1
|
Gbala I, Kavcic N, Banks L. The retinoblastoma protein contributes to maintaining the stability of HPV E7 in cervical cancer cells. J Virol 2025; 99:e0220324. [PMID: 40130877 PMCID: PMC11998531 DOI: 10.1128/jvi.02203-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
High-risk human papillomaviruses (HR HPV)-16 and -18, and other closely related subtypes, are associated with at least 90% of human cervical cancers. Cervical cancers and derived cell lines continuously express high levels of the HPV oncoprotein E7, known to degrade the tumor suppressor retinoblastoma protein (pRB). This E7-pRB interaction is important for the maintenance and progression of malignancy. In the case of HPV E6, substrate recognition has been reported to play an important role in stabilizing the viral oncoprotein; however, such regulation of E7 has so far not been investigated. Using biochemical, immunostaining, and clonogenic assays, we describe an intriguing role for pRB in the stabilization of E7 oncoprotein in HPV-positive cervical-cancer-derived cell lines. The knockdown of pRB expression by RNA interference results in a significant decrease in the levels of E7 protein in CaSki, SiHa, HeLa, and C-4 I cells. We show that pRB knockdown regulates HPV E7 at the transcription and protein levels, and significantly reduces the half-life of E7 protein by at least twofold in SiHa and HeLa cells. We also demonstrate that the destabilization of E7 caused by pRB knockdown results in significant inhibition of cell proliferation and colony formation of HPV-16 and -18 E7-positive SiHa and HeLa cells. Furthermore, the expression of wild-type pRB in pRB-depleted cells significantly restored E7 levels. Therefore, we propose that pRB, in addition to being a degradation target for HPV E7, is crucial for its stabilization.IMPORTANCEThe human papillomavirus (HPV) viral proteins E6 and E7 cooperatively contribute to tumorigenesis by disrupting cellular targets. These oncoproteins are degraded via the proteasome pathway; however, they are continuously expressed in cervical cancer cell lines. The retinoblastoma protein, pRB, is a degradation target of high-risk (HR) HPV E7 oncoprotein. Several studies have shown that the binding of E7 to pRB is important for its E7-mediated inactivation and demonstrated how pRB protein levels respond to the presence and absence of E7. However, the modulatory role of pRB on E7 protein levels has so far not been reported. Here, we report a novel regulatory relationship between E7 and pRB. We found that the continuous expression of pRB is critical for E7 stabilization. We demonstrate that this pRB-related E7 destabilization occurs in part through enhanced protein turnover. Thus, our findings provide new insights into the importance of the E7-pRB interaction in driving tumorigenesis.
Collapse
Affiliation(s)
- Ifeoluwa Gbala
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Nezka Kavcic
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- Tumour Virology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
2
|
Wootton LM, Morgan EL. Ubiquitin and ubiquitin-like proteins in HPV-driven carcinogenesis. Oncogene 2025; 44:713-723. [PMID: 40011575 PMCID: PMC11888991 DOI: 10.1038/s41388-025-03310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/20/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Persistent infection with high-risk (HR) human papillomaviruses (HPVs) is responsible for approximately 5% of cancer cases worldwide, including a growing number of oropharyngeal and anogenital cancers. The major HPV oncoproteins, E6 and E7, act together to manipulate cellular pathways involved in the regulation of proliferation, the cell cycle and cell survival, ultimately driving malignant transformation. Protein ubiquitination and the ubiquitin proteasome system (UPS) is often deregulated upon viral infection and in oncogenesis. HPV E6 and E7 interact with and disrupt multiple components of the ubiquitination machinery to promote viral persistence, which can also result in cellular transformation and the formation of tumours. This review highlights the ways in which HPV manipulates protein ubiquitination and the ubiquitin-like protein pathways and how this contributes to tumour development. Furthermore, we discuss how understanding the interactions between HPV and the protein ubiquitination could lead to novel therapeutic targets that are of urgent need in HPV+ carcinomas.
Collapse
Affiliation(s)
| | - Ethan L Morgan
- School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
3
|
Lien AC, Johnson GS, Guan T, Burns CP, Parker JM, Dong L, Wakefield MR, Fang Y. The Past, Present, and Future of Cervical Cancer Vaccines. Vaccines (Basel) 2025; 13:201. [PMID: 40006746 PMCID: PMC11861678 DOI: 10.3390/vaccines13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Since the introduction of prophylactic HPV vaccines, both HPV infection rates and cervical cancer rates have subsequently dropped. Yet, cervical cancer remains the fourth most common cancer diagnosis in women globally. As HPV and its role in the development of cervical cancer become better understood, vaccines have emerged as a front runner for improved therapeutic cervical cancer treatment. Recent studies have shown that protein and DNA vaccines may be effectively delivered via the use of several different vectors, while combination therapy with immune checkpoint inhibitors provides even more effective treatment. Further investigation and additional clinical studies into specific vaccine strategies are necessary to determine how effective vaccines are as therapeutic treatment for cervical cancer. This review intends to summarize some of the most promising research on cervical cancer vaccines. Such a study may be helpful for gynecologists to prevent and manage patients with HPV infection.
Collapse
Affiliation(s)
- Alexander C. Lien
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (A.C.L.); (C.P.B.); (J.M.P.)
| | - Grace S. Johnson
- Department of Liberal Arts, Arizona State University, Tempe, AZ 85281, USA;
| | - Tianyun Guan
- Department of Obstetrics and Gynecology, The Nanhua Hospital, Nanhua University, Hengyang 410004, China; (T.G.); (L.D.)
| | - Caitlin P. Burns
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (A.C.L.); (C.P.B.); (J.M.P.)
| | - Jacob M. Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (A.C.L.); (C.P.B.); (J.M.P.)
| | - Lijun Dong
- Department of Obstetrics and Gynecology, The Nanhua Hospital, Nanhua University, Hengyang 410004, China; (T.G.); (L.D.)
| | - Mark R. Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (A.C.L.); (C.P.B.); (J.M.P.)
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Oladipo KH, Parish JL. De-regulation of aurora kinases by oncogenic HPV; implications in cancer development and treatment. Tumour Virus Res 2025; 19:200314. [PMID: 39923999 DOI: 10.1016/j.tvr.2025.200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Human papillomaviruses (HPVs) cause diseases ranging from benign warts to invasive cancers. HPVs are the cause of almost all cervical cancers and a sub-set of other epithelial malignancies including head and neck cancers, specifically within the oropharynx. The oncogenic properties of HPV are largely mediated through the viral oncoproteins E6 and E7, which disrupt many cellular pathways to drive uncontrolled cell proliferation. One family of proteins targeted by HPV is the Aurora kinase family. Aurora kinases are serine/threonine kinases including Aurora kinase A (AURKA), B (AURKB), and C (AURKC) which are often dysregulated in many cancer types, including HPV driven cancers. All three family members play essential roles in mitotic regulation and accurate cell division. The deregulation of Aurora kinases by HPV infection highlights their potential as therapeutic targets in HPV-associated malignancies. Targeting Aurora kinase activity, in combination with current HPV therapies, may provide new avenues for treating HPV-induced cancers and reducing the burden of HPV-related diseases. Combinatorial inhibition targets distinct but overlapping functions of these kinases, thereby reducing the potential for cancer cells to develop resistance. This broad impact emphasizes the capability for Aurora kinase inhibitors not only as anti-mitotic agents but also as modulators of multiple oncogenic pathways. This review explores the combinatorial effects of Aurora kinase inhibition, offering insights into novel therapeutic strategies for the treatment of HPV-driven cancers.
Collapse
Affiliation(s)
- Kemi Hannah Oladipo
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom; National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, United Kingdom.
| | - Joanna L Parish
- Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom; National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, United Kingdom.
| |
Collapse
|
5
|
Rahman MM, Masum MHU, Parvin R, Das SC, Talukder A. Designing of an mRNA vaccine against high-risk human papillomavirus targeting the E6 and E7 oncoproteins exploiting immunoinformatics and dynamic simulation. PLoS One 2025; 20:e0313559. [PMID: 39761277 PMCID: PMC11703113 DOI: 10.1371/journal.pone.0313559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/25/2024] [Indexed: 05/01/2025] Open
Abstract
Human papillomavirus 16 and human papillomavirus 18 have been associated with different life-threatening cancers, including cervical, lung, penal, vulval, vaginal, anal, and oropharyngeal cancers, while cervical cancer is the most prominent one. Several research studies have suggested that the oncoproteins E6 and E7 are the leading cause of cancers associated with the human papillomavirus infection. Therefore, we developed two mRNA vaccines (V1 and V2) targeting these oncoproteins. We used several bioinformatics tools to predict helper T lymphocyte, cytotoxic T lymphocyte, and B-cell epitopes derived from the proteins and assessed their antigenicity, allergenicity, and toxicity. Both vaccines were constructed using selected epitopes, linkers, and adjuvants. After that, the vaccines were applied for physicochemical properties, secondary and tertiary structure predictions, and subsequent docking and simulation analyses. Accordingly, vaccine 1 (V1) and vaccine 2 (V2) showed better hydrophilicity with the grand average hydropathicity score of -0.811 and -0.648, respectively. The secondary and tertiary structures of the vaccines were also deemed satisfactory, with high stability indicated by the Ramachandran plot (V1:94.5% and V2:87.1%) and Z scores (V1: -5.15 and V2: -4.1). Docking analysis revealed substantial affinity of the vaccines towards the toll-like receptor-2 (V1: -1159.3, V2: -1246.3) and toll-like receptor-4 (V1: -1109.3, V2: -1244.8) receptors. Molecular dynamic simulation validated structural integrity and indicated varying stability throughout the simulation. Codon optimization showed significant expression of the vaccines (V1:51.88% and V2:51.63%) in E. coli vectors. Furthermore, regarding immune stimulation, the vaccines elicited significant B-cell and T-cell responses, including sustained adaptive and innate immune responses. Finally, thermodynamic predictions indicated stable mRNA structures of the vaccines (V1: -502.60 kcal/mol and V2: -450.90 kcal/mol). The proposed vaccines designed effectively targeting human papillomavirus oncoproteins have demonstrated promising results via robust immune responses, suggesting their suitability for further clinical advancement, including in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, Australia
| | - Md. Habib Ullah Masum
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University, Khulshi, Chittagong, Bangladesh
| | - Rehana Parvin
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Khulshi, Chittagong, Bangladesh
| | - Shuvo Chandra Das
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Asma Talukder
- Microbiology, Cancer and Bioinformatics Research Group, Noakhali Science and Technology University, Noakhali, Bangladesh
- School of Pharmacy and Medical Sciences, Griffith University, Queensland, Australia
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
6
|
Kesheh MM, Bayat M, Kobravi S, Lotfalizadeh MH, Heydari A, Memar MY, Baghi HB, Kermanshahi AZ, Ravaei F, Taghavi SP, Zarepour F, Nahand JS, Hashemian SMR, Mirzaei H. MicroRNAs and human viral diseases: A focus on the role of microRNA-29. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167500. [PMID: 39260679 DOI: 10.1016/j.bbadis.2024.167500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
The viral replication can impress through cellular miRNAs. Indeed, either the antiviral responses or the viral infection changes through cellular miRNAs resulting in affecting many regulatory signaling pathways. One of the microRNA families that is effective in human cancers, diseases, and viral infections is the miR-29 family. Members of miR-29 family are effective in different viral infections as their roles have appeared in regulation of immunity pathways either in innate immunity including interferon and inflammatory pathways or in adaptive immunity including activation of T-cells and antibodies production. Although miR-29a affects viral replication by suppressing antiviral responses, it can inhibit the expression of viral mRNAs via binding to their 3'UTR. In the present work, we discuss the evidence related to miR-29a and viral infection through host immunity regulation. We also review roles of other miR-29 family members by focusing on their role as biomarkers for diagnosing and targets for viral diseases management.
Collapse
Affiliation(s)
- Mina Mobini Kesheh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | | | - Azhdar Heydari
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Department of Physiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Zamani Kermanshahi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
7
|
Kathleen W. Too many cooks in the kitchen: HPV driven carcinogenesis - The result of collaboration or competition? Tumour Virus Res 2024; 19:200311. [PMID: 39733972 PMCID: PMC11753912 DOI: 10.1016/j.tvr.2024.200311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024] Open
Abstract
Infection by Human Papillomaviruses accounts for the most widespread sexually transmitted infection worldwide. Clinical presentation of these infections can range from subclinical and asymptomatic to anogenital cancers, with the latter associated with persistent infection over a significant period of time. Of the over 200 isotypes of the human virus identified, a subset of these has been characterized as high-risk due to their ability to induce oncogenesis. At the core of Papillomavirus pathogenesis sits three virally encoded oncoproteins: E5, E6, and E7. In this review we will discuss the respective roles of these proteins and how they contribute to carcinogenesis, evaluating key distinguishing features that separate them from their low-risk counterparts. Furthermore, we will consider the complex relationship between this trio and how their interwoven functional networks underpin the development of cancer.
Collapse
Affiliation(s)
- Weimer Kathleen
- IGBMC - CBI: Institut de génétique et de biologie moléculaire et cellulaire, Centre de biologie intégrative, 1 rue Laurent Fries, Illkirch-Graffenstaden, BP 10142, 67404, France.
| |
Collapse
|
8
|
Buigues J, Viñals A, Martínez-Recio R, Monrós JS, Sanjuán R, Cuevas JM. Complete Genomes of DNA Viruses in Fecal Samples from Small Terrestrial Mammals in Spain. Viruses 2024; 16:1885. [PMID: 39772193 PMCID: PMC11680247 DOI: 10.3390/v16121885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Viromics studies are allowing us to understand not only the enormous diversity of the virosphere, but also the potential threat posed by the emerging viruses. Regarding the latter, the main concern lies in monitoring the presence of RNA viruses, but the zoonotic potential of some DNA viruses, on which we have focused in the present study, should also be highlighted. For this purpose, we analyzed 160 fecal samples from 14 species of small terrestrial mammals, 9 of them belonging to the order Rodentia. This allowed us to identify a total of 25 complete or near-complete genomes belonging to the families Papillomaviridae, Polyomaviridae, Adenoviridae, Circoviridae, and Genomoviridae, 18 of which could be considered new species or types. Our results provide a significant increase in the number of complete genomes of DNA viruses of European origin with zoonotic potential in databases, which are at present under-represented compared to RNA viruses. In addition, the characterization of whole genomes is of relevance for the further study of the evolutionary forces governing virus adaptation, such as recombination, which may play an important role in cross-species transmission.
Collapse
Affiliation(s)
- Jaime Buigues
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, 46980 València, Spain; (J.B.); (R.M.-R.)
| | - Adrià Viñals
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, 46980 València, Spain; (A.V.); (J.S.M.)
| | - Raquel Martínez-Recio
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, 46980 València, Spain; (J.B.); (R.M.-R.)
| | - Juan S. Monrós
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, 46980 València, Spain; (A.V.); (J.S.M.)
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, 46980 València, Spain; (J.B.); (R.M.-R.)
- Department of Genetics, Universitat de València, 46100 València, Spain
| | - José M. Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València and Consejo Superior de Investigaciones Científicas, 46980 València, Spain; (J.B.); (R.M.-R.)
- Department of Genetics, Universitat de València, 46100 València, Spain
| |
Collapse
|
9
|
Palomino-Vizcaino G, Bañuelos-Villegas EG, Alvarez-Salas LM. The Natural History of Cervical Cancer and the Case for MicroRNAs: Is Human Papillomavirus Infection the Whole Story? Int J Mol Sci 2024; 25:12991. [PMID: 39684702 PMCID: PMC11641362 DOI: 10.3390/ijms252312991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression. MiRNAs regulate fundamental biological processes and have significant roles in several pathologies, including cancer. Cervical cancer is the best-known example of a widespread human malignancy with a demonstrated viral etiology. Infection with high-risk human papillomavirus (hrHPV) has been shown to be a causative factor for cervical carcinogenesis. Despite the occurrence of prophylactic vaccines, highly sensitive HPV diagnostics, and innovative new therapies, cervical cancer remains a main cause of death in developing countries. The relationship between hrHPV infection and cervical cancer depends on the integration of viral DNA to the host genome, disrupting the viral regulator E2 and the continuous production of the viral E6 and E7 proteins, which are necessary to acquire and maintain a transformed phenotype but insufficient for malignant cervical carcinogenesis. Lately, miRNAs, the tumor microenvironment, and immune evasion have been found to be major players in cervical carcinogenesis after hrHPV infection. Many miRNAs have been widely reported as deregulated in cervical cancer. Here, the relevance of miRNA in HPV-mediated transformation is critically reviewed in the context of the natural history of hrHPV infection and cervical cancer.
Collapse
Affiliation(s)
- Giovanni Palomino-Vizcaino
- Facultad de Ciencias de la Salud, Unidad Valle de las Palmas, Campus Tijuana, Universidad Autónoma de Baja California, Tijuana 21500, Mexico;
| | - Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| |
Collapse
|
10
|
Munger K, White EA. What are the essential determinants of human papillomavirus carcinogenesis? mBio 2024; 15:e0046224. [PMID: 39365046 PMCID: PMC11558995 DOI: 10.1128/mbio.00462-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Human papillomavirus (HPV) infection is the leading viral cause of cancer. Over the past several decades, research on HPVs has provided remarkable insight into human cell biology and into the pathology of viral and non-viral cancers. The HPV E6 and E7 proteins engage host cellular proteins to establish an environment in infected cells that is conducive to virus replication. They rewire host cell signaling pathways to promote proliferation, inhibit differentiation, and limit cell death. The activity of the "high-risk" HPV E6 and E7 proteins is so potent that their dysregulated expression is sufficient to drive the initiation and maintenance of HPV-associated cancers. Consequently, intensive research efforts have aimed to identify the host cell targets of E6 and E7, in part with the idea that some or all of the virus-host interactions would be essential cancer drivers. These efforts have identified a large number of potential binding partners of each oncoprotein. However, over the same time period, parallel research has revealed that a relatively small number of genetic mutations drive carcinogenesis in most non-viral cancers. We therefore propose that a high-priority goal is to identify which of the many targets of E6 and E7 are critical drivers of HPV carcinogenesis. By identifying the cancer-driving targets of E6 and E7, it should be possible to better understand the distinct roles of other targets, perhaps in the viral life cycle, and to focus efforts to develop anti-cancer therapies on the subset of virus-host interactions for which therapeutic intervention would have the greatest impact.
Collapse
Affiliation(s)
- Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. mBio 2024; 15:e0181124. [PMID: 39248565 PMCID: PMC11481495 DOI: 10.1128/mbio.01811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased the phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active sites were required for PTPN14 to promote differentiation. Together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.IMPORTANCEThe Hippo kinase cascade inhibits YAP1, an oncoprotein and driver of cell stemness and self-renewal. There is mounting evidence that the Hippo pathway is targeted by tumor viruses including human papillomavirus. The high-risk HPV E7 oncoprotein promotes YAP1 nuclear localization and the carcinogenic activity of high-risk HPV E7 requires YAP1 activity. Blocking HPV E7-dependent YAP1 activation could inhibit HPV-mediated carcinogenesis, but the mechanism by which HPV E7 activates YAP1 has not been elucidated. Here we report that by degrading the tumor suppressor PTPN14, HPV18 E7 inhibits LATS1 kinase, reducing inhibitory phosphorylation on YAP1. These data support that an HPV oncoprotein can inhibit Hippo signaling to activate YAP1 and strengthen the link between PTPN14 and Hippo signaling in human epithelial cells.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Huma Arya P, Vadhwana B, Tarazi M. Microbial dysbiosis in gastric cancer: Association or causation? Best Pract Res Clin Gastroenterol 2024; 72:101961. [PMID: 39645283 DOI: 10.1016/j.bpg.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/26/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Affiliation(s)
- Pallavi Huma Arya
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, White City, W12 0HS, UK.
| | - Bhamini Vadhwana
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, White City, W12 0HS, UK.
| | - Munir Tarazi
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, White City, W12 0HS, UK.
| |
Collapse
|
13
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
14
|
Luo Y, Niu M, Liu Y, Zhang M, Deng Y, Mu D, Xu J, Hong S. Oncoproteins E6 and E7 upregulate topoisomerase I to activate the cGAS-PD-L1 pathway in cervical cancer development. Front Pharmacol 2024; 15:1450875. [PMID: 39156107 PMCID: PMC11327024 DOI: 10.3389/fphar.2024.1450875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Background: Cervical cancer (CC) stands as a significant health threat to women globally, with high-risk human papillomaviruses as major etiologic agents. The DNA damage repair (DDR) protein topoisomerase I (TOP1) has been linked to various cancers, yet its distinct roles and mechanisms in CC are not fully elucidated. Methods: We investigated TOP1 expression in cervical intraepithelial neoplasia (CIN) and CC tissues utilizing qRT-PCR and IHC, correlating findings with patient prognosis. Subsequent knockdown studies were performed in vitro and in vivo to evaluate the influence of TOP1 on tumor growth, DNA repair, and inflammatory responses. Results: TOP1 was highly expressed in CIN and CC, negatively correlating with patient prognosis. Inhibition of TOP1 impeded CC cell growth and disrupted DNA repair. TOP1 was shown to regulate tumor-promoting inflammation and programmed death-ligand 1 (PD-L1) production in a cGAS-dependent manner. HPV oncoproteins E6 and E7 upregulated TOP1 and activated the cGAS-PD-L1 pathway. Conclusions: TOP1 acts as a DNA repair mediator, promoting CC development and immune evasion. Targeting the TOP1-cGAS-PD-L1 axis could be a potential therapeutic strategy for CC.
Collapse
Affiliation(s)
- Ying Luo
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Mengda Niu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yanfei Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Miaochang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yuanyuan Deng
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan Mu
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiyuan Hong
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Liu J, Tang L, Chu W, Wei L. Cellular Retinoic Acid Binding Protein 2 (CRABP2), Up-regulated by HPV E6/E7, Leads to Aberrant Activation of the Integrin β1/FAK/ERK Signaling Pathway and Aggravates the Malignant Phenotypes of Cervical Cancer. Biochem Genet 2024; 62:2686-2701. [PMID: 38001389 DOI: 10.1007/s10528-023-10568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/26/2023] [Indexed: 11/26/2023]
Abstract
The ectopic expression of cellular retinoic acid binding protein 2 (CRABP2) is associated with various tumorigenesis. However, the effects of CRABP2 on the progression of cervical cancer are still unclear. The current study aimed to investigate the role of CRABP2 in the malignant phenotypes of cervical cancer cells. CRABP2 was artificially regulated in CaSki, SiHa, and C-33A cells. CCK-8 assay and flow cytometry were used to assess the cell proliferation and apoptosis abilities, respectively. Wound healing assay and transwell assay were employed to measure the cell migration and invasion abilities, respectively. The results showed that CRABP2 was highly expressed in cervical carcinoma tissues and cell lines, and its high expression was associated with poor overall survival. Knockdown of CRABP2 promoted the cell apoptosis and inhibited cell proliferation, migration, and invasion in cervical carcinoma cells, whereas CRABP2 overexpression exhibited the opposite results. Mechanically, CRABP2 silencing suppressed the Integrin β1/FAK/ERK signaling via HuR. Treatment with siITGB1 or a FAK inhibitor PF-562271 or an ERK inhibitor FR180204 reversed the promoting effects of CRABP2 on cell proliferation, migration, and invasion. Moreover, the overexpression of CRABP2 reverted the HPV16 E6/E7 knockdown-induced inhibition of cell proliferation, migration, and invasion in cervical cancer cells. These results suggested that HPV16 E6/E7 promoted the malignant phenotypes of cervical cancer by upregulating the expression of CRABP2. In conclusion, CRABP2, upregulated by HPV E6/E7, promoted the progression of cervical cancer through activating the Integrin β1/FAK/ERK signaling pathway via HuR.
Collapse
Affiliation(s)
- Jiaxin Liu
- School of Medical Technology, Taizhou Polytechnic College, Taizhou, Jiangsu, 225300, China
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China
| | - Lu Tang
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China
| | - Wenzhu Chu
- Department of Dermatology, Hongqi Hospital, Mudanjiang Medical University, Heilongjiang, 157001, China
| | - Lanlan Wei
- National Clinical Research Center for Infectious Diseases; Institute for Hepatology, The Third People's Hospital of Shenzhen; The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, 518000, China.
- Harbin Medical University, Immunity and Infection, Pathogenic Biology Key Laboratory, Heilongjiang, 150081, China.
| |
Collapse
|
16
|
Romero-Masters J. mSphere of Influence: MmuPV1-a dual tropic papillomavirus, red herring, or novel insight into HPV pathogenesis. mSphere 2024; 9:e0017724. [PMID: 38920397 PMCID: PMC11288039 DOI: 10.1128/msphere.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
James Romero-Masters works in the field of tumor virology, focusing on the role of the human papillomavirus oncogenes in pathogenesis. In this mSphere of Influence article, they reflect on how the article "Mouse papillomavirus infection persists in mucosal tissues of an immunocompetent mouse strain and progresses to cancer" impacted them, informing their research strategies, and what it means for the mouse papillomavirus model.
Collapse
Affiliation(s)
- James Romero-Masters
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
17
|
Chen J, Zhang X, Yan S, Li X, Li M, Zhang Y, Zhang S, Li F, Song M. Transoral Robotic Surgery and Human Papillomavirus Infection: Impact on Oropharyngeal Cancer Prognosis. J Clin Med 2024; 13:4455. [PMID: 39124727 PMCID: PMC11313069 DOI: 10.3390/jcm13154455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Background/Objective: The incidence of oropharyngeal cancer (OPC) remains significant, with a rising prevalence of HPV-positive (HPV+) cases, underscoring the growing importance of appropriate treatment approaches for this condition. While HPV+ OPC typically exhibits a more favorable prognosis than HPV-negative (HPV-) OPC, certain HPV+ OPC patients still face adverse outcomes. This study aimed to assess the effectiveness of TORS versus traditional surgery in treating OPC patients and investigate the prognostic implications of specific variants in the HPV genome. Methods: The clinical information, including pathological features, treatments, and outcomes (death), of 135 OPC patients treated with traditional surgery from 2008 to 2018 (the non-TORS group) and 130 OPC patients treated with TORS from 2017 to 2021 (the TORS group) were obtained from Sun Yat-sen University Cancer Center (SYSUCC). A comparative analysis of 3-year overall survival (OS) was performed between these two groups. Furthermore, we conducted next-generation sequencing for the HPV16 genome of the 68 HPV+ OPC cases to characterize single-nucleotide variations (SNVs) in the HPV16 genome and evaluate its association with HPV+ OPC patient survival. Results: The comparative analysis of 3-year OS between the two groups (TORS vs. non-TORS) revealed a significant prognostic improvement in the TORS group for OPC patients with a T1-T2 classification (89.3% vs. 72.0%; p = 1.1 × 10-2), stages I-II (92.1% vs. 82.2%; p = 4.6 × 10-2), and stages III-IV (82.8% vs. 62.2%; p = 5.7 × 10-2) and for HPV- patients (85.5% vs. 33.3%; p < 1.0 × 10-6). Furthermore, three SNVs (SNV1339A>G, SNV1950A>C, and SNV4298A>G) in the HPV16 genome were identified as being associated with worse survival. These SNVs could alter protein interactions and weaken the binding affinity for MHC-II, promoting viral amplification and immune evasion. Conclusions: TORS exhibited a superior prognosis to traditional surgery in OPC patients. Additionally, identifying specific SNVs within the HPV16 genome provided potential prognostic markers for HPV+ OPC. These significant findings hold clinical relevance for treatment decision-making and prognostic assessment in patients with OPC.
Collapse
Affiliation(s)
- Jingtao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; (J.C.); (X.Z.); (S.Y.); (X.L.); (M.L.); (Y.Z.); (S.Z.)
| | - Xing Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; (J.C.); (X.Z.); (S.Y.); (X.L.); (M.L.); (Y.Z.); (S.Z.)
| | - Shida Yan
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; (J.C.); (X.Z.); (S.Y.); (X.L.); (M.L.); (Y.Z.); (S.Z.)
| | - Xiyuan Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; (J.C.); (X.Z.); (S.Y.); (X.L.); (M.L.); (Y.Z.); (S.Z.)
| | - Menghua Li
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; (J.C.); (X.Z.); (S.Y.); (X.L.); (M.L.); (Y.Z.); (S.Z.)
| | - Ying Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; (J.C.); (X.Z.); (S.Y.); (X.L.); (M.L.); (Y.Z.); (S.Z.)
| | - Shiting Zhang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; (J.C.); (X.Z.); (S.Y.); (X.L.); (M.L.); (Y.Z.); (S.Z.)
| | - Fengjiao Li
- Department of Surgical Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China; (J.C.); (X.Z.); (S.Y.); (X.L.); (M.L.); (Y.Z.); (S.Z.)
| |
Collapse
|
18
|
Patterson MR, Meijers AS, Ryder EL, Wootton LM, Scarth JA, Evans D, Turner AL, Wasson CW, Darell JE, Theobald DA, Cogan JA, James CD, Wang M, Ladbury JE, Morgan IM, Samson A, Morgan EL, Macdonald A. E7-mediated repression of miR-203 promotes LASP1-dependent proliferation in HPV-positive cervical cancer. Oncogene 2024; 43:2184-2198. [PMID: 38789663 PMCID: PMC11226402 DOI: 10.1038/s41388-024-03067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ~5% of all human cancers worldwide, including most cervical cancer cases and a growing number of anogenital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited the oncogenic phenotype in vitro, whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we demonstrate that the LASP1 SH3 domain is essential for LASP1-mediated oncogenicity in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulates LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrate that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival in cervical cancer, thus identifying a potential therapeutic target in these cancers.
Collapse
Affiliation(s)
- Molly R Patterson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aniek S Meijers
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Emma L Ryder
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | | | - James A Scarth
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Debra Evans
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Amy L Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Christopher W Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, St-James University Teaching Hospital, Leeds, UK
| | - Janne E Darell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Daisy A Theobald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Joseph A Cogan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Claire D James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Iain M Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University (VCU), Richmond, VA, USA
- VCU Massey Cancer Center, VCU, Richmond, VA, USA
| | - Adel Samson
- Leeds Institute of Medical Research, St James's University Hospital, University of Leeds, Leeds, UK
| | - Ethan L Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
- School of Life Sciences, University of Sussex, Brighton, UK.
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
19
|
Devins KM, Ordulu Z, Mendoza RP, Croce S, Haridas R, Wanjari P, Pinto A, Oliva E, Bennett JA. Uterine Inflammatory Myofibroblastic Tumors: p16 as a Surrogate for CDKN2A Deletion and Predictor of Aggressive Behavior. Am J Surg Pathol 2024; 48:813-824. [PMID: 38630911 DOI: 10.1097/pas.0000000000002220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Uterine inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal neoplasms of uncertain malignant potential. Aside from the recently described risk stratification score, which has not been validated by other studies, and rare reports of aberrant p16 expression in malignant tumors, there are no criteria to reliably predict behavior. Herein, we evaluated the clinicopathologic features and p16 expression patterns in 30 IMTs, with genomic profiling performed in a subset (13 malignant, 3 benign). Fifteen patients had malignant IMTs, defined by extrauterine disease at diagnosis (n=5) or recurrence (n=10; median: 24 mo). Patients ranged from 8 to 65 (median: 51) years and tumors from 6 to 22 (median: 12.5) cm. In primary tumors (n=13), infiltrative borders were noted in 10, moderate/severe cytologic atypia in 9, tumor cell necrosis in 7, and lymphovascular invasion in 6, while mitoses ranged from 0 to 21 (median: 7) per 10 high-power fields. In contrast, 15 patients with benign IMTs ranged from 28 to 65 (median: 44) years, with follow-up of 18 to 114 (median: 41) months. Tumors ranged from 1.9 to 8.5 (median: 5.5) cm, 2 demonstrated infiltrative borders, and 1 had moderate cytologic atypia. No other high-risk histologic features were observed. Application of the previously described clinicopathologic risk stratification score in all primary IMTs with complete data (n=18) classified 8 as high-risk (all malignant), 8 as intermediate-risk (3 malignant, 5 benign), and 2 as low-risk (benign). p16 was aberrant in all malignant IMTs, with <1% expression noted in 10, overexpression (>90%) in 4, and subclonal loss in 1; all benign tumors had patchy staining (20% to 80%; median 50%). Molecular analysis detected CDKN2A deletions in 8 of 9 tumors with <1% p16 expression, while the other harbored a TERT promoter mutation. TERT promoter mutations were also identified in 2 of 3 IMTs with p16 overexpression. Neither of these alterations was detected in the 3 sequenced benign IMTs. Thus, we recommend performing p16 on all uterine IMTs, which, combined with the risk stratification score, is a promising and cost-effective tool for predicting CDKN2A status and outcome in these patients. It may be particularly useful for tumors with incomplete information for risk stratification (ie, morcellated tumors) and for further stratifying intermediate-risk IMTs when sequencing is unavailable.
Collapse
Affiliation(s)
- Kyle M Devins
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zehra Ordulu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL
| | - Rachelle P Mendoza
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, NY
| | - Sabrina Croce
- Department of Biopathology, Institut Bergonie, Bordeaux, France
| | | | | | - Andre Pinto
- Department of Pathology, University of Miami, Miami, FL
| | - Esther Oliva
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
20
|
Chen CC, Luo CW, Tsai SCS, Huang JY, Yang SF, Lin FCF. Synergistic Effect of Human Papillomavirus and Environmental Factors on Skin Squamous Cell Carcinoma, Basal Cell Carcinoma, and Melanoma: Insights from a Taiwanese Cohort. Cancers (Basel) 2024; 16:2284. [PMID: 38927988 PMCID: PMC11201942 DOI: 10.3390/cancers16122284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Human papillomavirus (HPV) has been implicated in various cancers, including those affecting the skin. The study assessed the long-term risk of skin cancer associated with HPV infection in Taiwan region, using data from the National Health Insurance Research Database between 2007 and 2015. Our analysis revealed a significant increase in skin cancer risk among those with HPV, particularly for squamous cell carcinoma (SCC), the subtype with the highest observed adjusted hazard ratio (aHR) = 5.97, 95% CI: 4.96-7.19). The overall aHR for HPV-related skin cancer was 5.22 (95% CI: 4.70-5.80), indicating a notably higher risk in the HPV-positive group. The risk of skin cancer was further stratified by type, with basal cell carcinoma (aHR = 4.88, 95% CI: 4.14-5.74), and melanoma (aHR = 4.36, 95% CI: 2.76-6.89) also showing significant associations with HPV. The study also highlighted regional variations, with increased risks in southern Taiwan and the Kaohsiung-Pingtung area. Key findings emphasize the importance of sun protection, particularly in regions of high UV exposure and among individuals in high-risk occupations. This research contributes to a better understanding of the complex interactions between HPV and skin cancer risk, reinforcing the importance of preventive strategies in public health.
Collapse
Affiliation(s)
- Chun-Chia Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-C.C.); (J.-Y.H.); (S.-F.Y.)
- Division of Plastic Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 71004, Taiwan
| | - Ci-Wen Luo
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 43503, Taiwan;
| | - Stella Chin-Shaw Tsai
- Superintendent Office, Tungs’ Taichung MetroHarbor Hospital, Taichung 43503, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Shin University, Taichung 402202, Taiwan
| | - Jing-Yang Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-C.C.); (J.-Y.H.); (S.-F.Y.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-C.C.); (J.-Y.H.); (S.-F.Y.)
| | - Frank Cheu-Feng Lin
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
21
|
Blakely WJ, Hatterschide J, White EA. HPV18 E7 inhibits LATS1 kinase and activates YAP1 by degrading PTPN14. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583953. [PMID: 38496413 PMCID: PMC10942435 DOI: 10.1101/2024.03.07.583953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
High-risk human papillomavirus (HPV) oncoproteins inactivate cellular tumor suppressors to reprogram host cell signaling pathways. HPV E7 proteins bind and degrade the tumor suppressor PTPN14, thereby promoting the nuclear localization of the YAP1 oncoprotein and inhibiting keratinocyte differentiation. YAP1 is a transcriptional coactivator that drives epithelial cell stemness and self-renewal. YAP1 activity is inhibited by the highly conserved Hippo pathway, which is frequently inactivated in human cancers. MST1/2 and LATS1/2 kinases form the core of the Hippo kinase cascade. Active LATS1 kinase is phosphorylated on threonine 1079 and inhibits YAP1 by phosphorylating it on amino acids including serine 127. Here, we tested the effect of high-risk (carcinogenic) HPV18 E7 on Hippo pathway activity. We found that either PTPN14 knockout or PTPN14 degradation by HPV18 E7 decreased phosphorylation of LATS1 T1079 and YAP1 S127 in human keratinocytes and inhibited keratinocyte differentiation. Conversely, PTPN14-dependent differentiation required LATS kinases and certain PPxY motifs in PTPN14. Neither MST1/2 kinases nor the putative PTPN14 phosphatase active site were required for PTPN14 to promote differentiation. Taken together, these data support that PTPN14 inactivation or degradation of PTPN14 by HPV18 E7 reduce LATS1 activity, promoting active YAP1 and inhibiting keratinocyte differentiation.
Collapse
Affiliation(s)
- William J. Blakely
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joshua Hatterschide
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Current address: Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth A. White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Bi D, Wei S, Luo X, Luo X, Tang X. Management for persistent HPV infection and cervical lesions among women infected with HIV: a retrospective observational cohort study. Virol J 2024; 21:133. [PMID: 38844960 PMCID: PMC11157722 DOI: 10.1186/s12985-024-02405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Early diagnosis and treatment of HPV persistent infection and cervical intraepithelial neoplasia, which have yet to be thoroughly characterized in Guangxi, Southwestern China, are the key preventative measures for the development of cervical cancer in women, particularly in HIV-infected women. METHODS A retrospective study of 181 patients with HPV infection or cervical intraepithelial neoplasia who received surgical excision of lesions and were prospectively enrolled at the Fourth People's Hospital of Nanning between January 2018 and February 2023 was performed. HPV-infected patients were divided into two subgroups: HIV-infected and HIV/HPV-coinfected patients and compare differences between these groups. RESULTS HPV16, 18, 52, and 58 were the most prevalent HPV genotypes. High-risk HPV was significantly co-infected with multiple genotypes (P = 0.0332). HIV-infected women were predisposed to HPV infection (P < 0.0001), and the development of cervical cancer at a young age (P = 0.0336) compared to HIV-uninfected women and the loop electrosurgical excision procedure (P = 0.0480) is preferred for the treatment. CONCLUSIONS HIV infection may increase HPV prevalence and lead to cervical cancer development at a young age. The loop electrosurgical excision procedure is an efficient evaluation and treatment strategy for HIV-infected women suffering from cervical intraepithelial neoplasia.
Collapse
Affiliation(s)
- Dewu Bi
- Department of Clinical Laboratory, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China.
- Key Laboratory of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China.
- HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, Guangxi, China.
| | - Shuzhen Wei
- Department of Obstetrics and Gynecology, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
- HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, Guangxi, China
| | - Xiaolu Luo
- Department of Clinical Laboratory, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
- Key Laboratory of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
- HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, Guangxi, China
| | - Xiaocheng Luo
- Department of Clinical Laboratory, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
- Key Laboratory of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China
- HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, Guangxi, China
| | - Xike Tang
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, Guangxi, China.
- HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), Nanning, Guangxi, China.
| |
Collapse
|
23
|
Wijesekera A, Weeramange CE, Vasani S, Kenny L, Knowland E, Seneviratne J, Punyadeera C. Surveillance of human papillomavirus through salivary diagnostics - A roadmap to early detection of oropharyngeal cancer in men. Tumour Virus Res 2024; 17:200278. [PMID: 38442788 PMCID: PMC10937231 DOI: 10.1016/j.tvr.2024.200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted disease. Certain strains have the potential to cause malignancy in multiple anatomical sites if not cleared by the immune system. In most infected people, HPV is cleared within two years. However, HPV may persist in susceptible individuals with certain risk factors, eventually leading to malignancy. New evidence suggests that over 75% of all oropharyngeal cancers (OPC) are directly attributable to HPV. It is estimated that prophylactic HPV vaccination alone may take at least 25 years to have a significant impact on reducing the incidence of OPC. The temporal link between detection of oral HPV, persistence of the infection and the subsequent development of OPC have been well established. Moreover, men have threefold higher risk than women for acquiring HPV-OPC. This comprehensive review focuses on OPC development in men, highlighting the risk factors associated with malignant transformation of HPV-OPC. Current evidence is insufficient to determine whether early identification of at-risk demographics, screening, and prompt diagnosis result in improved outcomes. Hitherto, the effectiveness of an oral HPV screening program in this regard has not been investigated. Nevertheless, the potential to emulate the success of the cervical screening program remains a very real possibility.
Collapse
Affiliation(s)
- Akila Wijesekera
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Queensland, Australia; Royal Brisbane and Women's Hospital, Queensland, Australia.
| | - Chameera Ekanayake Weeramange
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Queensland, Australia
| | - Sarju Vasani
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Queensland, Australia; Royal Brisbane and Women's Hospital, Queensland, Australia
| | - Liz Kenny
- Royal Brisbane and Women's Hospital, Queensland, Australia; Faculty of Medicine, University of Queensland, Queensland, Australia
| | - Emma Knowland
- Metro North Sexual Health and HIV Service, Queensland, Australia
| | | | - Chamindie Punyadeera
- Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Queensland, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
| |
Collapse
|
24
|
Kawase K, Taguchi A, Ishizaka A, Lin J, Ueno T, Yoshimoto D, Eguchi S, Mori S, Sone K, Mori M, Yonekura S, Hanazawa T, Maeda D, Kukimoto I, Mano H, Osuga Y, Kawana K, Kawazu M. Allelic loss of HLA class I facilitates evasion from immune surveillance in cervical intraepithelial neoplasia. HLA 2024; 103:e15509. [PMID: 38837741 DOI: 10.1111/tan.15509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Loss of heterozygosity (LOH) has been reported to occur in HLA regions in cervical intraepithelial neoplasia (CIN) and cervical cancer. However, the details of how this is related to the progression of CIN have been unclear. In this study, we examined the human papillomavirus (HPV) antigen-presenting capacity of people with CIN and the significance of LOH of HLA class I in the progression of CIN. It was shown that differences in antigen-presenting capacity among each case depended on HLA types, not HPV genotypes. Focusing on the HLA type, there was a positive correlation between antigen-presenting capacity against HPV and the frequency of allelic loss. Furthermore, the lost HLA-B alleles had a higher HPV antigen-presenting capacity than intact alleles. In addition, frequency of LOH of HLA class I was significantly higher in advanced CIN (CIN2-3) than in cervicitis or early-stage CIN (CIN1): around half of CIN2-3 had LOH of any HLA class I. Moreover, the antigen-presenting capacity against E5, which is the HPV proteins that facilitate viral escape from this immune surveillance by suppressing HLA class I expression, had the most significant impact on the LOH in HLA-B. This study suggests that HPV evades immune surveillance mechanisms when host cells lose the capacity for antigen presentation by HLA class I molecules, resulting in long-term infection and progression to advanced lesions.
Collapse
Affiliation(s)
- Katsushige Kawase
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Otorhinolaryngology/Head & Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Ishizaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jason Lin
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Daisuke Yoshimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoko Eguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Syuji Yonekura
- Department of Otorhinolaryngology/Head & Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head & Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Daichi Maeda
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Masahito Kawazu
- Division of Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
25
|
Proulx-Rocray F, Soulières D. Emerging monoclonal antibody therapy for head and neck squamous cell carcinoma. Expert Opin Emerg Drugs 2024; 29:165-176. [PMID: 38616696 DOI: 10.1080/14728214.2024.2339906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION The incidence of head and neck squamous cell carcinoma (HNSCC) is increasing, particularly among younger populations. It is projected that the number of new cases will increase by almost 50% by 2040, with market revenues expected to triple in the same period. Despite the recent introduction of immune checkpoint inhibitors (ICIs) into the therapeutic armamentarium, the vast majority of patients with recurrent and/or metastatic (R/M) HNSCC fail to derive durable benefits from systemic therapy. AREAS COVERED This article aims to review the multiple monoclonal antibodies (mAbs) regimens currently under development, targeting various growth factors, immune checkpoints, immune costimulatory receptors, and more. EXPERT OPINION So far, the combination of anti-EGFR and ICI appears to be the most promising, especially in HPV-negative patients. It will be interesting to confirm whether the arrival of antibody-drug conjugates and bispecific mAb can surpass the efficacy of anti-EGFR, as they are also being tested in combination with ICI. Furthermore, we believe that immune costimulatory agonists and various ICIs combination are worth monitoring, despite some initial setbacks.
Collapse
Affiliation(s)
- Francis Proulx-Rocray
- Hematology and Medical Oncology Department, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| | - Denis Soulières
- Hematology and Medical Oncology Department, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
26
|
Bulanova D, Akimov Y, Senkowski W, Oikkonen J, Gall-Mas L, Timonen S, Elmadani M, Hynninen J, Hautaniemi S, Aittokallio T, Wennerberg K. A synthetic lethal dependency on casein kinase 2 in response to replication-perturbing therapeutics in RB1-deficient cancer cells. SCIENCE ADVANCES 2024; 10:eadj1564. [PMID: 38781347 PMCID: PMC11114247 DOI: 10.1126/sciadv.adj1564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Resistance to therapy commonly develops in patients with high-grade serous ovarian carcinoma (HGSC) and triple-negative breast cancer (TNBC), urging the search for improved therapeutic combinations and their predictive biomarkers. Starting from a CRISPR knockout screen, we identified that loss of RB1 in TNBC or HGSC cells generates a synthetic lethal dependency on casein kinase 2 (CK2) for surviving the treatment with replication-perturbing therapeutics such as carboplatin, gemcitabine, or PARP inhibitors. CK2 inhibition in RB1-deficient cells resulted in the degradation of another RB family cell cycle regulator, p130, which led to S phase accumulation, micronuclei formation, and accelerated PARP inhibition-induced aneuploidy and mitotic cell death. CK2 inhibition was also effective in primary patient-derived cells. It selectively prevented the regrowth of RB1-deficient patient HGSC organoids after treatment with carboplatin or niraparib. As about 25% of HGSCs and 40% of TNBCs have lost RB1 expression, CK2 inhibition is a promising approach to overcome resistance to standard therapeutics in large strata of patients.
Collapse
Affiliation(s)
- Daria Bulanova
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland
| | - Yevhen Akimov
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland
| | - Wojciech Senkowski
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jaana Oikkonen
- Research Program in Systems Oncology (ONCOSYS), University of Helsinki, Helsinki, Finland
| | - Laura Gall-Mas
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Sanna Timonen
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland
| | | | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital and University of Turku, Turku, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology (ONCOSYS), University of Helsinki, Helsinki, Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, Helsinki Institute for Life Sciences, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), University of Oslo, Oslo, Norway
| | - Krister Wennerberg
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Cozma EC, Banciu LM, Celarel AM, Soare E, Srichawla BS, Kipkorir V, Găman MA. Molecular mechanisms of human papilloma virus related skin cancers: A review. Medicine (Baltimore) 2024; 103:e38202. [PMID: 38787972 PMCID: PMC11124606 DOI: 10.1097/md.0000000000038202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
The human papillomavirus (HPV) belongs to the Papillomaviridae family of viruses which includes small, double-stranded DNA viral agents. Approximately 90% of HPV infections occur asymptomatically and resolve spontaneously. However, infection with high-risk viral strains can lead to the development of preneoplastic lesions, with an increased propensity to become cancerous. The location of these malignancies includes the oral cavity, cervix, vagina, anus, and vulva, among others. The role of HPV in carcinogenesis has already been demonstrated for the aforementioned neoplasia. However, regarding skin malignancies, the mechanisms that pinpoint the role played by HPV in their initiation and progression still elude our sight. Until now, the only fully understood mechanism of viral cutaneous oncogenesis is that of human herpes virus 8 infection in Kaposi sarcoma. In the case of HPV infection, however, most data focus on the role that beta strains exhibit in the oncogenesis of cutaneous squamous cell carcinoma (cSCC), along with ultraviolet radiation (UVR) and other environmental or genetic factors. However, recent epidemiological investigations have highlighted that HPV could also trigger the onset of other non-melanocytic, for example, basal cell carcinoma (BCC), and/or melanocytic skin cancers, for example, melanoma. Herein, we provide an overview of the role played by HPV in benign and malignant skin lesions with a particular focus on the main epidemiological, pathophysiological, and molecular aspects delineating the involvement of HPV in skin cancers.
Collapse
Affiliation(s)
- Elena-Codruta Cozma
- University of Medicine and Pharmacy of Craiova, Craiova, Romania
- Elias University Emergency Hospital, Bucharest, Romania
| | | | | | - Elena Soare
- Elias University Emergency Hospital, Bucharest, Romania
| | | | - Vincent Kipkorir
- Department of Human Anatomy and Physiology, University of Nairobi, Nairobi, Kenya
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Department of Hematology, Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
28
|
Rasouli S, Dakic A, Wang QE, Mitchell D, Blakaj DM, Putluri N, Li J, Liu X. Noncanonical functions of telomerase and telomeres in viruses-associated cancer. J Med Virol 2024; 96:e29665. [PMID: 38738582 DOI: 10.1002/jmv.29665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.
Collapse
Affiliation(s)
- Sara Rasouli
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, Maryland, USA
| | - Qi-En Wang
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
29
|
Yoshimoto M, Tokuda A, Eguchi A, Nozawa Y, Mori T, Yaginuma Y. Alterations of UHRF family Expression and was regulated by High Risk Type HPV16 in Uterine Cervical Cancer. Exp Cell Res 2024; 437:114018. [PMID: 38556072 DOI: 10.1016/j.yexcr.2024.114018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The altered protein expression of inverted CCAAT box-binding protein of 90 kDa/ubiquitin-like with PHD and RING finger domains 1 (ICBP90/UHRF1), and Np95-like ring finger protein (NIRF)/UHRF2, which belong to the ubiquitin-like with PHD and RING finger domains (UHRF) family, is linked to tumor malignancy and the progression of various cancers. In this study, we analyzed the UHRF family expression in cervical cancers, and it's regulation by human papillomavirus (HPV). Western blotting was performed to analyze protein expression in cervical cancer cell lines. Immunohistochemical analysis were used to investigate the expression of UHRF family and MIB-1 in cervical cancer tissues. Transfection were done for analyze the relationship between UHRF family and HPVs. We showed that NIRF expression was decreased and ICBP90 expression was increased in cervical cancers compared to normal counterparts. Western blotting also showed that NIRF expression was quite low levels, but ICBP90 was high in human cervical cancer cell lines. Interestingly, ICBP90 was up regulated by high risk type HPV16 E6 and E7, but not low-risk type HPV11. On the other hand, NIRF was down regulated by high risk type HPV16 E6 but not by E7. Low risk type HPV11 E6 did not affect the NIRF expression at all. We propose that ICBP90 overexpression, and reduced NIRF expression, found in cervical cancers, is an important event of a cervical carcinogenesis, and especially ICBP90 may offer a proliferating marker and therapeutic target for treating uterine cervical cancers.
Collapse
Affiliation(s)
- Masafumi Yoshimoto
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Aoi Tokuda
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayami Eguchi
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Nozawa
- Department of Pathology, Shirakawa Kosei General Hospital, Shirakawa, Japan
| | - Tsutomu Mori
- Department of Human Lifesciences, Fukushima Medical University School of Nursing, Fukushima, Japan
| | - Yuji Yaginuma
- Department of Oncology, Graduate School of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
30
|
Bikorimana J, Abusarah J, Gonçalves M, Farah R, Saad W, Talbot S, Stanga D, Beaudoin S, Plouffe S, Rafei M. An engineered Accum-E7 protein-based vaccine with dual anti-cervical cancer activity. Cancer Sci 2024; 115:1102-1113. [PMID: 38287511 PMCID: PMC11007051 DOI: 10.1111/cas.16096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
Worldwide prevalence of cervical cancer decreased significantly with the use of human papilloma virus (HPV)-targeted prophylactic vaccines. However, these multivalent antiviral vaccines are inert against established tumors, which leave patients with surgical ablative options possibly resulting in long-term reproductive complications and morbidity. In an attempt to bypass this unmet medical need, we designed a new E7 protein-based vaccine formulation using Accum™, a technology platform designed to promote endosome-to-cytosol escape as a means to enhance protein accumulation in target cells. Prophylactic vaccination of immunocompetent mice using the Accum-E7 vaccine (aE7) leads to complete protection from cervical cancer despite multiple challenges conducted with ascending C3.43 cellular doses (0.5-, 1.0-, and 2.0 × 106 cells). Moreover, the humoral response induced by aE7 was higher in magnitude compared with naked E7 protein vaccination and displayed potent inhibitory effects on C3.43 proliferation in vitro. When administered therapeutically to animals with pre-established C3.43 or Tal3 tumors, the vaccine-induced response synergized with multiple immune checkpoint blockers (anti-PD-1, anti-CTLA4, and anti-CD47) to effectively control tumor growth. Mechanistically, the observed therapeutic effect requires cross-presenting dendritic cells as well as CD8 T cells predominantly, with a non-negligible role played by both CD4+ and CD19+ lymphocytes. good laboratory practice (GLP) studies revealed that aE7 is immunogenic and well tolerated by immunocompetent mice with no observed adverse effects despite the use of a fourfold exceeding dose. In a nutshell, aE7 represents an ideal vaccine candidate for further clinical development as it uses a single engineered protein capable of exhibiting both prophylactic and therapeutic activity.
Collapse
Affiliation(s)
- Jean‐Pierre Bikorimana
- Department of Microbiology, Infectious Diseases and ImmunologyUniversité de MontréalMontréalQuebecCanada
| | - Jamilah Abusarah
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuebecCanada
| | - Marina Gonçalves
- Department of Molecular BiologyUniversité de MontréalMontréalQuebecCanada
| | - Roudy Farah
- Department of Microbiology, Infectious Diseases and ImmunologyUniversité de MontréalMontréalQuebecCanada
| | - Wael Saad
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuebecCanada
| | - Sebastien Talbot
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Daniela Stanga
- Defence Therapeutics Inc.VancouverBritish ColumbiaCanada
| | - Simon Beaudoin
- Defence Therapeutics Inc.VancouverBritish ColumbiaCanada
| | | | - Moutih Rafei
- Department of Microbiology, Infectious Diseases and ImmunologyUniversité de MontréalMontréalQuebecCanada
- Department of Pharmacology and PhysiologyUniversité de MontréalMontréalQuebecCanada
- Department of Molecular BiologyUniversité de MontréalMontréalQuebecCanada
| |
Collapse
|
31
|
Munday JS, Dunbar ME, Wightman P, Piripi S. Osteoinductive squamous cell carcinoma associated with a putative novel papillomavirus on the digit of a cat. N Z Vet J 2024; 72:112-117. [PMID: 38043925 DOI: 10.1080/00480169.2023.2285294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
CASE HISTORY AND CLINICAL FINDINGS An approximately 10-year-old, castrated male domestic short-haired cat developed swelling and ulceration of the second digit of the right front paw. Radiographs revealed a spherical soft tissue swelling with irregular distal margins that contained multiple lacy mineral opacities. The digit was amputated and submitted for histology. No recurrence has been observed 7 months after amputation. PATHOLOGICAL AND MOLECULAR FINDINGS Histology revealed a moderately well-circumscribed proliferation of well-differentiated squamous cells arranged in trabeculae and nests. Numerous thin spicules of osseous metaplasia were visible throughout the neoplasm. Around 70% of the neoplastic cells contained papillomavirus-induced cell changes including large amphophilic cytoplasmic bodies and cells with shrunken nuclei surrounded by a clear halo. Intense p16CDKN2A protein immunostaining was visible within the neoplastic cells, suggesting papillomavirus-induced changes in cell regulation. A DNA sequence from a putative novel Taupapillomavirus type was amplified from the neoplasm. DIAGNOSIS Osteoinductive squamous cell carcinoma associated with a putative novel papillomavirus type. CLINICAL RELEVANCE The findings in this case increase the number of papillomavirus types known to infect cats, and the squamous cell carcinoma had histological features that have not been previously reported. The neoplasm was not as invasive as is typical for a squamous cell carcinoma and excision appeared curative. This is the first report of an osteoinductive squamous cell carcinoma of the skin of cats and the neoplasm had a unique radiographic appearance.
Collapse
Affiliation(s)
- J S Munday
- Department of Pathobiology, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - M E Dunbar
- Pet Doctors Hillcrest, Hamilton, New Zealand
| | - P Wightman
- Veterinary Teaching Hospital, Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - S Piripi
- IDEXX Laboratories (NZ), Palmerston North, New Zealand
| |
Collapse
|
32
|
Ma J, Li L, Ma B, Liu T, Wang Z, Ye Q, Peng Y, Wang B, Chen Y, Xu S, Wang K, Dang F, Wang X, Zeng Z, Jian Y, Ren Z, Fan Y, Li X, Liu J, Gao Y, Wei W, Li L. MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation. Nat Commun 2024; 15:1871. [PMID: 38424044 PMCID: PMC10904810 DOI: 10.1038/s41467-024-45796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.
Collapse
Affiliation(s)
- Jian Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Ye
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bin Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zixuan Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhihua Ren
- Kintor Parmaceutical, Inc, Suzhou, 215123, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xudong Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, 710061, China.
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
33
|
Romero CH, Tuomi P, Burek-Huntington KA, Gill VA. Novel lambdapapillomavirus in northern sea otters Enhydra lutris kenyoni, associated with oral hyperplastic nodules. DISEASES OF AQUATIC ORGANISMS 2024; 157:73-80. [PMID: 38421009 DOI: 10.3354/dao03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A novel papillomavirus (PV) associated with hyperplastic nodules scattered over the muco-cutaneous border of the oral cavity of a dead, wild, subadult northern sea otter Enhydra lutris kenyoni (NSO) in 2004 in Homer, Alaska, USA, was genetically characterized. Primers for the amplification of 2 large overlapping DNA fragments that contained the complete genome of the NSO PV were designed. Sanger methodology generated sequences from which new specific primers were designed for the primer-walking approach. The NSO PV genome consists of 8085 nucleotides and contains an early region composed of E6, E7, E1, and E2 open reading frames (ORFs), an E4 ORF (contained within E2) lacking an in-frame proximal ATG start codon, an unusually long (907 nucleotide) stretch lacking any ORFs, a late region that contains the capsid genes L2 and L1, and a non-coding regulatory region (ncRR). This NSO PV has been tentatively named Enhydra lutris kenyoni PV2 (ElkPV2). Pairwise and multiple sequence alignments of the complete L1 ORF nucleotides and concatenated E1-E2-L1 amino acid sequences showed that the NSO PV is a novel PV, phylogenetically most closely related to southern sea otter PV1. The carboxy end of the E6 oncoprotein does not contain the PDZ-binding motif with a strong correlation with oncogenicity, suggesting a low-risk PV, which is in agreement with histopathological findings. However, the ElkPV2 E7 oncoprotein does contain the retinoblastoma (pRb) binding domain LXCXE (LQCYE in ElkPV2), associated with oncogenicity in some high-risk PVs. Further studies on the prevalence and clinical significance of ElkPV2 infections in NSO are needed.
Collapse
Affiliation(s)
- Carlos H Romero
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32608, USA
| | - Pam Tuomi
- Alaska Sealife Center, Veterinary Sciences, Seward, Alaska 99664, USA
| | | | | |
Collapse
|
34
|
Kang SW, Kang OJ, Lee JY, Kim H, Jung H, Kim H, Lee SW, Kim YM, Choi EK. Evaluation of the anti-cancer efficacy of lipid nanoparticles containing siRNA against HPV16 E6/E7 combined with cisplatin in a xenograft model of cervical cancer. PLoS One 2024; 19:e0298815. [PMID: 38363779 PMCID: PMC10871510 DOI: 10.1371/journal.pone.0298815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
OBJECTIVE To investigate the anti-cancer efficacy of ENB101-LNP, an ionizable lipid nanoparticles (LNPs) encapsulating siRNA against E6/E7 of HPV 16, in combination therapy with cisplatin in cervical cancer in vitro and in vivo. METHODS CaSki cells were treated with ENB101-LNP, cisplatin, or combination. Cell viability assessed the cytotoxicity of the treatment. HPV16 E6/E7 gene knockdown was verified with RT-PCR both in vitro and in vivo. HLA class I and PD-L1 were checked by flow cytometry. A xenograft model was made using CaSki cells in BALB/c nude mice. To evaluate anticancer efficacy, mice were grouped. ENB101-LNP was given three times weekly for 3 weeks intravenously, and cisplatin was given once weekly intraperitoneally. Tumor growth was monitored. On day 25, mice were euthanized; tumors were collected, weighed, and imaged. Tumor samples were analyzed through histopathology, immunostaining, and western blot. RESULTS ENB101-LNP and cisplatin synergistically inhibit CaSki cell growth. The combination reduces HPV 16 E6/E7 mRNA and boosts p21 mRNA, p53, p21, and HLA class I proteins. In mice, the treatment significantly blocked tumor growth and promoted apoptosis. Tumor inhibition rates were 29.7% (1 mpk ENB101-LNP), 29.6% (3 mpk), 34.0% (cisplatin), 47.0% (1 mpk ENB101-LNP-cisplatin), and 68.8% (3 mpk ENB101-LNP-cisplatin). RT-PCR confirmed up to 80% knockdown of HPV16 E6/E7 in the ENB101-LNP groups. Immunohistochemistry revealed increased p53, p21, and HLA-A expression with ENB101-LNP treatments, alone or combined. CONCLUSION The combination of ENB101-LNP, which inhibits E6/E7 of HPV 16, with cisplatin, demonstrated significant anticancer activity in the xenograft mouse model of cervical cancer.
Collapse
Affiliation(s)
- Sung Wan Kang
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | - Ok-Ju Kang
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | - Ji-young Lee
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | - Shin-Wha Lee
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | - Yong Man Kim
- Department of Obstetrics & Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
| | - Eun Kyung Choi
- Asan Preclinical Evaluation Center for Cancer TherapeutiX, Asan Medical Center, Seoul, Republic of Korea
- Department of Radiation Oncology, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
35
|
Rosendo-Chalma P, Antonio-Véjar V, Ortiz Tejedor JG, Ortiz Segarra J, Vega Crespo B, Bigoni-Ordóñez GD. The Hallmarks of Cervical Cancer: Molecular Mechanisms Induced by Human Papillomavirus. BIOLOGY 2024; 13:77. [PMID: 38392296 PMCID: PMC10886769 DOI: 10.3390/biology13020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Human papillomaviruses (HPVs) and, specifically, high-risk HPVs (HR-HPVs) are identified as necessary factors in the development of cancer of the lower genital tract, with CaCU standing out as the most prevalent tumor. This review summarizes ten mechanisms activated by HR-HPVs during cervical carcinogenesis, which are broadly associated with at least seven of the fourteen distinctive physiological capacities of cancer in the newly established model by Hanahan in 2022. These mechanisms involve infection by human papillomavirus, cellular tropism, genetic predisposition to uterine cervical cancer (CaCU), viral load, viral physical state, regulation of epigenetic mechanisms, loss of function of the E2 protein, deregulated expression of E6/E7 oncogenes, regulation of host cell protein function, and acquisition of the mesenchymal phenotype.
Collapse
Affiliation(s)
- Pedro Rosendo-Chalma
- Laboratorio de Virus y Cáncer, Unidad de Investigación Biomédica en Cáncer of Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), Mexico City 14080, Mexico
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Verónica Antonio-Véjar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico
| | - Jonnathan Gerardo Ortiz Tejedor
- Unidad Académica de Posgrado, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
- Carrera de Bioquímica y Farmacia, Universidad Católica de Cuenca, Cuenca 010101, Ecuador
| | - Jose Ortiz Segarra
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | - Bernardo Vega Crespo
- Carrera de Medicina, Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca 010107, Ecuador
| | | |
Collapse
|
36
|
Patterson MR, Meijers AS, Ryder EL, Scarth JA, Evans D, Turner AL, Wasson CW, Darell JE, Theobald D, Cogan J, James CD, Wang M, Ladbury JE, Morgan IM, Samson A, Morgan EL, Macdonald A. E7-mediated repression of miR-203 promotes LASP1-dependent proliferation in HPV-positive cervical cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574687. [PMID: 38293147 PMCID: PMC10827106 DOI: 10.1101/2024.01.08.574687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Human papillomaviruses (HPV) are a major cause of malignancy, contributing to ∼5% of all human cancers worldwide, including most cervical cancer cases and a growing number of ano-genital and oral cancers. The major HPV viral oncogenes, E6 and E7, manipulate many host cellular pathways that promote cell proliferation and survival, predisposing infected cells to malignant transformation. Despite the availability of highly effective vaccines, there are still no specific anti-viral therapies targeting HPV or treatments for HPV-associated cancers. As such, a better understanding of viral-host interactions may allow the identification of novel therapeutic targets. Here, we demonstrate that the actin-binding protein LASP1 is upregulated in cervical cancer and significantly correlates with a poorer overall survival. In HPV positive cervical cancer, LASP1 depletion significantly inhibited proliferation in vitro , whilst having minimal effects in HPV negative cervical cancer cells. Furthermore, we show that the LASP1 SH3 domain is essential for LASP1-mediated proliferation in these cells. Mechanistically, we show that HPV E7 regulates LASP1 at the post-transcriptional level by repressing the expression of miR-203, which negatively regulated LASP1 mRNA levels by binding to its 3'UTR. Finally, we demonstrated that LASP1 expression is required for the growth of HPV positive cervical cancer cells in an in vivo tumourigenicity model. Together, these data demonstrate that HPV induces LASP1 expression to promote proliferation and survival role in cervical cancer, thus identifying a potential therapeutic target in these cancers.
Collapse
|
37
|
Tripathi T, Yadav J, Janjua D, Chaudhary A, Joshi U, Senrung A, Chhokar A, Aggarwal N, Bharti AC. Targeting Cervical Cancer Stem Cells by Phytochemicals. Curr Med Chem 2024; 31:5222-5254. [PMID: 38288813 DOI: 10.2174/0109298673281823231222065616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 09/06/2024]
Abstract
Cervical cancer (CaCx) poses a significant global health challenge, ranking as the fourth most common cancer among women worldwide. Despite the emergence of advanced treatment strategies, recurrence remains a bottleneck in favorable treatment outcomes and contributes to poor prognosis. The chemo- or radio-therapy resistance coupled with frequent relapse of more aggressive tumors are some key components that contribute to CaCx-related mortality. The onset of therapy resistance and relapse are attributed to a small subset of, slow-proliferating Cancer Stem Cells (CSC). These CSCs possess the properties of tumorigenesis, self-renewal, and multi-lineage differentiation potential. Because of slow cycling, these cells maintain themselves in a semi-quiescent stage and protect themselves from different anti-proliferative anti-cancer drugs. Keeping in view recent advances in their phenotypic and functional characterization, the feasibility of targeting CSC and associated stem cell signaling bears a strong translational value. The presence of CSC has been reported in CaCx (CCSC) which remains a forefront area of research. However, we have yet to identify clinically useful leads that can target CCSC. There is compelling evidence that phytochemicals, because of their advantages over synthetic anticancer drugs, could emerge as potential therapeutic leads to target these CCSCs. The present article examined the potential of phytochemicals with reported anti-CSC properties and evaluated their future in preclinical and clinical applications against CaCx.
Collapse
Affiliation(s)
- Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Udit Joshi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology and Drug Delivery Laboratory, Department of Zoology, Daulat Ram College, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Deshbandhu College, University of Delhi, New Delhi, 110019, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
38
|
Wendel S, Wallace NA. Interactions among human papillomavirus proteins and host DNA repair factors differ during the viral life cycle and virus-induced tumorigenesis. mSphere 2023; 8:e0042723. [PMID: 37850786 PMCID: PMC10732048 DOI: 10.1128/msphere.00427-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
This review focuses on the impact of human papillomavirus (HPV) oncogenes on DNA repair pathways with a particular focus on how these relationships change as productive HPV infections transition to malignant lesions. We made specific efforts to incorporate advances in the understanding of HPV and DNA damage repair over the last 4 years. We apologize for any articles that we missed in compiling this report.
Collapse
Affiliation(s)
- Sebastian Wendel
- Kansas State University, Division of Biology, Manhattan, Kansas, USA
| | | |
Collapse
|
39
|
Romero-Masters JC, Muehlbauer LK, Hayes M, Grace M, Shishkova E, Coon JJ, Munger K, Lambert PF. MmuPV1 E6 induces cell proliferation and other hallmarks of cancer. mBio 2023; 14:e0245823. [PMID: 37905801 PMCID: PMC10746199 DOI: 10.1128/mbio.02458-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The Mus musculus papillomavirus 1 (MmuPV1) E6 and E7 proteins are required for MmuPV1-induced disease. Our understanding of the activities of MmuPV1 E6 has been based on affinity purification/mass spectrometry studies where cellular interacting partners of MmuPV1 E6 were identified, and these studies revealed that MmuPV1 E6 can inhibit keratinocyte differentiation through multiple mechanisms. We report that MmuPV1 E6 encodes additional activities including the induction of proliferation, resistance to density-mediated growth arrest, and decreased dependence on exogenous growth factors. Proteomic and transcriptomic analyses provided evidence that MmuPV1 E6 increases the expression and steady state levels of a number of cellular proteins that promote cellular proliferation and other hallmarks of cancer. These results indicate that MmuPV1 E6 is a major driver of MmuPV1-induced pathogenesis.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Laura K. Muehlbauer
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mitchell Hayes
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Evgenia Shishkova
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- Departments of Chemistry and Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Münz C. Modulation of Epstein-Barr-Virus (EBV)-Associated Cancers by Co-Infections. Cancers (Basel) 2023; 15:5739. [PMID: 38136285 PMCID: PMC10741436 DOI: 10.3390/cancers15245739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The oncogenic and persistent Epstein Barr virus (EBV) is carried by more than 95% of the human adult population. While asymptomatic in most of these, EBV can cause a wide variety of malignancies of lymphoid or epithelial cell origin. Some of these are also associated with co-infections that either increase EBV-induced tumorigenesis or weaken its immune control. The respective pathogens include Kaposi-sarcoma-associated herpesvirus (KSHV), Plasmodium falciparum and human immunodeficiency virus (HIV). In this review, I will discuss the respective tumor entities and possible mechanisms by which co-infections increase the EBV-associated cancer burden. A better understanding of the underlying mechanisms could allow us to identify crucial features of EBV-associated malignancies and defects in their immune control. These could then be explored to develop therapies against the respective cancers by targeting EBV and/or the respective co-infections with pathogen-specific therapies or vaccinations.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
41
|
Kakkar A, Srivastava K, Deepa S, Kashyap S, Sen S, Bhoriwal S, Kaur K, Deo SVS. HPV-Associated Squamous Cell Carcinoma of the Eyelid: Diagnostic Utility of p16 Immunohistochemistry and mRNA In Situ Hybridization. Head Neck Pathol 2023; 17:889-898. [PMID: 37735287 PMCID: PMC10739694 DOI: 10.1007/s12105-023-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND High-risk (HR) Human papillomavirus (HPV) has been implicated in pathogenesis of squamous cell carcinomas (SCC) at several sites with mucocutaneous junctions, including the head and neck. SCC is the second most common eyelid malignancy. However, its association with transcriptionally active HR-HPV has not been adequately studied. METHODS Two index cases of eyelid HPV-associated SCC are described in detail. A retrospective cohort of eyelid SCC was examined for p16 immunoexpression. Cases demonstrating p16 positivity or equivocal staining were subjected to high-risk HPV mRNA in situ hybridization (ISH). Quantitative real-time PCR (qPCR) was performed in mRNA ISH-positive cases for HPV genotyping. RESULTS The two index patients were older adult females, with upper eyelid tumours. On histology, both tumours were non-keratinizing SCC with trabecular and nested architecture reminiscent of oropharyngeal HPV-associated non-keratinizing SCC, prompting p16 immunohistochemistry, which was positive. HR-HPV mRNA ISH was positive, and qPCR detected HPV16 in both cases. Three of 20 (15%) archival cases showed p16 immunopositivity and two (10%) showed equivocal staining. However, mRNA ISH was negative. All cases showing p16 immunostaining and lacking HR-HPV were keratinizing SCCs. Thus, 9% of all eyelid SCC examined demonstrated HR-HPV. CONCLUSION The prevalence of HR-HPV in eyelid SCC is low in Indian patients. HPV-associated SCC may mimic commoner eyelid carcinomas as it lacks overt keratinization. In basaloid-appearing eyelid carcinomas, p16 immunopositivity should be followed by reflex HR-HPV mRNA ISH, as p16 immunohistochemistry alone has low specificity. The prognostic role, if any, of HPV association needs further evaluation.
Collapse
Affiliation(s)
- Aanchal Kakkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Kirti Srivastava
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S Deepa
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Seema Kashyap
- Division of Ocular Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Seema Sen
- Division of Ocular Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sandeep Bhoriwal
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kavneet Kaur
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Suryanarayan V S Deo
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
42
|
Studstill CJ, Mac M, Moody CA. Interplay between the DNA damage response and the life cycle of DNA tumor viruses. Tumour Virus Res 2023; 16:200272. [PMID: 37918513 PMCID: PMC10685005 DOI: 10.1016/j.tvr.2023.200272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023] Open
Abstract
Approximately 20 % of human cancers are associated with virus infection. DNA tumor viruses can induce tumor formation in host cells by disrupting the cell's DNA replication and repair mechanisms. Specifically, these viruses interfere with the host cell's DNA damage response (DDR), which is a complex network of signaling pathways that is essential for maintaining the integrity of the genome. DNA tumor viruses can disrupt these pathways by expressing oncoproteins that mimic or inhibit various DDR components, thereby promoting genomic instability and tumorigenesis. Recent studies have highlighted the molecular mechanisms by which DNA tumor viruses interact with DDR components, as well as the ways in which these interactions contribute to viral replication and tumorigenesis. Understanding the interplay between DNA tumor viruses and the DDR pathway is critical for developing effective strategies to prevent and treat virally associated cancers. In this review, we discuss the current state of knowledge regarding the mechanisms by which human papillomavirus (HPV), merkel cell polyomavirus (MCPyV), Kaposi's sarcoma-associated herpesvirus (KSHV), and Epstein-Barr virus (EBV) interfere with DDR pathways to facilitate their respective life cycles, and the consequences of such interference on genomic stability and cancer development.
Collapse
Affiliation(s)
- Caleb J Studstill
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Cary A Moody
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
43
|
CHAMBERS JK, ITO S, UCHIDA K. Feline papillomavirus-associated Merkel cell carcinoma: a comparative review with human Merkel cell carcinoma. J Vet Med Sci 2023; 85:1195-1209. [PMID: 37743525 PMCID: PMC10686778 DOI: 10.1292/jvms.23-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare skin tumor that shares a similar immunophenotype with Merkel cells, although its origin is debatable. More than 80% of human MCC cases are associated with Merkel cell polyomavirus infections and viral gene integration. Recent studies have shown that the clinical and pathological characteristics of feline MCC are comparable to those of human MCC, including its occurrence in aged individuals, aggressive behavior, histopathological findings, and the expression of Merkel cell markers. More than 90% of feline MCC are positive for the Felis catus papillomavirus type 2 (FcaPV2) gene. Molecular changes involved in papillomavirus-associated tumorigenesis, such as increased p16 and decreased retinoblastoma (Rb) and p53 protein levels, were observed in FcaPV2-positive MCC, but not in FcaPV2-negative MCC cases. These features were also confirmed in FcaPV2-positive and -negative MCC cell lines. The expression of papillomavirus E6 and E7 genes, responsible for p53 degradation and Rb inhibition, respectively, was detected in tumor cells by in situ hybridization. Whole genome sequencing revealed the integration of FcaPV2 DNA into the host feline genome. MCC cases often develop concurrent skin lesions, such as viral plaque and squamous cell carcinoma, which are also associated with papillomavirus infection. These findings suggest that FcaPV2 infection and integration of viral genes are involved in the development of MCC in cats. This review provides an overview of the comparative pathology of feline and human MCC caused by different viruses and discusses their cell of origin.
Collapse
Affiliation(s)
- James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soma ITO
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
44
|
Mogi K, Koya Y, Yoshihara M, Sugiyama M, Miki R, Miyamoto E, Fujimoto H, Kitami K, Iyoshi S, Tano S, Uno K, Tamauchi S, Yokoi A, Shimizu Y, Ikeda Y, Yoshikawa N, Niimi K, Yamakita Y, Tomita H, Shibata K, Nawa A, Tomoda Y, Kajiyama H. 9-oxo-ODAs suppresses the proliferation of human cervical cancer cells through the inhibition of CDKs and HPV oncoproteins. Sci Rep 2023; 13:19208. [PMID: 37932321 PMCID: PMC10628276 DOI: 10.1038/s41598-023-44365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Mucosal human papillomavirus (HPV) subtypes 16 and 18 are causative agents of cervical cancer, a leading cause of cancer-related deaths among women worldwide. In Japan, eggplant calyx is a folk remedy used to treat common warts. 9-oxo-(10E,12E)-octadecadienoic acid, isolated from eggplant calyx, may have antitumor effects. This study investigated the antitumor effects of 9-oxo-(10E, 12Z)-octadecadienoic acid and 9-oxo-(10E,12E)-octadecadienoic acid (9-oxo-ODAs) on human cervical cancer cells. 9-oxo-ODAs suppressed the proliferation of human cervical cancer cell lines (HeLa, and SiHa) in a concentration-dependent manner (IC50 = 25-50 µM). FCM analysis revealed that 9-oxo-ODAs induced apoptosis. Transcriptome, proteomics, and enrichment analyses revealed that treatment with 9-oxo-ODAs significantly altered the cell cycle and p53 pathways and decreased cyclin-dependent kinase 1 (CDK1) protein expression. Real-time PCR analysis demonstrated that 9-oxo-ODAs reduced CDK1 mRNA expression in a concentration-dependent manner. In vitro, 9-oxo-ODAs reduced the HPV oncoprotein expression. In ex vivo human cervical cancer tissues, 9-oxo-ODAs decreased CDK1 expression and increased cleaved caspase 3, an apoptosis marker. Further, 9-oxo-ODAs showed the potential to suppressed metastatic formation and growth of cervical cancer in vivo. These findings suggest that 9-oxo-ODAs induce cell cycle arrest and apoptosis in HPV-positive human cervical cancer cells, and this process involves CDK1. Consequently, 9-oxo-ODAs may be potential therapeutic agents for cervical cancer.
Collapse
Affiliation(s)
- Kazumasa Mogi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Yoshihiro Koya
- Bell Research Center Obstetrics and Gynecology Academic Research & Industrial - Academia Collaboration Nagoya University Graduate School of Medicine, Nagoya University, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan.
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan.
| | - Mai Sugiyama
- Bell Research Center Obstetrics and Gynecology Academic Research & Industrial - Academia Collaboration Nagoya University Graduate School of Medicine, Nagoya University, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Rika Miki
- Bell Research Center Obstetrics and Gynecology Academic Research & Industrial - Academia Collaboration Nagoya University Graduate School of Medicine, Nagoya University, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Emiri Miyamoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Hiroki Fujimoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Kitazato University, Kanagawa, Japan
| | - Shohei Iyoshi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Breisgau, Germany
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Kaname Uno
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
- Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Yoshihiko Yamakita
- Bell Research Center Obstetrics and Gynecology Academic Research & Industrial - Academia Collaboration Nagoya University Graduate School of Medicine, Nagoya University, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Bantane Hospital, Fujita Health University, Nagoya, Aichi, Japan
| | - Akihiro Nawa
- Bell Research Center Obstetrics and Gynecology Academic Research & Industrial - Academia Collaboration Nagoya University Graduate School of Medicine, Nagoya University, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| | | | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsuruma-Cho 65, Showa-Ku, Nagoya, Aichi, Japan
| |
Collapse
|
45
|
Han X, Gao Z, Cheng Y, Wu S, Chen J, Zhang W. A Therapeutic DNA Vaccine Targeting HPV16 E7 in Combination with Anti-PD-1/PD-L1 Enhanced Tumor Regression and Cytotoxic Immune Responses. Int J Mol Sci 2023; 24:15469. [PMID: 37895145 PMCID: PMC10607554 DOI: 10.3390/ijms242015469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Persistent infection of high-risk human papillomavirus (HPV) and the expression of E6 and E7 oncoproteins are the main causes of cervical cancer. Several prophylactic HPV vaccines are used in the clinic, but these vaccines have limited efficacy in patients already infected with HPV. Since HPV E7 is vital for tumor-specific immunity, developing a vaccine against HPV E7 is an attractive strategy for cervical cancer treatment. Here, we constructed an HPV16 E7 mutant that loses the ability to bind pRb while still eliciting a robust immune response. In order to build a therapeutic DNA vaccine, the E7 mutant was packaged in an adenovirus vector (Ad-E7) for efficient expression and enhanced immunogenicity of the vaccine. Our results showed that the Ad-E7 vaccine effectively inhibited tumor growth and increased the proportion of interferon-gamma (IFN-γ)-secreting CD8+ T cells in the spleen, and tumor-infiltrating lymphocytes in a mouse cervical cancer model was achieved by injecting with HPV16-E6/E7-expressing TC-1 cells subcutaneously. Combining the Ad-E7 vaccine with the PD-1/PD-L1 antibody blockade significantly improved the control of TC-1 tumors. Combination therapy elicited stronger cytotoxic T lymphocyte (CTL) responses, and IFN-γ secretion downregulated the proportion of Tregs and MDSCs significantly. The expressions of cancer-promoting factors, such as TNF-α, were also significantly down-regulated in the case of combination therapy. In addition, combination therapy inhibited the number of capillaries in tumor tissues and increased the thickness of the tumor capsule. Thus, Ad-E7 vaccination, in combination with an immune checkpoint blockade, may benefit patients with HPV16-associated cervical cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Weifang Zhang
- Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (X.H.); (Z.G.); (Y.C.); (S.W.); (J.C.)
| |
Collapse
|
46
|
Hochmann J, Millán M, Hernández P, Lafon-Hughes L, Aiuto ND, Silva A, Llaguno J, Alonso J, Fernández A, Pereira-Prado V, Sotelo-Silveira J, Bologna-Molina R, Arocena M. Contributions of viral oncogenes of HPV-18 and hypoxia to oxidative stress and genetic damage in human keratinocytes. Sci Rep 2023; 13:17734. [PMID: 37853061 PMCID: PMC10584980 DOI: 10.1038/s41598-023-44880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Infection with high-risk human papillomaviruses like HPV-16 and HPV-18 is highly associated with the development of cervical and other cancers. Malignant transformation requires viral oncoproteins E5, E6 and E7, which promote cell proliferation and increase DNA damage. Oxidative stress and hypoxia are also key factors in cervical malignant transformation. Increased levels of reactive species of oxygen (ROS) and nitrogen (RNS) are found in the hypoxic tumor microenvironment, promoting genetic instability and invasiveness. In this work, we studied the combined effect of E5, E6 and E7 and hypoxia in increasing oxidative stress and promoting DNA damage and nuclear architecture alterations. HaCaT cells containing HPV-18 viral oncogenes (HaCaT E5/E6/E7-18) showed higher ROS levels in normoxia and higher levels of RNS in hypoxia compared to HaCaT parental cells, as well as higher genetic damage in hypoxia as measured by γH2AX and comet assays. In hypoxia, HaCaT E5/E6/E7-18 increased its nuclear dry mass and both cell types displayed marked heterogeneity in nuclear dry mass distribution and increased nuclear foci. Our results show contributions of both viral oncogenes and hypoxia to oxidative stress, DNA damage and altered nuclear architecture, exemplifying how an altered microenvironment combines with oncogenic transformation to promote tumor progression.
Collapse
Affiliation(s)
- Jimena Hochmann
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
- Departamento de Diagnóstico en Patología y Medicina Bucal, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay.
| | - Magdalena Millán
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Paola Hernández
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Laura Lafon-Hughes
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte -Sede Salto, Universidad de la República (CENUR LN, UdelaR), Montevideo, Uruguay
| | - Natali D' Aiuto
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Biología Odontológica, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay
| | - Alejandro Silva
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Juan Llaguno
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Julia Alonso
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Ariel Fernández
- Instituto de Física, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Vanesa Pereira-Prado
- Departamento de Diagnóstico en Patología y Medicina Bucal, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ronell Bologna-Molina
- Departamento de Diagnóstico en Patología y Medicina Bucal, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay
| | - Miguel Arocena
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
- Departamento de Biología Odontológica, Facultad de Odontología, Universidad de la República, General Las Heras 1925, Montevideo, Uruguay.
| |
Collapse
|
47
|
Mukerjee N, Maitra S, Gorai S, Ghosh A, Alexiou A, Thorat ND. Revolutionizing Human papillomavirus (HPV)-related cancer therapies: Unveiling the promise of Proteolysis Targeting Chimeras (PROTACs) and Proteolysis Targeting Antibodies (PROTABs) in cancer nano-vaccines. J Med Virol 2023; 95:e29135. [PMID: 37792364 DOI: 10.1002/jmv.29135] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023]
Abstract
Personalized cancer immunotherapies, combined with nanotechnology (nano-vaccines), are revolutionizing cancer treatment strategies, explicitly targeting Human papilloma virus (HPV)-related cancers. Despite the availability of preventive vaccines, HPV-related cancers remain a global concern. Personalized cancer nano-vaccines, tailored to an individual's tumor genetic mutations, offer a unique and promising solution. Nanotechnology plays a critical role in these vaccines by efficiently delivering tumor-specific antigens, enhancing immune responses, and paving the way for precise and targeted therapies. Recent advancements in preclinical models have demonstrated the potential of polymeric nanoparticles and high-density lipoprotein-mimicking nano-discs in augmenting the efficacy of personalized cancer vaccines. However, challenges related to optimizing the nano-carrier system and ensuring safety in human trials persist. Excitingly, the integration of nanotechnology with Proteolysis-Targeting Chimeras (PROTACs) provides an additional avenue to enhance the effectiveness of personalized cancer treatment. PROTACs selectively degrade disease-causing proteins, amplifying the impact of nanotechnology-based therapies. Overcoming these challenges and leveraging the synergistic potential of nanotechnology, PROTACs, and Proteolysis-Targeting Antibodies hold great promise in pursuing novel and effective therapeutic solutions for individuals affected by HPV-related cancers.
Collapse
Affiliation(s)
- Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute Of Medical and Technical Sciences, Tamil Nadu, Chennai, India
- Department of Microbiology, West Bengal State University, Barasat, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Barasat, Kolkata, India
| | | | - Arabinda Ghosh
- Department of Computational Biology and Biotechnology, Mahapurasha Srimanta Sankaradeva Viswavidyalaya, Guwahati, Assam, India
| | - Athanasiosis Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Sydney, New South Wales, Australia
- AFNP Med, Wien, Austria
| | - Nanasaheb D Thorat
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Limerick, Ireland
| |
Collapse
|
48
|
Paul A, Dutta P, Basu K. Assessment and clinicopathological correlation of p16 expression in cervical squamous cell carcinoma of Indian population: Diagnostic implications. J Cancer Res Ther 2023; 19:2012-2017. [PMID: 38376311 DOI: 10.4103/jcrt.jcrt_753_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/22/2022] [Indexed: 02/21/2024]
Abstract
BACKGROUND Our aim was to assess the p16 expression in normal cervical epithelium and cervical lesions and how it correlated with HPV oncoprotein E7 and other etiological parameters of cervical cancer. METHODS For this purpose, we analyzed protein expression of p16 and E7 oncoprotein in total 20 normal cervical epithelium tissue (as control) and 62 cervical lesions. Next, the result was correlated with different clinico-pathological parameters. RESULTS Out of 62 cases of cervical lesions, we found around 75%-100% of the cervical lesion samples exhibited E7 nuclear protein expression, whereas around 33.33%-75% samples were p16 positive. On the other hand, p16 expression showed strong association with E7 oncoprotein and other clinico-pathological parameters (like high parity, early age of sextual debut) in the same set of samples of our study. CONCLUSION We concluded that overexpression of p16 is very practical and can be readily implemented in most diagnostic pathology laboratories.
Collapse
Affiliation(s)
- Arkadip Paul
- Department of Pathology, Murshidabad Medical College and Hospital (MSDMCH), Berhampore, West Bengal, India
| | - Priyanka Dutta
- Department of Oncogene Regulation Unit, Chittaranjan National Cancer Institute (CNCI), Kolkata, West Bengal, India
| | - Keya Basu
- Department of Pathology, KPC Medical College, Kolkata, West Bengal, India
| |
Collapse
|
49
|
Mir BA, Ahmad A, Farooq N, Priya MV, Siddiqui AH, Asif M, Manzoor R, Ishqi HM, Alomar SY, Rahaman PF. Increased expression of HPV-E7 oncoprotein correlates with a reduced level of pRb proteins via high viral load in cervical cancer. Sci Rep 2023; 13:15075. [PMID: 37699974 PMCID: PMC10497568 DOI: 10.1038/s41598-023-42022-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Human Papillomavirus (HPV) is the most common cause of sexually transmitted diseases and causes a wide range of pathologies including cervical carcinoma. Integration of the HR-HPV DNA into the host genome plays a crucial role in cervical carcinoma. An alteration of the pRb pathways by the E7 proteins is one of the mechanisms that's account for the transforming capacity of high-risk papillomavirus. For the proper understanding of the underline mechanism of the progression of the disease, the present study investigate the correlation of concentration of host pRb protein, viral E7 oncoprotein and viral load in early and advanced stages of cervical carcinoma. It was found that the viral load in early stages (stage I and II) was less (log10 transformed mean value 2.6 and 3.0) compared to advanced stages (stage III and IV) (Log10 transformed value 5.0 and 5.8) having high expression of HPV E7 onco-protein and reduced level of pRb protein, signifying the role of viral load and expression level of E7 oncoprotein in the progression of cervical cancer.
Collapse
Affiliation(s)
- Bilal Ahmad Mir
- Zoology Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
| | - Arif Ahmad
- Zoology Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
| | - Nighat Farooq
- Zoology Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
| | - M Vishnu Priya
- Department of Radiation Oncology, MNJ Cancer Hospital, Hyderabad, India
| | - A H Siddiqui
- School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - M Asif
- Zoology Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
| | - Rouquia Manzoor
- Sher-i-Kashmir Institute of Medical Sciences, Soura Srinagar, J&K, India
| | - Hassan Mubarak Ishqi
- Department of Surgery and Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Suliman Y Alomar
- Department of Zoology, King Saud University, 11451, Riyadh, Kingdom of Saudi Arabia.
| | - P F Rahaman
- Zoology Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India.
| |
Collapse
|
50
|
Sirirungreung A, Hansen J, Ritz B, Heck JE. Association between medically diagnosed postnatal infection and childhood cancers: A matched case-control study in Denmark, 1978 to 2016. Int J Cancer 2023; 153:994-1002. [PMID: 37243370 PMCID: PMC10524667 DOI: 10.1002/ijc.34604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
Although the association between infection and childhood cancer has been long investigated, there is limited information on rarer cancers. This article aimed to explore the association between postnatal infection and childhood cancers in the Danish population. A matched case-control study was conducted using Danish nationwide registries from 1978 to 2016. Each childhood cancer case was matched 1:25 with controls by birth date within a week and sex. Postnatal infections were identified from the Danish National Patient Registry, which lists diagnoses seen in hospital, specialist or emergency care services. Multivariable conditional logistic regression was used to estimate adjusted odds ratios (adj.OR) and 95% confidence intervals (CI). Specific types of infections and the number of infection episodes were also considered. The study included 4125 childhood cancer cases and 103 526 matched controls with ages ranging from 0 to 19 years. Medically diagnosed postnatal infections were positively associated with many types of childhood cancer including acute lymphoblastic leukemia (adj.OR = 1.42; 95% CI: 1.23-1.63), acute myeloid leukemia (adj.OR = 1.80; 95% CI: 1.28-2.52), non-Hodgkin lymphoma (adj.OR = 1.53; 95% CI: 1.19-1.97) and central nervous system tumors (adj.OR = 1.57; 95% CI: 1.39-1.77). A higher number of infection episodes were also associated with an increased risk of these cancers. Specific infections such as viral, enteric and urinary tract infections were also strongly associated with specific types of cancer. In conclusion, children who later develop cancer appear to have adverse reactions to infections necessitating referral to specialized health care services, perhaps indicating dysregulated immune function.
Collapse
Affiliation(s)
- Anupong Sirirungreung
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Johnni Hansen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Julia E Heck
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- College of Health and Public Service, University of North Texas, Denton, TX, USA
| |
Collapse
|