1
|
Guo HX, Tantai RN, Yang B, Yang LG, Ma Y, Zhao HP, Wang J, Zhang XJ, Wang RH, Wang F, Wang JP, Chi RF, Qin FZ, Li B, Liu YX. SEW2871 attenuates myocyte necroptosis in heart failure through inhibition of oxidative stress and inflammatory cytokines. Br J Pharmacol 2025; 182:2772-2789. [PMID: 40064624 DOI: 10.1111/bph.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND AND PURPOSE Sphingosine-1-phosphate (S1P)/S1P receptor signalling exerts cardioprotective effects. However, the effect of the selective S1P1 receptor agonist SEW2871 on myocyte necroptosis in heart failure and the underlying mechanisms are unknown. In the present study, we tested the hypothesis that SEW2871 attenuates myocyte necroptosis in heart failure through inhibition of oxidative stress and inflammatory cytokines. EXPERIMENTAL APPROACH Eight-week-old male C57BL/6J mice underwent myocardial infarction (MI) or sham operation. The animals were randomized to receive SEW2871 (5 mg·kg-1·day-1, i.p) or placebo for 4 weeks. KEY RESULTS MI mice exhibited the increases in left ventricular (LV) end-diastolic dimension, LV end-systolic dimension, LV mass and lung weight and a decrease in LV ejection fraction, indicating LV dilation, LV systolic dysfunction and lung congestion, and these alterations were attenuated by the SEW2871 treatment. Myocardial expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker of oxidative stress, inflammatory cytokines tumour necrosis factor-α (TNF-α), interleukin-1β and interleukin-6, and phosphorylated RIPK1 (p-RIPK1), p-RIPK3 and p-MLKL, reflective of their respective kinase activities, markers of necroptosis, was markedly increased in the MI placebo group, and the increase was abolished by the SEW2871 treatment. Similarly, intracellular levels of reactive oxygen species, inflammatory cytokines, p-RIPK1, p-RIPK3 and p-MLKL protein expression were increased in H9C2 cardiomyocytes under mimic ischaemia and the increases were prevented by the SEW2871 treatment. CONCLUSION AND IMPLICATIONS The selective S1P1 receptor agonist SEW2871 attenuates myocyte necroptosis through inhibition of oxidative stress and inflammatory cytokines, leading to improvement of LV remodelling and function in heart failure.
Collapse
Affiliation(s)
- Hong-Xia Guo
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Run-Nan Tantai
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Bin Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Yuan Ma
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Hui-Ping Zhao
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Jing Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Xiao-Juan Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
- Shanxi Province Cardiovascular Hospital, Taiyuan, China
| | - Rui-Hua Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Fei Wang
- Shanxi Province Cardiovascular Hospital, Taiyuan, China
| | - Jia-Pu Wang
- Shanxi Province Cardiovascular Hospital, Taiyuan, China
| | - Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China
- Shanxi Medical University, Taiyuan, China
| | - Ya-Xin Liu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Razazian M, Bahiraii S, Jannat I, Tiffner A, Beilhack G, Levkau B, Voelkl J, Alesutan I. Sphingosine kinase 1 inhibition aggravates vascular smooth muscle cell calcification. Pflugers Arch 2025; 477:815-826. [PMID: 39899071 DOI: 10.1007/s00424-025-03068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Medial vascular calcification is common in chronic kidney disease patients and linked to hyperphosphatemia. Upon phosphate exposure, intricate signaling events orchestrate pro-calcific effects in the vasculature mediated by vascular smooth muscle cells (VSMCs). Sphingosine kinase 1 (SPHK1) produces sphingosine-1-phosphate (S1P) and is associated with complex effects in the vascular system. The present study investigated a possible involvement of SPHK1 in VSMC calcification. Experiments were performed in primary human aortic VSMCs under pro-calcific conditions, with pharmacological inhibition or knockdown of SPHK1 or SPNS2 (a lysolipid transporter involved in cellular S1P export), as well as in Sphk1-deficient and wild-type mice treated with cholecalciferol. In VSMCs, SPHK1 expression was up-regulated by pro-calcific conditions. Calcification medium up-regulated osteogenic marker mRNA expression and activity as well as calcification of VSMCs, effects significantly augmented by co-treatment with the SPHK1 inhibitor SK1-IN-1. SK1-IN-1 alone was sufficient to up-regulate osteogenic signaling in VSMCs during control conditions. Similarly, the SPHK1 inhibitor PF-543 and SPHK1 knockdown up-regulated osteogenic signaling in VSMCs and aggravated VSMC calcification. In contrast, co-treatment with the SPNS2 inhibitor SLF1081851 suppressed osteogenic signaling and calcification of VSMCs, effects abolished by silencing of SPHK1. In addition, Sphk1 deficiency aggravated vascular calcification and aortic osteogenic marker expression in mice after cholecalciferol overload. In conclusion, SPHK1 inhibition, knockdown, or deficiency aggravates vascular pro-calcific signaling and calcification. The reduced calcification after inhibition of S1P export suggests a possible involvement of intracellular S1P, but further studies are required to elucidate the complex roles of SPHKs and S1P signaling in calcifying VSMCs.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Humans
- Vascular Calcification/metabolism
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Cells, Cultured
- Male
- Mice, Inbred C57BL
- Signal Transduction
- Anion Transport Proteins/metabolism
- Anion Transport Proteins/genetics
- Lysophospholipids/metabolism
- Sphingosine/metabolism
- Sphingosine/analogs & derivatives
- Osteogenesis/drug effects
- Methanol
- Pyrrolidines
- Sulfones
Collapse
Affiliation(s)
- Mehdi Razazian
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Sheyda Bahiraii
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Isratul Jannat
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Adéla Tiffner
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Georg Beilhack
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| |
Collapse
|
3
|
Jia Z, Fang C, Pan M, Zhang P, Yan H, Chen J, Liu M, Cheng X, Wei F. Integrating untargeted/targeted metabolomics and network pharmacology association analysis to study the mechanism of safflower regulating C18:0 sphingolipid metabolism to treat acute myocardial ischemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156594. [PMID: 40049106 DOI: 10.1016/j.phymed.2025.156594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Safflower extract (SE) has been reported to treat acute myocardial ischemia (AMI); however, its underlying mechanism remains unclear. PURPOSE To investigate the ameliorative effects of SE on rats with AMI and the underlying mechanism. METHODS UPLC-Q-TOF-MS/MS method was used to analyze the drug-derived components in the serum of rats following SE administration. We treated the ISO-induced rat model of AMI with different doses. Echocardiography and histopathology (HE staining) were used to evaluate the effect, alongside biochemical parameters. SE medicinal serum (SEMS) was used to assess its protective effect on H9C2 cells against hypoxic reoxygenation injury in vitro. We explored the mechanism of SE in improving AMI through non-targeted metabolomics combined with network pharmacological analysis based on in vivo components, and further integrated with targeted sphingolipomics. RT-qPCR was used to evaluate the gene expression levels of the key enzymes involved in ceramide synthesis (CERS1 and CERS4). RESULTS Nineteen compounds were identified following oral administration of SE. Echocardiography showed that different doses of SE significantly improved cardiac function in AMI rats. The serum levels of CK, HBDH, AST, LDH, and SOD were significantly reduced in AMI rats. HE staining results showed that SE significantly improved pathological injury in AMI rats. In vitro experiments results showed that SEMS protects against OGD/R injury in H9C2 cells. Non-targeted metabolomics and network pharmacology results indicated that SE regulates glycosphingolipid and glycerophospholipid metabolism to improve acute myocardial ischemic injury. Targeted sphingolipomics have shown that SE had significant regulatory effects on 18:0 acyl-chain ceramides, dihydroceramides, 1-phosphorylated ceramides, glycosylated ceramides, Sph and S1P. RT-qPCR results showed that SE significantly down-regulates the expression of mCERS4. CONCLUSIONS SE significantly improves AMI in rats, with the mechanism related to the regulation of CERS4 and then the modulation of C18:0 sphingolipid metabolism.
Collapse
Affiliation(s)
- Zhixin Jia
- National Institutes for Food and Drug Control, Beijing 100050, PR China.
| | - Cong Fang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China.
| | - Mingxia Pan
- Research Center for Chinese Medical Analysis and Transformation, Beijing University of Chinese Medicine, Beijing 102401, PR China.
| | - Ping Zhang
- National Institutes for Food and Drug Control, Beijing 100050, PR China.
| | - Hua Yan
- National Institutes for Food and Drug Control, Beijing 100050, PR China.
| | - Jia Chen
- National Institutes for Food and Drug Control, Beijing 100050, PR China.
| | - Mengjiao Liu
- National Institutes for Food and Drug Control, Beijing 100050, PR China.
| | - Xianlong Cheng
- National Institutes for Food and Drug Control, Beijing 100050, PR China.
| | - Feng Wei
- National Institutes for Food and Drug Control, Beijing 100050, PR China.
| |
Collapse
|
4
|
Hu S, Tang S, Liu D, Xia R, Wang X. Walnut oil as a dietary intervention for atherosclerosis: Efficacy and mechanistic pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159607. [PMID: 40064415 DOI: 10.1016/j.bbalip.2025.159607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/15/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND AND AIMS Walnut oil (WO) and peanut oil (PO) are common vegetable oils rich in unsaturated fatty acids, known to alleviate atherosclerosis (AS) and reduce the risk of cardiovascular diseases (CVD). WO contains a higher proportion of polyunsaturated fatty acids (PUFAs) compared to PO. This study aimed to explore the influence of WO on AS and elucidate its potential mechanisms, providing a theoretical basis for enhancing the application of WO in functional foods and pharmaceuticals. METHODS AS was established in rats using a high-fat diet and vitamin D3 injections. Rats with AS were administered WO or PO via gavage at a dose of 1.2 g/kg for 4 weeks. Serum lipid levels and arterial injury were assessed, and transcriptomic and metabolomic analyses of the rat vasculature were performed. RESULTS Both WO and PO significantly lowered serum lipid levels and the atherogenic index (AI) in rats, reducing arterial wall injury and plaque formation. WO exhibited a more pronounced effect, particularly in decreasing serum levels of TG, TC, HDLC, and LDL-C. Transcriptomic analysis indicated that fatty acid, amino acid metabolism were crucial in AS development due to a high-fat diet. Metabolomic analysis indicated significant changes in the metabolism of arginine, proline, cysteine, methionine, glycine, serine and threonine in rats treated with WO. CONCLUSION WO and PO help alleviate AS by regulating lipid metabolism and influencing pivotal metabolic pathways like TCA cycle and cysteine-methionine metabolism. The more significant impact of WO indicates its potential as a dietary supplement for preventing and treating AS.
Collapse
Affiliation(s)
- Shujuan Hu
- School of Education and Physical Education, Yangtze University, Jingzhou, Hubei 434023, China
| | - Si Tang
- Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Dang Liu
- Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ruohan Xia
- Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Xianwang Wang
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; Shannan Maternal and Child Health Hospital, Shannan, Xizang 856100, China.
| |
Collapse
|
5
|
Zhou X, Zhang T, Jia S, Xia S. Multi-omics analysis identifies Sphingomonas and specific metabolites as key biomarkers in elderly Chinese patients with coronary heart disease. Front Microbiol 2025; 16:1452136. [PMID: 40336827 PMCID: PMC12058083 DOI: 10.3389/fmicb.2025.1452136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Background Abnormal component changes of gut microbiota are related to the pathogenesis and progression of coronary heart disease (CHD), and gut microbiota-derived metabolites are key factors in host-microbiome interactions. This study aimed to explore the key gut microbiota and metabolites, as well as their relationships in CHD. Methods Feces samples and blood samples were collected from CHD patients and healthy controls. Then, the obtained feces samples were sent for 16s rRNA gene sequencing, and the blood samples were submitted for metabolomics analysis. Finally, conjoint analysis of 16s rRNA gene sequencing and metabolomics data was performed. Results After sequencing, there were no significant differences in Chao 1, observed species, Simpson, Shannon, Pielou's evenness and Faith's PD between the CHD patients and controls. At phylum level, the dominant phyla were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. At genus level, the abundance of Sphingomonas, Prevotella, Streptococcus, Desulfovibrio, and Shigella was relatively higher in CHD patients; whereas Roseburia, Corprococcus, and Bifidobacterium was relatively lower. Randomforest analysis showed that Sphingomonas was more important for CHD. Through metabolomic analysis, a total of 155 differential metabolites were identified, and were enriched in many signaling pathways. Additionally, the AUC of the conjoint analysis (0.908) was higher than that of gut microbiota species (0.742). Conclusion In CHD patients, the intestinal flora was disordered, as well as Sphingomonas and the identified differential metabolites may serve as was candidate biomarkers for CHD occurrence and progression.
Collapse
Affiliation(s)
- Xiaoshan Zhou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Sixiang Jia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Shudong Xia
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
6
|
Tang H, Kan C, Zhang K, Sheng S, Qiu H, Ma Y, Wang Y, Hou N, Zhang J, Sun X. Glycerophospholipid and Sphingosine- 1-phosphate Metabolism in Cardiovascular Disease: Mechanisms and Therapeutic Potential. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10620-3. [PMID: 40227543 DOI: 10.1007/s12265-025-10620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Cardiovascular disease remains a leading cause of mortality worldwide, driven by factors such as dysregulated lipid metabolism, oxidative stress, and inflammation. Recent studies highlight the critical roles of both glycerophospholipid and sphingosine- 1-phosphate metabolism in the pathogenesis of cardiovascular disorders. However, the contributions of glycerophospholipid-derived metabolites remain underappreciated. Glycerophospholipid metabolism generates bioactive molecules that contribute to endothelial dysfunction, lipid accumulation, and cardiac cell injury while also modulating inflammatory and oxidative stress responses. Meanwhile, sphingosine- 1-phosphate is a bioactive lipid mediator that regulates vascular integrity, inflammation, and cardiac remodeling through its G-protein-coupled receptors. The convergence of these pathways presents novel therapeutic opportunities, where dietary interventions such as omega- 3 polyunsaturated fatty acids and pharmacological targeting of sphingosine- 1-phosphate receptors could synergistically mitigate cardiovascular risk. This review underscores the need for further investigation into the interplay between glycerophospholipid metabolism and sphingosine- 1-phosphate signaling to advance targeted therapies for the prevention and management of cardiovascular disease.
Collapse
Affiliation(s)
- Huiru Tang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Sufang Sheng
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Clinical Research Center, Shandong Provincial Key Medical and Health Discipline of Endocrinology, Affiliated Hospital of Shandong Second Medical University, Weifang, China.
| |
Collapse
|
7
|
Melnikov VN, Komlyagina TG, Gultyaeva VV, Uryumtsev DY, Zinchenko MI, Bryzgalova EA, Karmakulova IV, Krivoschekov SG. Time course of cardiovascular responses to acute sustained handgrip exercise in young physically active men. Physiol Rep 2025; 13:e70286. [PMID: 40176454 PMCID: PMC11965698 DOI: 10.14814/phy2.70286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/11/2025] [Accepted: 03/12/2025] [Indexed: 04/04/2025] Open
Abstract
We aimed to assess currently unexplained effects of isometric exercise on central hemodynamic, arterial, and cardiac cycle parameters. Twenty-three young physically active males performed 5-min forearm sustained exercise at 20% of maximum voluntary contraction. The pulse wave analysis (SphygmoCor) was conducted at baseline (BL) and at 1, 5, 10, 15, and 20 min of post-load recovery. The General Linear Model repeated measures analysis with post hoc test was used to compare the BL values, 1-min, and 15-min recovery states. Exercise immediately elevated central and peripheral systolic blood pressure (BP), augmentation index, left ventricular contractility, and its relative relaxation time. These prompt reactions were followed by a hypotensive response and positive lusitropic effect with shortening relaxation in 15 min after the contraction ceased. The diastolic BP decrement was inversely correlated with the amount of body lean mass and body muscle but not fat mass measured by the bioelectrical impedance method. It is hypothesized that (1) the body lean mass-dependent BP-lowering effect of exercise is due to the arterial distending influence of metabolites accumulated in the muscle during exercise-induced occlusion and then washed out into general circulation, and (2) muscle arteries are more sensitive to these effects than vessels of fat tissue.
Collapse
|
8
|
Li HF, Lin H, Liu HT, Lin TJ, Tseng TL. Activating transcription factor-3 orchestrates the modulation of vascular anti-contractile activity and relaxation by governing the secretion of HDL-bound sphingosine-1-phosphate in perivascular adipose tissue. Br J Pharmacol 2025; 182:1763-1782. [PMID: 39843165 DOI: 10.1111/bph.17433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND AND PURPOSE Perivascular adipose tissues (PVATs) play a critical role in modulating vascular homeostasis and protecting against cardiovascular dysfunction-mediated blood pressure dysregulation. We demonstrated that the activating transcription factor-3 (Atf3) gene in the PVAT is crucial for improving vascular wall tension abnormalities; however, its protective mechanism remains unclear. Herein, we aim to determine whether ATF3 regulates PVAT-derived relaxing factor (PVDRF) biosynthesis and if its secretion contributes to vasorelaxation. EXPERIMENTAL APPROACH This study employed an in vivo animal model using global Atf3-deficient mice, in vitro blood vessel myography, and biochemical analyses to evaluate ATF3-mediated PVDRF release and reactivity in the vasculature. KEY RESULTS Wild-type (WT) mouse thoracic aortic PVAT extracts significantly induced resting tone dilation and attenuated vasoconstrictor-induced contractile responses compared to Atf3-/- mice. Heat-stable PVAT extracts from WT mice caused sustained and reproducible vasodilation without tachyphylaxis in control aortic rings. Biochemical evaluation of PVDRF release revealed that Atf3-/- mice had lower sphingosine-1-phosphate (S1P) and HDL cholesterol (HDL-C) levels than WT mice. Furthermore, PVAT extracts from WT mice induced long-lasting vasorelaxation, which was significantly inhibited by the S1P3 receptor antagonist TY52156 and scavenger receptor class B type 1 receptor antagonist glyburide. CONCLUSION AND IMPLICATIONS ATF3 within the PVAT can modulate vascular function by strengthening sphingosine kinase 1 (sphk1)-S1P-S1P3 receptor lipid signalling and stimulating S1P binding to HDL to form the vasodilator HDL-S1P. ATF3 is an essential modulator for maintaining the physiological function of PVAT, providing a novel target for treatment of obesity-related cardiovascular diseases.
Collapse
Affiliation(s)
- Hsiao-Fen Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Heng Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsin-Tzu Liu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tsung-Jen Lin
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- CardioVascular Research Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Tzu-Ling Tseng
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- CardioVascular Research Center, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
9
|
Chu T, Han Q, Shi H, Li C, Ma Q, Li P, Wang F, Zhang J. Aberration of CA3 functionally mediates the pathogenesis of Cardiomyocyte hypertrophy in a miR-138-5p dependent manner. Acta Histochem 2025; 127:152233. [PMID: 39923530 DOI: 10.1016/j.acthis.2025.152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/11/2025]
Abstract
Cardiomyocyte hypertrophy (CDH) is a critical factor in heart disease, leading to heart failure and increased mortality. Despite extensive research, the precise molecular mechanisms underlying CDH remain unclear. In our study, we conducted total RNA sequencing on blood-derived exosomes from 11 CDH patients and 8 healthy donors. This analysis identified differentially expressed genes (DEGs), which we further validated using real-time qPCR and ROC analysis to demonstrate their diagnostic potential in clinical samples. To explore the functional role of CA3 in CDH, we manipulated its expression using the AAV9 vector in TAC (transverse aortic constriction) rat models(N = 6). We observed a significant increase in CA3 expression in both the blood of CDH patients and TAC rat models. Knockdown of Ca3 using the AAV9 vector resulted in improved cardiac function in TAC rats (N = 6), as evidenced by a ∼30 % reduction in LVEF% (left ventricular ejection fraction) and LVFS% (left ventricular fractional shortening) compared to Sham-operated controls. Additionally, LV (left ventricular) mass and the HW/BW (heart weight to body weight ratio) were significantly higher in the TAC groups. Mechanistically, we identified miR-138-5p as a direct regulator of CA3 through the StarBase bioinformatics tool. This interaction was experimentally validated using a dual-luciferase reporter assay and real-time qPCR. We found that miR-138-5p expression was down-regulated in both CDH patients and TAC rat models. Restoration of miR-138-5p expression mitigated the phenotypes induced by Ca3 overexpression. Our findings reveal a novel miR-138-5p/CA3 axis involved in the pathogenesis of CDH, suggesting potential therapeutic avenues for this heart disease.
Collapse
Affiliation(s)
- Tingting Chu
- Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| | - Hongtao Shi
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chao Li
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qi Ma
- Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| | - Peng Li
- Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| | - Fang Wang
- Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| | - Jing Zhang
- Department of Cardiology, The Linfen people's Hospital, Linfen, Shanxi 041000, China
| |
Collapse
|
10
|
Liu K, Cooper ME, Chai Z, Liu F. High-Density Lipoprotein in Patients with Diabetic Kidney Disease: Friend or Foe? Int J Mol Sci 2025; 26:1683. [PMID: 40004147 PMCID: PMC11855193 DOI: 10.3390/ijms26041683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
High-density lipoprotein (HDL) exhibits multiple metabolic protective functions, such as facilitating cellular cholesterol efflux, antioxidant, anti-inflammatory, anti-apoptotic and anti-thrombotic properties, showing antidiabetic and renoprotective potential. Diabetic kidney disease (DKD) is considered to be associated with high-density lipoprotein cholesterol (HDL-C). The hyperglycemic environment, non-enzymatic glycosylation, carbamylation, oxidative stress and systemic inflammation can cause changes in the quantity and quality of HDL, resulting in reduced HDL levels and abnormal function. Dysfunctional HDL can also have a negative impact on pancreatic β cells and kidney cells, leading to the progression of DKD. Based on these findings, new HDL-related DKD risk predictors have gradually been proposed. Interventions aiming to improve HDL levels and function, such as infusion of recombinant HDL (rHDL) or lipid-poor apolipoprotein A-I (apoA-I), can significantly improve glycemic control and also show renal protective effects. However, recent studies have revealed a U-shaped relationship between HDL-C levels and DKD, and the loss of protective properties of high levels of HDL may be related to changes in composition and the deposition of dysfunctional particles that exacerbate damage. Further research is needed to fully elucidate the complex role of HDL in DKD. Given the important role of HDL in metabolic health, developing HDL-based therapies that augment HDL function, rather than simply increasing its level, is a critical step in managing the development and progression of DKD.
Collapse
Affiliation(s)
- Ke Liu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Diabetic Kidney Disease, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mark E. Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Fang Liu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Diabetic Kidney Disease, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Li H, Li Y, Wang Y, Sheng Y. Neuronal protective effect of Artemisinin in ischemic stroke: Achieved by blocking lysine demethylase 1A-mediated demethylation of sphingosine kinase 2. Brain Res 2025; 1849:149442. [PMID: 39746391 DOI: 10.1016/j.brainres.2024.149442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Artemisinin (ART), a natural product isolated from the traditional Chinese plant Artemisia annua L., has shown neuroprotective properties in addition to its well-established antimalarial activities. This study investigates the therapeutic effect of ART in ischemic stroke (IS) and delves into its functional mechanism. Bioinformatics analyses revealed lysine demethylase 1A (KDM1A) as a promising target of ART aberrantly overexpressed in the context of IS. Increased KDM1A expression was detected in oxygen-glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons and transient middle cerebral artery occlusion (tMCAO)-challenged mice. Treatment with ART reduced KDM1A protein level, thus protecting mouse hippocampal neurons from OGD/R-induced oxidative stress and apoptosis. In vivo, ART reduced infarct size, reduced brain content, enhanced neurological function, and enhanced neuronal survival in tMCAO. Regarding the downstream cascade, KDM1A was found to repress transcription of sphingosine kinase 2 (SPHK2) by removing H3K4me2 modification near the SPHK2 promoter. Either KDM1A overexpression or SPHK2 knockdown abrogated the neuroprotective effects of ART. The ample evidence of this study suggests that ART fulfills neuroprotective functions in the context of IS by protecting SPHK2 from KDM1A-mediated transcription repression, highlighting ART as a promising regimen for the treatment of IS.
Collapse
Affiliation(s)
- He Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Ying Li
- Department of Neurology, Heilongjiang Chinese Medicine Hospital, Harbin 150001, Heilongjiang, PR China
| | - Yingju Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China
| | - Yuchen Sheng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, PR China.
| |
Collapse
|
12
|
Zhao F, Shao M, Li M, Li T, Zheng Y, Sun W, Ni C, Li L. Sphingolipid metabolites involved in the pathogenesis of atherosclerosis: perspectives on sphingolipids in atherosclerosis. Cell Mol Biol Lett 2025; 30:18. [PMID: 39920588 PMCID: PMC11804087 DOI: 10.1186/s11658-024-00679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/17/2024] [Indexed: 02/09/2025] Open
Abstract
Atherosclerosis, with its complex pathogenesis, is a leading underlying cause of many cardiovascular diseases, which are increasingly prevalent in the population. Sphingolipids play an important role in the development of atherosclerosis. Key metabolites and enzymes in sphingolipid metabolism influence the pathogenesis of atherosclerosis in a variety of ways, including inflammatory responses and oxidative stress. Thus, an investigation of sphingolipid metabolism-related metabolites and key enzymes may provide novel insights and treatment targets for atherosclerosis. This review discusses various mechanisms and research progress on the relationship between various sphingolipid metabolites, related enzymes, and atherosclerosis. Finally, we look into the future research direction of phytosphingolipids.
Collapse
Affiliation(s)
- Fufangyu Zhao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Mingyan Shao
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Mingrui Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Tianxing Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Cheng Ni
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lingru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
13
|
Zhang J, Xu G, Liu S, Yang M. Cadmium alters the cellular metabolome of human ovarian granulosa cells. Toxicol Appl Pharmacol 2025; 495:117187. [PMID: 39638002 DOI: 10.1016/j.taap.2024.117187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/14/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that has been extensively implicated in disordered folliculogenesis, but the mechanisms underlying the ovarian toxicity of Cd remain to be explored fully. Granulosa cells are key players in ovarian follicular development and are the primary cells affected by Cd exposure-induced damage and dysfunction. In this study, we investigated how various levels of exposure of Cd (3 and 10 μM) to human granulosa cells (KGN cells) impacted the metabolism of the KGN cells utilizing a non-targeted metabolomics methodology. In vitro cell experiments revealed that Cd exposure dose-dependently diminished the viability of KGN cells. Metabolomics analysis revealed the presence of 296 (182 elevated and 114 reduced) and 397 (244 elevated and 153 reduced) differentially expressed metabolites after exposure to 3 and 10 μM, respectively. Cd exposure was found to significantly enrich nucleotide metabolism, sphingolipid metabolism, and ABC transporters in both groups. Although amino acid metabolic pathways exhibited significant enrichment across all groups, only glutathione, cysteine, and methionine metabolism were notably enriched in KGN cells exposed to 3 μM Cd, while glutathione and tryptophan metabolism were significantly enriched in the 10 μM Cd exposure cohort. The outcomes of this study provide mechanistic clues for elucidating Cd's cytotoxic impact on granulosa cells, and deepen our understanding of the ovarian toxicity of Cd.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Key Laboratory of Medical Electrophysiology, Ministry of Education (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Southwest Medical University, Luzhou, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shuang Liu
- Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Reproductive Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
14
|
Kempegowda SN, Sugur K, Thimmulappa RK. Dysfunctional HDL Diagnostic Metrics for Cardiovascular Disease Risk Stratification: Are we Ready to Implement in Clinics? J Cardiovasc Transl Res 2025; 18:169-184. [PMID: 39298091 DOI: 10.1007/s12265-024-10559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024]
Abstract
Epidemiological studies have revealed that patients with higher levels of high-density lipoprotein cholesterol (HDL-C) were more resistant to cardiovascular diseases (CVD), and yet targeting HDL for CVD prevention, risk assessment, and pharmacological management has not proven to be very effective. The mechanistic investigations have demonstrated that HDL exerts anti-atherogenic functions via mediating reverse cholesterol transport, antioxidant action, anti-inflammatory activity, and anti-thrombotic activity. Contrary to expectations, however, adverse cardiovascular events were reported in clinical trials of drugs that raised HDL levels. This has sparked a debate between HDL quantity and quality. Patients with atherosclerotic CVD are associated with dysfunctional HDL, and the degree of HDL dysfunction is correlated with the severity of the disease, independent of HDL-C levels. This growing body of evidence has underscored the need for integrating HDL functional assays in clinical practice for CVD risk management. Because HDL exerts diverse athero-protective functions, there is no single method for capturing HDL functionality. This review critically evaluates the various techniques currently being used for monitoring HDL functionality and discusses key structural changes in HDL indicative of dysfunctional HDL and the technical challenges that need to be addressed to enable the integration of HDL function-based metrics in clinical practice for CVD risk estimation and the development of newer therapies targeting HDL function.
Collapse
Affiliation(s)
- Swetha N Kempegowda
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Kavya Sugur
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India
| | - Rajesh K Thimmulappa
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysore, Karnataka, 570015, India.
| |
Collapse
|
15
|
Wang B, Wu X, Cheng J, Ye J, Zhu H, Liu X. Regulatory role of S1P and its receptors in sepsis-induced liver injury. Front Immunol 2025; 16:1489015. [PMID: 39935473 PMCID: PMC11811114 DOI: 10.3389/fimmu.2025.1489015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
As an immune and metabolic organ, the liver affects the progression and prognosis of sepsis. Despite the severe adverse effects of sepsis liver injury on the body, treatment options remain limited. Sphingosine-1-phosphate (S1P) is a widely distributed lipid signaling molecule that binds to five sphingosine-1-phosphate receptors (S1PR) to regulate downstream signaling pathways involved in the pathophysiological processes of sepsis, including endothelial permeability, cytokine release, and vascular tone. This review summarizes current research on the role of S1P in normal liver biology and describes the mechanisms by which changes in S1P/S1PR affect the development of liver-related diseases. At the same time, the pathological processes underlying liver injury, as evidenced by clinical manifestations during sepsis, were comprehensively reviewed. This paper focused on the mechanistic pathways through which S1P and its receptors modulate immunity, bile acid metabolism, and liver-intestinal circulation in septic liver injury. Finally, the relationships between S1P and its receptors with liver inflammation and metabolism and the use of related drugs for the treatment of liver injury were examined. By elucidating the role of S1P and its receptor in the pathogenesis of sepsis liver injury, this review established a molecular targeting framework, providing novel insights into clinical and drug development.
Collapse
Affiliation(s)
- Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Li X, Yin X, Xu J, Geng L, Liu Z. Relationship between Abnormal Lipid Metabolism and Gallstone Formation. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2025; 85:11-21. [PMID: 39849808 DOI: 10.4166/kjg.2024.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/25/2025]
Abstract
Cholelithiasis is a common biliary system disease with a high incidence worldwide. Abnormal lipid metabolism has been shown to play a key role in the mechanism of gallstones. Therefore, recent research literature on the genes, proteins, and molecular substances involved in lipid metabolism during the pathogenesis of gallstones has been conducted. This study aimed to determine the role of lipid metabolism in the pathogenesis of gallstones and provide insights for future studies using previous research in genomics, metabolomics, transcriptomics, and other fields.
Collapse
Affiliation(s)
- Xiang Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaodan Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Ye Y, Huang L, Wang K, Sun Y, Zhou Z, Deng T, Liu Y, Wang R, Wu R, Yao C. Transplantation of engineered endothelial progenitor cells with H19 overexpression promotes arterial reendothelialization and inhibits neointimal hyperplasia. J Tissue Eng 2025; 16:20417314251315959. [PMID: 39974657 PMCID: PMC11837068 DOI: 10.1177/20417314251315959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/12/2025] [Indexed: 02/21/2025] Open
Abstract
Endothelial injury is a key factor initiating in-stent restenosis (ISR) following peripheral artery stent implantation. Genetically modified endothelial progenitor cells (EPCs) can promote reendothelialization of injured arteries and inhibit neointimal hyperplasia. However, the role of engineered EPCs overexpressing lncRNA H19 in these processes remains unclear. We constructed EPCs overexpressing lncRNA H19 and investigated their effects and mechanisms in promoting reendothelialization and inhibiting neointimal hyperplasia both in vitro and in vivo. Compared to the normal control group, ISR patients exhibited a significant reduction in circulating EPCs. Engineered EPCs overexpressing lncRNA H19 promoted reendothelialization and inhibited neointimal hyperplasia in injured arteries. Exogenous overexpression of lncRNA H19 significantly upregulated the endothelial repair-related gene S1PR3 in EPCs, while the opposite was also observed. Additionally, engineered EPCs overexpressing S1PR3 promoted reendothelialization and inhibited neointimal hyperplasia in injured arteries. S1PR3 overexpression enhanced EPCs proliferation, migration, and tube formation in vitro; these effects were lost with S1PR3 inhibition. Binding sites for H3K27 acetylation were identified on the S1PR3 promoter. Mechanistically, we found that lncRNA H19 directly interacted with HDAC2, a known H3K27ac deacetylase, disrupting its binding to H3K27 acetylation. Our findings suggest that lncRNA H19 positively regulates S1PR3 expression by disrupting HDAC2 / H3K27ac binding, thereby promoting reendothelialization of injured arteries and inhibiting neointimal hyperplasia.
Collapse
Affiliation(s)
- Yanchen Ye
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Huang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University
- Institute of Interventional Radiology, Sun Yat-sen University, Zhuhai, China
| | - Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunhao Sun
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihao Zhou
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tang Deng
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunyan Liu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ridong Wu
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Yao
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Li J, Fan Y, Tu W, Wu L, Pan Y, Zheng M, Qu Y, Cao L. Sphingosine-1-phosphate in the regulation of diabetes mellitus: a scientometric study to an in-depth review. Front Endocrinol (Lausanne) 2024; 15:1377601. [PMID: 39777222 PMCID: PMC11703751 DOI: 10.3389/fendo.2024.1377601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetes is a significant global health issue, causing extensive morbidity and mortality, and represents a serious threat to human health. Recently, the bioactive lipid molecule Sphingosine-1-Phosphate has garnered considerable attention in the field of diabetes research. The aim of this study is to comprehensively understand the mechanisms by which Sphingosine-1-Phosphate regulates diabetes. Through comprehensive bibliometric analysis and an in-depth review of relevant studies, we investigated and summarized various mechanisms through which Sphingosine-1-Phosphate acts in prediabetes, type 1 diabetes, type 2 diabetes, and their complications (such as diabetic nephropathy, retinopathy, cardiovascular disease, neuropathy, etc.), including but not limited to regulating lipid metabolism, insulin sensitivity, and inflammatory responses. This scholarly work not only unveils new possibilities for using Sphingosine-1-Phosphate in diabetes treatment but also offers fresh insights and recommendations for future research directions to researchers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiqian Qu
- *Correspondence: Yiqian Qu, ; Lingyong Cao,
| | - Lingyong Cao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Feng M, An Y, Qin Q, Fong IH, Zhang K, Wang F, Song D, Li M, Yu M, Yeh CT, Chang J, Guo F. Sphk1/S1P pathway promotes blood-brain barrier breakdown after intracerebral hemorrhage through inducing Nlrp3-mediated endothelial cell pyroptosis. Cell Death Dis 2024; 15:926. [PMID: 39715736 DOI: 10.1038/s41419-024-07310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype with high mortality and limited therapeutic options. The blood-brain barrier (BBB) breakdown post-ICH exacerbates secondary brain injury, highlighting the need for targeted therapies to preserve the BBB integrity. We aim to investigate the role of the Sphk1/S1P pathway in BBB breakdown following ICH and to evaluate the therapeutic potential of Sphk1 inhibition in mitigating this breakdown. Using a combination of human patient samples, mouse models of ICH, and in vitro cellular assays, we assessed the expression levels of Sphk1/S1P after ICH and changes of the BBB after ICH. The Sphk1 inhibitor PF543 and siRNAs were utilized to explore the pathway's impact on BBB integrity and the underlying mechanisms. The results indicate significant upregulation of Sphk1/S1P in the peri-hematomal brain tissue after ICH, which correlates with increased BBB leakage. Pharmacological inhibition of Sphk1 with PF543 attenuates BBB leakage, reduces hematoma volume, and improves neurological outcomes in mice. At the molecular and ultrastructural level, Sphk1 inhibition protects the BBB integrity by preserving tight junction proteins and suppressing endothelial transcytosis. Furthermore, mechanistic studies reveal that Sphk1 promotes Nlrp3-mediated pyroptosis of brain endothelial cells through the ERK1/2 signaling pathway. Taken together, the Sphk1/S1P pathway plays a critical role in ICH-induced BBB breakdown, and its inhibition represents a promising therapeutic strategy for ICH management.
Collapse
Affiliation(s)
- Mengzhao Feng
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Yuan An
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Qi Qin
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Iat-Hang Fong
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Kaiyuan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China
| | - Fang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Mengyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Min Yu
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China.
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City, 23561, Taiwan.
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan.
| | - Junlei Chang
- Key Laboratory of Biomedical Imaging Science and System of Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, 518055, China.
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China.
| |
Collapse
|
20
|
Qu Y, Ma D, Wu T, Wang H, Tian Z, Liu X, Wang Y. A multi-omics approach identifies the key role of disorders of sphingolipid metabolism in Ang II-induced hypertensive cardiomyopathy myocardial remodeling. Sci Rep 2024; 14:30379. [PMID: 39638825 PMCID: PMC11621778 DOI: 10.1038/s41598-024-81611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Hypertension-induced myocardial remodelling encompasses both structural and functional changes in cardiac muscle tissue, such as myocardial hypertrophy, fibrosis, and inflammation. These alterations not only impair the systolic and diastolic functions of the heart but also elevate the risk of cardiovascular events and heart failure. One of the primary contributors to hypertensive cardiomyopathy (HTN-CM) is the over-activation of the renin-angiotensin-aldosterone system (RAAS), which subsequently induces myocardial remodeling. Although conventional therapeutic strategies aim to suppress RAAS and slow the progression of heart failure, the primary challenge in treating HTN-CM remains the lack of sensitive and specific biomarkers for early detection of myocardial remodelling. Combined multi-omics analyses, complemented by experimental validation, offer a systematic understanding of the landscape of gene/protein/metabolite expression in HTN-CM, revealing the underlying mechanisms of angiotensin II (Ang II)-induced myocardial remodeling in HTN-CM. Transcriptomic analysis revealed that differentially expressed genes (DEGs) are implicated in sphingolipid metabolic processes and are associated with collagen synthesis and inflammatory responses, collectively contributing to myocardial remodeling in HTN-CM. Proteomic analysis demonstrated that differentially expressed proteins (DEPs) are also involved in inflammatory and fibrotic processes, with associations to sphingolipid signaling pathways, particularly manifested through elevated expression of IL6, COL4A1, FGG, FGB, CREBBP and SPHK2 proteins. Metabolomic profiling further elucidated the increased expression of bioactive sphingolipid metabolites S1P and Sa1P in the myocardium of HTN-CM. Integrative multi-omics analysis revealed that HTN-CM is primarily influenced by the sphingolipid signaling pathway, with additional associations to the HIF-1α and FoxO signaling pathways. Correlation analysis has highlighted strong associations between sphingolipids and genes/proteins related to fibrosis and inflammation, as well as their connection to the HIF-1α and FoxO signalling pathways. Furthermore, certain key indicators were validated through ELISA and Western blot analyses in both plasma and myocardial tissue. In conclusion, the findings of this study suggest that excessive Ang II may induce abnormalities in sphingolipid metabolism, resulting in increased levels of S1P in both circulating and myocardial tissues. This elevation in S1P is implicated in myocardial inflammatory and fibrotic alterations, highlighting its pivotal role in myocardial remodeling. The specific mechanism underlying the sphingolipid signaling pathway in myocardial remodeling may involve downstream biological processes, including oxidative stress and excessive mitochondrial autophagy, mediated by HIF-1α and FoxO.
Collapse
Affiliation(s)
- Yiwei Qu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Dufang Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China
| | - Tao Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huaizhe Wang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Zhihan Tian
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Xue Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, China
| | - Yong Wang
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No.16369 Jingshi Road, Lixia District, Jinan, 250014, Shandong, China.
| |
Collapse
|
21
|
Benkhoff M, Polzin A. Lipoprotection in cardiovascular diseases. Pharmacol Ther 2024; 264:108747. [PMID: 39491757 DOI: 10.1016/j.pharmthera.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Cardioprotection is a well-established term in the scientific world. It describes the protection of various mediators on the cardiovascular system. These protective effects can also be provided by certain lipids. Since lipids are a very specific and clearly definable class of substances, we define the term lipoprotection as lipid-mediated cardioprotection. In this review, we highlight high-density lipoprotein (HDL), sphingosine-1-phosphate (S1P) and omega-3 polyunsaturated fatty acids (n-3 PUFA) as the most important lipoprotective mediators and show their beneficial impact on coronary artery disease (CAD), acute myocardial infarction (AMI) and heart failure (HF).
Collapse
Affiliation(s)
- Marcel Benkhoff
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Amin Polzin
- Department of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Medical Faculty of the Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Cardiovascular Research Institute Düsseldorf (CARID), Düsseldorf, Germany.
| |
Collapse
|
22
|
Li P, An Z, Sun H, Meng Y, Hou L, Han X, Feng S, Liu Y, Shen S, Zeng F, Dong J, Hao Z. The serine palmitoyltransferase core subunit StLcb2 regulates sphingolipid metabolism and promotes Setosphaeria turcica pathogenicity by modulating appressorium development. Int J Biol Macromol 2024; 283:137928. [PMID: 39579824 DOI: 10.1016/j.ijbiomac.2024.137928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
The fungal pathogen Setosphaeria turcica (S. turcica) causes northern corn leaf blight (NCLB), resulting in significant yield and economic losses in maize. To elucidate the metabolic pathways essential for its pathogenicity, we investigated the metabolome of S. turcica during appressorium development, a critical stage for host infection. Our analysis indicated a substantial enrichment of sphingosine and related compounds during this phase. The application of chemical inhibitors to disrupt sphingolipid metabolism confirmed their pivotal role in appressorium formation and pathogenicity. Additionally, silencing of the serine palmitoyl transferase (Spt) core subunit gene StLCB2 led to significant alterations in fungal morphology and growth, accompanied by changes in cell membrane integrity, surface hydrophobicity, melanin, and sphingosine synthesis. These findings underscore the importance of sphingolipids in the pathogenicity of S. turcica and suggest that targeting specific components of the sphingolipid pathway could aid in developing novel fungicides or genetically engineered maize varieties with increased resistance to NCLB.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Zhenwu An
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Hehe Sun
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yanan Meng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Lifeng Hou
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xinpeng Han
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Shang Feng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yuwei Liu
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Shen Shen
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and Regulation/Hebei Bioinformatic Utilization and Technological Innovation Center for Agricultural Microbes, Hebei Agricultural University, Hebei, 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
23
|
Xie YX, Yao H, Peng JF, Ni D, Liu WT, Li CQ, Yi GH. Insight into modulators of sphingosine-1-phosphate receptor and implications for cardiovascular therapeutics. J Drug Target 2024; 32:300-310. [PMID: 38269855 DOI: 10.1080/1061186x.2024.2309577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/21/2023] [Indexed: 01/26/2024]
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it's of great importance to understand its underlying mechanisms and find new treatments. Sphingosine 1-phosphate (S1P) is an active lipid that exerts its effects through S1P receptors on the cell surface or intracellular signal, and regulates many cellular processes such as cell growth, cell proliferation, cell migration, cell survival, and so on. S1PR modulators are a class of modulators that can interact with S1PR subtypes to activate receptors or block their activity, exerting either agonist or functional antagonist effects. Many studies have shown that S1P plays a protective role in the cardiovascular system and regulates cardiac physiological functions mainly through interaction with cell surface S1P receptors (S1PRs). Therefore, S1PR modulators may play a therapeutic role in cardiovascular diseases. Here, we review five S1PRs and their functions and the progress of S1PR modulators. In addition, we focus on the effects of S1PR modulators on atherosclerosis, myocardial infarction, myocardial ischaemia/reperfusion injury, diabetic cardiovascular diseases, and myocarditis, which may provide valuable insights into potential therapeutic strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Yu-Xin Xie
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Hui Yao
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Jin-Fu Peng
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Dan Ni
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Wan-Ting Liu
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Chao-Quan Li
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| | - Guang-Hui Yi
- Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, China
- Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, Institute of Cardiovascular Disease, University of South China, Hengyang, Hunan, China
| |
Collapse
|
24
|
Zhang J, Du W, Zhang Z, Li T, Li X, Xi S. Research progress of microvascular development in bronchopulmonary dysplasia. Pediatr Investig 2024; 8:299-312. [PMID: 39720284 PMCID: PMC11664543 DOI: 10.1002/ped4.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/06/2024] [Indexed: 12/26/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that arises during the neonatal period, and its underlying mechanisms are still not fully understood. The disorder of microvascular development plays a significant role in the development of BPD. This article presents a comprehensive review of the advancements made in understanding the mechanisms and treatment approaches related to microvascular development in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
| | - Weiwei Du
- Department of PediatricsThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiChina
| | - Zongli Zhang
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
- Institute of Pediatric DiseaseTaihe HospitalHubei University of MedicineShiyanChina
| | - Tao Li
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
| | - Xingchao Li
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
- Institute of Pediatric DiseaseTaihe HospitalHubei University of MedicineShiyanChina
| | - Shibing Xi
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
- Institute of Pediatric DiseaseTaihe HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
25
|
Del Gaudio I, Nitzsche A, Boyé K, Bonnin P, Poulet M, Nguyen TQ, Couty L, Ha HTT, Nguyen DT, Cazenave-Gassiot A, Ben Alaya K, Thérond P, Chun J, Wenk MR, Proia RL, Henrion D, Nguyen LN, Eichmann A, Camerer E. Zonation and ligand and dose dependence of sphingosine 1-phosphate receptor-1 signalling in blood and lymphatic vasculature. Cardiovasc Res 2024; 120:1794-1810. [PMID: 39086170 PMCID: PMC11587562 DOI: 10.1093/cvr/cvae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 06/12/2024] [Indexed: 08/02/2024] Open
Abstract
AIMS Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for the endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet, as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC autonomous S1P production, it is unclear if relative reductions in circulating S1P can cause endothelial dysfunction. It is also unclear how EC S1PR1 insufficiency, whether induced by deficiency in circulating ligand or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets. METHODS AND RESULTS We here fine map the zonation of S1PR1 signalling in the murine blood and lymphatic vasculature, superimpose cell-type-specific and relative deficiencies in S1P production to define ligand source and dose dependence, and correlate receptor engagement to essential functions. In naïve blood vessels, despite broad expression, EC S1PR1 engagement was restricted to resistance-size arteries, lung capillaries, and a subset of high-endothelial venules (HEVs). Similar zonation was observed for albumin extravasation in EC S1PR1-deficient mice, and brain extravasation was reproduced with arterial EC-selective S1pr1 deletion. In lymphatic ECs, S1PR1 engagement was high in collecting vessels and lymph nodes and low in blind-ended capillaries that drain tissue fluids. While EC S1P production sustained S1PR1 signalling in lymphatics and HEV, haematopoietic cells provided ∼90% of plasma S1P and sustained signalling in resistance arteries and lung capillaries. S1PR1 signalling and endothelial function were both surprisingly sensitive to reductions in plasma S1P with apparent saturation around 50% of normal levels. S1PR1 engagement did not depend on sex or age but modestly increased in arteries in hypertension and diabetes. Sphingosine kinase (Sphk)-2 deficiency also increased S1PR1 engagement selectively in arteries, which could be attributed to Sphk1-dependent S1P release from perivascular macrophages. CONCLUSION This study highlights vessel subtype-specific S1PR1 functions and mechanisms of engagement and supports the relevance of S1P as circulating biomarker for endothelial function.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Anja Nitzsche
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Kevin Boyé
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Philippe Bonnin
- Physiologie Clinique, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Lariboisière, Paris, France
- Université Paris Cité, INSERM U1144, UFR de Pharmacie, Paris, France
| | - Mathilde Poulet
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Toan Q Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Ludovic Couty
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Hoa T T Ha
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Dat T Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Amaury Cazenave-Gassiot
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Khaoula Ben Alaya
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| | - Patrice Thérond
- Service de Biochimie, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital de Bicêtre, Le Kremlin Bicêtre, France
- UFR de Pharmacie, EA 4529, Châtenay-Malabry, France
| | - Jerold Chun
- Neuroscience Drug Discovery, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Markus R Wenk
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Richard L Proia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Institutes of Health, Bethesda, MD, USA
| | - Daniel Henrion
- MitoVasc Department, Angers University, Team 2 (CarMe), Angers University Hospital (CHU of Angers), CNRS, INSERM U1083, Angers, France
| | - Long N Nguyen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Anne Eichmann
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
- Department of Internal Medicine and Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, USA
| | - Eric Camerer
- Université Paris Cité, Paris Cardiovascular Research Centre, INSERM U970, 56 Rue Leblanc, F-75015 Paris, France
| |
Collapse
|
26
|
Józefczuk E, Siedlinski M. Uncovering vascular signature of sphingosine-1-phosphate receptor 1 activation. Cardiovasc Res 2024; 120:1657-1659. [PMID: 39259287 DOI: 10.1093/cvr/cvae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024] Open
Affiliation(s)
- Ewelina Józefczuk
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, J Dietl Hospital, ul. Skarbowa 1, 31-121 Cracow, Poland
| | - Mateusz Siedlinski
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, J Dietl Hospital, ul. Skarbowa 1, 31-121 Cracow, Poland
- Center for Medical Genomics OMICRON, Faculty of Medicine, Jagiellonian University Medical College, ul. Kopernika 7c, 31-034 Cracow, Poland
| |
Collapse
|
27
|
Purnak T, Ertan A. Optimal Management of Patients with Moderate-to-Severe Inflammatory Bowel Disease. J Clin Med 2024; 13:7026. [PMID: 39685485 PMCID: PMC11642585 DOI: 10.3390/jcm13237026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease (CD) and ulcerative colitis (UC), is a chronic and often debilitating condition requiring complex and individualized management. Over the past few decades, advancements in understanding IBD pathophysiology have led to a transformative shift in therapeutic approaches. This article provides a comprehensive overview of the evolution of IBD treatments, from early symptom-focused therapies to modern biologics, small molecule agents, and emerging treatment strategies. We discuss therapeutic goals centered on achieving clinical remission, endoscopic/mucosal healing, and enhancing patient quality of life. Additionally, we explore the rationale for the early and personalized use of biologic therapies in moderate-to-severe cases, review the current FDA-approved agents as of 2024, and highlight the advantages and limitations of these treatments. Special attention is given to the evolving role of novel oral therapies, including Janus kinase inhibitors and sphingosine-1-phosphate receptor modulators, and future new directions. This paper aims to guide clinicians in navigating the expanding therapeutic landscape of IBD, emphasizing patient-centered decision-making and addressing ongoing challenges in achieving optimal disease control.
Collapse
Affiliation(s)
- Tugrul Purnak
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University Texas McGovern Medical School, Houston, TX 77030, USA;
| | | |
Collapse
|
28
|
Wang D, Xu R, Wang Z. Protective Role of Sphingosine-1-Phosphate During Radiation-Induced Testicular Injury. Antioxidants (Basel) 2024; 13:1322. [PMID: 39594464 PMCID: PMC11591009 DOI: 10.3390/antiox13111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
The impact of ionizing radiation on the male reproductive system is gaining increasing attention, particularly when it comes to testicular damage, which may result in decreased sperm quality and hormonal imbalances. Finding effective protective measures to mitigate testicular damage caused by radiation has become a focal point in the biomedical field. S1P, an essential biological signaling molecule, has garnered significant interest due to its multiple roles in regulating cellular functions and its protective effects against radiation-induced testicular injury. S1P not only effectively reduces the generation of ROS induced by radiation but also alleviates oxidative stress by enhancing the activity of antioxidant enzymes. Furthermore, S1P inhibits radiation-induced cell apoptosis by regulating the expression of anti-apoptotic and pro-apoptotic proteins. Additionally, S1P alleviates radiation-induced inflammation by inhibiting the production of inflammatory factors, thereby further protecting testicular tissue. In summary, S1P effectively reduces radiation-induced testicular damage through multiple mechanisms, offering a promising therapeutic approach to safeguard male reproductive health. Future research should explore the specific mechanisms of action and clinical application potential of S1P, aiming to contribute significantly to the prevention and treatment of radiation damage.
Collapse
Affiliation(s)
- Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| | - Zhengchao Wang
- Fujian Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China;
| |
Collapse
|
29
|
Fu F, Li W, Zheng X, Wu Y, Du D, Han C. Role of Sphingosine-1-Phosphate Signaling Pathway in Pancreatic Diseases. Int J Mol Sci 2024; 25:11474. [PMID: 39519028 PMCID: PMC11545938 DOI: 10.3390/ijms252111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid metabolic product produced via the phosphorylation of sphingosine by sphingosine kinases (SPHKs), serving as a powerful modulator of various cellular processes through its interaction with S1P receptors (S1PRs). Currently, this incompletely understood mechanism in pancreatic diseases including pancreatitis and pancreatic cancer, largely limits therapeutic options for these disorders. Recent evidence indicates that S1P significantly contributes to pancreatic diseases by modulating inflammation, promoting pyroptosis in pancreatic acinar cells, regulating the activation of pancreatic stellate cells, and affecting organelle functions in pancreatic cancer cells. Nevertheless, no review has encapsulated these advancements. Thus, this review compiles information about the involvement of S1P signaling in exocrine pancreatic disorders, including acute pancreatitis, chronic pancreatitis, and pancreatic cancer, as well as prospective treatment strategies to target S1P signaling for these conditions. The insights presented here possess the potential to offer valuable guidance for the implementation of therapies targeting S1P signaling in various pancreatic diseases.
Collapse
Affiliation(s)
- Fei Fu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Wanmeng Li
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Xiaoyin Zheng
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Yaling Wu
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Dan Du
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
- Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China; (W.L.); (X.Z.); (Y.W.)
| | - Chenxia Han
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
30
|
Damiza-Detmer A, Pawełczyk M, Głąbiński A. Protective Role of High-Density Lipoprotein in Multiple Sclerosis. Antioxidants (Basel) 2024; 13:1276. [PMID: 39594418 PMCID: PMC11591269 DOI: 10.3390/antiox13111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive demyelinating disease with a most likely autoimmune background and a neurodegenerative component. Besides the demyelinating process caused by autoreactive antibodies, an increased permeability in the blood-brain barrier (BBB) also plays a key role. Recently, there has been growing interest in assessing lipid profile alterations in patients with MS. As a result of myelin destruction, there is an increase in the level of cholesterol released from cells, which in turn causes disruptions in lipid metabolism homeostasis both in the central nervous system (CNS) and peripheral tissues. Currently, there is a growing body of evidence suggesting a protective role of HDL in MS through its effect on the BBB by decreasing its permeability. This follows from the impact of HDL on the endothelium and its anti-inflammatory effect, mostly by interacting with adhesion molecules like vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and E-selectin. HDL, through its action via sphingosine-1-phosphate, exerts an inhibitory effect on leukocyte migration, and its antioxidant properties contribute to the improvement of the BBB function. In this review, we want to summarize these studies and focus on HDL as a mediator of the anti-inflammatory response in MS.
Collapse
Affiliation(s)
- Agnieszka Damiza-Detmer
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland (A.G.)
| | | | | |
Collapse
|
31
|
Kitsou K, Kokkotis G, Rivera-Nieves J, Bamias G. Targeting the Sphingosine-1-Phosphate Pathway: New Opportunities in Inflammatory Bowel Disease Management. Drugs 2024; 84:1179-1197. [PMID: 39322927 PMCID: PMC12057646 DOI: 10.1007/s40265-024-02094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC) are chronic immune-mediated diseases which primarily target the intestines. In recent years, the development and regulatory approval of various immunotherapies, both biological agents and small molecules, that target specific pathways of the IBD-associated inflammatory cascade have revolutionized the treatment of IBD. Small molecules offer the advantages of oral administration and short wash-out times. Sphingosine-1-phosphate (S1P) is a bioactive metabolite of ceramide, which exerts its functions after binding to five G-protein-coupled receptors (S1PR1-S1PR5). Concerning IBD, S1P participates in the egress of lymphocytes from the secondary lymphoid tissue and their re-circulation to sites of inflammation, mainly through S1PR1 binding. In addition, this system facilitates the differentiation of T-helper cells towards proinflammatory immunophenotypes. Recently, S1P modulators have offered a valuable addition to the IBD treatment armamentarium. They exert their anti-inflammatory function via sequestration of T cell subsets in the lymphoid tissues and prevention of gut homing. In this review, we revisit the role of the S1P/S1PR axis in the pathogenesis of IBD and discuss efficacy and safety data from clinical trials and real-world reports on the two S1PR modulators, ozanimod and etrasimod, that are currently approved for IBD treatment, and comment on their potential positioning in the IBD day-to-day management. We also present recent data on emerging S1P modulators. Finally, based on the successes and failures of S1PR modulators in IBD, we discuss future avenues of IBD treatments targeting the S1P/S1PR axis.
Collapse
Affiliation(s)
| | - Georgios Kokkotis
- GI-Unit, 3rd Department of Internal Medicine, Sotiria Hospital, 152 Mesogeion Av., 11528, Athens, Greece
| | - Jesús Rivera-Nieves
- San Diego VA Medical Center (SDVAMC), San Diego, CA, USA
- Division of Gastroenterology, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Giorgos Bamias
- GI-Unit, 3rd Department of Internal Medicine, Sotiria Hospital, 152 Mesogeion Av., 11528, Athens, Greece.
| |
Collapse
|
32
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
33
|
Constantinescu V, Haase R, Akgün K, Ziemssen T. Long-term effects of siponimod on cardiovascular and autonomic nervous system in secondary progressive multiple sclerosis. Front Pharmacol 2024; 15:1431380. [PMID: 39364051 PMCID: PMC11447318 DOI: 10.3389/fphar.2024.1431380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Siponimod, a second-generation, selective sphingosine 1-phosphate receptor (S1PR) 1 and 5 modulator, represents an important therapeutic choice for active secondary progressive multiple sclerosis (SPMS). Besides the beneficial immunomodulatory effects, siponimod impacts cardiovascular function through S1PR1 modulation. Short-term vagomimetic effects on cardiac activity have proved to be mitigated by dose titration. However, long-term consequences are less known. Objectives This study aimed to investigate the long-term impact of siponimod on cardiac autonomic modulation in people with SPMS (pwSPMS). Methods Heart rate variability (HRV) and vascular hemodynamic parameters were evaluated using Multiple Trigonometric Regressive Spectral analysis in 47 pwSPMS before siponimod therapy and after one, three, six and 12 months of treatment. Autonomic activation tests (tilt test for the sympathetic and deep breathing test for the parasympathetic cardiac modulation) were performed at each examination. Results pwSPMS preserved regular cardiovascular modulation responses during the autonomic tests reflected in the variation of several HRV parameters, such as RMSSD, pNN50, total power of HRV, high-frequency and low-frequency bands of the spectral domain or hemodynamic vascular parameters (Cwk, Zao, TPR, MAP) and baroreflex sensitivity (BRS). In the long-term follow-up, RMSSD, pNN50, total power, BRS and CwK presented a significant decrease, underlining a reduction of the parasympathetic and a shift towards sympathetic predominance in cardiac autonomic modulation that tends to stabilise after 1 year of treatment. Conclusion Due to dose titration, the short-term effects of siponimod on cardiac autonomic modulation are mitigated. The long-term impact on cardiac autonomic modulation is similar to fingolimod. The autonomic activation tests showed normal cardiovascular responses during 1-year follow-up in pwSPMS, confirming the safety profile of siponimod. Further research on autonomic function could reveal whether the observed sympathetic activation is a compensatory response to S1P signaling intervention or a feature of the disease, while also shedding light on the role of S1PR modulation in MS.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
- Department of Neurology, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Iasi, Romania
| | - Rocco Haase
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, Dresden, Technical University of Dresden, Dresden, Germany
| |
Collapse
|
34
|
Duan Y, Li Q, Wu J, Zhou C, Liu X, Yue J, Chen X, Liu J, Zhang Q, Zhang Y, Zhang L. A detrimental role of endothelial S1PR2 in cardiac ischemia-reperfusion injury via modulating mitochondrial dysfunction, NLRP3 inflammasome activation, and pyroptosis. Redox Biol 2024; 75:103244. [PMID: 38909407 PMCID: PMC11254837 DOI: 10.1016/j.redox.2024.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
Sphingosine 1-phosphate (S1P), a bioactive lipid molecule, exerts multifaceted effects on cardiovascular functions via S1P receptors, but its effects on cardiac I/R injury are not fully understood. Plasma lipidomics analysis by mass spectrometry revealed that sphingosine lipids, including sphingosine 1-phosphate (S1P), were significantly down-regulated following cardiac I/R injury in mice. The reduced S1P levels were also observed in the plasma of coronary heart disease (CHD) patients after percutaneous coronary intervention (PCI) compared with those without PCI. We found that S1P exerted a cardioprotective effect via endothelial cell (EC)-S1PR1, whereas EC-S1PR2 displayed a detrimental effect on cardiac I/R. Our data showed that EC-specific S1pr2 loss-of-function significantly lessened inflammatory responses and diminished cardiac I/R injury, while EC-specific S1pr2 gain-of-function aggravated cardiac I/R injury. Mechanistically, EC-S1PR2 initiated excessive mitochondrial fission and elevated ROS production via RHO/ROCK1/DRP1 pathway, leading to NLRP3 inflammasome activation and subsequent cell pyroptosis, thereby exacerbating inflammation and I/R injuries. Furthermore, RGD-peptide magnetic nanoparticles packaging S1pr2-siRNA to specifically knockdown S1PR2 in endothelial cells significantly ameliorated cardiac I/R injury. Taken together, our investigations demonstrate that EC-S1PR2 induces excessive mitochondrial fission, which results in NLRP3 inflammasome activation and subsequently triggers cell pyroptosis, ultimately exacerbating inflammatory responses and aggravating heart injuries following I/R.
Collapse
Affiliation(s)
- Yunhao Duan
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qinyu Li
- Department of Clinical Laboratory, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135, China
| | - Jinjin Wu
- Department of Cardiology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Caixia Zhou
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiuxiang Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jinnan Yue
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiaoli Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jie Liu
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qi Zhang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Yuzhen Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Lin Zhang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China; Clinical Center for Heart Disease Research, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
35
|
Bhat OM, Mir RA, Nehvi IB, Wani NA, Dar AH, Zargar MA. Emerging role of sphingolipids and extracellular vesicles in development and therapeutics of cardiovascular diseases. IJC HEART & VASCULATURE 2024; 53:101469. [PMID: 39139609 PMCID: PMC11320467 DOI: 10.1016/j.ijcha.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Sphingolipids are eighteen carbon alcohol lipids synthesized from non-sphingolipid precursors in the endoplasmic reticulum (ER). The sphingolipids serve as precursors for a vast range of moieties found in our cells that play a critical role in various cellular processes, including cell division, senescence, migration, differentiation, apoptosis, pyroptosis, autophagy, nutrition intake, metabolism, and protein synthesis. In CVDs, different subclasses of sphingolipids and other derived molecules such as sphingomyelin (SM), ceramides (CERs), and sphingosine-1-phosphate (S1P) are directly related to diabetic cardiomyopathy, dilated cardiomyopathy, myocarditis, ischemic heart disease (IHD), hypertension, and atherogenesis. Several genome-wide association studies showed an association between genetic variations in sphingolipid pathway genes and the risk of CVDs. The sphingolipid pathway plays an important role in the biogenesis and secretion of exosomes. Small extracellular vesicles (sEVs)/ exosomes have recently been found as possible indicators for the onset of CVDs, linking various cellular signaling pathways that contribute to the disease progression. Important features of EVs like biocompatibility, and crossing of biological barriers can improve the pharmacokinetics of drugs and will be exploited to develop next-generation drug delivery systems. In this review, we have comprehensively discussed the role of sphingolipids, and sphingolipid metabolites in the development of CVDs. In addition, concise deliberations were laid to discuss the role of sEVs/exosomes in regulating the pathophysiological processes of CVDs and the exosomes as therapeutic targets.
Collapse
Affiliation(s)
- Owais Mohmad Bhat
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Abid Hamid Dar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - M Afzal Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| |
Collapse
|
36
|
Shakeel I, Haider S, Khan S, Ahmed S, Hussain A, Alajmi MF, Chakrabarty A, Afzal M, Imtaiyaz Hassan M. Thymoquinone, artemisinin, and thymol attenuate proliferation of lung cancer cells as Sphingosine kinase 1 inhibitors. Biomed Pharmacother 2024; 177:117123. [PMID: 39004062 DOI: 10.1016/j.biopha.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Sphingosine-1-phosphate (S1P) formed via catalytic actions of sphingosine kinase 1 (SphK1) behaves as a pro-survival substance and activates downstream target molecules associated with various pathologies, including initiation, inflammation, and progression of cancer. Here, we aimed to investigate the SphK1 inhibitory potentials of thymoquinone (TQ), Artemisinin (AR), and Thymol (TM) for the therapeutic management of lung cancer. We implemented docking, molecular dynamics (MD) simulations, enzyme inhibition assay, and fluorescence measurement studies to estimate binding affinity and SphK1 inhibitory potential of TQ, AR, and TM. We further investigated the anti-cancer potential of these compounds on non-small cell lung cancer (NSCLC) cell lines (H1299 and A549), followed by estimation of mitochondrial ROS, mitochondrial membrane potential depolarization, and cleavage of DNA by comet assay. Enzyme activity and fluorescence binding studies suggest that TQ, AR, and TM significantly inhibit the activity of SphK1 with IC50 values of 35.52 µM, 42.81 µM, and 53.68 µM, respectively, and have an excellent binding affinity. TQ shows cytotoxic effect and anti-proliferative potentials on H1299 and A549 with an IC50 value of 27.96 µM and 54.43 µM, respectively. Detection of mitochondrial ROS and mitochondrial membrane potential depolarization shows promising TQ-induced oxidative stress on H1299 and A549 cell lines. Comet assay shows promising TQ-induced oxidative DNA damage. In conclusion, TQ, AR, and TM act as potential inhibitors for SphK1, with a strong binding affinity. In addition, the cytotoxicity of TQ is linked to oxidative stress due to mitochondrial ROS generation. Overall, our study suggests that TQ is a promising inhibitor of SphK1 targeting lung cancer therapy.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India; Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Shama Khan
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Science, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Shahbaz Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Deemed to be University, Gautam Buddha Nagar, UP 201314, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, UP 202001, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
37
|
Chen J, Wang Y, Chen C, Song X, Shen X, Cao D, Zhao Z. Integrated network pharmacology and metabolomics reveal vascular protective effects of Ilex pubescens on thromboangiitis obliterans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155720. [PMID: 38763010 DOI: 10.1016/j.phymed.2024.155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Ilex pubescens Hook. et Arn (IP), traditionally known for its properties of promoting blood circulation, swelling and pain relief, heat clearing, and detoxification, has been used in the treatment of thromboangiitis obliterans (TAO). Despite its traditional applications, the specific mechanisms by which IP exerts its therapeutic effects on TAO remain unclear. AIM OF THE STUDY This study aims to uncover the underlying mechanisms in the therapeutic effects of IP on TAO, employing network pharmacology and metabolomic approaches. METHODS In this study, a rat TAO model was established by injecting sodium laurate through the femoral artery, followed by the oral administration of IP for 7 days. Plasma coagulation parameters were measured to assess the therapeutic effects of IP. The potential influence on the femoral artery and gastrocnemius muscle was histopathologically evaluated. Network pharmacology was employed to predict relevant targets and model pathways for TAO. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was used for the metabolic profile analysis of rat plasma. Immunohistochemistry (IHC) was used to verify the mechanisms by which IP promotes blood circulation in TAO. RESULTS The study revealed that IP improved blood biochemical function in TAO and played a significant role in vascular protection and maintaining normal blood vessels and gastrocnemius morphologies. Network pharmacology showed that IP compounds play a therapeutic role in modulating lipids and atherosclerosis. Metabolomic analysis revealed that the pathways involved in sphingolipid metabolism and steroid biosynthesis were significantly disrupted. The joint analysis showed a strong correlation between lysophosphatidylcholine and IP components, including triterpenoid and iridoid components, which support the curative action of IP through the modulation of sphingolipid metabolism. Furthermore, decreased expression levels of SPHK1/S1PR1, TNF-α, IL-1β, and IL-6 were observed in the IP-treated group, suggesting that IP exerts a protective effect on the vasculature primarily by regulating of the SPHK1/S1PR1 signaling pathway. CONCLUSION In this study, we found that IP protects the vasculature against injury and treats TAO by regulating the steady-state disturbance of the sphingolipid pathway. These findings suggest that IP promotes vasculature by modulating sphingolipid metabolism and SPHK1/S1PR1 signaling pathway and reduce levels of inflammatory factors, offering new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuanyuan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Caixin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xianshu Song
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuting Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Di Cao
- Wannan Medical College, Wuhu 241002, China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
38
|
Maruyama Y, Ohsawa Y, Suzuki T, Yamauchi Y, Ohno K, Inoue H, Yamamoto A, Hayashi M, Okuhara Y, Muramatsu W, Namiki K, Hagiwara N, Miyauchi M, Miyao T, Ishikawa T, Horie K, Hayama M, Akiyama N, Hirokawa T, Akiyama T. Pseudoirreversible inhibition elicits persistent efficacy of a sphingosine 1-phosphate receptor 1 antagonist. Nat Commun 2024; 15:5743. [PMID: 39030171 PMCID: PMC11271513 DOI: 10.1038/s41467-024-49893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2024] [Indexed: 07/21/2024] Open
Abstract
Sphingosine 1-phosphate receptor 1 (S1PR1), a G protein-coupled receptor, is required for lymphocyte trafficking, and is a promising therapeutic target in inflammatory diseases. Here, we synthesize a competitive S1PR1 antagonist, KSI-6666, that effectively suppresses pathogenic inflammation. Metadynamics simulations suggest that the interaction of KSI-6666 with a methionine residue Met124 in the ligand-binding pocket of S1PR1 may inhibit the dissociation of KSI-6666 from S1PR1. Consistently, in vitro functional and mutational analyses reveal that KSI-6666 causes pseudoirreversible inhibition of S1PR1, dependent on the Met124 of the protein and substituents on the distal benzene ring of KSI-6666. Moreover, in vivo study suggests that this pseudoirreversible inhibition is responsible for the persistent activity of KSI-6666.
Collapse
Affiliation(s)
- Yuya Maruyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Yusuke Ohsawa
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Takayuki Suzuki
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Yuko Yamauchi
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Kohsuke Ohno
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Hitoshi Inoue
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Akitoshi Yamamoto
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Morimichi Hayashi
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Yuji Okuhara
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd., 4365-1 Hotaka-Kashiwabara, Azumino, Nagano, 399-8304, Japan
| | - Wataru Muramatsu
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Kano Namiki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Naho Hagiwara
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Mio Hayama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan.
| |
Collapse
|
39
|
Dong D, Yu X, Tao X, Wang Q, Zhao L. S1P/S1PR1 signaling is involved in the development of nociceptive pain. Front Pharmacol 2024; 15:1407347. [PMID: 39045057 PMCID: PMC11263082 DOI: 10.3389/fphar.2024.1407347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Background Pain is a complex perception involving unpleasant somatosensory and emotional experiences. However, the underlying mechanisms that mediate its different components remain unclear. Sphingosine-1-phosphate (S1P), a metabolite of sphingomyelin and a potent lipid mediator, initiates signaling via G protein-coupled receptors (S1PRs) on cell surfaces. It serves as a second messenger in cellular processes such as proliferation and apoptosis. Nevertheless, the neuropharmacology of sphingolipid signaling in pain conditions within the central nervous system remains largely unexplored and controversial. Methods Chronic nociceptive pain models were induced in vivo by intraplantar injection of 20 μL complete Freund's adjuvant (CFA) into the left hind paws. We assessed S1P and S1PR1 expression in the spinal cords of CFA model mice. Functional antagonists of S1PR1 or S1PR1-specific siRNA were administered daily following CFA model establishment. Paw withdrawal response frequency (PWF) and paw withdrawal latency (PWL) were measured to evaluate mechanical allodynia and thermal hyperalgesia, respectively. RT-PCR assessed interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels. Western blotting and immunofluorescence were used to analyze glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule (Iba1), STAT3, ERK, and p38 MAPK protein expression. Results In the chronic nociceptive pain model induced by CFA, S1P and S1PR1 expression levels were significantly elevated, leading to activation of spinal cord glial cells. S1PR1 activation also promoted MMP2-mediated cleavage of mature IL-1β. Additionally, S1PR1 activation upregulated phosphorylation of STAT3, ERK, and p38 MAPK in glial cells, profoundly impacting downstream signaling pathways and contributing to chronic nociceptive pain. Conclusion The S1P/S1PR1 axis plays a pivotal role in the cellular and molecular mechanisms underlying nociceptive pain. This signaling pathway modulates glial cell activation and the expression of pain-related genes (STAT3, ERK, p38 MAPK) and inflammatory factors in the spinal dorsal horn. These findings underscore the potential of targeting the S1P system for developing novel analgesic therapies.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Xue Yu
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Ministry of Education, Shenyang, China
| | - Xueshu Tao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| | - Qian Wang
- Medical Oncology, Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lin Zhao
- Department of Pain, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Lickliter J, Yang X, Guo J, Pan W, Wei Z. Icanbelimod (CBP-307), a next-generation Sphingosine-1-phosphate receptor modulator, in healthy men: pharmacokinetics, pharmacodynamics, safety, and tolerability in a randomized trial in Australia. Front Immunol 2024; 15:1380975. [PMID: 38953034 PMCID: PMC11216006 DOI: 10.3389/fimmu.2024.1380975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
Background Icanbelimod (formerly CBP-307) is a next-generation S1PR modulator, targeting S1PR1. In this first-in-human study, icanbelimod was investigated in healthy men in Australia. Methods Participants were randomized 3:1, double-blind, to icanbelimod or placebo in four single-dose cohorts (0.1 mg, 0.25 mg, 0.5 mg [n=8 per cohort], 2.5 mg [n=4]) or for 28-days once-daily treatment in two cohorts (0.15 mg, 0.25 mg [n=8 per cohort]). Participants in the 0.25-mg cohort received 0.1 mg on Day 1. Treatments were administered orally after fasting; following one-week washout, icanbelimod was administered after breakfast in the 0.5-mg cohort. Results Icanbelimod exposure increased rapidly and dose-dependently with single and multiple dosing (Tmax 4-7 hours). Lymphocyte counts decreased rapidly after single (-11%, 0.1 mg; -40%, 0.25 mg; -71%, 0.5 mg; -77%, 2.5 mg) and multiple doses (-49%, 0.15 mg; -75%, 0.25 mg), and recovered quickly, 7 days after dosing. After single-dose 0.5 mg, although a high-fat breakfast versus fasting did not affect maximal decrease, lymphocyte counts tended to be lower after breakfast across most timepoints up to 72 hours. Twenty-eight participants (63.6%) experienced mainly mild treatment-emergent adverse events (TEAEs). After single-dose icanbelimod, the most common TEAEs were headache (28.6%, n=6) and dizziness (19.0%, n=4). Three participants experienced transient bradycardia, with one serious, following single-dose 2.5 mg icanbelimod. After multiple-dose icanbelimod, the most common TEAEs were headache (50.0%, n=6) and lymphopenia (41.7%, n=5), and two participants withdrew due to non-serious TEAEs. Up-titration attenuated heart rate reductions. Conclusion Icanbelimod was well-tolerated up to 0.5 mg and effectively reduced lymphocyte counts. Clinical trial registration ClinicalTrials.gov, identifier NCT02280434.b.
Collapse
Affiliation(s)
| | - Xin Yang
- Suzhou Connect Biopharmaceuticals, Ltd, Taicang, China
| | - Jiawang Guo
- Suzhou Connect Biopharmaceuticals, Ltd, Taicang, China
| | - Wubin Pan
- Suzhou Connect Biopharmaceuticals, Ltd, Taicang, China
| | - Zheng Wei
- Suzhou Connect Biopharmaceuticals, Ltd, Taicang, China
- Connect Biopharma, San Diego, CA, United States
| |
Collapse
|
41
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
42
|
Xu X, Li S, Wang T, Zhen P, Wei Q, Yu F, Tong J. Mitigation of myocardial ischemia/reperfusion-induced chronic heart failure via Shexiang Baoxin Pill-mediated regulation of the S1PR1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155390. [PMID: 38569296 DOI: 10.1016/j.phymed.2024.155390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Well-defined and effective pharmacological interventions for clinical management of myocardial ischemia/reperfusion (MI/R) injury are currently unavailable. Shexiang Baoxin Pill (SBP), a traditional Chinese medicine Previous research on SBP has been confined to single-target treatments for MI/R injury, lacking a comprehensive examination of various aspects of MI/R injury and a thorough exploration of its underlying mechanisms. PURPOSE This study aimed to investigate the therapeutic potential of SBP for MI/R injury and its preventive effects on consequent chronic heart failure (CHF). Furthermore, we elucidated the specific mechanisms involved, contributing valuable insights into the potential pharmacological interventions for the clinical treatment of MI/R injury. METHODS We conducted a comprehensive identification of SBP components using high-performance liquid chromatography. Subsequently, we performed a network pharmacology analysis based on the identification results, elucidating the key genes influenced by SBP. Thereafter, through bioinformatics analysis of the key genes and validation through mRNA and protein assays, we ultimately determined the centralized upstream targets. Lastly, we conducted in vitro experiments using myocardial and endothelial cells to elucidate and validate potential underlying mechanisms. RESULTS SBP can effectively mitigate cell apoptosis, oxidative stress, and inflammation, as well as promote vascular regeneration following MI/R, resulting in improved cardiac function and reduced CHF risk. Mechanistically, SBP treatment upregulates sphingosine-1-phosphate receptor 1 (S1PR1) expression and activates the S1PR1 signaling pathway, thereby regulating the expression of key molecules, including phosphorylated Protein Kinase B (AKT), phosphorylated signal transducer and activator of transcription 3, epidermal growth factor receptor, vascular endothelial growth factor A, tumor necrosis factor-α, and p53. CONCLUSION This study elucidated the protective role of SBP in MI/R injury and its potential to reduce the risk of CHF. Furthermore, by integrating downstream effector proteins affected by SBP, this research identified the upstream effector protein S1PR1, enhancing our understanding of the pharmacological characteristics and mechanisms of action of SBP. The significance of this study lies in providing compelling evidence for the use of SBP as a traditional Chinese medicine for MI/R injury and consequent CHF prevention.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China
| | - Shengnan Li
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China
| | - Tao Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, PR China
| | - Penghao Zhen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China.
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
43
|
Yun T, Kim S, Koo Y, Chae Y, Lee D, Kim H, Yang MP, Kang BT, Kim S. Expression of sphingosine-1-phosphate receptor 1 in neuroinflammation of canine brains. Top Companion Anim Med 2024; 60:100847. [PMID: 38182045 DOI: 10.1016/j.tcam.2024.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Sphingosine-1-phosphate (S1P) is a signaling lipid mediator that is involved in multiple biological processes. The S1P/S1P receptor (S1PR) signaling pathway has an important role in the central nervous system. It contributes to physiologic cellular homeostasis and is also associated with neuroinflammation. Therefore, this study was performed to evaluate the expression of S1PR in dogs with meningoencephalitis of unknown etiology (MUE) and experimental autoimmune encephalomyelitis (EAE). The analysis used 12 brain samples from three neurologically normal dogs, seven dogs with MUE, and two canine EAE models. Anti-S1PR1 antibody was used for immunohistochemistry. In normal brain tissues, S1PR1s were expressed on neurons, astrocytes, oligodendrocytes, and endothelial cells. In MUE and EAE lesions, there was positive staining of S1PR1 on leukocytes. Furthermore, the expression of S1PR1 on neurons, astrocytes, oligodendrocytes, and endothelial cells was upregulated compared to normal brains. This study shows that S1PR1s are expressed in normal brain tissues and leukocytes in inflammatory lesions, and demonstrates the upregulation of S1PR1 expression on nervous system cells in inflammatory lesions of MUE and EAE. These findings indicate that S1P/S1PR signaling pathway might involve physiologic homeostasis and neuroinflammation and represent potential targets for S1PR modulators to treat MUE.
Collapse
Affiliation(s)
- Taesik Yun
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Sanggu Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Yoonhoi Koo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea; College of Veterinary Medicine, Kyungpook National University, Daegu 41566, South Korea
| | - Yeon Chae
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Dohee Lee
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Hakhyun Kim
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Mhan-Pyo Yang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Byeong-Teck Kang
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea.
| | - Soochong Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea.
| |
Collapse
|
44
|
Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, Wang Y, Pan X, Hu Q, Li Z, Ji S, Zhou C, Yu X, Qin Y, Xu X. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer 2024; 23:72. [PMID: 38581001 PMCID: PMC10996263 DOI: 10.1186/s12943-024-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.
Collapse
Affiliation(s)
- Qin Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bing Jin
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Pan
- Department of Hepatobiliary Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
45
|
Omi M, Yamada H, Takahashi H, Mori H, Oba S, Hattori Y, Yokota K, Toyama K, Takahashi K. Differences in collateral vessel formation after experimental retinal vein occlusion in spontaneously hypertensive rats and wild-type rats. Heliyon 2024; 10:e27160. [PMID: 38509953 PMCID: PMC10950832 DOI: 10.1016/j.heliyon.2024.e27160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Objective Retinal vein occlusion (RVO) can lead to visual impairment, but the development of collateral vessels can sometimes mitigate significant damage. This study aimed to investigate the relationship between collateral vessels and hypertension, the most common underlying condition associated with RVO, by comparing spontaneously hypertensive rats (SHRs) and wild-type Wister rats (WWRs). We also examined the differences between WWRs and SHRs in terms of sphingosine 1-phosphate receptor 1 (S1PR1) expression and its product nitric oxide synthase 3 (NOS3) expression, which are involved in the formation of collateral vessels after vascular occlusion. Methods Laser photocoagulation (PC) was used to occlude one randomly selected retinal vein in WWRs and SHRs, and the area surrounding the occluded vessel was examined using optical coherence tomography angiography. If reperfusion of the occluded vessel occurred within 2 weeks, the vessel was re-occluded repeatedly by PC. The number of eyes with successfully occluded vessels accompanied by collateral vessels was recorded. Then, WWRs and SHRs were divided into the following four groups: 1) control (no treatment), 2) vehicle (20% DMSO), 3) S1PR1 agonist (2 mg/mL SEW2871), and 4) S1PR1 antagonist (0.25 mg/mL VPC 23019) groups. The drugs were administered intravitreally in all groups except the control. The number of laser shots required for successful RVO was recorded. Histological evaluation and quantitative real-time PCR of S1PR1 and NOS3 were performed to elucidate the mechanisms underlying collateral vessel formation. Results The proportion of eyes achieving successful vein occlusion was lower in SHRs (4/12 eyes, 33.3%) than in WWRs (8/10 eyes, 80%, p = 0.043). NOS3 expression at 6 h after PC was significantly higher in WWRs than in SHRs (p = 0.021). In WWRs treated with SEW2871, vein occlusion failed in 7 of 10 eyes (70%). The expression of NOS3 was significantly higher in the SEW2871 treatment group than in the untreated group (p < 0.001). Furthermore, NOS3 expression was significantly higher after SEW2871 treatment in WWRs than in SHRs (p = 0.011). Conclusion In hypertensive environments, collateral vessels are less likely to develop, and S1PR1 may be involved in this phenomenon.
Collapse
Affiliation(s)
- Masatoshi Omi
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Haruhiko Yamada
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Hajime Takahashi
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Hidetsugu Mori
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Shimpei Oba
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Yuki Hattori
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Kaito Yokota
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Keiko Toyama
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Kanji Takahashi
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
46
|
Wang J, Zheng G, Wang L, Meng L, Ren J, Shang L, Li D, Bao Y. Dysregulation of sphingolipid metabolism in pain. Front Pharmacol 2024; 15:1337150. [PMID: 38523645 PMCID: PMC10957601 DOI: 10.3389/fphar.2024.1337150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Abstract
Pain is a clinical condition that is currently of great concern and is often caused by tissue or nerve damage or occurs as a concomitant symptom of a variety of diseases such as cancer. Severe pain seriously affects the functional status of the body. However, existing pain management programs are not fully satisfactory. Therefore, there is a need to delve deeper into the pathological mechanisms underlying pain generation and to find new targets for drug therapy. Sphingolipids (SLs), as a major component of the bilayer structure of eukaryotic cell membranes, also have powerful signal transduction functions. Sphingolipids are abundant, and their intracellular metabolism constitutes a huge network. Sphingolipids and their various metabolites play significant roles in cell proliferation, differentiation, apoptosis, etc., and have powerful biological activities. The molecules related to sphingolipid metabolism, mainly the core molecule ceramide and the downstream metabolism molecule sphingosine-1-phosphate (S1P), are involved in the specific mechanisms of neurological disorders as well as the onset and progression of various types of pain, and are closely related to a variety of pain-related diseases. Therefore, sphingolipid metabolism can be the focus of research on pain regulation and provide new drug targets and ideas for pain.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangda Zheng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linfeng Wang
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linghan Meng
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juanxia Ren
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Lu Shang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, China
| | - Dongtao Li
- Department of Oncology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | |
Collapse
|
47
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
48
|
Zhao Y, Li M, Mao J, Su Y, Huang X, Xia W, Leng X, Zan T. Immunomodulation of wound healing leading to efferocytosis. SMART MEDICINE 2024; 3:e20230036. [PMID: 39188510 PMCID: PMC11235971 DOI: 10.1002/smmd.20230036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/18/2023] [Indexed: 08/28/2024]
Abstract
Effectively eliminating apoptotic cells is precisely controlled by a variety of signaling molecules and a phagocytic effect known as efferocytosis. Abnormalities in efferocytosis may bring about the development of chronic conditions, including angiocardiopathy, chronic inflammatory diseases and autoimmune diseases. During wound healing, failure of efferocytosis leads to the collection of apoptosis, the release of necrotic material and chronic wounds that are difficult to heal. In addition to the traditional phagocytes-macrophages, other important cell species including dendritic cells, neutrophils, vascular endothelial cells, fibroblasts and keratinocytes contribute to wounding healing. This review summarizes how efferocytosis-mediated immunomodulation plays a repair-promoting role in wound healing, providing new insights for patients suffering from various cutaneous wounds.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Minxiong Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiayi Mao
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yinghong Su
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xin Huang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenzheng Xia
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiangfeng Leng
- Department of Cosmetic and Plastic SurgeryAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Tao Zan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
49
|
Searles CD. Shedding Light on the Roles of Ceramide in Human Microvascular Function. Circ Res 2024; 134:97-99. [PMID: 38175911 DOI: 10.1161/circresaha.123.323868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Affiliation(s)
- Charles D Searles
- Atlanta VA Healthcare System, Decatur, GA. Emory University, Atlanta, GA
| |
Collapse
|
50
|
Brady EM, Cao TH, Moss AJ, Athithan L, Ayton SL, Redman E, Argyridou S, Graham-Brown MPM, Maxwell CB, Jones DJL, Ng L, Yates T, Davies MJ, McCann GP, Gulsin GS. Circulating sphingolipids and relationship to cardiac remodelling before and following a low-energy diet in asymptomatic Type 2 Diabetes. BMC Cardiovasc Disord 2024; 24:25. [PMID: 38172712 PMCID: PMC10765891 DOI: 10.1186/s12872-023-03623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a heterogenous multi-system syndrome with limited efficacious treatment options. The prevalence of Type 2 diabetes (T2D) continues to rise and predisposes patients to HFpEF, and HFpEF remains one of the biggest challenges in cardiovascular medicine today. Novel therapeutic targets are required to meet this important clinical need. Deep phenotyping studies including -OMIC analyses can provide important pathogenic information to aid the identification of such targets. The aims of this study were to determine; 1) the impact of a low-energy diet on plasma sphingolipid/ceramide profiles in people with T2D compared to healthy controls and, 2) if the change in sphingolipid/ceramide profile is associated with reverse cardiovascular remodelling. METHODS Post-hoc analysis of a randomised controlled trial (NCT02590822) including adults with T2D with no cardiovascular disease who completed a 12-week low-energy (∼810 kcal/day) meal-replacement plan (MRP) and matched healthy controls (HC). Echocardiography, cardiac MRI and a fasting blood for lipidomics were undertaken pre/post-intervention. Candidate biomarkers were identified from case-control comparison (fold change > 1.5 and statistical significance p < 0.05) and their response to the MRP reported. Association between change in biomarkers and change indices of cardiac remodelling were explored. RESULTS Twenty-four people with T2D (15 males, age 51.1 ± 5.7 years), and 25 HC (15 male, 48.3 ± 6.6 years) were included. Subjects with T2D had increased left ventricular (LV) mass:volume ratio (0.84 ± 0.13 vs. 0.70 ± 0.08, p < 0.001), increased systolic function but impaired diastolic function compared to HC. Twelve long-chain polyunsaturated sphingolipids, including four ceramides, were downregulated in subjects with T2D at baseline. Three sphingomyelin species and all ceramides were inversely associated with LV mass:volume. There was a significant increase in all species and shift towards HC following the MRP, however, none of these changes were associated with reverse cardiac remodelling. CONCLUSION The lack of association between change in sphingolipids/ceramides and reverse cardiac remodelling following the MRP casts doubt on a causative role of sphingolipids/ceramides in the progression of heart failure in T2D. TRIAL REGISTRATION NCT02590822.
Collapse
Affiliation(s)
- Emer M Brady
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
- Leicester Van Geest Multi-Omics Facility, University of Leicester, Leicester, UK
| | - Thong H Cao
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
- Leicester Van Geest Multi-Omics Facility, University of Leicester, Leicester, UK
| | - Alastair J Moss
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
- Leicester Van Geest Multi-Omics Facility, University of Leicester, Leicester, UK
| | - Lavanya Athithan
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Sarah L Ayton
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Emma Redman
- Diabetes Research Centre, NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, UK
| | - Stavroula Argyridou
- Diabetes Research Centre, NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, UK
| | - Matthew P M Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Colleen B Maxwell
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
- Leicester Van Geest Multi-Omics Facility, University of Leicester, Leicester, UK
| | - Donald J L Jones
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
- Leicester Van Geest Multi-Omics Facility, University of Leicester, Leicester, UK
| | - Leong Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
- Leicester Van Geest Multi-Omics Facility, University of Leicester, Leicester, UK
| | - Thomas Yates
- Diabetes Research Centre, NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, UK
| | - Melanie J Davies
- Diabetes Research Centre, NIHR Leicester Biomedical Research Centre, Leicester General Hospital, Leicester, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
- Leicester Van Geest Multi-Omics Facility, University of Leicester, Leicester, UK
| | - Gaurav S Gulsin
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK.
| |
Collapse
|