1
|
Yasmin S, Ansari MY. A detailed examination of coronavirus disease 2019 (COVID-19): Covering past and future perspectives. Microb Pathog 2025; 203:107398. [PMID: 39986548 DOI: 10.1016/j.micpath.2025.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/07/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
The COVID-19 disease has spread rapidly across the world within just six months, affecting 169 million people and causing 3.5 million deaths globally (2021). The most affected countries include the USA, Brazil, India, and several European countries such as the UK and Russia. Healthcare professionals face new challenges in finding better ways to manage patients and save lives. In this regard, more comprehensive research is needed, including genomic and proteomic studies, personalized medicines and the design of suitable treatments. However, finding novel molecular entities (NME) using a standard or de novo strategy to drug development is a time-consuming and costly process. Another alternate strategy is discovering new therapeutic uses for old/existing/available medications, known as drug repurposing. There are a variety of computational repurposing methodologies, and some of them have been used to counter the coronavirus disease pandemic of 2019 (COVID-19). This review article compiles recently published data on the origin, transmission, pathogenesis, diagnosis, and management of the coronavirus by drug repurposing and vaccine development approach. We have attempted to screen probable drugs in clinical trials by using literature survey. This systematic review aims to create priorities for future research of drugs repurposed and vaccine development for COVID-19.
Collapse
Affiliation(s)
- Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi, Uttar Pradesh (U.P.) 241124, India.
| |
Collapse
|
2
|
Li M, Gu X, Yang J, Zhang C, Zhou Y, Huang P, Wang X, Zhang L, Jiang L, Zhai L, Yu M, Cheng G, Yang L. Luteolin: A potential therapeutic agent for respiratory diseases. Eur J Pharmacol 2025; 999:177699. [PMID: 40324574 DOI: 10.1016/j.ejphar.2025.177699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Acute lung injury, COVID-19, lung cancer, and asthma are a few of the respiratory conditions that are the main causes of morbidity and mortality worldwide. The increasing incidence and mortality rates have attracted significant attention to the prevention and treatment of these conditions. In recent years, there has been a renewed interest in utilizing naturally derived compounds as therapeutic agents for respiratory diseases. Luteolin (Lut), a flavonoid compound, possesses an extensive range of pharmacological characteristics, encompassing anti-inflammatory, antioxidative, antineoplastic, and antimicrobial activities. However, a comprehensive summary of Lut's therapeutic effects and mechanisms in respiratory diseases remains lacking. This review examines the physicochemical properties, toxicity, and avenues of Lut's action in respiratory ailments. Lut exerts therapeutic effects through pathways such as nuclear factor kappa-B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinase (MAPK), janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), and pyroptosis, modulating key processes such as the suppression of inflammatory mediators, attenuation of oxidative assault, and induction of apoptosis in lung cancer cells. This review strives to provide critical realizations into respiratory disease therapeutics and contribute to the foundation for drug development.
Collapse
Affiliation(s)
- Meng Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinru Gu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiaming Yang
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ce Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yi Zhou
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lulu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Liping Jiang
- Department of Parasitology, Xiangya School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Lidong Zhai
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Mingyu Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, 518132, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518000, China; Southwest United Graduate School, Kunming, 650504, China.
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Alotaibi MO, Alotaibi NM, Alwaili MA, Alshammari N, Adnan M, Patel M. Natural sapogenins as potential inhibitors of aquaporins for targeted cancer therapy: computational insights into binding and inhibition mechanism. J Biomol Struct Dyn 2025; 43:3613-3634. [PMID: 38174738 DOI: 10.1080/07391102.2023.2299743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Aquaporins (AQPs) are membrane proteins that facilitate the transport of water and other small molecules across biological membranes. AQPs are involved in various physiological processes and pathological conditions, including cancer, making them as potential targets for anticancer therapy. However, the development of selective and effective inhibitors of AQPs remains a challenge. In this study, we explored the possibility of using natural sapogenins, a class of plant-derived aglycones of saponins with diverse biological activities, as potential inhibitors of AQPs. We performed molecular docking, dynamics simulation and binding energy calculation to investigate the binding and inhibition mechanism of 19 sapogenins against 13 AQPs (AQP0-AQP13) that are overexpressed in various cancers. Our results showed that out of 19 sapogenins, 8 (Diosgenin, Gitogenin, Tigogenin, Ruscogenin, Yamogenin, Hecogenin, Sarsasapogenin and Smilagenin) exhibited acceptable drug-like characteristics. These sapogenin also exhibited favourable binding affinities in the range of -7.6 to -13.4 kcal/mol, and interactions within the AQP binding sites. Furthermore, MD simulations provided insights into stability and dynamics of the sapogenin-AQP complexes. Most of the fluctuations in binding pocket were observed for AQP0-Gitogenin and AQP4-Diosgenin. However, remaining protein-ligand complex showed stable root mean square deviation (RMSD) plots, strong hydrogen bonding interactions, stable solvent-accessible surface area (SASA) values and minimum distance to the receptor. These observations suggest that natural sapogenin hold promise as novel inhibitors of AQPs, offering a basis for the development of innovative therapeutic agents for cancer treatment. However, further validation of the identified compounds through experiments is essential for translating these findings into therapeutic applications.
Collapse
Affiliation(s)
- Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nahaa M Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| |
Collapse
|
4
|
Subbarayan K, Bieber H, Massa C, Rodríguez FAE, Hossain SMAA, Neuder L, Wahbi W, Salo T, Tretbar S, Al-Samadi A, Seliger B. Link of TMPRSS2 expression with tumor immunogenicity and response to immune checkpoint inhibitors in cancers. J Transl Med 2025; 23:294. [PMID: 40055791 PMCID: PMC11887338 DOI: 10.1186/s12967-025-06177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND SARS-CoV-2 and other viruses rely on the protease function of the TMPRSS2 protein to invade host cells. Despite cancer patients often experience poorer outcomes following SARS-CoV-2 infection, the role of TMPRSS2 in different cancer types has not yet been analyzed in detail. Therefore, the aim of the study was to determine the expression, function and clinical relevance of TMPRSS2 in tumors. METHODS Publicly accessible RNA sequencing data from tumors, adjacent tissues and whole blood samples of COVID-19 patients as well as data from human tumor epithelial and endothelial cells infected with SARS-CoV-2 were analyzed for TMPRSS2 expression and correlated to the expression of immune-relevant genes and clinical parameters. In vitro models of cells transfected with TMPRSS2 (TMPRSS2high), siTMPRSS2 or mock controls (TMPRSS2low cells) were analyzed by qPCR, flow cytometry, ELISA and Western blot for the expression of immune response-relevant molecules. Co-cultures of TMPRSS2 model systems with blood peripheral mononuclear cells were employed to evaluate immune cell migration, cytotoxicity and cytokine release. RESULTS Higher expression levels of TMPRSS2 were found in blood from patients infected with SARS-CoV-2, while TMPRSS2 expression levels significantly varied between the tumor types analyzed. TMPRSS2high tumor cells exhibit increased activity of the interferon (IFN) signal pathway accompanied by an increased expression of class I human leukocyte antigens (HLA-I) and programmed cell death ligand 1 (PD-L1) elevated interleukin 6 (IL-6) secretion and reduced NK cell-mediated cytotoxicity compared to TMPRSS2low mock controls. Treatment with a Janus kinase (JAK) 2 inhibitor or TMPRSS2-specific siRNA decreased TMPRSS2 expression. Co-cultures of the in vitro TMPRSS2 models with peripheral blood mononuclear cells in the presence of the immune checkpoint inhibitor nivolumab resulted in a significantly increased migration and infiltration of immune cells towards TMPRSS2high cells and a reduced release of the innate immunity-related cytokines CCL2 and CCL3. CONCLUSIONS This study provides novel insights into the role of TMPRSS2 in various tumor systems and the impact of SARS-CoV-2 infection on the host immunogenicity via the activation of immune-relevant pathways. These findings were linked to the efficacy of immune checkpoint inhibitor therapy, offering a potential alternative strategy to mitigate the severity of COVID-19.
Collapse
Affiliation(s)
| | - Helena Bieber
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara Massa
- Institute of Translational Immunology, Faculty of Health Sciences, Brandenburg Medical School "Theodor Fontane", Brandenburg an der Havel, Germany
| | - Felipe Adonis Escalona Rodríguez
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), Havana, Cuba
- NanoCancer, Molecular Immunology Center (CIM), Havana, Cuba
| | - S M Al Amin Hossain
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lisa Neuder
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Cancer and Translational Medicine Research Unit, University of Oulu, Oulu, 90014, Finland
| | - Sandy Tretbar
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, University of Helsinki, Helsinki, Finland
- Institute of Dentistry, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
- Institute of Translational Immunology, Faculty of Health Sciences, Brandenburg Medical School "Theodor Fontane", Brandenburg an der Havel, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| |
Collapse
|
5
|
Ghosh S, Biswas S, Mohanty R, Misra N, Suar M, Kushwaha GS. Structural and Phylogenetic Analysis on the Proofreading Activity of SARS-CoV-2. Curr Microbiol 2025; 82:149. [PMID: 39992393 DOI: 10.1007/s00284-025-04130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Maintenance of genomic integrity is a fundamental characteristic of viruses, however, RNA-dependent RNA Polymerase (RdRp) lacks exonuclease activity for proofreading. To facilitate genomic proofreading in viruses, an independent exonuclease domain assists RdRp to maintain fidelity during replication. In contrast to high fidelity in DNA viruses, RNA viruses have to evolve into new variants through comparatively delicate mutagenesis activity for genetic diversity. Coronavirideae, a family of single positive-stranded RNA (+ ssRNA) viruses, meticulously sustain a balance between genetic diversity and large-size RNA genome. In coronaviruses, the proofreading activity is accomplished by an exonuclease (ExoN) domain located at the N-terminal of non-structural protein 14 (nsp14). ExoN is responsible for the new variants and antiviral resistance towards nucleotide analogs. Here, we provide an evolutionary characterization of ExoN by using a well-defined phylogenetic pipeline and structural analysis based on host and habitat. We carried out a phylogenetic analysis on ExoN, methyltransferase domain, nsp14, and whole genomes of ExoN-containing viruses. Furthermore, a three-dimensional structural comparison of the ExoN domain from various sources is also carried out to understand structural preservation. Our study has unveiled the evolutionary trajectories and structural conservation of the ExoN domain within the Coronaviridae family, highlighting its distinct evolutionary path independent of other domains. Structural analyses revealed minimal variance in RMSD values, underscoring the conserved nature of ExoN despite diverse ecological settings.
Collapse
Affiliation(s)
- Soujanya Ghosh
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Soumya Biswas
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Rupali Mohanty
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
- KIIT-Technology Business Incubator, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India.
- KIIT-Technology Business Incubator, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India.
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, 751024, India.
- Transcription Regulation Group, International Centre of Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Han Z, Xu X, Li H, Liu S. Replication and adaptation of avian infectious bronchitis viruses in pheasants (Phasianus colchicus). Virus Res 2024; 350:199495. [PMID: 39528012 PMCID: PMC11617756 DOI: 10.1016/j.virusres.2024.199495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Infectious bronchitis virus (IBV) does not only cause disease in millions of chickens worldwide, but IBV-like viruses have also been detected or isolated from other domestic birds. We propose that the pheasant coronavirus (PhCoV) originates from IBV. Indeed, the IBV strains H120 and M41 can replicate but do not cause disease in pheasants. In this study, we found that three chicken nephropathogenic IBV strains, including ck/CH/LDL/091,021, ck/CH/LDL/140,520, and I0305/19, and the viruses recovered from the tissues of pheasants challenged with each IBV strain could replicate in some challenged pheasants with different capacities but could not cause disease. Overall, these viruses showed different capacities of replication and adaptation in pheasants, and the neutralizing antibody against each IBV strain could be detected in different numbers of pheasants challenged with each of the viruses, although the titers were generally low with large variation. Comparatively, ck/CH/LDL/140,520 and 20/P1-D5/Tr1 showed higher adaptation capacities in pheasants. Furthermore, the three IBV strains gained an increased capacity for adaptation when they passed in pheasants once, especially strain ck/CH/LDL/140,520, which gained an increased capacity for adaptation and extended tissue tropism when it was passaged in pheasants. Similar to IBV in chicken, the subpopulations within the virus were selected when the virus replicated and was passaged in pheasants, and the accumulation of mutations and deletions in the genome of each virus subpopulation accounted for the independent evolution of the virus in different tissues of pheasants. Taken together, we suggest that the phCoVs might originate from IBV through interspecies transmission from chickens to pheasants, before gaining increased tissue tropism, adaptation capacities, and disease-causing behaviors in pheasants during intraspecies transmission.
Collapse
Affiliation(s)
- Zongxi Han
- Division of Avian Infectious Diseases, the State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaochen Xu
- Division of Avian Infectious Diseases, the State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Huixin Li
- Division of Avian Infectious Diseases, the State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, the State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
7
|
Oliveira K, Almeida A, Silva C, Brito M, Ribeiro E. SARS-CoV-2 Immunization Index in the Academic Community: A Retrospective Post-Vaccination Study. Infect Dis Rep 2024; 16:1084-1097. [PMID: 39728010 DOI: 10.3390/idr16060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The COVID-19 pandemic has revolutionized vaccine production and compelled a massive global vaccination campaign. This study aimed to estimate the positivity and levels of SARS-CoV-2 IgG antibodies acquired due to vaccination and infection in the academic population of a Portuguese university. METHODS Blood samples were collected and analyzed through the ELISA methodology, and statistical analysis was performed. RESULTS A total of 529 volunteers with at least one dose of the vaccine were enrolled in this study. Individuals without a prior COVID-19 diagnosis were divided into two groups: 350, who received a full vaccination, and 114, who received a full vaccination and a booster dose of the same vaccine (81) and mixed vaccines (33). Regarding the individuals who reported a prior SARS-CoV-2 infection, 31 received a full vaccination, and 34 received only one vaccination dose. Data analysis showed a higher level of IgG against SARS-CoV-2 in individuals who were younger, female, who received the Moderna vaccine, with recent post-vaccine administration, a mixed booster dose, and prior SARS-CoV-2 infection. CONCLUSIONS Assessing vaccination's effectiveness and group immunity is crucial for pandemic management, particularly in academic environments with high individual mobility, in order to define groups at risk and redirect infection control strategies.
Collapse
Affiliation(s)
- Keltyn Oliveira
- Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
| | - Ana Almeida
- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
| | - Carina Silva
- Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
- Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Miguel Brito
- Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
| | - Edna Ribeiro
- Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal
| |
Collapse
|
8
|
Islam MA, Pathak K, Saikia R, Pramanik P, Das A, Talukdar P, Shakya A, Ghosh SK, Singh UP, Bhat HR. An in-depth analysis of COVID-19 treatment: Present situation and prospects. Arch Pharm (Weinheim) 2024; 357:e2400307. [PMID: 39106224 DOI: 10.1002/ardp.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024]
Abstract
Coronavirus disease 2019 (COVID-19) the most contagious infection caused by the unique type of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), produced a global pandemic that wreaked havoc on the health-care system, resulting in high morbidity and mortality. Several methods were implemented to tackle the virus, including the repurposing of existing medications and the development of vaccinations. The purpose of this article is to provide a complete summary of the current state and future possibilities for COVID-19 therapies. We describe the many treatment classes, such as antivirals, immunomodulators, and monoclonal antibodies, that have been repurposed or developed to treat COVID-19. We also looked at the clinical evidence for these treatments, including findings from observational studies and randomized-controlled clinical trials, and highlighted the problems and limitations of the available evidence. Furthermore, we reviewed existing clinical trials and prospective COVID-19 therapeutic options, such as novel medication candidates and combination therapies. Finally, we discussed the long-term consequences of COVID-19 and the importance of ongoing research into the development of viable treatments. This review will help physicians, researchers, and policymakers to understand the prevention and mitigation of COVID-19.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Pallab Pramanik
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Prasenjit Talukdar
- Department of Petroleum Engineering, DUIET, Dibrugarh, University, Assam, India
| | - Anshul Shakya
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit Kumar Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya Pratap Singh
- Drug Design & Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India
| | - Hans Raj Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| |
Collapse
|
9
|
Danchin A. Artificial intelligence-based prediction of pathogen emergence and evolution in the world of synthetic biology. Microb Biotechnol 2024; 17:e70014. [PMID: 39364593 PMCID: PMC11450380 DOI: 10.1111/1751-7915.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024] Open
Abstract
The emergence of new techniques in both microbial biotechnology and artificial intelligence (AI) is opening up a completely new field for monitoring and sometimes even controlling the evolution of pathogens. However, the now famous generative AI extracts and reorganizes prior knowledge from large datasets, making it poorly suited to making predictions in an unreliable future. In contrast, an unfamiliar perspective can help us identify key issues related to the emergence of new technologies, such as those arising from synthetic biology, whilst revisiting old views of AI or including generative AI as a generator of abduction as a resource. This could enable us to identify dangerous situations that are bound to emerge in the not-too-distant future, and prepare ourselves to anticipate when and where they will occur. Here, we emphasize the fact that amongst the many causes of pathogen outbreaks, often driven by the explosion of the human population, laboratory accidents are a major cause of epidemics. This review, limited to animal pathogens, concludes with a discussion of potential epidemic origins based on unusual organisms or associations of organisms that have rarely been highlighted or studied.
Collapse
Affiliation(s)
- Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of MedicineHong Kong UniversityPokfulamSAR Hong KongChina
| |
Collapse
|
10
|
Zheng H, Zhao H, Xiong H, Awais MM, Zeng S, Sun J. Bioproduction and immunogenic evaluation of SARS-CoV-2 prototype vaccine in silkworm BmN cells. Int J Biol Macromol 2024; 276:134027. [PMID: 39033889 DOI: 10.1016/j.ijbiomac.2024.134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
COVID-19, caused by the novel coronavirus SARS-CoV-2, has presented a significant challenge to global health, security, and the economy. Vaccination is considered a crucial measure in preventing virus transmission. The silkworm bioreactor has gained widespread usage in antigen presentation, monoclonal antibody preparation, and subunit vaccine development due to its safety, efficiency, convenience, and cost-effectiveness. In this study, we employed silkworm BmN cells and the silkworm MultiBac multigene co-expression system to successfully produce two prototype vaccines: a recombinant baculovirus vector vaccine (NPV) co-displaying the SARS-CoV-2 virus capsid protein and a capsid protein virus-like particle (VLP) vaccine. Following the purification of these vaccines, we immunized BALB/c mice to evaluate their immunogenicity. Our results demonstrated that both VLP and NPV prototype vaccines effectively elicited robust immune responses in mice. However, when equal inoculation doses between groups were compared, the recombinant NPV vaccine exhibited significantly higher serum antibody titers and increased expression of spleen cytokines and lymphocyte immune regulatory factors compared to the VLP group. These results suggested an increased immune efficacy of the recombinant NPV vaccine. Conversely, the VLP prototype vaccine displayed more pronounced effects on lymphocyte cell differentiation induction. This study successfully constructed two distinct morphological recombinant vaccine models and systematically elucidated their differences in humoral immune response and lymphocyte differentiation rate. Furthermore, it has fully harnessed the immense potential of silkworm bioreactors for vaccine research and development, providing valuable technical insights for studying mutated viruses like coronaviruses.
Collapse
Affiliation(s)
- Hao Zheng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hengfeng Zhao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Haifan Xiong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Songrong Zeng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
11
|
Leony LM, Vasconcelos LCM, Silva RSHD, Camelier AA, Bandeira AC, Costa DLS, Siqueira ICD, Santos FLN. Assessing the performance of commercial serological tests for SARS-CoV-2 diagnosis. IJID REGIONS 2024; 12:100383. [PMID: 38974172 PMCID: PMC11225813 DOI: 10.1016/j.ijregi.2024.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Objectives The emergence of SARS-CoV-2 has triggered a global pandemic with profound implications for public health. Rapid changes in the pandemic landscape and limitations in in vitro diagnostics led to the introduction of numerous diagnostic devices with variable performance. In this study, we evaluated three commercial serological assays in Brazil for detecting anti-SARS-CoV-2 antibodies. Methods We collected 90 serum samples from SARS-CoV-2-negative blood donors and 352 from SARS-CoV-2-positive, unvaccinated patients, categorized by symptom onset. Subsequently, we assessed the diagnostic performance of three commercial enzyme immunoassays: GOLD ELISA (enzyme-linked immunosorbent assay) COVID-19 Ig (immunoglobulin) G + IgM, Anti-SARS-CoV-2 NCP IgM ELISA, and Anti-SARS-CoV-2 NCP IgG ELISA. Results Our findings revealed that the GOLD ELISA COVID-19 IgG + IgM exhibited the highest sensitivity (57.7%) and diagnostic odds ratio, surpassing the manufacturer's reported sensitivity in most analyzed time frames while maintaining exceptional specificity (98.9%). Conversely, the Anti-SARS-CoV-2 NCP IgG ELISA demonstrated lower sensitivity but aligned with independent evaluations, boasting a specificity of 100%. However, the Anti-SARS-CoV-2 NCP IgM ELISA exhibited lower sensitivity than claimed, particularly in samples collected shortly after positive reverse transcription polymerase chain reaction results. Performance improved 15-21 days after symptom onset and beyond 22 days, but in the first week, both Anti-SARS-CoV-2 NCP IgM ELISA and Anti-SARS-CoV-2 NCP IgG ELISA struggled to differentiate positive and negative samples. Conclusions Our study emphasizes the need for standardized validation protocols to address discrepancies between manufacturer-claimed and actual performance. These insights provide essential information for health care practitioners and policymakers regarding the diagnostic capabilities of these assays in various clinical scenarios.
Collapse
Affiliation(s)
- Leonardo Maia Leony
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | - Larissa Carvalho Medrado Vasconcelos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | - Ricardo Sampaio Hein da Silva
- Laboratory of Investigation in Global Health and Neglected Diseases, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
| | | | | | | | - Isadora Cristina de Siqueira
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Laboratory of Investigation in Global Health and Neglected Diseases, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Integrated Translational Program in Chagas disease from FIOCRUZ (Fio-Chagas), Oswaldo Cruz Foundation (FIOCRUZ-RJ), Rio de Janeiro, Brazil
| | - Fred Luciano Neves Santos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Interdisciplinary Research Group in Biotechnology and Epidemiology of Infectious Diseases (GRUPIBE), Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ-BA), Salvador, Brazil
- Integrated Translational Program in Chagas disease from FIOCRUZ (Fio-Chagas), Oswaldo Cruz Foundation (FIOCRUZ-RJ), Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Maqbool ME, Farhan A, Qamar MA. Global impact of COVID-19 on food safety and environmental sustainability: Pathways to face the pandemic crisis. Heliyon 2024; 10:e35154. [PMID: 39170381 PMCID: PMC11336433 DOI: 10.1016/j.heliyon.2024.e35154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The COVID-19 pandemic poses ongoing challenges to the sustainability of various socioeconomic sectors, including agriculture, the food supply chain, the food business, and environmental sustainability. This study employs data obtained from the World Health Organization (WHO), and Food and Agriculture Organization (FAO), as well as scientific and technical research publications, to evaluate the impacts of COVID-19 on agriculture and food security. This article seeks to highlight the profound influence of the COVID-19 pandemic on agriculture, the supply and demand of food, and the overall safety of food. The article also explores the several pathways by which COVID-19 can be transmitted in these areas and the various technologies employed for its detection. The ongoing and post-pandemic ramifications are substantial since they could decrease agricultural output due to limitations on migration, a downturn in international trade, less buying capacity, and disturbances in food production and processing. Therefore, based on this thorough investigation, recommendations are issued for mitigating and controlling the pandemic's effects.
Collapse
Affiliation(s)
- Muhammad Ehsan Maqbool
- Departmentof Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Muhammad Azam Qamar
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| |
Collapse
|
13
|
Yang Y, Luo YD, Zhang CB, Xiang Y, Bai XY, Zhang D, Fu ZY, Hao RB, Liu XL. Progress in Research on Inhibitors Targeting SARS-CoV-2 Main Protease (M pro). ACS OMEGA 2024; 9:34196-34219. [PMID: 39157135 PMCID: PMC11325518 DOI: 10.1021/acsomega.4c03023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
Since 2019, the novel coronavirus (SARS-CoV-2) has caused significant morbidity and millions of deaths worldwide. The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2 and its variants, has further highlighted the urgent need for the development of effective therapeutic agents. Currently, the highly conserved and broad-spectrum nature of main proteases (Mpro) renders them of great importance in the field of inhibitor study. In this study, we categorize inhibitors targeting Mpro into three major groups: mimetic, nonmimetic, and natural inhibitors. We then present the research progress of these inhibitors in detail, including their mechanism of action, antiviral activity, pharmacokinetic properties, animal experiments, and clinical studies. This review aims to provide valuable insights and potential avenues for the development of more effective antiviral drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Yang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yi-Dan Luo
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Chen-Bo Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Yang Xiang
- School
of Medicine, Yan’an University, Yan’an 716000, China
- College
of Physical Education, Yan’an University, Yan’an 716000, China
| | - Xin-Yue Bai
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Die Zhang
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Zhao-Ying Fu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Ruo-Bing Hao
- School
of Medicine, Yan’an University, Yan’an 716000, China
| | - Xiao-Long Liu
- School
of Medicine, Yan’an University, Yan’an 716000, China
| |
Collapse
|
14
|
Chan JFW, Yuan S, Chu H, Sridhar S, Yuen KY. COVID-19 drug discovery and treatment options. Nat Rev Microbiol 2024; 22:391-407. [PMID: 38622352 DOI: 10.1038/s41579-024-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
15
|
do Carmo GAL, Oliveira MP, Campos ALL, Couto BRGM, do Carmo LPDF, Cerqueira TL, de Souza CAM, Goll YL, de Souza VS, Vieira MOG, de Castro PASV, Lemos PAB, Silva ACSE. COVID-19 Computed tomography patterns in renal replacement therapy patients. J Bras Nefrol 2024; 46:e20230029. [PMID: 38502952 PMCID: PMC11300031 DOI: 10.1590/2175-8239-jbn-2023-0029en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Lung diseases are common in patients with end stage kidney disease (ESKD), making differential diagnosis with COVID-19 a challenge. This study describes pulmonary chest tomography (CT) findings in hospitalized ESKD patients on renal replacement therapy (RRT) with clinical suspicion of COVID-19. METHODS ESKD individuals referred to emergency department older than 18 years with clinical suspicion of COVID-19 were recruited. Epidemiological baseline clinical information was extracted from electronic health records. Pulmonary CT was classified as typical, indeterminate, atypical or negative. We then compared the CT findings of positive and negative COVID-19 patients. RESULTS We recruited 109 patients (62.3% COVID-19-positive) between March and December 2020, mean age 60 ± 12.5 years, 43% female. The most common etiology of ESKD was diabetes. Median time on dialysis was 36 months, interquartile range = 12-84. The most common pulmonary lesion on CT was ground glass opacities. Typical CT pattern was more common in COVID-19 patients (40 (61%) vs 0 (0%) in non-COVID-19 patients, p < 0.001). Sensitivity was 60.61% (40/66) and specificity was 100% (40/40). Positive predictive value and negative predictive value were 100% and 62.3%, respectively. Atypical CT pattern was more frequent in COVID-19-negative patients (9 (14%) vs 24 (56%) in COVID-19-positive, p < 0.001), while the indeterminate pattern was similar in both groups (13 (20%) vs 6 (14%), p = 0.606), and negative pattern was more common in COVID-19-negative patients (4 (6%) vs 12 (28%), p = 0.002). CONCLUSIONS In hospitalized ESKD patients on RRT, atypical chest CT pattern cannot adequately rule out the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Gabriel Assis Lopes do Carmo
- Hospital Evangélico de Belo Horizonte, Belo Horizonte, MG, Brazil
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Clínica Médica, Belo Horizonte, MG, Brazil
| | | | | | | | - Lilian Pires de Freitas do Carmo
- Hospital Evangélico de Belo Horizonte, Belo Horizonte, MG, Brazil
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Clínica Médica, Belo Horizonte, MG, Brazil
| | | | | | - Yan Lopes Goll
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte, MG, Brazil
| | - Vitor Santos de Souza
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte, MG, Brazil
| | | | | | | | - Ana Cristina Simões e Silva
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Laboratório Interdisciplinar de Investigação Médica, Unidade de Nefrologia Pediátrica, Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
An C, Li Z, Chen Y, Huang S, Yang F, Hu Y, Xu T, Zhang C, Ge S. The cGAS-STING pathway in cardiovascular diseases: from basic research to clinical perspectives. Cell Biosci 2024; 14:58. [PMID: 38720328 PMCID: PMC11080250 DOI: 10.1186/s13578-024-01242-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
- Cheng An
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Zhen Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Shaojun Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China
| | - Fan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Chengxin Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| | - Shenglin Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
17
|
Weary TE, Pappas T, Tusiime P, Tuhaise S, Ross E, Gern JE, Goldberg TL. High frequencies of nonviral colds and respiratory bacteria colonization among children in rural Western Uganda. Front Pediatr 2024; 12:1379131. [PMID: 38756971 PMCID: PMC11096560 DOI: 10.3389/fped.2024.1379131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Respiratory illness is the most common childhood disease globally, especially in developing countries. Previous studies have detected viruses in approximately 70-80% of respiratory illnesses. Methods In a prospective cohort study of 234 young children (ages 3-11 years) and 30 adults (ages 22-51 years) in rural Western Uganda sampled monthly from May 2019 to August 2021, only 24.2% of nasopharyngeal swabs collected during symptomatic disease had viruses detectable by multiplex PCR diagnostics and metagenomic sequencing. In the remaining 75.8% of swabs from symptomatic participants, we measured detection rates of respiratory bacteria Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae by quantitative PCR. Results 100% of children tested positive for at least one bacterial species. Detection rates were 87.2%, 96.8%, and 77.6% in children and 10.0%, 36.7%, and 13.3% for adults for H. influenzae, M. catarrhalis, and S. pneumoniae, respectively. In children, 20.8% and 70.4% were coinfected with two and three pathogens, respectively, and in adults 6.7% were coinfected with three pathogens but none were coinfected with two. Detection of any of the three pathogens was not associated with season or respiratory symptoms severity, although parsing detection status by symptoms was challenged by children experiencing symptoms in 80.3% of monthly samplings, whereas adults only reported symptoms 26.6% of the time. Pathobiont colonization in children in Western Uganda was significantly more frequent than in children living in high-income countries, including in a study of age-matched US children that utilized identical diagnostic methods. Detection rates were, however, comparable to rates in children living in other Sub-Saharan African countries. Discussion Overall, our results demonstrate that nonviral colds contribute significantly to respiratory disease burden among children in rural Uganda and that high rates of respiratory pathobiont colonization may play a role. These conclusions have implications for respiratory health interventions in the area, such as increasing childhood immunization rates and decreasing air pollutant exposure.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| | - Tressa Pappas
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | | | | | | | - James E. Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, United States
| |
Collapse
|
18
|
Sohrab SS, Alsaqaf F, Hassan AM, Tolah AM, Bajrai LH, Azhar EI. Genomic Diversity and Recombination Analysis of the Spike Protein Gene from Selected Human Coronaviruses. BIOLOGY 2024; 13:282. [PMID: 38666894 PMCID: PMC11048170 DOI: 10.3390/biology13040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002-2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from Wuhan City, China, in late December 2019. The HCoV-Spike (S) gene has the highest mutation/insertion/deletion rate and has been the most utilized target for vaccine/antiviral development. In this manuscript, we discuss the genetic diversity, phylogenetic relationships, and recombination patterns of selected HCoVs with emphasis on the S protein gene of MERS-CoV and SARS-CoV-2 to elucidate the possible emergence of new variants/strains of coronavirus in the near future. The findings showed that MERS-CoV and SARS-CoV-2 have significant sequence identity with the selected HCoVs. The phylogenetic tree analysis formed a separate cluster for each HCoV. The recombination pattern analysis showed that the HCoV-NL63-Japan was a probable recombinant. The HCoV-NL63-USA was identified as a major parent while the HCoV-NL63-Netherland was identified as a minor parent. The recombination breakpoints start in the viral genome at the 142 nucleotide position and end at the 1082 nucleotide position with a 99% CI and Bonferroni-corrected p-value of 0.05. The findings of this study provide insightful information about HCoV-S gene diversity, recombination, and evolutionary patterns. Based on these data, it can be concluded that the possible emergence of new strains/variants of HCoV is imminent.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Fatima Alsaqaf
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
| | - Ahmed Mohamed Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
| | - Ahmed Majdi Tolah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, P.O. Box 21911, Rabigh 344, Saudi Arabia
| | - Leena Hussein Bajrai
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
19
|
Vasilj M, Galic K, Zovko T, Kraljevic G, Pravdic N, Saric-Zolj B, Goluza Sesar M, Pravdic D. Lung Diffusion Capacity in Patients With Bilateral COVID-19 Pneumonia: A Three-Month Follow-Up Study. Cureus 2024; 16:e58897. [PMID: 38800334 PMCID: PMC11117186 DOI: 10.7759/cureus.58897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVES The aim of this study was to determine the short-term consequences of coronavirus disease 2019 (COVID-19) infection on pulmonary diffusion in patients with severe (but not critical) and moderately severe COVID-19 pneumonia during three months after COVID-19 infection. METHODS A prospective study included 81 patients with an RT-PCR-test confirmed diagnosis of COVID-19 infection treated in the COVID Department of Lung Diseases of University Clinical Hospital Mostar. Inclusion criteria were ≥18-year-old patients, COVID-19 infection confirmed using real-time RT-PCR, radiologically confirmed bilateral COVID-19 pneumonia, and diffusion capacity of the lungs for carbon monoxide (DLCO) one and three months after COVID-19 infection. The pulmonary function was tested using the MasterScreen Body Jaeger (Jaeger Corporation, Omaha, USA) and MasterScreen PFT Jaeger (Jaeger Corporation, Omaha, USA) according to American Thoracic Society guidelines one and three months after COVID-19 infection. RESULTS Forced vital capacity significantly increased three months after COVID-19 infection compared to the first-month control (p<0.0005). Also, a statistically significant increase in the FEV1 value (p<0.0005), FEV1%FVC ratio (p<0.005), DLCO/SB (p<0.0005), DLCO/VA value (p<0.0005), and total lung capacity (TLC) (p<0.0005) was observed in all patients. CONCLUSION Our study showed that recovery of DLCO/VA and spirometry parameters was complete after three months, while DLCO/SB was below normal values even after three months. Therefore, one month after the COVID-19 infection patients had partial recovery of lung function, while a significant recovery of lung function was observed three months after the COVID-19 infection.
Collapse
Affiliation(s)
- Marina Vasilj
- Department of Lung Diseases, University Clinical Hospital Mostar, Mostar, BIH
| | - Kristina Galic
- Department of Lung Diseases, University Clinical Hospital Mostar, Mostar, BIH
| | - Tanja Zovko
- Department of Lung Diseases, University Clinical Hospital Mostar, Mostar, BIH
| | - Gordana Kraljevic
- Department of Lung Diseases, University Clinical Hospital Mostar, Mostar, BIH
| | - Nikolina Pravdic
- Department of Neurology, University Clinical Hospital Mostar, Mostar, BIH
| | - Belma Saric-Zolj
- Department of Lung Diseases, University Clinical Hospital Mostar, Mostar, BIH
| | - Marija Goluza Sesar
- Department of Lung Diseases, University Clinical Hospital Mostar, Mostar, BIH
| | - Danijel Pravdic
- Clinic for Internal Diseases, University Clinical Hospital Mostar, Mostar, BIH
| |
Collapse
|
20
|
Zhang J, Rissmann M, Kuiken T, Haagmans BL. Comparative Pathogenesis of Severe Acute Respiratory Syndrome Coronaviruses. ANNUAL REVIEW OF PATHOLOGY 2024; 19:423-451. [PMID: 37832946 DOI: 10.1146/annurev-pathol-052620-121224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Over the last two decades the world has witnessed the global spread of two genetically related highly pathogenic coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. However, the impact of these outbreaks differed significantly with respect to the hospitalizations and fatalities seen worldwide. While many studies have been performed recently on SARS-CoV-2, a comparative pathogenesis analysis with SARS-CoV may further provide critical insights into the mechanisms of disease that drive coronavirus-induced respiratory disease. In this review, we comprehensively describe clinical and experimental observations related to transmission and pathogenesis of SARS-CoV-2 in comparison with SARS-CoV, focusing on human, animal, and in vitro studies. By deciphering the similarities and disparities of SARS-CoV and SARS-CoV-2, in terms of transmission and pathogenesis mechanisms, we offer insights into the divergent characteristics of these two viruses. This information may also be relevant to assessing potential novel introductions of genetically related highly pathogenic coronaviruses.
Collapse
Affiliation(s)
- Jingshu Zhang
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Melanie Rissmann
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Thijs Kuiken
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, The Netherlands;
| |
Collapse
|
21
|
Acosta-Navarro JC, Dias LF, de Gouveia LAG, Ferreira EP, de Oliveira MVPF, Marin FA, Oliveira JVC, da Silva AC, Silva IL, Freitas FDO, Soares PR. Vegetarian and plant-based diets associated with lower incidence of COVID-19. BMJ Nutr Prev Health 2024; 7:4-13. [PMID: 38966114 PMCID: PMC11221288 DOI: 10.1136/bmjnph-2023-000629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/25/2023] [Indexed: 07/06/2024] Open
Abstract
Objective To evaluate the influence of dietary patterns on the incidence and evolution of COVID-19. We hypothesised that a plant-based diet or a vegetarian diet compared with an omnivorous diet might be associated with a lower incidence of COVID-19 infection and severity in those infected. Design In this observational study, 702 participants provided information on sociodemographic characteristics, dietary information and COVID-19 outcomes between March and July of 2022. Individuals were divided into two groups based on their dietary habits, omnivorous (n=424) and plant-based (n=278). The plant-based group was further divided into vegetarian and flexitarian subgroups. The groups were compared with respect to the incidence of COVID-19 infection, severity and duration. We used multivariable logistic regression models to evaluate the influence of dietary patterns. Results Plant-based and vegetarian groups had a higher intake of vegetables, legumes and nuts, and lower intake of dairy and meat. After adjusting for important confounders, such as body mass index, physical activity and pre-existing medical conditions, the plant-based diet and vegetarian group had 39% (OR=0.61, 95% CI 0.44 to 0.85; p=0.003) and 39% (OR 0.61, 95% CI 0.42 to 0.88; p=0.009) lower odds of the incidence of COVID-19 infection, respectively, compared with the omnivorous group. No association was observed between self-reported diets and COVID-19 severity or duration. Conclusion Plant-based and mainly vegetarian diets were associated with a lower incidence of COVID-19 infection. These dietary patterns may be considered protective against COVID-19 infection. (Study protocol registered in CAAE: 54351421.4.0000.0068.).
Collapse
Affiliation(s)
- Júlio César Acosta-Navarro
- Unidade Clinica de Emergencia, Instituto do Coracao, Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Laís Ferreira Dias
- Unidade Clinica de Emergencia, Instituto do Coracao, Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Luiza Antoniazzi Gomes de Gouveia
- Unidade Clinica de Emergencia, Instituto do Coracao, Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Emerson Pinheiro Ferreira
- Unidade Clinica de Emergencia, Instituto do Coracao, Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Flávia Andréia Marin
- Universidade Federal da Grande Dourados Faculdade de Ciencias da Saude, Dourados, Brazil
| | - José Valter Costa Oliveira
- Unidade Clinica de Emergencia, Instituto do Coracao, Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Andressa Candida da Silva
- Unidade Clinica de Emergencia, Instituto do Coracao, Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Isabella Louise Silva
- Unidade Clinica de Emergencia, Instituto do Coracao, Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fabiane de Oliveira Freitas
- Unidade Clinica de Emergencia, Instituto do Coracao, Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paulo Rogerio Soares
- Unidade Clinica de Emergencia, Instituto do Coracao, Hospital da Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Ponce-Cusi R, Bravo L, Paez KJ, Pinto JA, Pilco-Ferreto N. Host-Pathogen Interaction: Biology and Public Health. Methods Mol Biol 2024; 2751:3-18. [PMID: 38265706 DOI: 10.1007/978-1-0716-3617-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Interactions between host and pathogenic microorganisms are common in nature and have a significant impact on host health, often leading to several types of infections. These interactions have evolved as a result of the ongoing battle between the host's defense mechanisms and the pathogens' invasion strategies. In this chapter, we will explore the evolution of host-pathogen interactions, explore their molecular mechanisms, examine the different stages of interaction, and discuss the development of pharmacological treatments. Understanding these interactions is crucial for improving public health, as it enables us to develop effective strategies to prevent and control infectious diseases. By gaining insights into the intricate dynamics between pathogens and their hosts, we can work towards reducing the burden of such diseases on society.
Collapse
Affiliation(s)
- Richard Ponce-Cusi
- Escuela Profesional de Medicina, Facultad de Ciencias de la Salud, Universidad Nacional de Moquegua, Moquegua, Peru.
| | - Leny Bravo
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Kevin J Paez
- Escuela Profesional de Medicina Humana - Filial Ica, Universidad Privada San Juan Bautista, Ica, Peru
| | - Joseph A Pinto
- Escuela Profesional de Medicina Humana - Filial Ica, Universidad Privada San Juan Bautista, Ica, Peru
| | - Nesstor Pilco-Ferreto
- Unidad de Posgrado. Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| |
Collapse
|
23
|
Daba TM, Mokonon M, Niguse E, Getahun M. The Potential Mechanisms Behind Adverse Effect of Coronavirus Disease-19 on Heart and Liver Damage: A Review. Ethiop J Health Sci 2024; 34:85-100. [PMID: 38957334 PMCID: PMC11217793 DOI: 10.4314/ejhs.v34i1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/02/2023] [Indexed: 07/04/2024] Open
Abstract
Background Coronaviruses (CoVs) belong to the RNA viruses family. The viruses in this family are known to cause mild respiratory disease in humans. The origin of the novel SARS-COV2 virus that caused the coronavirus-19 disease (COVID-19) is the Wuhan city in China from where it disseminated to cause a global pandemic. Although lungs are the predominant target organ for Coronavirus Disease-19 (COVID-19), since its outbreak, the disease is known to affect heart, blood vessels, kidney, intestine, liver and brain. This review aimed to summarize the catastrophic impacts of Coronavirus disease-19 on heart and liver along with its mechanisms of pathogenesis. Methods The information used in this review was obtained from relevant articles published on PubMed, Google Scholar, Google, WHO website, CDC and other sources. Key searching statements and phrases related to COVID-19 were used to retrieve information. Original research articles, review papers, research letters and case reports were used as a source of information. Results Besides causing severe lung injury, COVID-19 has also been reported to affect and cause dysfunction of many other organs. COVID-19 infection can affect people by downregulating membrane-bound active angiotensin-converting enzyme (ACE). People who have deficient ACE2 expression are more vulnerable to COVID-19 infection. The patients' pre-existing co-morbidities are major risk factors that predispose individuals to severe COVID-19. Conclusion The disease severity and its broad spectrum phenotype is a result of combined direct and indirect pathogenic factors. Therefore, protocols that harmonize many therapeutic preferences should be the best alternatives to de-escalate the disease and obviate deaths caused as a result of multiple organ damage and dysfunction induced by the disease.
Collapse
Affiliation(s)
- Tolessa Muleta Daba
- Deparment of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye Campus, Rwanda
- Institute of Pharmaceutical Science, Adama Science and Technology University, Adama, Ethiopia
| | - Mulatu Mokonon
- Department of Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Elsa Niguse
- Department of Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| | - Meron Getahun
- Department of Biology, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia
| |
Collapse
|
24
|
Khazir J, Ahmed S, Thakur RK, Hussain M, Gandhi SG, Babbar S, Mir SA, Shafi N, Tonfack LB, Rajpal VR, Maqbool T, Mir BA, Peer LA. Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19. Curr Top Med Chem 2024; 24:614-633. [PMID: 38477206 DOI: 10.2174/0115680266276749240206101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.
Collapse
Affiliation(s)
- Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, 201313, India
| | - Manzoor Hussain
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Sadhana Babbar
- Department of Botany, Swami Shradhanand College, University of Delhi, Delhi, 110036, India
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Nusrat Shafi
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Libert Brice Tonfack
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, University of Kashmir, Srinagar, 190006, India
| | - Bilal Ahmad Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
25
|
Rasool G, Khan WA, Khan AM, Riaz M, Abbas M, Rehman AU, Irshad S, Ahmad S. COVID-19: A threat to the respiratory system. Int J Immunopathol Pharmacol 2024; 38:3946320241310307. [PMID: 39716038 DOI: 10.1177/03946320241310307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), causes acute coronavirus disease-19 (COVID-19) that has emerged on a pandemic level. Coronaviruses are well-known to have a negative impact on the lungs and cardiovascular system. SARS-CoV-2 induces a cytokine storm that primarily targets the lungs, causing widespread clinical disorders, including COVID-19. Although, SARS-CoV-2 positive individuals often show no or mild upper respiratory tract symptoms, severe cases can progress to acute respiratory distress syndrome (ARDS). Novel CoV-2 infection in 2019 resulted in viral pneumonia as well as other complications and extrapulmonary manifestation. ARDS is also linked to a higher risk of death. Now, it is essential to develop our perception of the long term sequelae coronavirus infection for the identification of COVID-19 survivors who are at higher risk of developing the chronic lung fibrosis. This review study was planned to provide an overview of the effects of SARS-CoV-2 infection on various parts of the respiratory system such as airways, pulmonary vascular, lung parenchymal and respiratory neuromuscular system as well as the potential mechanism of the ARDS related respiratory complications including the lung fibrosis in patients with severe COVID-19.
Collapse
Affiliation(s)
- Ghulam Rasool
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Waqas Ahmed Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Arif Muhammad Khan
- Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Mazhar Abbas
- Department of Basic Sciences (Section Biochemistry), University of Veterinary and Animal Sciences Lahore (Jhang Campus), Jhang, Punjab, Pakistan
| | - Aziz Ur Rehman
- Department of Pathobiology (Section Pathology), University of Veterinary and Animal Sciences Lahore (Jhang Campus), Jhang, Punjab, Pakistan
| | - Saba Irshad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
| | - Saeed Ahmad
- Office of Research, Innovation and Commercialization (ORIC), University of Sargodha, Sargodha, Punjab, Pakistan
| |
Collapse
|
26
|
Chaudhury S, Kaur P, Gupta D, Anand P, Chaudhary M, Tiwari S, Mittal A, Gupta J, Kaur S, Singh VD, Dhawan D, Singh P, Sahu SK. Therapeutic Management with Repurposing Approaches: A Mystery During COVID-19 Outbreak. Curr Mol Med 2024; 24:712-733. [PMID: 37312440 DOI: 10.2174/1566524023666230613141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/15/2023]
Abstract
The ubiquitous pandemic that emerged due to COVID-19 affected the whole planet. People all over the globe became vulnerable to the unpredictable emergence of coronavirus. The sudden emergence of respiratory disease in coronavirus infected several patients. This affected human life drastically, from mild symptoms to severe illness, leading to mortality. COVID-19 is an exceptionally communicable disease caused by SARS-CoV-2. According to a genomic study, the viral spike RBD interactions with the host ACE2 protein from several coronavirus strains and the interaction between RBD and ACE2 highlighted the potential change in affinity from the virus causing the COVID-19 outbreak to a progenitor type of SARS-CoV-2. SARS-CoV-2, which could be the principal reservoir, is phylogenetically related to the SARS-like bat virus. Other research works reported that intermediary hosts for the transmission of viruses to humans could include cats, bats, snakes, pigs, ferrets, orangutans, and monkeys. Even with the arrival of vaccines and individuals getting vaccinated and treated with FDAapproved repurposed drugs like Remdesivir, the first and foremost steps aimed towards the possible control and minimization of community transmission of the virus include social distancing, self-realization, and self-health care. In this review paper, we discussed and summarized various approaches and methodologies adopted and proposed by researchers all over the globe to help with the management of this zoonotic outbreak by following repurposed approaches.
Collapse
Affiliation(s)
- Soumik Chaudhury
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Paranjeet Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Deepali Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Palak Anand
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Manish Chaudhary
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Siddhita Tiwari
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Amit Mittal
- Faculty of Pharmaceutical Sciences, Desh Bhagat University, Amloh Road, Mandi Gobindgarh, 147301, Punjab, India
| | - Jeena Gupta
- School of Bioscience, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Sukhmeen Kaur
- Department of Opthalmology, Punjab Institute of Medical Sciences, Jalandhar, 144001, Punjab, India
| | - Varsh Deep Singh
- American University of Barbados, Wildey, St. Michael, BB11100, Barbados
| | - Dakshita Dhawan
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Princejyot Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144411, Punjab, India
| |
Collapse
|
27
|
Söderberg M, Magnusson M, Swaid J, Jakobsson K, Rosengren A. Undervalued essential work and lacking health literacy as determinants of COVID-19 infection risks: a qualitative interview study among foreign-born workers in Sweden. BMJ Open 2023; 13:e069838. [PMID: 38086584 PMCID: PMC10729212 DOI: 10.1136/bmjopen-2022-069838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
OBJECTIVES To investigate work and living conditions as determinants of COVID-19 infection risks in foreign-born workers in non-healthcare occupations. DESIGN Data were collected according to a qualitative design, using semistructured interviews. Verbatim transcripts of these interviews were analysed according to systematic text condensation. PARTICIPANTS We recruited foreign-born workers (n=15) and union representatives (n=6) among taxi drivers, bus and tram drivers, pizza bakers, cleaners and property caretakers, all indicated as risk occupations during COVID-19 in Sweden. RESULTS Four overarching themes were found: 'virus exposure at work', 'aspects of low status and undervalued work', 'lack of access to information' and 'foreign-born persons' position'. Virus exposure was frequent due to many social interactions over a workday, out of which several were physically close, sometimes to the point of touching. The respondents fulfilled important societal functions, but their work was undervalued due to low job status, and they had little influence on improving safety at work. Lack of health literacy limited foreign-born workers to access information about COVID-19 infection risks and protection, since most information from health organisations and employers was only available in Swedish and not adapted to their living conditions or disseminated through unknown channels. Instead, many turned to personal contacts or social media, through which a lot of misinformation was spread. Foreign-born persons were also subjected to exploitation since a Swedish residency permit could depend on maintaining employment, making it almost impossible to make demands for improved safety at work. CONCLUSIONS Structural factors and a lack of adapted information manifested themselves as fewer possibilities for protection against COVID-19. In a globalised world, new widespread diseases are likely to occur, and more knowledge is needed to protect all workers equally. Our results are transferable to similar contexts and bring forth aspects that can be tried in quantitative studies or public health interventions.Cite Now.
Collapse
Affiliation(s)
- Mia Söderberg
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Magnusson
- Angered Hospital, Hospitals West, Region Västra Götaland, Gothenburg, Sweden
| | - Juhaina Swaid
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Jakobsson
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Xiao S, Yuan Z, Huang Y. The Potential Role of Nitric Oxide as a Therapeutic Agent against SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:17162. [PMID: 38138990 PMCID: PMC10742813 DOI: 10.3390/ijms242417162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become the greatest worldwide public health threat of this century, which may predispose multi-organ failure (especially the lung) and death despite numerous mild and moderate symptoms. Recent studies have unraveled the molecular and clinical characteristics of the infectivity, pathogenicity, and immune evasion of SARS-CoV-2 and thus improved the development of many different therapeutic strategies to combat COVID-19, including treatment and prevention. Previous studies have indicated that nitric oxide (NO) is an antimicrobial and anti-inflammatory molecule with key roles in pulmonary vascular function in the context of viral infections and other pulmonary disease states. This review summarized the recent advances of the pathogenesis of SARS-CoV-2, and accordingly elaborated on the potential application of NO in the management of patients with COVID-19 through antiviral activities and anti-inflammatory properties, which mitigate the propagation of this disease. Although there are some limits of NO in the treatment of COVID-19, it might be a worthy candidate in the multiple stages of COVID-19 prevention or therapy.
Collapse
Affiliation(s)
| | | | - Yi Huang
- National Biosafety Laboratory, Chinese Academy of Sciences, Wuhan 430020, China
| |
Collapse
|
29
|
Lin J, Anjum Huma F, Irfan A, Ali SS, Waheed Y, Mohammad A, Munir M, Khan A, Wei DQ. Structural plasticity of omicron BA.5 and BA.2.75 for enhanced ACE-dependent entry into cells. J Biomol Struct Dyn 2023; 41:10762-10773. [PMID: 36541923 DOI: 10.1080/07391102.2022.2158944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The current study investigated the binding variations among the wilt type, Omicron sub-variants BA.2.75 and BA.5, using protein-protein docking, protein structural graphs (P SG), and molecular simulation methods. HADDOCK predicted docking scores and dissociation constant (KD) revealed tighter binding of these sub-variants in contrast to the WT. Further investigation revealed variations in the hub residues, protein sub-networks, and GlobalMetapath in these variants as compared to the WT. A very unusual dynamic for BA.2.75 and BA.5 was observed, and secondary structure transition can also be witnessed in the loops (44-505). The results show that the flexibility of these three loops is increased by the mutations as an allosteric effect and thus enhances the chances of bonding with the nearby residues to connect and form a stable connection. Furthermore, the additional hydrogen bonding contacts steer the robust binding of these variants in contrast to the wild type. The total binding free energy for the wild type was calculated to be -61.38 kcal/mol, while for BA.2.75 and BA.5 variants the T BE was calculated to be -70.42 kcal/mol and 69.78 kcal/mol, respectively. We observed that the binding of BA.2.75 is steered by the electrostatic interactions while the BA.5 additional contacts are due to the vdW (Van der Waal) energy. From these findings, it can be observed the Spike (S) protein is undergoing structural adjustments to bind efficiently to the hACE2 (human angiotensin-converting enzyme 2) receptor and, in turn, increase entry to the host cells. The current study will aid the development of structure-based drugs against these variants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Junqi Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | | | - Aiza Irfan
- Rawalpindi Medical University, Punjab, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation & Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan
| | - Anwar Mohammad
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, P.R. China
- Peng Cheng Laboratory, Nashan District, Shenzhen, Guangdong, P.R China
| |
Collapse
|
30
|
Chiu KHY, Sridhar S, Yuen KY. Preparation for the next pandemic: challenges in strengthening surveillance. Emerg Microbes Infect 2023; 12:2240441. [PMID: 37474466 PMCID: PMC10478602 DOI: 10.1080/22221751.2023.2240441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
The devastating Coronavirus Disease 2019 (COVID-19) pandemic indicates that early detection of candidates with pandemic potential is vital. However, comprehensive metagenomic sequencing of the total microbiome is not practical due to the astronomical and rapidly evolving numbers and species of micro-organisms. Analysis of previous pandemics suggests that an increase in human-animal interactions, changes in animal and arthropod distribution due to climate change and deforestation, continuous mutations and interspecies jumping of RNA viruses, and frequent travels are important factors driving pandemic emergence. Besides measures mitigating these factors, surveillance at human-animal interfaces targeting animals with unusual tolerance to viral infections, sick heathcare workers, and workers at high biosafety level laboratories is crucial. Surveillance of sick travellers is important when alerted by an early warning system of a suspected outbreak due to unknown agents. These samples should be screened by multiplex nucleic acid amplification and subsequent unbiased next-generation sequencing. Novel viruses should be isolated in routine cell cultures, complemented by organoid cultures, and then tested in animal models for interspecies transmission potential. Potential agents are candidates for designing rapid diagnostics, therapeutics, and vaccines. For early detection of outbreaks, there are advantages in using event-based surveillance and artificial intelligence (AI), but high background noise and censorship are possible drawbacks. These systems are likely useful if they channel reliable information from frontline healthcare or veterinary workers and large international gatherings. Furthermore, sufficient regulation of high biosafety level laboratories, and stockpiling of broad spectrum antiviral drugs, vaccines, and personal protective equipment are indicated for pandemic preparedness.
Collapse
Affiliation(s)
- Kelvin Hei-Yeung Chiu
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, People's Republic of China
| | - Siddharth Sridhar
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
- Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
31
|
Zhou B, Zhou R, Chan JFW, Zeng J, Zhang Q, Yuan S, Liu L, Robinot R, Shan S, Liu N, Ge J, Kwong HYH, Zhou D, Xu H, Chan CCS, Poon VKM, Chu H, Yue M, Kwan KY, Chan CY, Chan CCY, Chik KKH, Du Z, Au KK, Huang H, Man HO, Cao J, Li C, Wang Z, Zhou J, Song Y, Yeung ML, To KKW, Ho DD, Chakrabarti LA, Wang X, Zhang L, Yuen KY, Chen Z. SARS-CoV-2 hijacks neutralizing dimeric IgA for nasal infection and injury in Syrian hamsters 1. Emerg Microbes Infect 2023; 12:2245921. [PMID: 37542391 PMCID: PMC10444022 DOI: 10.1080/22221751.2023.2245921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
Prevention of robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) requires in vivo evaluation of IgA neutralizing antibodies. Here, we report the efficacy of receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1, B8-dIgA2 and TH335-dIgA1 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparable neutralization potency against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viral loads in lungs significantly, prophylactic intranasal B8-dIgA unexpectedly led to high amount of infectious viruses and extended damage in NT compared to controls. Mechanistically, B8-dIgA failed to inhibit SARS-CoV-2 cell-to-cell transmission, but was hijacked by the virus through dendritic cell-mediated trans-infection of NT epithelia leading to robust nasal infection. Cryo-EM further revealed B8 as a class II antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Neutralizing dIgA, therefore, may engage an unexpected mode of SARS-CoV-2 nasal infection and injury.
Collapse
Affiliation(s)
- Biao Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Hainan-Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, and Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People’s Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jianwei Zeng
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Qi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Shuofeng Yuan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Li Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Rémy Robinot
- Control of Chronic Viral Infections Group, Virus & Immunity Unit, Institute Pasteur, Paris, France; CNRS UMR, Paris, France
| | - Sisi Shan
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Hugo Yat-Hei Kwong
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Dongyan Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chris Chung-Sing Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Vincent Kwok-Man Poon
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Hin Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Ming Yue
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ka-Yi Kwan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chun-Yin Chan
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Chris Chun-Yiu Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Kenn Ka-Heng Chik
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhenglong Du
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ka-Kit Au
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Haode Huang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Hiu-On Man
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Jianli Cao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Cun Li
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Ziyi Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Jie Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Youqiang Song
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Man-Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group, Virus & Immunity Unit, Institute Pasteur, Paris, France; CNRS UMR, Paris, France
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Linqi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Center for Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Hainan-Medical University – The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, and Academician Workstation of Hainan Province, Hainan Medical University, Haikou, People’s Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Pak Shek Kok, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
32
|
Nematollahi MH, Mehrabani M, Hozhabri Y, Mirtajaddini M, Iravani S. Antiviral and antimicrobial applications of chalcones and their derivatives: From nature to greener synthesis. Heliyon 2023; 9:e20428. [PMID: 37810815 PMCID: PMC10556610 DOI: 10.1016/j.heliyon.2023.e20428] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/10/2023] Open
Abstract
Chalcones and their derivatives have been widely studied due to their versatile pharmacological and biological activities, such as anti-inflammatory, antibacterial, antiviral, and antitumor effects. These compounds have shown suitable antiviral effects through the selective targeting of a variety of viral enzymes, including lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fumarate reductase, protein tyrosine phosphatase, topoisomerase-II, protein kinases, integrase/protease, and lactate/isocitrate dehydrogenase, among others. Chalcones and their derivatives have displayed excellent potential for combating pathogenic bacteria and fungi (especially, multidrug-resistant bacteria). However, relevant mechanisms should be further explored, focusing on inhibitory effects against DNA gyrase B, UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), and efflux pumps (e.g., NorA), among others. In addition, the antifungal and antiparasitic activities of these compounds (e.g., antitrypanosomal and antileishmanial properties) have prompted additional explorations. Nonetheless, systematic analysis of the relevant mechanisms, biosafety issues, and pharmacological properties, as well as clinical translation studies, are vital for practical applications. Herein, recent advancements pertaining to the antibacterial, antiviral, antiparasitic, and antifungal activities of chalcones and their derivatives are deliberated, focusing on the relevant mechanisms of action, crucial challenges, and future prospects. Furthermore, due to the great importance of greener and more sustainable synthesis of these valuable compounds, especially on an industrial scale, the progress made in this field has been briefly discussed. Hopefully, this review can serve as a catalyst for researchers to delve deeper into the exploration and designing of novel chalcone compounds with medicinal properties, especially against pathogenic viruses and multidrug-resistant bacteria as major causes of concern for human health.
Collapse
Affiliation(s)
- Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Hozhabri
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryamossadat Mirtajaddini
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| |
Collapse
|
33
|
Mokhria RK, Bhardwaj JK, Sanghi AK. History, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment of COVID-19: A review. World J Meta-Anal 2023; 11:266-276. [DOI: 10.13105/wjma.v11.i6.266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
In December, 2019, pneumonia triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surfaced in Wuhan, China. An acute respiratory illness named coronavirus disease 2019 (COVID-19) is caused by a new coronavirus designated as SARS-CoV-2. COVID-19 has surfaced as a major pandemic in the 21st century as yet. The entire world has been affected by this virus. World Health Organization proclaimed COVID-19 pandemic as a public health emergency of international concern on January 30, 2020. SARS-CoV-2 shares the same genome as coronavirus seen in bats. Therefore, bats might be its natural host of this virus. It primarily disseminates by means of the respiratory passage. Evidence revealed human-to-human transmission. Fever, cough, tiredness, and gastrointestinal illness are the manifestations in COVID-19-infected persons. Senior citizens are more vulnerable to infections which can lead to dangerous consequences. Various treatment strategies including antiviral therapies are accessible for the handling of this disease. In this review, we organized the most recent findings on COVID-19 history, origin, transmission, genome structure, replication, epidemiology, pathogenesis, clinical features, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Rajesh Kumar Mokhria
- Department of School Education, Government Model Sanskriti Senior Secondary School, Chulkana, Panipat, 132101, Haryana, India
| | - Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Ashwani Kumar Sanghi
- School of Allied and Health Sciences, MVN University, Palwal 121102, Haryana, India
| |
Collapse
|
34
|
AlSamhori JF, Alshrouf MA, AlSamhori ARF, Alshadeedi FM, Madi AS, Alzoubi O. Implications of the COVID-19 pandemic on athletes, sports events, and mass gathering events: Review and recommendations. SPORTS MEDICINE AND HEALTH SCIENCE 2023; 5:165-173. [PMID: 37753427 PMCID: PMC10518794 DOI: 10.1016/j.smhs.2023.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 09/28/2023] Open
Abstract
Since the coronavirus disease 19 (COVID-19), which caused several respiratory diseases, was formally declared a global pandemic by the World Health Organization (WHO) on March 11, 2020, it affected the lifestyle and health of athletes, both directly through cardiorespiratory and other health related effects, and indirectly as the pandemic has forced the suspension, postponement, or cancellation of most professional sporting events around the world. In this review, we explore the journey of athletes throughout the pandemic and during their return to their competitive routine. We also highlight potential pitfalls during the process and summarize the recommendations for the optimal return to sport participation. We further discuss the impact of the pandemic on the psychology of athletes, the variance between the team and individual athletes, and their ability to cope with the changes. Moreover, we specifically reviewed the pandemic impact on younger professional athletes in terms of mental and fitness health. Finally, we shaded light on the various impacts of mass gathering events and recommendations for managing upcoming events.
Collapse
Affiliation(s)
| | - Mohammad Ali Alshrouf
- Medical Internship, Jordan University Hospital, The University of Jordan, Amman, 11942, Jordan
| | | | | | | | | |
Collapse
|
35
|
Tesfaye AH, Mekonnen TH, Desye B, Yenealem DG. Infection Prevention and Control Practices and Associated Factors Among Healthcare Cleaners in Gondar City: An Analysis of a Cross-Sectional Survey in Ethiopia. Risk Manag Healthc Policy 2023; 16:1317-1330. [PMID: 37492624 PMCID: PMC10363670 DOI: 10.2147/rmhp.s419110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023] Open
Abstract
Background Healthcare-associated infections are a global health problem and are more prevalent in developing countries such as Ethiopia, but there is a paucity of research on the infection prevention practices of cleaning staff. Therefore, this study aimed to assess infection prevention and control practices and associated factors among cleaners working in healthcare facilities in Gondar City, Ethiopia. Methodology A cross-sectional survey was conducted among healthcare cleaning staff from May to June 2022. A total of 428 cleaners took part in the survey. Data were collected using a semi-structured interviewer-administered questionnaire. The data were entered into EpiData version 4.6 and analyzed using Stata version 14 software. A multivariable binary logistic regression analysis was used to ascertain the significance of associations at <0.05 p-value and the adjusted odds ratio (AOR) with a 95% confidence interval (CI). Results Among the 390 study participants included, 294 (75.1%) were female. Of the surveyed participants, 186 (47.7%) had good knowledge of infection prevention and control practices. This study revealed that out of the 390 healthcare cleaners, 204 (52.3%) had good infection prevention and control practices with 52.3% [95% CI (47.2, 56.4)]. Good knowledge of infection prevention and control [AOR: 1.56, 95% CI (1.03, 2.37)] and the availability of infection prevention and control guidelines in the workplace [AOR: 1.54, 95% CI (1.01, 2.33)] were significant factors associated with infection prevention and control practice. Conclusion The present study found that almost half of the healthcare cleaners had poor IPC practices. The finding underlines the importance of good IPC knowledge and the accessibility of IPC guidelines to improve IPC practices among healthcare cleaning staff. The findings of this study also highlight that behavioral change interventions and paying attention, particularly to nonclinical staff such as cleaners in health care settings, are critical to reducing infection in health care settings.
Collapse
Affiliation(s)
- Amensisa Hailu Tesfaye
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tesfaye Hambisa Mekonnen
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belay Desye
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Dawit Getachew Yenealem
- Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
36
|
Maity S, Santra A, Vardhan Hebbani A, Pulakuntla S, Chatterjee A, Rao Badri K, Damodara Reddy V. Targeting cytokine storm as the potential anti-viral therapy: Implications in regulating SARS-CoV-2 pathogenicity. Gene 2023:147612. [PMID: 37423400 DOI: 10.1016/j.gene.2023.147612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The latest global pandemic corona virus disease - 2019 (COVID-19) caused by the virus SARS-CoV-2 is still a matter of worrying concern both for the scientific communities and health care organizations. COVID-19 disease is proved to be a highly contagious disease transmitted through respiratory droplets and even close contact with affected individuals. COVID-19 disease is also understood to exhibit diverse symptoms of ranging severities i.e., from mild fatigue to death. Affected individuals' susceptibility to induce immunologic dysregulation phenomena termed 'cytokine storm' seems to be playing the damaging role of escalating the disease manifestation from mild to severe. Cytokine storm in patients with severe symptoms is understood to be characterized by enhanced serum levels of many cytokines including interleukin-1β, interleukin-6, IL-10, TNF, interferon-γ, MIP-1α, MIP-1β and VEGF. Since cytokine production in general is the most important antiviral defense response, understanding the COVID-19 associated cytokine storm in particular and differentiating it from the regular cytokine production response becomes crucial in developing an effective therapeutic strategy.This review focuses on the potential targeting of COVID-19 associated cytokine storm and its challenges.
Collapse
Affiliation(s)
- Subashish Maity
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Ayantika Santra
- Department of Biochemistry, Indian Academy Degree College, Bengaluru, 560 043, India
| | | | - Swetha Pulakuntla
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Kameswara Rao Badri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Morehouse School of Medicine, GA, Atlanta-30310, USA; Clinical Analytical Chemistry Laboratory, COVID-19 Testing Laboratory, Morehouse School of Medicine, GA, Atlanta-30310, USA.
| | - Vaddi Damodara Reddy
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India.
| |
Collapse
|
37
|
Lee HJ, Choi H, Nowakowska A, Kang LW, Kim M, Kim YB. Antiviral Activity Against SARS-CoV-2 Variants Using in Silico and in Vitro Approaches. J Microbiol 2023; 61:703-711. [PMID: 37358709 DOI: 10.1007/s12275-023-00062-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emergence in 2019 led to global health crises and the persistent risk of viral mutations. To combat SARS-CoV-2 variants, researchers have explored new approaches to identifying potential targets for coronaviruses. This study aimed to identify SARS-CoV-2 inhibitors using drug repurposing. In silico studies and network pharmacology were conducted to validate targets and coronavirus-associated diseases to select potential candidates, and in vitro assays were performed to evaluate the antiviral effects of the candidate drugs to elucidate the mechanisms of the viruses at the molecular level and determine the effective antiviral drugs for them. Plaque and cytopathic effect reduction were evaluated, and real-time quantitative reverse transcription was used to evaluate the antiviral activity of the candidate drugs against SARS-CoV-2 variants in vitro. Finally, a comparison was made between the molecular docking binding affinities of fenofibrate and remdesivir (positive control) to conventional and identified targets validated from protein-protein interaction (PPI). Seven candidate drugs were obtained based on the biological targets of the coronavirus, and potential targets were identified by constructing complex disease targets and PPI networks. Among the candidates, fenofibrate exhibited the strongest inhibition effect 1 h after Vero E6 cell infection with SARS-CoV-2 variants. This study identified potential targets for coronavirus disease (COVID-19) and SARS-CoV-2 and suggested fenofibrate as a potential therapy for COVID-19.
Collapse
Affiliation(s)
- Hee-Jung Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hanul Choi
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Aleksandra Nowakowska
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Minjee Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Young Bong Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
38
|
Wong SC, Chau PH, So SYC, Chiu KHY, Yuen LLH, AuYeung CHY, Lam GKM, Chan VWM, Chen JHK, Chen H, Li X, Ho PL, Chan SSC, Yuen KY, Cheng VCC. Epidemiology of multidrug-resistant organisms before and during COVID-19 in Hong Kong. Infect Prev Pract 2023; 5:100286. [PMID: 37223243 PMCID: PMC10165868 DOI: 10.1016/j.infpip.2023.100286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) has influenced antimicrobial consumption and incidence of multidrug-resistant organisms (MDROs). We aimed to study the epidemiology of MDROs before and during the COVID-19 pandemic in Hong Kong. Methods With the maintenance of infection control measures, we described the trend of MDRO infections, including methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Acinetobacter species (CRA), and extended-spectrum-beta-lactamase-(ESBL)-producing Enterobacterales, in a healthcare region with 3100-bed before (1 January 2016 to 31 December 2019, period 1) and during COVID-19 (1 January 2020 to 30 September 2022, period 2), together with the antimicrobial consumption using piecewise Poisson regression. The epidemiological characteristics of newly diagnosed COVID-19 patients with or without MDRO infections were analyzed. Results Between period 1 and 2, we observed a significant increase in the trend of CRA infections (P<0.001), while there was no significant increase in the trend of MRSA (P=0.742) and ESBL-producing Enterobacterales (P=0.061) infections. Meanwhile, a significant increase in the trend of carbapenems (P<0.001), extended-spectrum beta-lactam-beta-lactamase inhibitor combinations (BLBI) (P=0.045), and fluoroquinolones (P=0.009) consumption was observed. The observed opportunity (23,540 ± 3703 vs 26,145 ± 2838, p=0.359) and compliance (81.6% ± 0.5% vs 80.1% ± 0.8%, P=0.209) of hand hygiene per year was maintained. In a multivariable model, older age, male sex, referral from residential care home for the elderly, presence of indwelling device, presence of endotracheal tube, and use of carbapenems, use of BLBI, use of proton pump inhibitors and history of hospitalization in the past 3 months were associated with higher risks of infections by MDROs among COVID-19 patients. Conclusion Infection control measures may control the surge of MDROs despite an increasing trend of antimicrobial consumption.
Collapse
Affiliation(s)
- Shuk-Ching Wong
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Pui-Hing Chau
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Simon Yung-Chun So
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Kelvin Hei-Yeung Chiu
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Lithia Lai-Ha Yuen
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Christine Ho-Yan AuYeung
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Germaine Kit-Ming Lam
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Veronica Wing-Man Chan
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Jonathan Hon-Kwan Chen
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Hong Chen
- Centre for Health Protection, Department of Health, Hong Kong Special Administrative Region, China
| | - Xin Li
- Carol Yu Center for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pak-Leung Ho
- Carol Yu Center for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Sophia Siu-Chee Chan
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- Carol Yu Center for Infection, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent Chi-Chung Cheng
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| |
Collapse
|
39
|
D'Arco A, Di Fabrizio M, Mancini T, Mosetti R, Macis S, Tranfo G, Della Ventura G, Marcelli A, Petrarca M, Lupi S. Secondary Structures of MERS-CoV, SARS-CoV, and SARS-CoV-2 Spike Proteins Revealed by Infrared Vibrational Spectroscopy. Int J Mol Sci 2023; 24:ijms24119550. [PMID: 37298500 DOI: 10.3390/ijms24119550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
All coronaviruses are characterized by spike glycoproteins whose S1 subunits contain the receptor binding domain (RBD). The RBD anchors the virus to the host cellular membrane to regulate the virus transmissibility and infectious process. Although the protein/receptor interaction mainly depends on the spike's conformation, particularly on its S1 unit, their secondary structures are poorly known. In this paper, the S1 conformation was investigated for MERS-CoV, SARS-CoV, and SARS-CoV-2 at serological pH by measuring their Amide I infrared absorption bands. The SARS-CoV-2 S1 secondary structure revealed a strong difference compared to those of MERS-CoV and SARS-CoV, with a significant presence of extended β-sheets. Furthermore, the conformation of the SARS-CoV-2 S1 showed a significant change by moving from serological pH to mild acidic and alkaline pH conditions. Both results suggest the capability of infrared spectroscopy to follow the secondary structure adaptation of the SARS-CoV-2 S1 to different environments.
Collapse
Affiliation(s)
- Annalisa D'Arco
- Laboratori Nazionali Frascati, National Institute for Nuclear Physics (INFN-LNF), Via E. Fermi 54, 00044 Frascati, Italy
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
| | - Marta Di Fabrizio
- Laboratory of Biological Electron Microscopy, School of Basic Sciences, Institute of Physics, EPFL & Department of Fundamental Microbiology, Faculty of Biology and Medicine, UNIL, 1015 Lausanne, Switzerland
| | - Tiziana Mancini
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
| | - Rosanna Mosetti
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
| | - Salvatore Macis
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy
| | - Giancarlo Della Ventura
- Laboratori Nazionali Frascati, National Institute for Nuclear Physics (INFN-LNF), Via E. Fermi 54, 00044 Frascati, Italy
- Department of Science, University Rome Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy
| | - Augusto Marcelli
- Laboratori Nazionali Frascati, National Institute for Nuclear Physics (INFN-LNF), Via E. Fermi 54, 00044 Frascati, Italy
- Rome International Centre for Materials Science Superstipes, Via dei Sabelli 119A, 00185 Rome, Italy
| | - Massimo Petrarca
- National Institute for Nuclear Physics Section Rome1, P.le A. Moro 2, 00185 Rome, Italy
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome 'La Sapienza', Via Scarpa 16, 00161 Rome, Italy
| | - Stefano Lupi
- Department of Physics, University of Rome 'La Sapienza', P.le A. Moro 2, 00185 Rome, Italy
- National Institute for Nuclear Physics Section Rome1, P.le A. Moro 2, 00185 Rome, Italy
| |
Collapse
|
40
|
Sahoo S, Rathod W, Vardikar H, Biswal M, Mohanty S, Nayak SK. Biomedical waste plastic: bacteria, disinfection and recycling technologies-a comprehensive review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 21:1-18. [PMID: 37360566 PMCID: PMC10189688 DOI: 10.1007/s13762-023-04975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
Plastic recycling reduces the wastage of potentially useful materials as well as the consumption of virgin materials, thereby lowering the energy consumption, air pollution by incineration, soil and water pollution by landfilling. Plastics used in the biomedical sector have played a significant role. Reducing the transmission of the virus while protecting the human life in particular the frontline workers. Enormous volumes of plastics in biomedical waste have been observed during the outbreak of the pandemic COVID-19. This has resulted from the extensive use of personal protective equipment such as masks, gloves, face shields, bottles, sanitizers, gowns, and other medical plastics which has created challenges to the existing waste management system in the developing countries. The current review focuses on the biomedical waste and its classification, disinfection, and recycling technology of different types of plastics waste generated in the sector and their corresponding approaches toward end-of-life option and value addition. This review provides a broader overview of the process to reduce the volume of plastics from biomedical waste directly entering the landfill while providing a knowledge step toward the conversion of "waste" to "wealth." An average of 25% of the recyclable plastics are present in biomedical waste. All the processes discussed in this article accounts for cleaner techniques and a sustainable approach to the treatment of biomedical waste. Graphical abstract
Collapse
Affiliation(s)
- S. Sahoo
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
- Ravenshaw University, Cuttack, Odisha 753003 India
| | - W. Rathod
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
| | - H. Vardikar
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
| | - M. Biswal
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
| | - S. Mohanty
- Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemical Engineering and Technology, Bhubaneswar, Odisha 751024 India
| | - S. K. Nayak
- Ravenshaw University, Cuttack, Odisha 753003 India
| |
Collapse
|
41
|
Toussi SS, Hammond JL, Gerstenberger BS, Anderson AS. Therapeutics for COVID-19. Nat Microbiol 2023; 8:771-786. [PMID: 37142688 DOI: 10.1038/s41564-023-01356-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
Vaccines and monoclonal antibody treatments to prevent severe coronavirus disease 2019 (COVID-19) illness were available within a year of the pandemic being declared but there remained an urgent need for therapeutics to treat patients who were not vaccinated, were immunocompromised or whose vaccine immunity had waned. Initial results for investigational therapies were mixed. AT-527, a repurposed nucleoside inhibitor for hepatitis C virus, enabled viral load reduction in a hospitalized cohort but did not reduce viral load in outpatients. The nucleoside inhibitor molnupiravir prevented death but failed to prevent hospitalization. Nirmatrelvir, an inhibitor of the main protease (Mpro), co-dosed with the pharmacokinetic booster ritonavir, reduced hospitalization and death. Nirmatrelvir-ritonavir and molnupiravir received an Emergency Use Authorization in the United States at the end of 2021. Immunomodulatory drugs such as baricitinib, tocilizumab and corticosteroid, which target host-driven COVID-19 symptoms, are also in use. We highlight the development of COVID-19 therapies and the challenges that remain for anticoronavirals.
Collapse
|
42
|
Santos-Mendoza T. The Envelope (E) Protein of SARS-CoV-2 as a Pharmacological Target. Viruses 2023; 15:v15041000. [PMID: 37112980 PMCID: PMC10143767 DOI: 10.3390/v15041000] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus is still a global health concern. Several spike (S) protein-based vaccines have been developed that efficiently protect the human population against severe forms of COVID-19. However, some SARS-CoV-2 variants of concern (VOCs) have emerged that evade the protective effect of vaccine-induced antibodies. Therefore, efficient and specific antiviral treatments to control COVID-19 are indispensable. To date, two drugs have been approved for mild COVID-19 treatment; nevertheless, more drugs, preferably broad-spectrum and ready-to-use therapeutic agents for new pandemics, are needed. Here, I discuss the PDZ-dependent protein-protein interactions of the viral E protein with host proteins as attractive alternatives for the development of antivirals against coronavirus.
Collapse
Affiliation(s)
- Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
43
|
Markov PV, Ghafari M, Beer M, Lythgoe K, Simmonds P, Stilianakis NI, Katzourakis A. The evolution of SARS-CoV-2. Nat Rev Microbiol 2023; 21:361-379. [PMID: 37020110 DOI: 10.1038/s41579-023-00878-2] [Citation(s) in RCA: 551] [Impact Index Per Article: 275.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths and substantial morbidity worldwide. Intense scientific effort to understand the biology of SARS-CoV-2 has resulted in daunting numbers of genomic sequences. We witnessed evolutionary events that could mostly be inferred indirectly before, such as the emergence of variants with distinct phenotypes, for example transmissibility, severity and immune evasion. This Review explores the mechanisms that generate genetic variation in SARS-CoV-2, underlying the within-host and population-level processes that underpin these events. We examine the selective forces that likely drove the evolution of higher transmissibility and, in some cases, higher severity during the first year of the pandemic and the role of antigenic evolution during the second and third years, together with the implications of immune escape and reinfections, and the increasing evidence for and potential relevance of recombination. In order to understand how major lineages, such as variants of concern (VOCs), are generated, we contrast the evidence for the chronic infection model underlying the emergence of VOCs with the possibility of an animal reservoir playing a role in SARS-CoV-2 evolution, and conclude that the former is more likely. We evaluate uncertainties and outline scenarios for the possible future evolutionary trajectories of SARS-CoV-2.
Collapse
Affiliation(s)
- Peter V Markov
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
- London School of Hygiene & Tropical Medicine, University of London, London, UK.
| | - Mahan Ghafari
- Big Data Institute, University of Oxford, Oxford, UK
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | | | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos I Stilianakis
- European Commission, Joint Research Centre (JRC), Ispra, Italy
- Department of Biometry and Epidemiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
44
|
Li F, Ghiabi P, Hajian T, Klima M, Li ASM, Khalili Yazdi A, Chau I, Loppnau P, Kutera M, Seitova A, Bolotokova A, Hutchinson A, Perveen S, Boura E, Vedadi M. SS148 and WZ16 inhibit the activities of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses. Biochim Biophys Acta Gen Subj 2023; 1867:130319. [PMID: 36764586 PMCID: PMC9908617 DOI: 10.1016/j.bbagen.2023.130319] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Seven coronaviruses have infected humans (HCoVs) to-date. SARS-CoV-2 caused the current COVID-19 pandemic with the well-known high mortality and severe socioeconomic consequences. MERS-CoV and SARS-CoV caused epidemic of MERS and SARS, respectively, with severe respiratory symptoms and significant fatality. However, HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 cause respiratory illnesses with less severe symptoms in most cases. All coronaviruses use RNA capping to evade the immune systems of humans. Two viral methyltransferases, nsp14 and nsp16, play key roles in RNA capping and are considered valuable targets for development of anti-coronavirus therapeutics. But little is known about the kinetics of nsp10-nsp16 methyltransferase activities of most HCoVs, and reliable assays for screening are not available. Here, we report the expression, purification, and kinetic characterization of nsp10-nsp16 complexes from six HCoVs in parallel with previously characterized SARS-CoV-2. Probing the active sites of all seven by SS148 and WZ16, the two recently reported dual nsp14 / nsp10-nsp16 inhibitors, revealed pan-inhibition. Overall, our study show feasibility of developing broad-spectrum dual nsp14 / nsp10-nsp16-inhibitor therapeutics.
Collapse
Affiliation(s)
- Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, Czech Republic
| | - Alice Shi Ming Li
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Maria Kutera
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Almagul Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Albina Bolotokova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, Czech Republic
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada; QBI COVID-19 Research Group (QCRG), San Francisco, CA, USA.
| |
Collapse
|
45
|
Hosseinpour Moghadam N, Najafi R, Ghanbariasad A, Shiralizadeh Dezfuli A, Jalali A. Improving the selective naked-eye detection of COVID-19 mediated by simultaneously using three different target oligonucleotides coated on plasmonic AuNPs/hexagonal Ag@AuNPs. J Biomol Struct Dyn 2023; 41:14372-14381. [PMID: 36995117 DOI: 10.1080/07391102.2023.2193989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/10/2023] [Indexed: 03/31/2023]
Abstract
The localized surface plasmon resonance (LSPR) phenomenon provides a versatile property in biosensor technology. This uncommon feature was utilized to produce a homogeneous optical biosensor to detect COVID-19 by the naked-eye readout. In this work, we synthesized two types of plasmonic nanoparticles: (i) AuNPs and (ii) hexagonal core-shell nanoparticles-Au shell on AgNPs (Au@AgNPs). We report herein the development of two colorimetric biosensors employing the efficient targeting and the binding ability for three regions of the COVID-19 genome, that is, S-gene, N-gene and E-gene, at the same time. Two AuNPs and Ag@AuNPs individually coated with three different targets oligonucleotide sequence (TOs) (AuNPs-TOs-mix and Ag@AuNPs-TOs-mix) for simultaneous detection of S-gene, N-gene and E-gene of the COVID-19 virus, using the LSPR and naked-eye methods in the laboratory and biological samples. The target COVID-19 genome RNA detected using the AuNPs-TOs-mix and Ag@AuNPs-TOs-mix can achieve the same sensitivity. The detection ranges by the AuNPs-TOs-mix and Ag@AuNPs-TOs-mix are both sufficiently improved in equal amounts in comparison to any of the AuNPs-TOs and Ag@AuNPs-TOs. The sensitivity of the current COVID-19 biosensors were 94% and 96% based on the number of positive samples detected for AuNPs-TOs-mix and Ag@AuNPs-TOs-mix, respectively. Moreover, all the real-time PCR confirmed negative samples obtained the same results by the biosensor; accordingly, the specificity of this approach got to 100%. The current study reports a selective, reliable, reproducible and visual 'naked-eye' detection of COVID-19, devoid of the requirement of any sophisticated instrumental techniques.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Akram Jalali
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
46
|
Tarim EA, Anil Inevi M, Ozkan I, Kecili S, Bilgi E, Baslar MS, Ozcivici E, Oksel Karakus C, Tekin HC. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: recent advances and future directions. Biomed Microdevices 2023; 25:10. [PMID: 36913137 PMCID: PMC10009869 DOI: 10.1007/s10544-023-00649-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/14/2023]
Abstract
The COVID-19 pandemic has posed significant challenges to existing healthcare systems around the world. The urgent need for the development of diagnostic and therapeutic strategies for COVID-19 has boomed the demand for new technologies that can improve current healthcare approaches, moving towards more advanced, digitalized, personalized, and patient-oriented systems. Microfluidic-based technologies involve the miniaturization of large-scale devices and laboratory-based procedures, enabling complex chemical and biological operations that are conventionally performed at the macro-scale to be carried out on the microscale or less. The advantages microfluidic systems offer such as rapid, low-cost, accurate, and on-site solutions make these tools extremely useful and effective in the fight against COVID-19. In particular, microfluidic-assisted systems are of great interest in different COVID-19-related domains, varying from direct and indirect detection of COVID-19 infections to drug and vaccine discovery and their targeted delivery. Here, we review recent advances in the use of microfluidic platforms to diagnose, treat or prevent COVID-19. We start by summarizing recent microfluidic-based diagnostic solutions applicable to COVID-19. We then highlight the key roles microfluidics play in developing COVID-19 vaccines and testing how vaccine candidates perform, with a focus on RNA-delivery technologies and nano-carriers. Next, microfluidic-based efforts devoted to assessing the efficacy of potential COVID-19 drugs, either repurposed or new, and their targeted delivery to infected sites are summarized. We conclude by providing future perspectives and research directions that are critical to effectively prevent or respond to future pandemics.
Collapse
Affiliation(s)
- E Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Muge Anil Inevi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Ilayda Ozkan
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Seren Kecili
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Eyup Bilgi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - M Semih Baslar
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | | | - H Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey.
- METU MEMS Center, Ankara, Turkey.
| |
Collapse
|
47
|
New insights for infection mechanism and potential targets of COVID-19: Three Chinese patent medicines and three Chinese medicine formulas as promising therapeutic approaches. CHINESE HERBAL MEDICINES 2023; 15:157-168. [PMCID: PMC9993661 DOI: 10.1016/j.chmed.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 06/11/2022] [Indexed: 03/11/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high pathogenicity and infectiousness has become a sudden and lethal pandemic worldwide. Currently, there is no accepted specific drug for COVID-19 treatment. Therefore, it is extremely urgent to clarify the pathogenic mechanism and develop effective therapies for patients with COVID-19. According to several reliable reports from China, traditional Chinese medicine (TCM), especially for three Chinese patent medicines and three Chinese medicine formulas, has been demonstrated to effectively alleviate the symptoms of COVID-19 either used alone or in combination with Western medicines. In this review, we systematically summarized and analyzed the pathogenesis of COVID-19, the detailed clinical practice, active ingredients investigation, network pharmacology prediction and underlying mechanism verification of three Chinese patent medicines and three Chinese medicine formulas in the COVID-19 combat. Additionally, we summarized some promising and high-frequency drugs of these prescriptions and discussed their regulatory mechanism, which provides guidance for the development of new drugs against COVID-19. Collectively, by addressing critical challenges, for example, unclear targets and complicated active ingredients of these medicines and formulas, we believe that TCM will represent promising and efficient strategies for curing COVID-19 and related pandemics.
Collapse
|
48
|
Ting M, Molinari JA, Suzuki JB. Current SARS-CoV-2 Protective Strategies for Healthcare Professionals. Biomedicines 2023; 11:808. [PMID: 36979786 PMCID: PMC10044750 DOI: 10.3390/biomedicines11030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the Coronavirus disease 2019 (COVID-19). COVID-19 was first reported in China in December 2019. SARS-CoV-2 is highly contagious and spread primarily via an airborne route. Hand hygiene, surgical masks, vaccinations and boosters, air filtration, environmental sanitization, instrument sterilization, mouth rinses, and social distancing are essential infection control measures against the transmission of SARS-CoV-2. This paper aims to provide healthcare professionals with evidence-based protective strategies.
Collapse
Affiliation(s)
- Miriam Ting
- Department of Periodontics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John A. Molinari
- School of Dentistry, University of Detroit Mercy, Detroit, MI 48221, USA
| | - Jon B. Suzuki
- Department of Graduate Periodontics, University of Maryland, Baltimore, MD 20742, USA
- Department of Graduate Prosthodontics, University of Washington, Seattle, WA 98195, USA
- Department of Graduate Periodontics, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
- Department of Microbiology and Immunology (Medicine), Temple University, Philadelphia, PA 19140, USA
- Department of Periodontology and Oral Implantology (Dentistry), Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
49
|
Yildirim E, Kilickan L, Aksoy SH, Gozukucuk R, Kilic HH, Tomak Y, Dalkilic O, Tanboga IH, Kilickan FDB. Does the variant positivity and negativity affect the clinical course in COVID-19?: A cohort study. Medicine (Baltimore) 2023; 102:e33132. [PMID: 36862905 PMCID: PMC9981248 DOI: 10.1097/md.0000000000033132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
The primary aim of the current study is to analyze the clinical, laboratory, and demographic data comparing the patients with Coronavirus Disease 2019 (COVID-19) admitted to our intensive care unit before and after the UK variant was first diagnosed in December 2020. The secondary objective was to describe a treatment approach for COVID-19. Between Mar 12, 2020, and Jun 22, 2021, 159 patients with COVID-19 were allocated into 2 groups: the variant negative group (77 patients before December 2020) and the variant positive group (82 patients after December 2020). The statistical analyses included early and late complications, demographic data, symptoms, comorbidities, intubation and mortality rates, and treatment options. Regarding early complications, unilateral pneumonia was more common in the variant (-) group (P = .019), whereas bilateral pneumonia was more common in the variant (+) group (P < .001). Regarding late complications, only cytomegalovirus pneumonia was observed more frequently in the variant (-) group (P = .023), whereas secondary gram (+) infection, pulmonary fibrosis (P = .048), acute respiratory distress syndrome (ARDS) (P = .017), and septic shock (P = .051) were more common in the variant (+) group. The therapeutic approach showed significant differences in the second group such as plasma exchange and extracorporeal membrane oxygenation which is more commonly used in the variant (+) group. Although mortality and intubation rates did not differ between the groups, severe challenging early and late complications were observed mainly in the variant (+) group, necessitating invasive treatment options. We hope that our data from the pandemic will shed light on this field. Regarding the COVID-19 pandemic, it is clear that there is much to be done to deal with future pandemics.
Collapse
Affiliation(s)
- Erkan Yildirim
- Department of Thoracic Surgery, Hisar Intercontinental Hospital, Umraniye, Istanbul, Turkiye
| | - Levent Kilickan
- Department of Anesthesiology and Reanimation, Hisar Intercontinental Hospital, Umraniye, Istanbul, Turkiye
| | - Suleyman Hilmi Aksoy
- Department of Radiology, Hisar Intercontinental Hospital, Umraniye, Istanbul, Turkiye
- Department of Medical Imaging Techniques, Istanbul Galata University, Beyoglu, Istanbul, Turkiye
| | - Ramazan Gozukucuk
- Department of Infectious Diseases, Hisar Intercontinental Hospital, Umraniye, Istanbul, Turkiye
- Faculty of Dentist, Istanbul Galata University, Beyoglu, Istanbul, Turkiye
| | - Hasan Huseyin Kilic
- Department of Anesthesiology and Reanimation, Hisar Intercontinental Hospital, Umraniye, Istanbul, Turkiye
- Department of Anesthesiology, Dogus University, Istanbul, Turkiye
| | - Yakup Tomak
- Department of Anesthesiology and Reanimation, Hisar Intercontinental Hospital, Umraniye, Istanbul, Turkiye
- School of Health Sciences, Dogus University, Istanbul, Turkiye
| | - Orhan Dalkilic
- Department of Chest Diseases, Hisar Intercontinental Hospital, Umraniye, Istanbul, Turkiye
| | | | | |
Collapse
|
50
|
Sayers M. Reflections on paths not taken. Transfusion 2023; 63:476-479. [PMID: 36715331 DOI: 10.1111/trf.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023]
Affiliation(s)
- Merlyn Sayers
- Carter BloodCare, Bedford, Texas, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|