PSM analysis created 99 matched pairs of patients with comparable baseline characteristics between patients treated with and without adjuvant immunotherapy. In the PSM cohort, the median RFS (29.6 vs. 19.3 months, P=0.031) and OS (35.1 vs. 27.8 months, P=0.036) were better among patients who received adjuvant immunotherapy versus patients who did not. After adjustment for other confounding factors on multivariable analyzes, adjuvant immunotherapy remained independently associated with favorable RFS (HR: 0.630; 95% CI: 0.435-0.914; P=0.015) and OS (HR: 0.601; 95% CI: 0.401-0.898; P=0.013). Subgroup analyzes identified potentially prognostic benefits of adjuvant immunotherapy among patients with intermediate-stage and advanced-stage HCC. CONCLUSION This real-world observational study demonstrated that adjuvant immunotherapy was associated with improved RFS and OS following curative-intent resection of intermediate/advanced HCC. Future randomized controlled trials are warranted to establish definitive evidence for this specific population at high risks of recurrence.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Gastrointestinal Surgery, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Jia-Hao Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Zhong-Qi Fan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Kang Diao
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Zhong Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hang-Dong Jia
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, Zhejiang, China
| | - Fu-Bao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong-Yi Zeng
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xian-Ming Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Timothy M. Pawlik
- Department of Surgery, Ohio State University, Wexner Medical Center, Columbus, OH, United States
| | - Wan Yee Lau
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| | - Guo-Yue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Tian Yang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, China
| |
Collapse
|
35
|
Phoolchund AGS, Khakoo SI. MASLD and the Development of HCC: Pathogenesis and Therapeutic Challenges. Cancers (Basel) 2024; 16:259. [PMID: 38254750 PMCID: PMC10814413 DOI: 10.3390/cancers16020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD, previously known as non-alcoholic fatty liver disease (NAFLD)) represents a rapidly increasing cause of chronic liver disease and hepatocellular carcinoma (HCC), mirroring increasing rates of obesity and metabolic syndrome in the Western world. MASLD-HCC can develop at an earlier stage of fibrosis compared to other causes of chronic liver disease, presenting challenges in how to risk-stratify patients to set up effective screening programmes. Therapeutic decision making for MASLD-HCC is also complicated by medical comorbidities and disease presentation at a later stage. The response to treatment, particularly immune checkpoint inhibitors, may vary by the aetiology of the disease, and, in the future, patient stratification will be key to optimizing the therapeutic pathways.
Collapse
Affiliation(s)
- Anju G. S. Phoolchund
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Salim I. Khakoo
- Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
36
|
Huang R, Ding J, Xie WF. Liver cancer. SINUSOIDAL CELLS IN LIVER DISEASES 2024:349-366. [DOI: 10.1016/b978-0-323-95262-0.00017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
37
|
Hao L, Li S, Deng J, Li N, Yu F, Jiang Z, Zhang J, Shi X, Hu X. The current status and future of PD-L1 in liver cancer. Front Immunol 2023; 14:1323581. [PMID: 38155974 PMCID: PMC10754529 DOI: 10.3389/fimmu.2023.1323581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
The application of immunotherapy in tumor, especially immune checkpoint inhibitors (ICIs), has played an important role in the treatment of advanced unresectable liver cancer. However, the efficacy of ICIs varies greatly among different patients, which has aroused people's attention to the regulatory mechanism of programmed death ligand-1 (PD-L1) in the immune escape of liver cancer. PD-L1 is regulated by multiple levels and signaling pathways in hepatocellular carcinoma (HCC), including gene variation, epigenetic inheritance, transcriptional regulation, post-transcriptional regulation, and post-translational modification. More studies have also found that the high expression of PD-L1 may be the main factor affecting the immunotherapy of liver cancer. However, what is the difference of PD-L1 expressed by different types of cells in the microenvironment of HCC, and which type of cells expressed PD-L1 determines the effect of tumor immunotherapy remains unclear. Therefore, clarifying the regulatory mechanism of PD-L1 in liver cancer can provide more basis for liver cancer immunotherapy and combined immune treatment strategy. In addition to its well-known role in immune regulation, PD-L1 also plays a role in regulating cancer cell proliferation and promoting drug resistance of tumor cells, which will be reviewed in this paper. In addition, we also summarized the natural products and drugs that regulated the expression of PD-L1 in HCC.
Collapse
Affiliation(s)
- Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junli Zhang
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
38
|
Xu Y, Li W, Gan J, He X, Huang X. An analysis of sintilimab combined with ruxolitinib as compassionate therapy for 12 adults with EBV-associated hemophagocytic lymphohistiocytosis. Ann Hematol 2023; 102:3325-3333. [PMID: 37787838 DOI: 10.1007/s00277-023-05476-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) is a severe hyperinflammatory illness that affects adults and is caused by an EBV infection. Without allogeneic hematopoietic stem cell transplantation (allo-HSCT), the overall survival of adult patients with EBV-HLH is unsatisfactory, necessitating the development of innovative therapeutic approaches. The clinical records of twelve EBV-HLH patients who received sintilimab therapy combined with ruxolitinib on a compassionate basis at the First Affiliated Hospital of Soochow University were retrospectively examined in this investigation. All the patients responded without fever, but three patients relapsed within a week. Among the nine patients achieving complete response (CR), 55.6% (5/9) maintained CR for >4.5 months, and 33.3% (3/9) relapsed following CR. Neither patients with no response (NR) nor relapsed patients were fit for allo-HSCT, and all died soon after discharge. Six patients had clinical CR with a median follow-up of 5 (4.4-14.7) months. There were no documented severe negative effects. Additional information on this innovative treatment for adult EBV-HLH is provided in our report.
Collapse
Affiliation(s)
- Ying Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China
| | - Wenting Li
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China
| | - Jianhe Gan
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China.
| | - Xuefeng He
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China.
| | - Xiaoping Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, 215006, China.
| |
Collapse
|
39
|
Tojjari A, Saeed A, Sadeghipour A, Kurzrock R, Cavalcante L. Overcoming Immune Checkpoint Therapy Resistance with SHP2 Inhibition in Cancer and Immune Cells: A Review of the Literature and Novel Combinatorial Approaches. Cancers (Basel) 2023; 15:5384. [PMID: 38001644 PMCID: PMC10670368 DOI: 10.3390/cancers15225384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
SHP2 (Src Homology 2 Domain-Containing Phosphatase 2) is a protein tyrosine phosphatase widely expressed in various cell types. SHP2 plays a crucial role in different cellular processes, such as cell proliferation, differentiation, and survival. Aberrant activation of SHP2 has been implicated in multiple human cancers and is considered a promising therapeutic target for treating these malignancies. The PTPN11 gene and functions encode SHP2 as a critical signal transduction regulator that interacts with key signaling molecules in both the RAS/ERK and PD-1/PD-L1 pathways; SHP2 is also implicated in T-cell signaling. SHP2 may be inhibited by molecules that cause allosteric (bind to sites other than the active site and attenuate activation) or orthosteric (bind to the active site and stop activation) inhibition or via potent SHP2 degraders. These inhibitors have anti-proliferative effects in cancer cells and suppress tumor growth in preclinical models. In addition, several SHP2 inhibitors are currently in clinical trials for cancer treatment. This review aims to provide an overview of the current research on SHP2 inhibitors, including their mechanism of action, structure-activity relationships, and clinical development, focusing on immune modulation effects and novel therapeutic strategies in the immune-oncology field.
Collapse
Affiliation(s)
- Alireza Tojjari
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Anwaar Saeed
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modarres University, Tehran P.O. Box 14115-175, Iran
| | - Razelle Kurzrock
- Department of Medicine, Genome Sciences and Precision Medicine Center, Medical College of Wisconsin Cancer Center, Milwaukee, WI 53226, USA
| | | |
Collapse
|
40
|
Kuol N, Godlewski J, Kmiec Z, Vogrin S, Fraser S, Apostolopoulos V, Nurgali K. Cholinergic signaling influences the expression of immune checkpoint inhibitors, PD-L1 and PD-L2, and tumor hallmarks in human colorectal cancer tissues and cell lines. BMC Cancer 2023; 23:971. [PMID: 37828429 PMCID: PMC10568879 DOI: 10.1186/s12885-023-11410-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/16/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Cancer cells express immunosuppressive molecules, such as programmed death ligands (PD-L)1 and PD-L2, enabling evasion from the host's immune system. Cancer cells synthesize and secrete acetylcholine (ACh), acting as an autocrine or paracrine hormone to promote their proliferation, differentiation, and migration. METHODS We correlated the expression of PD-L1, PD-L2, cholinergic muscarinic receptor 3 (M3R), alpha 7 nicotinic receptor (α7nAChR), and choline acetyltransferase (ChAT) in colorectal cancer (CRC) tissues with the stage of disease, gender, age, risk, and patient survival. The effects of a muscarinic receptor blocker, atropine, and a selective M3R blocker, 4-DAMP, on the expression of immunosuppressive and cholinergic markers were evaluated in human CRC (LIM-2405, HT-29) cells. RESULTS Increased expression of PD-L1, M3R, and ChAT at stages III-IV was associated with a high risk of CRC and poor survival outcomes independent of patients' gender and age. α7nAChR and PD-L2 were not changed at any CRC stages. Atropine and 4-DAMP suppressed the proliferation and migration of human CRC cells, induced apoptosis, and decreased PD-L1, PD-L2, and M3R expression in CRC cells via inhibition of EGFR and phosphorylation of ERK. CONCLUSIONS The expression of immunosuppressive and cholinergic markers may increase the risk of recurrence of CRC. These markers might be used in determining prognosis and treatment regimens for CRC patients. Blocking cholinergic signaling may be a potential therapeutic for CRC through anti-proliferation and anti-migration via inhibition of EGFR and phosphorylation of ERK. These effects allow the immune system to recognize and eliminate cancer cells.
Collapse
Affiliation(s)
- Nyanbol Kuol
- Institute for Health and Sport, Victoria University, Melbourne, Australia.
- Department of Physiology and Cell Biology, University of Nevada, Reno, USA.
| | | | - Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk, Gdansk, Poland
| | - Sara Vogrin
- Department of Medicine Western Health, University of Melbourne, Melbourne, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Immunology Program, Australian Institute of Musculoskeletal Sciences, Melbourne, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Department of Medicine Western Health, University of Melbourne, Melbourne, Australia
- Regenerative Medicine Program, Australian Institute of Musculoskeletal Sciences, Melbourne, Australia
| |
Collapse
|
41
|
Xie W, Shi L, Quan H, Xiao H, Chen J, Liu J, de Dieu Habimana J, Huang R, Luo J, Chen P, Li Z. SYVN1 ubiquitinates FoxO1 to induce β-catenin nuclear translocation, PD-L1-mediated metastasis, and immune evasion of hepatocellular carcinoma. Cell Oncol (Dordr) 2023; 46:1285-1299. [PMID: 37099251 PMCID: PMC10618324 DOI: 10.1007/s13402-023-00811-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND A high incidence of hepatocellular carcinoma (HCC), the most frequently diagnosed form of liver cancer, is observed in Africa and Asia. SYVN1 is upregulated in HCC; however, the biological roles of SYVN1 in immune evasion remain unclear. METHODS RT-qPCR and western blot were employed to detect the expression levels of SYVN1 and the key molecules in HCC cells and tissues. Flow cytometry was used to determine the proportion of T cells, and an ELISA assay was used to determine the amount of IFN-γ secreted. Cell viability was monitored by CCK-8 and colony formation assays. The metastatic properties of HCC cells were detected by Transwell assays. Bioinformatics analysis, ChIP, and luciferase assays were used to study the transcriptional regulation of PD-L1. Co-IP was used to detect direct interaction between SYVN1 and FoxO1, as well as the ubiquitination of FoxO1. The in vitro findings were validated in xenograft and lung metastasis models. RESULTS In HCC cells and tissues, SYVN1 was upregulated while FoxO1 was downregulated. SYVN1 knockdown or FoxO1 overexpression reduced PD-L1 expression, and inhibited immune evasion, cell growth, and metastasis in HCC cells. Mechanistically, FoxO1 regulated PD-L1 transcription in a β-catenin-independent or -dependent manner. Functional studies further showed that SYVN1 promoted immune evasion, cell proliferation, migration and invasion via facilitating ubiquitin-proteasome-dependent degradation of FoxO1. In vivo investigations showed that silencing of SYVN1 inhibited immune evasion and metastasis of HCC cells, possible via the FoxO1/PD-L1 axis. CONCLUSION SYVN1 regulates FoxO1 ubiquitination to stimulate β-catenin nuclear translocation and promotes PD-L1-mediated metastasis and immune evasion in HCC.
Collapse
Affiliation(s)
- Wei Xie
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, 410031, Hunan Province, P.R. China
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Lei Shi
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Hu Quan
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Hua Xiao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Jie Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Jia Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, P.R. China
| | - Rongqi Huang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, P.R. China
| | - Jia Luo
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu Distirct, Changsha, 410031, Hunan Province, P.R. China.
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, 410031, Hunan Province, P.R. China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, Guangdong Province, P.R. China
| |
Collapse
|
42
|
Solomon SR, Solh M, Morris LE, Holland HK, Bachier-Rodriguez L, Zhang X, Guzowski C, Jackson KC, Brown S, Bashey A. Phase 2 study of PD-1 blockade following autologous transplantation for patients with AML ineligible for allogeneic transplant. Blood Adv 2023; 7:5215-5224. [PMID: 37379271 PMCID: PMC10500475 DOI: 10.1182/bloodadvances.2023010477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 06/30/2023] Open
Abstract
Allogeneic transplant remains the best postremission therapy for patients with nonfavorable risk acute myeloid leukemia (AML). However, some patients are ineligible because of psychosocial barriers, such as lack of appropriate caregiver support. We hypothesized that immune checkpoint inhibition after autologous transplant might represent effective postremission therapy in such patients. We conducted a phase 2 study of autologous transplantation followed by administration of pembrolizumab (8 cycles starting day +1). Twenty patients with nonfavorable AML in complete remission were treated (median age, 64 years; CR1, 80%); 55% were non-White and adverse-risk AML was present in 40%. Treatment was well tolerated, with only 1 nonrelapse death. Immune-related adverse events occurred in 9 patients. After a median follow-up of 80 months, 14 patients remain alive, with 10 patients in continuous remission. The estimated 2-year LFS was 48.4%, which met the primary end point of 2-year LFS >25%; the 2-year overall survival (OS), nonrelapse mortality, and cumulative incidences of relapse were 68%, 5%, and 46%, respectively. In comparison with a propensity score-matched cohort group of patients with AML receiving allogeneic transplant, the 3-year OS was similar (73% vs 76%). Patients in the study had inferior LFS (51% vs 75%) but superior postrelapse survival (45% vs 14%). In conclusion, programmed cell death protein-1 blockade after autologous transplant is a safe and effective alternative postremission strategy in patients with nonfavorable risk AML who are ineligible for allogeneic transplant, a context in which there is significant unmet need. This trial was registered at www.clinicaltrials.gov as #NCT02771197.
Collapse
Affiliation(s)
- Scott R. Solomon
- Blood and Marrow Transplant Program, Northside Hospital Cancer Institute, Atlanta, GA
| | - Melhem Solh
- Blood and Marrow Transplant Program, Northside Hospital Cancer Institute, Atlanta, GA
| | - Lawrence E. Morris
- Blood and Marrow Transplant Program, Northside Hospital Cancer Institute, Atlanta, GA
| | - H. Kent Holland
- Blood and Marrow Transplant Program, Northside Hospital Cancer Institute, Atlanta, GA
| | | | - Xu Zhang
- Center for Clinical and Transitional Sciences, University of Texas Health Science Center, Houston, TX
| | - Caitlin Guzowski
- Blood and Marrow Transplant Program, Northside Hospital Cancer Institute, Atlanta, GA
| | - Katelin C Jackson
- Blood and Marrow Transplant Program, Northside Hospital Cancer Institute, Atlanta, GA
| | - Stacey Brown
- Blood and Marrow Transplant Program, Northside Hospital Cancer Institute, Atlanta, GA
| | - Asad Bashey
- Blood and Marrow Transplant Program, Northside Hospital Cancer Institute, Atlanta, GA
| |
Collapse
|
43
|
Lin CY, Omoscharka E, Liu Y, Cheng K. Establishment of a Rat Model of Alcoholic Liver Fibrosis with Simulated Human Drinking Patterns and Low-Dose Chemical Stimulation. Biomolecules 2023; 13:1293. [PMID: 37759693 PMCID: PMC10526499 DOI: 10.3390/biom13091293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Although alcohol is a well-known causal factor associated with liver diseases, challenges remain in inducing liver fibrosis in experimental rodent models. These challenges include rodents' natural aversion to high concentrations of alcohol, rapid alcohol metabolism, the need for a prolonged duration of alcohol administration, and technical difficulties. Therefore, it is crucial to establish an experimental model that can replicate the features of alcoholic liver fibrosis. The objective of this study was to develop a feasible rat model of alcoholic liver fibrosis that emulates human drinking patterns and combines low-dose chemicals within a relatively short time frame. We successfully developed an 8-week rat model of alcoholic liver fibrosis that mimics chronic and heavy drinking patterns. Rats were fed with a control liquid diet, an alcohol liquid diet, or alcohol liquid diet combined with multiple binges via oral gavage. To accelerate the progression of alcoholic liver fibrosis, we introduced low-dose carbon tetrachloride (CCl4) through intraperitoneal injection. This model allows researchers to efficiently evaluate potential therapeutics in preclinical studies of alcoholic liver fibrosis within a reasonable time frame.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Evanthia Omoscharka
- Department of Pathology, University Health/Truman Medical Center, School of Medicine, University of Missouri-Kansas City, 2301 Holmes Street, Kansas City, MO 64108, USA
| | - Yanli Liu
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Kun Cheng
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| |
Collapse
|
44
|
Yang Zhou J, Eder D, Weber F, Heumann P, Kronenberg K, Werner JM, Geissler EK, Schlitt HJ, Hutchinson JA, Bitterer F. Case report: Predictability of clinical response and rejection risk after immune checkpoint inhibition in liver transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1211916. [PMID: 38993841 PMCID: PMC11235248 DOI: 10.3389/frtra.2023.1211916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/17/2023] [Indexed: 07/13/2024]
Abstract
Background The approval of Atezolizumab / Bevacizumab therapy (Atezo/Bev) in 2020 opened up a promising new treatment option for patients with end-stage hepatocellular carcinoma (HCC). However, liver transplant (LTx) patients with HCC are still denied this therapy owing to concerns about ICI-induced organ rejection and lack of regulatory approval. Methods A prospective observational study at a tertiary liver transplant centre monitored the compassionate, off-label use of Atezo/Bev in a single, stable LTx recipient with non-resectable HCC recurrence. Close clinical, laboratory and immunological monitoring of the patient was performed throughout a four-cycle Atezo/Bev treatment. Measured parameters were selected after a systematic review of the literature on predictive markers for clinical response and risk of graft rejection caused by ICI therapy. Results 19 articles describing 20 unique predictive biomarkers were identified. The most promising negative prognostic factors were the baseline values and dynamic course of IL-6, alpha-fetoprotein (AFP) and the AFP/CRP ratio. The frequency of regulatory T cells (Treg) reportedly correlates with the success of ICI therapy. PD-L1 and CD28 expression level with the allograft, peripheral blood CD4+ T cell numbers and Torque Teno Virus (TTV) titre may predict risk of LTx rejection following ICI therapy. No relevant side effects or acute rejection occurred during Atezo/Bev therapy; however, treatment did not prevent tumor progression. Absence of PD-L1 expression in pre-treatment liver biopsies, as well as a progressive downregulation of CD28 expression by CD4+ T cells during therapy, correctly predicted absence of rejection. Furthermore, increased IL-6 and AFP levels after starting therapy, as well as a reduction in blood Treg frequency, correctly anticipated a lack of therapeutic response. Conclusion Atezo/Bev therapy for unresectable HCC in stable LTx patients remains a controversial strategy because it carries a high-risk of rejection and therapeutic response rates are poorly defined. Although previously described biomarkers of rejection risk and therapeutic response agreed with clinical outcomes in the described case, these immunological parameters are difficult to reliably interpret. Clearly, there is an important unmet need for standardized assays and clinically validated cut-offs before we use these biomarkers to guide treatment decisions for our patients.
Collapse
Affiliation(s)
- Jordi Yang Zhou
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, University Hospital Regensburg, Regensburg, Germany
| | - Dominik Eder
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Florian Weber
- Institute for Pathology, University of Regensburg, Regensburg, Germany
| | - Philipp Heumann
- Department for Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | | | - Jens M Werner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Hans J Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Florian Bitterer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
45
|
Han L, Zhang Y, Li L, Zhang Q, Liu Z, Niu H, Hu J, Ding Z, Shi X, Qian X. Exploring the Expression and Prognosis of Mismatch Repair Proteins and PD-L1 in Colorectal Cancer in a Chinese Cohort. Cancer Manag Res 2023; 15:791-801. [PMID: 37575316 PMCID: PMC10417781 DOI: 10.2147/cmar.s417470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Exploring the expression and prognosis of mismatch repair proteins and PD-L1 in colorectal cancer. Patients and Methods A total of 272 patients with surgically resected CRC were enrolled in the study from January 2018 to May 2022 at Nanjing Drum Tower Hospital (The Affiliated Hospital of Nanjing University Medical School). Surgically resected samples were collected from patients along with general, clinicopathological, and imaging data for each patient. Immunohistochemistry (IHC) was used to detect expression of MSH2, MSH6, MLH1, and PMS2 proteins in tumor tissue. X-squared (X2) testing was performed to investigate the correlation between expression of MMR proteins and PD-L1 in CRC tumor tissues and clinicopathological characteristics. Correlation analysis was also used to compare the deletion of four MMR proteins in CRC tumor tissues. A survival curve and Log rank test were used to investigate the relationship between the expression of MMR proteins and PD-L1 with regard to CRC patient prognosis and survival. Results MMR protein expression deletion was correlated with tumor location, the degree of tissue differentiation, and TNM stage (P<0.05). PD-L1 expression was correlated with TNM stage (P<0.05). Correlation analysis of deletion of MMR protein isoform expression found that PMS2 deletion was significantly correlated with MLH1 deletion (P<0.05). Similarly, MSH2 deletion was significantly correlated with MSH6 deletion (P<0.05). PMS2 deletion was also found to be correlated with PD-L1 expression (P<0.05). Progression-free survival was found to be significantly longer in mismatch repair-proficient (pMMR) patients compared with mismatch repair-deficient (dMMR) patients. Conclusion Deletion of MMR proteins and expression of PD-L1 are closely related to clinicopathological characteristics and overall prognosis of CRC patients. This suggests the relevance of MMR and PD-L1 as potential biomarkers for treatment of CRC patients.
Collapse
Affiliation(s)
- Lu Han
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Yaping Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, People’s Republic of China
- Department of Pathology, The First People’s Hospital of Yangzhou, Yangzhou, People’s Republic of China
| | - Li Li
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Qun Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Zhihao Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, People’s Republic of China
| | - Haiqing Niu
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Jing Hu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Zhou Ding
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Xiao Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| | - Xiaoping Qian
- Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|
46
|
Abenavoli L, Montori M, Svegliati Baroni G, Argenziano ME, Giorgi F, Scarlata GGM, Ponziani F, Scarpellini E. Perspective on the Role of Gut Microbiome in the Treatment of Hepatocellular Carcinoma with Immune Checkpoint Inhibitors. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1427. [PMID: 37629716 PMCID: PMC10456509 DOI: 10.3390/medicina59081427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: Hepatocellular carcinoma (HCC) is the leading cause of liver cancer worldwide and has a high mortality rate. Its incidence has increased due to metabolic-associated liver disease (MAFLD) epidemics. Liver transplantation and surgery remain the most resolute measures. Despite the optimistic use of multi-kinase inhibitors, namely sorafenib, the co-existence of chronic liver disease made the response rate low in these patients. Immune checkpoint inhibitors (ICIs) have become a promising hope for certain advanced solid tumors and, also, for advanced HCC. Unfortunately, a large cohort of patients with HCC fail to respond to immunotherapy. Materials and Methods: We conducted a narrative search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials, and case series using the following keywords and acronyms and their associations: hepatocellular carcinoma, immunotherapy, checkpoint inhibitors, gut microbiota, and fecal microbiota transplantation. Results: ICIs are a promising and sufficiently safe treatment option for HCC. In detail, they have significantly improved survival and prognosis in these patients vs. sorafenib. Although there are several highlighted mechanisms of resistance, the gut microbiota signature can be used both as a response biomarker and as an effect enhancer. Practically, probiotic dose-finding and fecal microbiota transplantation are the weapons that can be used to increase ICI's treatment-response-reducing resistance mechanisms. Conclusion: Immunotherapy has been a significant step-up in HCC treatment, and gut microbiota modulation is an effective liaison to increase its efficacy.
Collapse
Affiliation(s)
- Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy;
| | - Michele Montori
- Clinic of Gastroenterology and Hepatology, Emergency Digestive Endoscopy, Polytechnics University of Marche, 60126 Ancona, Italy; (M.M.); (M.E.A.)
| | | | - Maria Eva Argenziano
- Clinic of Gastroenterology and Hepatology, Emergency Digestive Endoscopy, Polytechnics University of Marche, 60126 Ancona, Italy; (M.M.); (M.E.A.)
| | - Francesca Giorgi
- Oncology Unit, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy;
| | | | - Francesca Ponziani
- Digestive Disease Center (C.E.M.A.D.), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
- Translational Medicine and Surgery Department, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Emidio Scarpellini
- Translational Research in GastroIntestinal Disorders (T.A.R.G.I.D.), KU Leuven, Herestraat 49, 3000 Leuven, Belgium;
- Hepatology Outpatient Clinic, “Madonna del Soccorso” General Hospital, 63074 San Benedetto del Tronto, Italy
| |
Collapse
|
47
|
Oh N, Rhu J, Kim JM, Han S, Jo SJ, An S, Park S, Yoon SO, Lim M, Yang J, Kwon J, Choi GS, Joh JW. Improved recurrence-free survival in patients with HCC with post-transplant plasma exchange. Liver Transpl 2023; 29:804-812. [PMID: 37029084 DOI: 10.1097/lvt.0000000000000147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/14/2023] [Indexed: 04/09/2023]
Abstract
Total plasma exchange (TPE) can play a role in cancer treatment by eliminating immune checkpoint inhibitors. This study investigated whether TPE improved oncological outcomes in patients with HCC who underwent ABO-incompatible living donor liver transplantation (LT). The study included 152 patients who underwent ABO-incompatible living donor LT for HCC between 2010 and 2021 at Samsung Medical Center. Overall survival was analyzed using the Kaplan-Meier curve, whereas HCC-specific recurrence-free survival (RFS) was analyzed using the cumulative incidence curve after propensity score matching. Cox regression and competing risks subdistribution hazard models were used to identify the risk factors associated with overall survival and HCC-specific RFS, respectively. The propensity score matching resulted in 54 matched pairs, grouped according to whether they underwent postoperative TPE [post-transplant TPE(+)] or not [post-transplant TPE(-)]. The 5-year HCC-specific RFS cumulative incidence was superior in the post-transplant TPE (+) group [12.5% (95% CI: 3.1%-21.9%)] compared with the post-transplant TPE(-) group [38.1% (95% CI: 24.4%-51.8%), p = 0.005]. In subgroup analysis for patients with microvascular invasion and those beyond the Milan criteria, the post-transplant TPE(+) group showed significantly superior HCC-specific survival. The multivariable analysis also showed that postoperative TPE had a protective effect on HCC-specific RFS (HR = 0.26, 95% CI: 0.10-0.64, p = 0.004) and that the more post-transplant TPE was performed, the better RFS was observed (HR = 0.71, 95% CI: 0.55-0.93, p = 0.012). Post-transplant TPE was found to improve RFS after ABO-incompatible living donor LT for HCC, particularly in advanced cases with microvascular invasion and beyond Milan criteria. These findings suggest that TPE may have a potential role in improving oncological outcomes in patients with HCC undergoing LT.
Collapse
Affiliation(s)
- Namkee Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Han JW, Jang JW. Predicting Outcomes of Atezolizumab and Bevacizumab Treatment in Patients with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:11799. [PMID: 37511558 PMCID: PMC10380709 DOI: 10.3390/ijms241411799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
A combination of atezolizumab with bevacizumab (AB) is the first regimen that has shown superiority compared to sorafenib and is now being used as the systemic treatment of choice for hepatocellular carcinoma (HCC) patients with Barcelona Liver Cancer Clinic stage C. However, a considerable number of patients do not achieve survival or significant responses, indicating the need to identify predictive biomarkers for initial and on-treatment decisions in HCC patients receiving AB. In this manuscript, we summarized the current data from both experimental and clinical studies. This review will be beneficial for both clinicians and researchers in clinical practice as well as those designing experimental, translational, or clinical studies.
Collapse
Affiliation(s)
- Ji Won Han
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
49
|
Endo Y, Winarski KL, Sajib MS, Ju A, Wu WJ. Atezolizumab Induces Necroptosis and Contributes to Hepatotoxicity of Human Hepatocytes. Int J Mol Sci 2023; 24:11694. [PMID: 37511454 PMCID: PMC10380327 DOI: 10.3390/ijms241411694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Atezolizumab is an immune checkpoint inhibitor (ICI) targeting PD-L1 for treatment of solid malignancies. Immune checkpoints control the immune tolerance, and the adverse events such as hepatotoxicity induced by ICIs are often considered as an immune-related adverse event (irAE). However, PD-L1 is also highly expressed in normal tissues, e.g., hepatocytes. It is still not clear whether, targeting PD-L1 on hepatocytes, the atezolizumab may cause damage to liver cells contributing to hepatotoxicity. Here, we reveal a novel mechanism by which the atezolizumab induces hepatotoxicity in human hepatocytes. We find that the atezolizumab treatment increases a release of LDH in the cell culture medium of human hepatocytes (human primary hepatocytes and THLE-2 cells), decreases cell viability, and inhibits the THLE-2 and THLE-3 cell growth. We demonstrate that both the atezolizumab and the conditioned medium (T-CM) derived from activated T cells can induce necroptosis of the THLE-2 cells, which is underscored by the fact that the atezolizumab and T-CM enhance the phosphorylation of RIP3 and MLKL proteins. Furthermore, we also show that necrostatin-1, a necrosome inhibitor, decreases the amount of phosphorylated RIP3 induced by the atezolizumab, resulting in a reduced LDH release in the culture media of the THLE-2 cells. This finding is further supported by the data that GSK872 (a RIP3 inhibitor) significantly reduced the atezolizumab-induced LDH release. Taken together, our data indicate that the atezolizumab induces PD-L1-mediated necrosome formation, contributing to hepatotoxicity in PD-L1+-human hepatocytes. This study provides the molecular basis of the atezolizumab-induced hepatotoxicity and opens a new avenue for developing a novel therapeutic approach to reducing hepatotoxicity induced by ICIs.
Collapse
Affiliation(s)
- Yukinori Endo
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Katie L Winarski
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Md Sanaullah Sajib
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Anna Ju
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Wen Jin Wu
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| |
Collapse
|
50
|
Yadav S. Advanced therapeutics avenues in hepatocellular carcinoma: a novel paradigm. Med Oncol 2023; 40:239. [PMID: 37442842 DOI: 10.1007/s12032-023-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, and it poses a significant risk to patients health and longevity due to its high morbidity and fatality rates. Surgical ablation, radiotherapy, chemotherapy, and, most recently, immunotherapy have all been investigated for HCC, but none have yielded the desired outcomes. Several unique nanocarrier drug delivery techniques have been studied for their potential therapeutic implications in the treatment of HCC. Nanoparticle-based imaging could be effective for more accurate HCC diagnosis. Since its inception, nanomedicine has significantly transformed the approach to both the treatment and diagnostics of liver cancer. Nanoparticles (NPs) are being studied as a potential treatment for liver cancer because of their ability to carry small substances, such as treatment with chemotherapy, microRNA, and therapeutic genes. The primary focus of this study is on the most current discoveries and practical uses of nanomedicine-based diagnostic and therapeutic techniques for liver cancer. In this section, we had gone over what we know about metabolic dysfunction in HCC and the treatment options that attempt to fix it by targeting metabolic pathways. Furthermore, we propose a multi-target metabolic strategy as a viable HCC treatment option. Based on the findings given here, the scientists believe that smart nanomaterials have great promise for improving cancer theranostics and opening up new avenues for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Shikha Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Plot No.2, Sector 17-A, Yamuna Expressway, Gautam Buddhnagar, Greater Noida, Uttar Pradesh, 201310, India.
| |
Collapse
|