1
|
Zhang X, Zhao Y, Huang L, Luo X, Zhang C, Mao Z, Yang H, Wang X. Zinc oxide nanoparticles alleviated Cd toxicity in Hibiscus syriacus L. by reducing Cd translocation and improving plant growth and root cellular ultrastructure. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137920. [PMID: 40086238 DOI: 10.1016/j.jhazmat.2025.137920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/25/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Soil cadmium (Cd) contamination threatens plant growth and agricultural productivity. Hibiscus syriacus L., valued for its ornamental, edible, and medicinal properties, is widely cultivated in Cd-contaminated areas of southern China.This study aimed to evaluate the effectiveness of nano-zinc oxide (nZnO) in alleviating Cd toxicity in H. syriacus, examining plant phenotypes, physiological and biochemical responses, root ultrastructure, and the accumulation and distribution of Cd and Zn within the soil-H. syriacus system. Pot experiments included Cd treatment (100 mg/kg) and combined soil or foliar applications of nZnO (50 and 100 mg/L), with plants harvested after 45 days. Compared to Cd treatment alone, the combined application of nZnO significantly increased biomass in roots, stems, and leaves, improved photosynthetic performance, osmotic regulation, and antioxidant levels, and mitigated root cell damage; Cd concentrated mainly in roots, and nZnO reduced root Cd levels by 0.24 %-9.06 %. SEM-EDS observations revealed that Cd predominantly accumulated in the root epidermis and cortex, with Cd stress leading to increased levels and localized aggregation of Cd in the xylem. By contrast, nZnO treatment alleviated this disruption. Leaf application of 50 mg/L nZnO showed the best results. These findings highlight nZnO as a promising nano fertilizer for alleviating Cd stress in plants.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yazhi Zhao
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Liqun Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaoning Luo
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chen Zhang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zihao Mao
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongfen Yang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaohong Wang
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China.
| |
Collapse
|
2
|
Ulker OC, Minghetti M. Short communication: Evaluation of mitochondrial surface area of selected metals and pesticides in RTL-W1 cells: A high-content imaging approach. Comp Biochem Physiol C Toxicol Pharmacol 2025; 292:110148. [PMID: 39986406 DOI: 10.1016/j.cbpc.2025.110148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
In recent years, there has been increasing interest in utilizing fish cell culture in vitro assays, as alternatives to whole fish assays, for assessing the toxicity of aquatic pollutants. The fish cell line RTL-W1, derived from rainbow trout (Oncorhynchus mykiss) liver, was shown to retain several tissue specific features and to respond to chemical insults similarly to fish in vivo. In our study, we investigated the toxicity of two metals silver and cadmium and two pesticides azoxystrobin and paraquat using a cytotoxicity assay that measures simultaneously cell metabolic activity and cell membrane integrity. Moreover, we developed a novel 'high-content imaging' approach to evaluate if mitochondria's surface area is a sensitive and specific indicator of mitochondria toxicity. Initially, the cytotoxicity assay was used to determine the chemicals' effective concentrations (EC50). Subsequently, we assessed the mitochondria surface area at different toxicity level (i.e., EC50, EC25 and EC10) to compare the sensitivity and specificity of this method. The EC50s measured by cell metabolic activity, for silver, cadmium, azoxystrobin and paraquat were 0.71, 29.05, 2.34 and 1260 μM, respectively. Mitochondria surface area was reduced by all chemicals at the EC50, and by silver and azoxystrobin at the EC10 and EC25; indicating that the latter chemicals affect mitochondria more specifically. In conclusion, our study demonstrated that mitochondrial surface area serves as a sensitive marker for chemicals inducing mitochondria toxicity in fish liver cells. Additionally, assays using RTL-W1 cells proved to be effective for detecting the hepatic cytotoxicity of environmental contaminants.
Collapse
Affiliation(s)
- Ozge Cemiloglu Ulker
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Matteo Minghetti
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK, USA.
| |
Collapse
|
3
|
Nkoh JN, Ye T, Shang C, Li C, Tu J, Li S, Wu Z, Chen P, Hussain Q, Esemu SN. Deciphering the mechanisms for preferential tolerance of Escherichia coli BL21 to Cd(II) over Cu(II) and Ni(II): A combined physiological, biochemical, and multiomics perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118195. [PMID: 40273607 DOI: 10.1016/j.ecoenv.2025.118195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Environmental pollution severely affects ecological functions/health, and nondegradable pollutants such as heavy metals (HMs) cause significant damage to living organisms. Escherichia coli is one of the most studied life forms, and its response to oxidative stress is driven by a complex ensemble of mechanisms driven by transcriptomic-level adjustments. However, the magnitude of the physiological, metabolic, and biochemical alterations and their relationships with transcriptomic changes remain unclear. Studying the growth of E. coli in Cd-, Cu-, and Ni-polluted media at pH 5.0, we observed that (i) downregulation of the alkyl hydroperoxide complex, glutathione reductase, and glutathione S-transferase by Cd inhibited H2O2 degradation, and the accumulated H2O2 was respectively 2.7, 1.7, and 2.4 times greater than that in the control, Cu, and Ni treatments; (ii) Zn-associated resistance protein (ZraP) was the major scavenger of Cd, with a 140.7-fold increase in its expression; (iii) the P-type Cu+ transporter (CopA), multicopper oxidase (CueO), and heteromultimeric transport system (CusCBAF) controlled the excretion and detoxification of Cu; (iv) the Cd2+/Zn2+/Pb2+-exporting P-type ATPase (ZntA) and transcriptional activator ZntR were the major transporters of Ni; (v) Cd upregulated biofilm formation and synthesis of secondary metabolites more than Cu and Ni, which resulted in increased adsorption and improved tolerance; and (vi) the activity of superoxide dismutase in Cu-spiked cells was 153.2 %, 141.7 %, and 172.7 % higher and corresponded to 85.7 %, 524.5 %, and 491.5 % lower O2●⁻ in the control, Cd-, and Ni-spiked cells, respectively. This study reveals E. coli's preferential tolerance mechanisms to Cd rather than Cu and Ni and demonstrates mechanisms for its survival in highly polluted environments.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Ting Ye
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Chenjing Shang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, PR China.
| | - Chunyuan Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jianguang Tu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Sihui Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zuping Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Pengyu Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Quaid Hussain
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Seraphine Nkie Esemu
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon; Laboratory for Emerging Infectious Diseases, University of Buea, P.O. Box 63, Buea, Cameroon
| |
Collapse
|
4
|
Hassanein EHM, Alotaibi MF, Alruhaimi RS, Sabry M, Sayed GA, Atwa AM, Mahmoud AM. Targeting TLR4/NF-κB signaling, oxidative stress, and apoptosis by farnesol mitigates cadmium-induced testicular toxicity in rats. Tissue Cell 2025; 94:102813. [PMID: 40020518 DOI: 10.1016/j.tice.2025.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Cadmium (Cd) is a highly toxic heavy metal, and its detrimental effects on reproductive health pose a significant risk to the general population. Farnesol (FAR), a sesquiterpene alcohol, exhibits anti-inflammatory, antioxidant, and anticancer properties. This study investigated the protective effects of FAR against Cd-induced testicular toxicity, focusing on its antioxidant and anti-inflammatory mechanisms. Rats were randomly divided into four experimental groups: control, FAR (10 mg/kg), Cd (1.2 mg/kg), and Cd + FAR. Cd administration caused testicular tissue damage, altered hormone levels, oxidative stress and apoptosis, upregulated TLR4/NF-κB signaling and diminished antioxidants. FAR ameliorated gonadotropins and testosterone, prevented tissue damage, and attenuated oxidative stress. Additionally, FAR significantly attenuated the inflammatory response triggered by Cd, as evidenced by reduced levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and suppression of the TLR4/NF-κB signaling pathway. FAR inhibited testicular apoptosis by upregulating the anti-apoptotic protein Bcl-2 and downregulating the pro-apoptotic markers Bax and caspase-3. These results suggest that FAR mitigates Cd-induced testicular toxicity through upregulation of antioxidants, suppression of TLR4/NF-κB signaling, and inhibition of apoptotic pathways. Thus, FAR represents a promising therapeutic agent for protecting against Cd-induced reproductive damage.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt.
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mostafa Sabry
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK.
| |
Collapse
|
5
|
Cao Q, Gou GQ, Dai ZX, Tan AJ, Yang GL. Research on the role of bamboo species in the restoration of heavy metal-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125565. [PMID: 40300537 DOI: 10.1016/j.jenvman.2025.125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/19/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Heavy metal contamination in the soil has become more serious due to the rapid development of the economy. Phytoremediation has evoked widespread curiosity in recent years due to its advantages in terms of being environmentally friendly and sustainable. However, there are few reports on the application of bamboo species in the field of phytoremediation, and a comprehensive overview of their potential for restoring contaminated soil by removing heavy metals is lacking. This paper incorporates existing research on bamboo species for the remediation of heavy metal-contaminated soils. It meticulously debates the physiological responses exhibited by bamboo species to heavy metal stress, encompassing growth and development responses, photosynthetic responses, and antioxidant system responses, among others. Furthermore, it elaborates on the capacity of bamboo for heavy metal accumulation and translocation, as well as their remarkable tolerance and detoxification mechanisms. This comprehensive analysis sheds light on the intricate interactions between bamboo and contaminated soil environments. Additionally, the paper summarizes various strategies for the remediation of heavy metal contamination using bamboo species. This review facilitates a more thorough exploration of the potential applications of bamboo species in the remediation of heavy metal-contaminated soils, offering a novel approach for soil environmental restoration.
Collapse
Affiliation(s)
- Qin Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Guang-Qian Gou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zhao-Xia Dai
- College of Forestry, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Ai-Juan Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Gui-Li Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China; Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China.
| |
Collapse
|
6
|
Aničić R, Zeković M, Kocić M, Gluvić Z, Manojlović D, Ščančar J, Stojsavljević A. Non-occupational exposure to cadmium and breast cancer: A comprehensive and critical review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118331. [PMID: 40367617 DOI: 10.1016/j.ecoenv.2025.118331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
Breast cancer (BC) is a multifactorial disease with unresolved etiology. Environmental pollutants, primarily trace metals, play a pivotal role in the pathophysiological cascade of malignant tumors, including BC. In this up-to-date review, we comprehensively and critically examined the relationship between cadmium (Cd) and BC. For this purpose, peer-reviewed studies from relevant databases (PubMed, SCOPUS, and Cochrane Library) over the last 40 years were retrieved and analyzed. We found that in vitro and in vivo studies strongly support the view that Cd has harmful effects on breast health. According to the human studies, we found that Cd could be responsible for the development and progression of malignant breast tumors due to markedly higher levels in clinical matrices of cases (whole blood, urine, breast tissue, keratin materials) than in clinical matrices of controls. Cadmium does not appear to affect BC density. In contrast, Cd has been found to have a detrimental effect on sex hormones, disrupting the balance of estrogen and androgen. We found that studies looking at dietary Cd intake and BC risk generally (without measuring urine or blood Cd) do not support the association between dietary Cd intake and BC risk. In notable contrast, studies looking at dietary Cd intake and BC risk by measuring Cd in urine or blood generally support this association. The effect of airborne Cd on BC risk was weak, but in favor of specific histological forms, primarily ER-/PR- invasive tubular breast carcinomas. Regardless of the intake route of Cd into the body, it can be concluded that Cd has a harmful effect on breast health. However, well-designed longitudinal, mechanistic, meta-analytic, and other studies are urgently needed to confirm the exact role of environmental Cd in breast carcinogenesis.
Collapse
Affiliation(s)
- Radomir Aničić
- Clinic for Gynecology and Obstetrics "Narodni front", Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Zeković
- Group for Nutrition and Metabolism, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milan Kocić
- Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Zoran Gluvić
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | | |
Collapse
|
7
|
Yang F, Lv G. Responses of Calligonum leucocladum to Prolonged Drought Stress Through Antioxidant System Activation, Soluble Sugar Accumulation, and Maintaining Photosynthetic Homeostasis. Int J Mol Sci 2025; 26:4403. [PMID: 40362639 PMCID: PMC12072819 DOI: 10.3390/ijms26094403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/29/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Desert shrubs play an important role in the stability of arid and fragile desert ecosystems. However, despite their significant ecological importance, limited research has been performed on shrub drought tolerance strategies at the morphological, physiological, and molecular levels. Therefore, this study focused on the typical desert shrub, Calligonum leucocladum, and analyzed its morphology, physiology, and protein expression under two different habitats: moist low-salt and arid low-salt. The results indicate that drought stress inhibited the growth of C. leucocladum, leading to significant reductions in its plant height, base diameter, and crown width by 14.93%, 49.57%, and 48.49%, respectively. Drought stress triggered a 30% decline in stomatal conductance, whereas homeostasis was observed in net photosynthesis, intercellular CO₂, and transpiration. The soluble sugar content significantly increased by 13.43%, while the starch, soluble protein, and proline content significantly decreased by 20.32%, 10.67%, and 55.61%, respectively. In addition, under drought stress, membrane peroxidation products, reactive oxygen species metabolites, and antioxidant enzyme activities significantly increased. Weighted gene co-expression network analysis revealed 40 proteins that were significantly enriched in the photosynthesis and oxidative phosphorylation pathways through KEGG enrichment analysis. In addition, C. leucocladum maintains photosynthetic homeostasis by enhancing PSII repair (PsbE, PsbL, PsbH) and electron transfer chain efficiency (PetD, nad 2, nad 9), thereby compensating for the insufficient carbon dioxide supply caused by stomatal limitation. This study integrated multidimensional data from morphology, physiology, and proteomics to reveal that C. leucocladum drives a coupled network of photosynthesis, antioxidant, and carbon metabolism through chloroplast translation reprogramming. It maintains photosynthetic homeostasis and osmotic balance under a 30% decrease in stomatal conductance, elucidating the cross-scale regulatory strategy of desert shrubs adapting to extreme drought.
Collapse
Affiliation(s)
- Fang Yang
- School of Ecology and Environment, Xinjiang University, Urumqi 830017, China;
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe 833300, China
| | - Guanghui Lv
- School of Ecology and Environment, Xinjiang University, Urumqi 830017, China;
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe 833300, China
| |
Collapse
|
8
|
Ghouri F, Jin J, Ali S, Zhong M, Liu J, Xia W, Jin F, Shahid MQ. Metabolomic, biochemical, and cytological observations reveal β-Pinene's protective effects against cadmium toxicity in salt-tolerant rice. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125655. [PMID: 40334420 DOI: 10.1016/j.jenvman.2025.125655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/08/2025] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Sea rice (Haidao 86) is a vital cultivar that could be cultivated in saline soil but is sensitive to heavy metal stress, and cadmium (Cd) stress in eastern coastal parts of China is frequently a great hazard. Nevertheless, there is a scarcity of research on the metabolic pathways involved in the detoxification of Cd stress in sea rice. Here, we added a kind of monoterpene hormone, (1S)-(-)-β-Pinene (βP), in Cd (100 mg/kg) stressed experiment to study its interaction with sea rice. Multiple Morphological traits were significantly rescued after the application of βP. Similarly, Cd alleviation by βP was also demonstrated in physio-chemical indicators. Cd contents in roots, leaves, grains, H2O2, and MDA contents have decreased by 28.1 %, 50.9 %, 51.4 %, 18.2 %, and 18.0 %, respectively, with the presence of βP compared to Cd alone. SOD, POD, CAT, and GPX activities were elevated by 17.1 %, 40.0 %, 12.4 %, and 22.5 %, respectively, and contents of GSH and APX were also significantly modulated after the supplementation of βP. Transmission electron microscopy also indicated that the Cd+βP group had intact cellular structure compared to the Cd group. Through metabolomic analysis, 27 and 31 differentially expressed metabolites (DEMs) were identified from CKvsCd and CdvsCd+βP. According to the results, carbohydrate metabolism (e.g. I-inositol, Gluconapoleiferin), phenylpropanoid (lignan, flavonoids) biosynthesis (e.g. Cyanidin, Leucoside), terpenoids, and alkaloids biosynthesis, were all significantly regulated with the presence of βP. Our study provided a detailed understanding of the mechanism behind Cd-stress tolerance and will aid in developing Cd tolerance in sea rice.
Collapse
Affiliation(s)
- Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiacheng Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| | - Minghui Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fengliang Jin
- State Key Laboratory of Green Pesticide College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Wang X, Liu Y, Tian X, Guo J, Luan Y, Wang D. Root Exudates Mediate the Production of Reactive Oxygen Species in Rhizosphere Soil: Formation Mechanisms and Ecological Effects. PLANTS (BASEL, SWITZERLAND) 2025; 14:1395. [PMID: 40364424 PMCID: PMC12073808 DOI: 10.3390/plants14091395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
Reactive oxygen species (ROS), as redox messengers, play an important role in regulating plant growth, sensing biotic and abiotic stresses, and integrating different environmental signals. As the microenvironment of the interaction between root, soil and microorganism, the rhizosphere is the hotspot of ROS production and action. Root exudates are an important medium for communication between roots and the soil environment, and they have a significant regulatory effect on the production of ROS in the rhizosphere. At the same time, the formation of rhizosphere ROS is determined by the coupling of various biotic and abiotic factors, and it is also affected by environmental stresses such as temperature, humidity, and disease. This review summarizes how root exudates affect plant growth and induce plant defense mechanisms by regulating the generation and distribution of ROS. It also discusses the role of ROS in promoting the decomposition of soil organic matter, nutrient cycling, and pollutant degradation and transformation. In-depth study of the regulation mechanism of root exudates on ROS not only helps to reveal the molecular mechanism of plant adaptation to environmental stress but also provides theoretical support and practical guidance for sustainable agricultural development and ecological environment protection.
Collapse
Affiliation(s)
- Xuqin Wang
- Ordos Branch Station, Inner Mongolia Autonomous Region Environmental Monitoring General Station, Ordos 017000, China; (X.W.); (J.G.)
| | - Yalei Liu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.L.); (Y.L.)
| | - Xiaoyan Tian
- Department of Chemical Engineering, Ordos Vocational College, Ordos 017000, China;
| | - Juan Guo
- Ordos Branch Station, Inner Mongolia Autonomous Region Environmental Monitoring General Station, Ordos 017000, China; (X.W.); (J.G.)
| | - Yaning Luan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.L.); (Y.L.)
| | - Dengzhi Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.L.); (Y.L.)
| |
Collapse
|
10
|
Shan X, Dou F, Li D, Yuan Y, Zhang Y, Liu C. Cadmium accumulation and translocation in maize cultivars on contaminated soils in southern China. BMC PLANT BIOLOGY 2025; 25:589. [PMID: 40325406 PMCID: PMC12051276 DOI: 10.1186/s12870-025-06286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/20/2025] [Indexed: 05/07/2025]
Abstract
Rapid industrialization in China has led to widespread soil contamination, particularly with heavy metals like cadmium (Cd). This study investigates Cd accumulation and translocation in 12 commercial maize cultivars grown on contaminated soils. Initial soil Cd concentrations averaged 0.68 mg kg-1, exceeding safe limits for agricultural soils. Post-harvest results indicated that the soil Cd concentration decreased under all cultivars, with values ranging from 0.25 to 0.55 mg kg-1, indicating effective Cd uptake by maize. The bio-concentration factor (BCF) values indicated Cd accumulation, varying between 0.016 and 0.051, while translocation factor (TF) values ranged from 0.04 to 0.12. Cultivar C868 (pollution index (Pi) = 0.048, BCF = 0.016 and TF = 0.05) and C380 (Pi = 0.071, BCF = 0.023 and TF = 0.09) were the best cultivars on contaminated soils, which demonstrated reduced Cd uptake and limited translocation to grains. In addition, a strong positive correlation (r = 0.72, p < 0.05) was observed between soil Cd, Pi, BCF and TF, indicating that cultivars grown on high Pi soils, with higher Cd uptake and translocation result in higher accumulation of Cd in grains. The combined VNIR-PLSR model showed strong predictive performance for the prediction of Cd (R2 = 0.67 and RPD = 2.4). Spectral analysis revealed significant increases of reflectance at 450-500 and 600-700 nm associated with Cd absorption. Our findings indicated the capability of VNIR spectroscopy coupled with PLSR method as a reliable and efficient method for soil Cd assessment.
Collapse
Affiliation(s)
- Xiangyu Shan
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Fei Dou
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Dawei Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yuzhen Yuan
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yingyun Zhang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Chuanping Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
11
|
Karthikeyan P, Singha J, Marigoudar SR, Savurirajan M, Raja P, Sharma KV. Impact of cadmium on copepod Oithona similis at threshold concentrations: Determining safe exposure period. MARINE POLLUTION BULLETIN 2025; 214:117743. [PMID: 40015190 DOI: 10.1016/j.marpolbul.2025.117743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/11/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
The level of protection by the seawater quality criteria (SWQC) of cadmium (Cd) on planktonic population remains unknown. Therefore, this study assessed the level of protection and safe exposure period of SWQC of cadmium for protection of marine life. The copepod Oithona similis exposed to the Cd at SWQC such as predicted no-effect concentration (PNEC, 0.6 μg/l), criterion continuous concentration (CCC, 1.2 μg/l), and criterion maximum concentration (CMC, 5 μg/l). The in-vivo assays with fluorescein diacetate (FDA) and 2,7-dichlorofluorescein diacetate (DC-FDA) revealed that the SWQCs are safe except for CMC for prolonged exposure. The population growth was higher at 5.4 folds in the control culture, with 4291 ± 134 ind/l, than the culture with CMC of Cd with 2403 ± 149 ind/l which is 2.7 fold growth. Protein content in copepod biomass increased between 3.27 mg/g in the control and 5.73 mg/g in CMC. Biomarker enzyme activities varied among the treatments, and higher expressions were found in CMC. Inhibition of in-vitro FDA and induced DC-FDA activities indicate the stress due to Cd toxicity. Overall, results reveal the SWQC of Cd is not safe for long-term exposure. The PNEC may ensure the protection for up to four days, CCC may be prescribed for one day, and CMC may be prescribed for one-hour exposure.
Collapse
Affiliation(s)
- P Karthikeyan
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT campus, Pallikaranai, Chennai 600100, India
| | - Jasmine Singha
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT campus, Pallikaranai, Chennai 600100, India
| | - S R Marigoudar
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT campus, Pallikaranai, Chennai 600100, India.
| | - M Savurirajan
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT campus, Pallikaranai, Chennai 600100, India
| | - P Raja
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT campus, Pallikaranai, Chennai 600100, India
| | - K V Sharma
- National Centre for Coastal Research (NCCR), Ministry of Earth Sciences, NIOT campus, Pallikaranai, Chennai 600100, India
| |
Collapse
|
12
|
Zheng X, Sun Y, Wang J, Yin Y, Li Z, Liu B, Hu H, Xu J, Dai Y, Kanwar YS, Tang Y. Cadmium exposure induces Leydig cell injury via necroptosis caused by oxidative stress and TNF-α/TNFR1 signaling. Biochem Biophys Res Commun 2025; 761:151717. [PMID: 40188597 DOI: 10.1016/j.bbrc.2025.151717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/21/2025] [Accepted: 03/26/2025] [Indexed: 04/08/2025]
Abstract
Cadmium, a ubiquitous environmental pollutant, has been linked to testicular damage, primarily through mechanisms such as oxidative stress and various forms of programmed cell death. Despite extensive studies on its toxic effects, the specific role of necroptosis in cadmium-induced reproductive toxicity remains unclear. In this study, we provide critical insights into how cadmium triggers necroptosis in Leydig cells, leading to testicular dysfunction. Using both in vitro and in vivo models, we demonstrated that cadmium exposure induces necroptotic cell death in Leydig cells, with significant involvement of the TNF-α/TNFR1 signaling pathway and reactive oxygen species (ROS) generation. Co-treatment with Nec-1, a specific necroptosis inhibitor, significantly reduced elevated ROS levels and suppressed TNF-α/TNFR1-induced necroptotic cell death, suggesting that ROS and the TNF-α/TNFR1 signaling pathway contribute to necroptosis activation in cadmium-induced Leydig cell injury. In conclusion, we demonstrate that necroptosis is a key driver of cadmium-induced testicular damage, suggesting that targeting necroptosis could offer novel therapeutic strategies for mitigating reproductive toxicity caused by heavy metals.
Collapse
Affiliation(s)
- Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China; Department of Pathology & Medicine, FSM, Northwestern University, Chicago, IL, USA
| | - Yaohui Sun
- Department of Thoracic Surgery and Lung Transplantation, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jinhua Wang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Zitaiyu Li
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Biao Liu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Hongji Hu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Jiarong Xu
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| | - Yashpal S Kanwar
- Department of Pathology & Medicine, FSM, Northwestern University, Chicago, IL, USA.
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Meihua Dong Road, ZhuHai, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China.
| |
Collapse
|
13
|
Chatterjee A, Rai R, Raj A, Rai LC. Deciphering the early responses for the cross talk between primary and secondary stressor in diazotrophic cyanobacteria Anabaena sp. PCC 7120. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109552. [PMID: 39946906 DOI: 10.1016/j.plaphy.2025.109552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/08/2024] [Accepted: 01/23/2025] [Indexed: 03/11/2025]
Abstract
The present study aims to unlock the cross-protection mechanism of the diazotrophic cyanobacterium Anabaena sp. PCC 7120. Heat pre-treatment elicited a beneficial response against subsequent cadmium stress as revealed by integrated morphological, physiological, biochemical, transcript, and proteomics analyses under four sets of experimental conditions: control (C), heat (HS), cadmium (Cd), and heat + cadmium (HS + Cd). Outcomes of the present study suggested a better survival strategy shown by Anabaena sp. PCC 7120 under HS + Cd compared to Cd. According to comparative proteomics, protochlorophyllide reductase, CO2 hydration protein, and NAD(P)H quinone oxidoreductase work in concert to support the light and dark reactions of photosynthesis. Furthermore, in cross protection involvement of enzymes from pentose phosphate pathway and glycolysis for fulfilling cellular energy demand; antioxidants and antioxidant enzymes in scavenging ROS, cellular detoxification, and Cd chelation, chaperons and proteases in proper protein folding and synthesis; signaling and transporters to generate cross talk and Cd efflux were found. Increased accumulation of vegetative to heterocyst connection protein (FraH) in HS + Cd compared to Cd may be envisioned to manage better nitrogen fixation.
Collapse
Affiliation(s)
- Antra Chatterjee
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; Department of Botany, University of Allahabad, Prayagraj, 211002, India
| | - Ruchi Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Raj
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - L C Rai
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
14
|
Nehzomi ZS, Shirani K. The gut microbiota: A key player in cadmium toxicity - implications for disease, interventions, and combined toxicant exposures. J Trace Elem Med Biol 2025; 88:127570. [PMID: 39837257 DOI: 10.1016/j.jtemb.2024.127570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 10/24/2024] [Accepted: 11/20/2024] [Indexed: 01/23/2025]
Abstract
Cadmium (Cd) is a highly toxic heavy metal contaminant found in soil and water due to human activities such as mining and industrial discharge. Cd can accumulate in the body, leading to various health risks such as organ injuries, osteoporosis, renal dysfunction, Type 2 diabetes (T2DM), reproductive diseases, hypertension, cardiovascular diseases, and cancers. The gut is particularly sensitive to Cd toxicity as it acts as the primary barrier against orally ingested Cd. Even at low concentrations, Cd can cause oxidative stress, inflammation, and intestinal bleeding. Cd also disrupts the gut microbiota, affecting its structure, taxonomic composition, and metabolic functions. Cd exposure alters the structure of the gut microbial community, reducing diversity and upregulating certain phyla and genera. This disturbance can lead to physiological and metabolic imbalances, including disruptions in energy homeostasis, amino acid, lipid, nucleotide, and short-chain fatty acid (SCFAs) metabolism. The effects of Cd on the gut microbiota depend on the duration of exposure, the dose of Cd, and can vary based on sex and age. Cd-induced gut dysbiosis has been linked to various diseases, including diabetes, adiposity, atherosclerosis, liver damage, infections, cancer, and neurodegenerative diseases. Interventions targeting the gut microbiota, such as probiotics, specific diets, melatonin, selenium, vitamin D3, and certain compounds, have shown potential in reducing the health risks associated with Cd exposure. However, combined exposure to Cd and other toxicants, such as microplastics (MPs), heavy metals, and antibiotics, can amplify the toxicity and dysbiosis in the gut microbiota.
Collapse
Affiliation(s)
| | - Kobra Shirani
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
15
|
Dagher DM, Zaghloul MS, Suddek GM. Modulation of AMPK/mTOR Autophagic Pathway Using Dapagliflozin Protects Against Cadmium-Induced Testicular and Renal Injury in Rats. J Biochem Mol Toxicol 2025; 39:e70257. [PMID: 40233265 DOI: 10.1002/jbt.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Cadmium is a widely distributed heavy metal found in the environment that poses serious hazards to human health. Dapagliflozin (DAPA), a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, exhibited antioxidant, antiapoptotic, and anti-inflammatory properties. Our data assessed the effect of DAPA against Cd-triggered renal and testicular impairment in rats, as well as the underlying mechanisms. Cd (30 mg/kg) and DAPA (5 and 10 mg/kg) were administrated by oral gavage to rats and continued for 21 days. DAPA attenuated Cd-triggered renal and testicular injury as shown by diminishing serum creatinine, BUN, and urinary total protein concentration in addition to increasing creatinine clearance, urinary creatinine, and serum testosterone. Moreover, it diminished renal and testicular histopathological alterations induced by Cd. DAPA stimulated the impaired autophagy flux as seen by significantly elevating the p-AMPK/total AMPK, decreasing p-mTOR/total mTOR ratios, and diminishing p62 & LC3 protein levels. Additionally, DAPA significantly lowered MDA content, increased GSH level and SOD activity. Moreover, it augmented the cytoprotective Nrf2/HO-1 signaling pathway. Furthermore, it attenuated renal and testicular apoptotic cell death via decreasing caspase-3 expression. Conclusion: Boosting autophagic events and combating oxidative stress and apoptosis by DAPA were engaged in alleviating Cd-induced renal and testicular impairment. This was accomplished by modulating the AMPK/mTOR and enhancing the Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Doha M Dagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
16
|
Vasudhevan P, Suresh A, Singh S, Sharma K, Sridevi G, Dixit S, Thangavel P. Cadmium accumulation, sub-cellular distribution and interactions with trace metals (Cu, Zn, Fe, Mn) in different rice varieties under Cd stress. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:130. [PMID: 40123020 DOI: 10.1007/s10653-025-02438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Rice (Oryza sativa L.) is a staple food in most Asian countries, although it serves as a significant carrier of cadmium (Cd) accumulation. Developing low-Cd accumulating rice varieties is crucial for minimizing Cd contamination in soil and rice grains while also mitigating harmful health consequences. In the present study examined the Cd accumulation and sub-cellular distribution of both high Cd (IR-50) and low Cd (White Ponni) rice varieties under Cd-treated hydroponic nutrient solutions. The results showed that under all Cd treatments, overall plant height, plant fresh and dry biomass reduced substantially in both rice varieties compared to the control. Both rice varieties accumulated more Cd in their roots than shoots, with IR-50 accumulating higher Cd levels. Iron (Fe) concentrations were higher in both roots and shoots of both rice varieties compared to other trace elements. Translocation factor (TF) values were < 1, indicating limited Cd translocation from roots to shoots. Cd was mainly distributed in the epidermis, cortex, and bulliform cells of both rice varieties roots, and shoots. The peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes activity significantly increased in both IR-50 and WP rice varieties when exposed to Cd treatment. The current study concluded that the IR-50 rice variety accumulated and distributed more Cd than the WP rice variety under different Cd treatments. As a result, WP exhibited higher Cd tolerance, while IR-50 became more susceptible to Cd stress.
Collapse
Affiliation(s)
- Palanisamy Vasudhevan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
- Soil Ecology and Phytoremediation Laboratory, Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636 011, India.
| | - Aparna Suresh
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India
| | - Subhav Singh
- Chitkara Centre for Research and Development, Chitkara University, Baddi, Himachal Pradesh, 174 103, India
- Division of Research and development, Lovely Professional University, Phagwara, Punjab, India
| | - Kamal Sharma
- Department of Mechanical Engineering, Institute of Engineering and Technology, GLA University, Mathura, 281 406, India
| | - Ganapathi Sridevi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, 625 021, India.
| | - Saurav Dixit
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140 401, India
- Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Palaniswamy Thangavel
- Soil Ecology and Phytoremediation Laboratory, Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636 011, India.
| |
Collapse
|
17
|
Li C, Wang H, Fu Y, Gentekaki E, Guo Y, Li L. Multiple biological responses and transcriptome plasticity of the model unicellular eukaryote paramecium for cadmium toxicity aggravated by freshwater acidification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125725. [PMID: 39832636 DOI: 10.1016/j.envpol.2025.125725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Cadmium (Cd) pollution is a widespread threat to aquatic life, and ongoing freshwater acidification (FA) can be expected to interact with Cd compounds to disrupt freshwater ecosystems. However, the effects of FA on Cd biotoxicity remain unclear. Herein, the model ciliate Paramecium tetraurelia, a model unicellular eukaryotic organism, was used to explore the response to environmental relevant concentrations of Cd under acidification conditions. We show for the first time that exposure to acidified freshwater accelerated Cd bioaccumulation and enhanced Cd bioavailability in P. tetraurelia, suggesting the synergistic interaction of Cd and FA. The co-exposure greatly reduced the abundance and carbon biomass, altered lysosomal membrane stability, induced oxidative stress, and consumed more ATP in exposed ciliates. Transcriptome plasticity enabled P. tetraurelia to develop a Cd stress-adaptive transcriptional profile (upregulation of transport and detoxification and downregulation of energy metabolism) under acidification. With a concomitant inhibition in energy production, the exposed ciliates might have diverted the energy from growth and cell replication to compensate for the energetic cost from stress response and detoxification. Collectively, acidified freshwater could aggravate Cd toxicity, which, in turn, arouses the response strategy of ciliates to cope with stress, providing a mechanistic understanding of the interaction between freshwater acidification and Cd pollution in the basic trophic level ciliated protozoa in freshwater ecosystems.
Collapse
Affiliation(s)
- Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Haitao Wang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Eleni Gentekaki
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2412, Nicosia, Cyprus
| | - Yulin Guo
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China.
| |
Collapse
|
18
|
Yang X, Huang J, Wang J, Sun H, Li J, Li S, Tang YE, Wang Z, Song Q. Effect of glucose selenol on hepatic lipid metabolism disorder induced by heavy metal cadmium in male rats. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159589. [PMID: 39674492 DOI: 10.1016/j.bbalip.2024.159589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
This study used 24 male rats to determine the protective effects of a new selenium molecule (glucose selenol) on cadmium (Cd) induced hepatic toxicity. The rats were randomly divided into four groups: control group, Cd group, Cd + 0.15 Se group, and Cd + 0.4 Se group. The results showed that glucose selenol supplementation alleviated the adverse impact of Cd on lipid metabolism, including decreased serum triacylglycerol and cholesterol levels. Transcriptome analysis revealed that, compared to the control group, Cd changed the expression of 1379 genes - discernibly affecting lipid metabolism pathways. Proteomic analysis primarily indicated alterations in lipid metabolism-related pathways. In conclusion, glucose selenol restored lipid metabolism disorders induced by Cd, thus rescuing hepatic damage. This integrated analysis identified the influence of glucose selenol on Cd-induced hepatic toxicity and provided its potential application prospects in alleviating the impact of heavy metal pollution, such as Cd, on human health.
Collapse
Affiliation(s)
- Xinyi Yang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China.
| | - Jinzhou Huang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Huimin Sun
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - JinJin Li
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Shunfeng Li
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha 410006, Hunan, China.
| | - Qisheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
19
|
Zwolak I. Disentangling the role of selenium in antagonizing the toxicity of arsenic and cadmium. Arch Toxicol 2025; 99:513-540. [PMID: 39776200 DOI: 10.1007/s00204-024-03918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Cadmium (Cd) and inorganic arsenic (As) compounds are considered to be among the major public health hazards. This is due to both the high intrinsic toxicity of these substances and the often difficult to avoid exposure of the general population through contaminated water and food. One proposed method to reduce the toxic effects of As and Cd on animals and humans is the use of selenium (Se). As discussed in our previous article, laboratory studies show that this micronutrient can have a beneficial effect on the detoxification of As and Cd in the body through the formation of non-toxic complexes with these elements, as well as through the antioxidant effects of selenoproteins. New data that have emerged in recent years allow for a clearer description of the interaction between Se and As and Se and Cd. Human studies show that optimal levels of Se can have a beneficial effect in reducing the toxic effects associated with exposure to As or Cd. However, as Se levels in the body increase, the protective effects of Se may be reversed. Recent laboratory studies confirm the antagonistic effects of medium doses of Se toward Cd and As through the formation of nontoxic complexes, antioxidant, anti-inflammatory effects, and induction of pro-survival pathways in cells. In conclusion, Se has a complex effect on As and Cd toxicity, with both benefits and potential risks, depending on the form of Se and its dose as a supplement or the status (level) of this micronutrient in the body.
Collapse
Affiliation(s)
- Iwona Zwolak
- Department of Biomedicine and Environmental Research, Faculty of Medicine, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
| |
Collapse
|
20
|
Motafeghi F, Fakhri B MS, Ghassemi Barghi N. Mechanisms of ARA290 in counteracting cadmium-triggered neurotoxicity in PC12 cells. Toxicol Res (Camb) 2025; 14:tfaf023. [PMID: 39968520 PMCID: PMC11831023 DOI: 10.1093/toxres/tfaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Erythropoietin (EPO) is known for its role in hematopoiesis and also exhibits anti-inflammatory, anti-apoptotic, antioxidant, and cytoprotective properties. However, its clinical application is limited by hematopoietic side effects. ARA290, a non-hematopoietic derivative of EPO, selectively activates the innate repair receptor (IRR) and replicates these protective effects without the associated hematopoietic complications. Cadmium (Cd), a prevalent environmental toxin, causes neurotoxic damage through mechanisms such as oxidative stress, genotoxicity, apoptosis, and inflammation. This study explored ARA290's neuroprotective effects against cadmium-induced toxicity in PC12 cells, an in vitro model for neuronal health. PC12 cells pretreated with ARA290 showed significantly improved cell viability in the MTT assay, indicating reduced cytotoxicity. The comet assay revealed decreased DNA damage, suggesting reduced genotoxicity. ARA290 also alleviated oxidative stress, as evidenced by reduced levels of reactive oxygen species (ROS) and malondialdehyde (MDA), alongside increased glutathione (GSH), total antioxidant capacity (TAC), and superoxide dismutase (SOD) activities. A marker of apoptosis, TUNEL-positive cells, was significantly reduced. Additionally, ARA290 decreased inflammatory markers such as TNF alpha, IL1ß and IL 6. These findings demonstrate that ARA290, via IRR activation, provides robust neuroprotection against cadmium-induced toxicity, suggesting a multi-faceted protective mechanism. This highlights ARA290's potential therapeutic role in managing heavy metal-induced neurotoxicity and supports further research into its long-term effects and applications in other neurodegenerative diseases or conditions involving environmental toxins. Highlights ARA290 as a Neuroprotective Agent: ARA290, a modified form of erythropoietin that doesn't affect blood production, shows promising neuroprotective effects. It helps counteract the harmful effects of cadmium exposure on nerve cells by reducing oxidative stress, inflammation, cell death, and DNA damage.Reducing Oxidative Stress: ARA290 plays a key role in lowering oxidative stress by cutting down on harmful molecules like reactive oxygen species (ROS) and malondialdehyde (MDA). At the same time, it boosts the body's natural antioxidant defenses, including glutathione (GSH), superoxide dismutase (SOD), and overall antioxidant capacity.Protecting DNA Integrity: By reducing DNA damage caused by cadmium, ARA290 helps preserve the genetic stability of nerve cells. This protective effect is evident in laboratory tests, where it lowers the extent of DNA damage seen in the comet assay.Fighting Inflammation and Cell Death: ARA290 also has strong anti-inflammatory and anti-apoptotic effects. It reduces levels of inflammation markers like TNF-α, IL-1β, and IL-6, and significantly cuts down on nerve cell death, as seen in fewer TUNEL-positive cells in experiments.A Therapeutic Promise: Overall, these findings underscore ARA290's ability to protect the nervous system through multiple pathways. This makes it a promising candidate for treating cadmium-induced nerve damage and potentially other neurodegenerative conditions.
Collapse
Affiliation(s)
- Farzaneh Motafeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Molecular Biology, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tajrish, Taleqani St, No. 24, P.O. Box 19395-4763, Tehran, Iran
| | - Maryam S Fakhri B
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, District 6, Pour Sina St, P94+V8MF, Tehran Province, Tehran, Iran
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Science, (TUMS), District 6, Pour Sina St, P94V+8MF, Tehran Province, Tehran, Iran
| | - Nasrin Ghassemi Barghi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, District 6, Pour Sina St, P94+V8MF, Tehran Province, Tehran, Iran
| |
Collapse
|
21
|
Abomosallam M, Hendam BM, Shouman Z, Refaat R, Hashem NMA, Sakr SA, Wahed NM. Rutin Nanoparticles Alleviate Cadmium-Induced Oxidative and Immune Damage in Broilers' Bursa of Fabricius via Modulating Hsp70/TLR4/NF-κB Signaling Pathway. Biol Trace Elem Res 2025; 203:1016-1034. [PMID: 38703309 PMCID: PMC11750906 DOI: 10.1007/s12011-024-04199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a serious environmental pollutant affecting various tissues/organs in broilers and compromising their immunological function and productivity. Therefore, the current study aimed to investigate Cd-induced immunotoxicity and potential immunoprotective effect of rutin nanoparticles (RNPs) in the bursal tissue of broilers. A total number of 150 chicks from the Hubbard breed were randomly divided into 5 groups. Group I was fed on standard basal diet (SD) with normal drinking water (DW), Group II received SD containing RNPs (50 mg/kg feed) with DW, Group III fed on SD and DW containing Cd (150 mg/L), Group IV co-treated with rutin-enforced SD (50 mg/kg diet) and DW containing Cd (150 mg/L), and finally, Group V co-supplemented with RNP-enhanced SD (50 mg/kg diet) DW containing Cd (150 mg/L). Productive performance, economic efficiency, oxidative biomarkers, histopathological changes, and the expression level of TLR-4, HSP-70, caspase 3, NF-κB, Bcl-2, and Bax were assessed in the BF tissue. Cd led to severe production and economic losses in exposed birds with a marked surge of oxidative biomarkers, pro-inflammatory cytokines, and histopathological changes in the bursal tissue which could be explained through upregulation of the Hsp70/TLR4/NF-κB molecular pathway in the BF tissue. Meanwhile, RNPs could alleviate most of these changes and prevail optimistic immunomodulatory properties which subsequently could enhance broilers' productivity when incorporated in their diets.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Nada M A Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
22
|
Motta CM, Carotenuto R, Fogliano C, Rosati L, Denre P, Panzuto R, Romano R, Miccoli G, Simoniello P, Avallone B. Olfactory Impairment and Recovery in Zebrafish ( Danio rerio) Following Cadmium Exposure. BIOLOGY 2025; 14:77. [PMID: 39857307 PMCID: PMC11761868 DOI: 10.3390/biology14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Anthropic activities have significantly elevated cadmium levels, making it a significant stressor in aquatic ecosystems. Present in high concentrations across water bodies, cadmium is known to bioaccumulate and biomagnify throughout the food chain. While the toxic effects of cadmium on the organs and tissues of aquatic species are well-documented, little is known about its impact on sensory systems crucial for survival. Consequently, this study investigated the impact of short-term exposure (96 h) to 25 µM cadmium chloride on the olfactory system of adult zebrafish. The research aimed to assess structural and functional changes in the zebrafish's olfactory lamellae, providing a deeper understanding of how cadmium affects the sense of smell in this aquatic species. After exposure, cyto-anatomical alterations in the lamellae were analysed using light microscopy and immunocytochemistry. They revealed severe lamellar edema, epithelial thickening, and an increased number of apoptotic and crypt cells. Rodlet and goblet cells also increased by 3.5- and 2.5-fold, respectively, compared to control lamellae, and collagen density in the lamina propria increased 1.7-fold. Cadmium upregulated metallothioneins and increased the number of PCNA-positive cells. The olfactory function was assessed through a behavioural odour recognition test, followed by a recovery phase in which zebrafish exposed to cadmium were placed in clean water for six days. The exposed fish performed poorly, failing to reach food in five consecutive trials. However, lamellar damage was reduced after the recovery period, and their performance improved, becoming comparable to the control group. These results suggest that cadmium disrupts the sense of smell, and that recovery is possible after short-term exposure. This evidence sheds light on aspects of animal survival that are often overlooked when assessing environmental pollution.
Collapse
Affiliation(s)
- Chiara Maria Motta
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Rosa Carotenuto
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Chiara Fogliano
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Pabitra Denre
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Raffaele Panzuto
- Department of Conservation of Marine Animals and Public Engagement, Zoological Station Anton Dohrn, 80122 Naples, Italy;
| | - Rossana Romano
- Department of Sciences and Technology, University Parthenope, 80133 Naples, Italy; (R.R.); (P.S.)
| | - Gianluca Miccoli
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| | - Palma Simoniello
- Department of Sciences and Technology, University Parthenope, 80133 Naples, Italy; (R.R.); (P.S.)
| | - Bice Avallone
- Department of Biology, University of Naples Federico II, 80125 Naples, Italy; (C.M.M.); (L.R.); (B.A.)
| |
Collapse
|
23
|
Chen Y, Zhen C, Zeng L, Feng H, Wang J, Ai QYH, Ai S, Zhang J, Liang YY, Xue H, Zhou Y. Association of blood cadmium and physical activity with mortality: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117541. [PMID: 39675077 DOI: 10.1016/j.ecoenv.2024.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Physical activity (PA) may be considered an alternative method to ameliorate the elevated mortality risks associated with cadmium exposure. In this prospective cohort study, a total of 20,253 participants (weighted mean age, 47.79 years), including 10,247 men (weighted prevalence: 50.1 %), aged 18 years or older, were selected from the National Health and Nutrition Examination Survey from 2007 to 2018. Multivariable Cox proportional hazards regression models were utilized to evaluate the associations between blood cadmium levels, PA, and the risks of mortality. Restricted cubic spline analyses were employed to investigate the nonlinear relationships between blood cadmium and PA levels and mortality risks. During a median follow-up of 7.6 years, a total of 2002 (9.89 %) all-cause deaths occurred, of which 581 (2.87 %) participants were due to cardiovascular disease (CVD) and 498 (2.46 %) died of cancer. J-shaped associations were observed for blood cadmium with risks of mortality (all Poverall < 0.001; all Pnonlinearity < 0.001). Blood cadmium and PA had multiplicative interactions on mortality risk (all Pinteraction < 0.05). Compared with the subgroup with the lowest quartile of blood cadmium and recommended PA, the combination of the highest quartile of blood cadmium and without recommended PA was associated with the highest risks of all-cause and cancer mortality, followed by those meeting recommended PA but in the highest quartile of blood cadmium (hazard ratios, 2.43; 95 % confidence interval, 1.95-3.02). Achieving recommended PA significantly attenuated the detrimental effects of blood cadmium on all-cause, CVD, and cancer mortality risks.
Collapse
Affiliation(s)
- Yilin Chen
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200040, China
| | - Cien Zhen
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Department of Biology, University of Padova, Padova 35121, Italy
| | - Lin Zeng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hongliang Feng
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, China
| | - Jinyu Wang
- Department of Rehabilitation Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Qi Yong H Ai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Sizhi Ai
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, China; Department of Cardiology, Heart Center, The First Affiliated Hospital of Xinxiang Medical University, Weihui 453003, China
| | - Jihui Zhang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, China
| | - Yannis Yan Liang
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, China; Institute of Psycho-neuroscience, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China
| | - Huachen Xue
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, China.
| | - Yujing Zhou
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
24
|
Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Arch Toxicol 2025; 99:153-209. [PMID: 39567405 PMCID: PMC11742009 DOI: 10.1007/s00204-024-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
25
|
Xiao C, Lai D. Impact of oxidative stress induced by heavy metals on ovarian function. J Appl Toxicol 2025; 45:107-116. [PMID: 38938153 PMCID: PMC11634564 DOI: 10.1002/jat.4664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
As a crucial organ of the female reproductive system, the ovary has both reproductive and endocrine functions. Oxidative stress refers to an increase in intracellular reactive oxygen species (ROS), which play a role in the normal physiological activity of the ovary. However, excessive ROS can cause damage to the ovary. With the advancement of human industrial activities, heavy metal pollution has become increasingly severe. Heavy metals cause oxidative stress through both direct and indirect mechanisms, leading to changes in signal transduction pathways that damage the ovaries. This review aims to outline the adverse effects of oxidative stress on the ovaries triggered by heavy metals such as copper, arsenic, cadmium, mercury, and lead. The detrimental effects of heavy metals on ovaries include follicular atresia and decreased estrogen production in experimental animals, and they also cause premature ovarian insufficiency in women. Additionally, this review discusses the role of antioxidants, provides some treatment methods, summarizes the limitations of current research, and offers perspectives for future research directions.
Collapse
Affiliation(s)
- Chengqi Xiao
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| |
Collapse
|
26
|
Jiang S, Qiao Y, Zhou X, Zhang D, Du Z, Zhang G. Dietary fiber intake moderates the impact of blood cadmium on depression: a nationally representative cross-sectional study. BMC Public Health 2024; 24:3559. [PMID: 39709347 DOI: 10.1186/s12889-024-21146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Cadmium (Cd) is a very poisonous pollutant in the environment that has harmful implications on the neurological system. While high fiber intake is beneficial for mental health, it remains unknown whether the recommended basis for dietary fiber intake (DFI) (14 g/1000 kcal per day) can alleviate Cd-induced depression. METHODS The investigation employed data from the National Health and Nutrition Examination Survey (NHANES) conducted between the years 2005 and 2020. The research encompassed individuals who had information on blood Cd concentrations, two 24-hour dietary recalls, and depression diagnosis. We deployed weighted logistic regression analyses to estimate the association of exposure to Cd and DFI with depression risk. RESULTS The adjusted ORs (95% CI) for depression were 1.33 (95% CI: 1.08, 1.65) and 1.64 (95% CI: 1.38, 1.94) for the third and fourth quartiles of blood Cd concentrations, respectively (Ptrend < 0.001). Doubling DFI was connected with a 0.78-fold (95% CI: 0.71, 0.85) decrease in the risk of depression. Participants below recommended DFI levels had a greater depression risk with higher blood Cd concentrations: OR of 1.39 (95% CI: 1.11, 1.73) for the third and 1.67 (95% CI: 1.40, 1.98) for the fourth quartile. No significant association between Cd exposure and depression was perceived for participants meeting recommended DFI levels. CONCLUSIONS Higher blood Cd burden was associated with elevated depression risk, while recommended DFI could alleviate this effect. High-fiber dietary pattern may counteract the deleterious effect of environmental pollutants such as Cd on depression. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Shunli Jiang
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Engineering Research Center for "Preventive Treatment" Smart Health of Traditional Chinese Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining, Shandong, China.
| | - Yi Qiao
- Key Laboratory of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Xinyong Zhou
- Luqiao Township Health Center, Weishan, Jining, Shandong, China
| | - Dashuai Zhang
- Luqiao Township Health Center, Weishan, Jining, Shandong, China
| | - Zhongyan Du
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Engineering Research Center for "Preventive Treatment" Smart Health of Traditional Chinese Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| | - Guangji Zhang
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Engineering Research Center for "Preventive Treatment" Smart Health of Traditional Chinese Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
27
|
Flores-Calla SS, Villanueva-Salas JA, Diaz-Rodriguez K, Gonzales-Condori EG. Removal of Lead, Cadmium, and Mercury in Monometallic and Trimetallic Aqueous Systems Using Chenopodium album L. SCIENTIFICA 2024; 2024:6842159. [PMID: 39697621 PMCID: PMC11655145 DOI: 10.1155/sci5/6842159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/10/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
The presence of heavy metals in water represents a risk to the life of all species on the planet. Phytoremediation is an effective alternative to remove heavy metals from contaminated aqueous environments. In the present research, Chenopodium album L. was examined for the remediation of waters contaminated with Cd, Pb, and Hg. Studies were carried out in waters containing each metal separately (monometallic aqueous systems) and in mixtures (trimetallic aqueous systems). First, the adaptation of Chenopodium album to different concentrations of Hoagland's nutrient solution (HNS) was evaluated, then, a phytotoxicity study was carried out to determine the appropriate concentrations of each metal to test the tolerance of the plant during the accumulation study, and finally, the bioaccumulation capacity of Chenopodium album for Cd, Pb, and Hg was evaluated. Chenopodium album showed tolerance to levels of 5 mg/L Hg and 10 mg/L Cd and Pb in 25% HNS. The bioaccumulation tests showed that Chenopodium album can remediate Cd, Pb, and Hg contaminated waters in both monometallic and trimetallic aqueous systems. These findings suggest important future applications in the food industry for the production of Chenopodium album as we demonstrate that this species adapts and grows in hydroponic media. In particular, the ability of Chenopodium album to adapt to extreme conditions could be exploited for further studies on phytoremediation of heavy metals in river water, irrigation water, wastewater, effluents, and mine tailings.
Collapse
Affiliation(s)
- Susan S. Flores-Calla
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - José A. Villanueva-Salas
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - Karla Diaz-Rodriguez
- Escuela de Postgrado, Universidad Católica de Santa María, Urb. San José s/n Umacollo, Arequipa, Peru
| | - Elvis G. Gonzales-Condori
- Grupo de Investigación en Biotecnología y Ciencia de Los Alimentos, Universidad Tecnológica del Perú, Av. Tacna y Arica 160, Arequipa, Peru
| |
Collapse
|
28
|
Gu S, Zheng X, Gao X, Liu Y, Chen Y, Zhu J. Cadmium-Induced Oxidative Damage and the Expression and Function of Mitochondrial Thioredoxin in Phascolosoma esculenta. Int J Mol Sci 2024; 25:13283. [PMID: 39769049 PMCID: PMC11676412 DOI: 10.3390/ijms252413283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Phascolosoma esculenta is a unique aquatic invertebrate native to China, whose habitat is highly susceptible to environmental pollution, making it an ideal model for studying aquatic toxicology. Mitochondrial thioredoxin (Trx2), a key component of the Trx system, plays an essential role in scavenging reactive oxygen species (ROS), regulating mitochondrial membrane potential, and preventing ROS-induced oxidative stress and apoptosis. This study investigated the toxicity of cadmium (Cd) on P. esculenta and the role of P. esculenta Trx2 (PeTrx2) in Cd detoxification. The results showed that Cd stress altered the activities of T-SOD and CAT, as well as the contents of GSH and MDA in the intestine. After 96 h of exposure, histological damages such as vacuolization, cell necrosis, and mitophagy were observed. Suggesting that Cd stress caused oxidative damage in P. esculenta. Furthermore, with the prolongation of stress time, the expression level of intestinal PeTrx2 mRNA initially increased and then decreased. The recombinant PeTrx2 (rPeTrx2) protein displayed dose-dependent redox activity and antioxidant capacity and enhanced Cd tolerance of Escherichia coli. After RNA interference (RNAi) with PeTrx2, significant changes in the expression of apoptosis-related genes (Caspase-3, Bax, Bcl-2, and Bcl-XL) were observed. Proving that PeTrx2 rapidly responded to Cd stress and played a vital role in mitigating Cd-induced oxidative stress and apoptosis. Our study demonstrated that PeTrx2 is a key factor for P. esculenta to endure the toxicity of Cd, providing foundational data for further exploration of the molecular mechanisms underlying heavy metal resistance in P. esculenta.
Collapse
Affiliation(s)
- Shenwei Gu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xuebin Zheng
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yang Liu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yiner Chen
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
29
|
Meng Y, Li M, Guo Z, Chen J, Wu J, Xia Z. The transcription factor ZmbHLH105 confers cadmium tolerance by promoting abscisic acid biosynthesis in maize. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135826. [PMID: 39270588 DOI: 10.1016/j.jhazmat.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Cadmium (Cd), a highly toxic heavy metal, profoundly impacts crop productivity. The bHLH-type transcription factors regulate plant stress responses, yet their involvement in maize's Cd stress response remains unclear. Here, we studied ZmbHLH105, a maize bHLH gene induced by Cd exposure. Overexpression of ZmbHLH105 in maize seedlings, which were treated with 1.0 mM CdCl2 for 7 days, increased endogenous ABA levels, decreased Cd accumulation, and enhanced Cd stress tolerance. ZmbHLH105 directly bound to promoter regions of two key ABA biosynthesis genes ZmNCED1/2, activating their transcription, thus boosting ABA levels and Cd tolerance. ZmbHLH105-overexpression promoted lignin synthesis, while ZmbHLH105-RNAi attenuated this effect. Exogenous ABA supplementation increased lignin content in Cd-stressed maize roots, suggesting ZmbHLH105-mediated Cd tolerance involves ABA-induced lignin deposition and cell wall thickening. Moreover, Cd transport-related gene expression was suppressed in ZmbHLH105 overexpression lines. Our findings demonstrate that ZmbHLH105 decreases Cd accumulation, improving Cd tolerance by enhancing ABA biosynthesis, increasing lignin deposition, thickening cell walls, and inhibiting Cd absorption in maize roots. This study unveils ZmbHLH105's mechanisms in Cd tolerance, highlighting its potential in breeding low Cd-accumulating crops for food and environment safety.
Collapse
Affiliation(s)
- Yazhou Meng
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Mengyao Li
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Ziting Guo
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Jiafa Chen
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, Henan 450046, China
| | - Jianyu Wu
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, Henan 450046, China
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, Henan 450046, China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, Henan 450046, China.
| |
Collapse
|
30
|
Hassanein EHM, Alotaibi MF, Alruhaimi RS, Abd El-Ghafar OAM, Mohammad MK, Atwa AM, Mahmoud AM. Diallyl disulfide prevents cadmium-induced testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 signaling and upregulating SIRT1 in rats. J Trace Elem Med Biol 2024; 86:127560. [PMID: 39536426 DOI: 10.1016/j.jtemb.2024.127560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cadmium (Cd) is a heavy metal environmental pollutant that can cause serious health problems. Cd can cause structural changes in the testes and exposure to this heavy metal is associated with the loss of sperms and male infertility. The role of oxidative stress and inflammation in Cd toxicity has been acknowledged. Diallyl disulfide (DADS), an organo-sulfur compound found in garlic, possesses antioxidant, anti-inflammatory, and cytoprotective effects. This study evaluated the protective effect of DADS against Cd reproductive toxicity in male rats, emphasizing the involvement of redox imbalance, TLR-4/NF-κB and JAK1/STAT3 signaling, and SIRT1. METHODS DADS (10 mg/kg body weight) was administered orally to rats for 14 days and a single dose of Cd (1.2 mg/kg) was injected intraperitoneally on day 7. Blood and samples from the testes were collected for analysis. RESULTS Cd caused testicular injury manifested by multiple histopathological changes and loss of sperms from seminiferous tubules. Circulating levels of gonadotropins and testosterone were decreased in Cd-administered rats. DADS prevented Cd-induced testicular injury and ameliorated serum levels of gonadotropins and testosterone. Cd increased testicular reactive oxygen species (ROS) and malondialdehyde (MDA) and upregulated TLR-4, NF-κB, pro-inflammatory cytokines, JAK1 and STAT3 phosphorylation, Bax and caspase-3, while decreased antioxidants and Bcl-2. DADS effectively decreased ROS and MDA, downregulated TLR-4, NF-κB, JAK1, STAT3, pro-inflammatory cytokines and pro-apoptosis markers in Cd-administered rats. In addition, DADS enhanced antioxidants, Bcl-2, SIRT1 and cytoglobin in the testis of Cd-administered rats. CONCLUSION DADS prevents Cd-induced testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 signaling, and upregulating SIRT1 and antioxidants.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt
| | - Mohammed F Alotaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt
| | - Mostafa K Mohammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Assiut, New Nasser City, West of Assiut, Assiut 71523, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
31
|
Alruhaimi RS, Hassanein EHM, Ahmeda AF, Alnasser SM, Atwa AM, Sabry M, Alzoghaibi MA, Mahmoud AM. Attenuation of inflammation, oxidative stress and TGF-β1/Smad3 signaling and upregulation of Nrf2/HO-1 signaling mediate the protective effect of diallyl disulfide against cadmium nephrotoxicity. Tissue Cell 2024; 91:102576. [PMID: 39353227 DOI: 10.1016/j.tice.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Heavy metals are toxic environmental pollutants with serious health effects on humans and animals. Cadmium (Cd) is known for its serious nephrotoxic effect and its toxicity involves oxidative stress (OS) and inflammation. Diallyl disulfide (DADS), a main constituent of garlic, exhibites cytoprotective and antioxidant activities. This study investigated the effect of DADS on OS, inflammation, and fibrosis induced by Cd in rat kidney, pointing to the involvement of transforming growth factor-β (TGF-β)/Smad3 and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling, and peroxisome proliferator-activated receptor gamma (PPARγ). Rats received DADS for 14 days and Cd on day 7 and blood and kidney samples were collected. Cd elevated serum creatinine, urea and uric acid, provoked kidney histopathological alterations and collagen deposition, increased kidney malondialdehyde (MDA) level, and decreased glutathione (GSH) and antioxidant enzymes. Nuclear factor-kappaB (NF-κB) p65, interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-1β, and CD68 were upregulated in Cd-administered rat kidney. DADS prevented kidney injury, mitigated OS, suppressed NF-κB, CD68 and pro-inflammatory mediators, and boosted antioxidants. DADS downregulated TGF-β1, Smad3 phosphorylation and Kelch-like ECH-associated protein-1 (Keap1), and increased Nrf2, HO-1, cytoglobin, and PPARγ. In conclusion, DADS protects the kidney against Cd toxicity by attenuating OS, inflammation, and TGF-β1/Smad3 signaling, and enhancement of Nrf2/HO-1 signaling, antioxidants, and PPARγ.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut 71524, Egypt
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Mostafa Sabry
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
32
|
Zuo S, Shi H, Zu Y, Wang J, Zheng X, Zhang K, Dai J, Zhao Y. Reduced transcriptome analysis in zebrafish uncovers disruptors of spliceosome and ribosome biosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175967. [PMID: 39226955 DOI: 10.1016/j.scitotenv.2024.175967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Abnormal biosynthesis of spliceosomes and ribosomes can lead to their dysfunction, which in turn disrupts protein synthesis and results in various diseases. While genetic factors have been extensively studied, our understanding of how environmental compounds interfere with spliceosome and ribosome biosynthesis remains limited. In the present study, we employed a Reduced Transcriptome Analysis (RTA) approach, integrating large-scale transcriptome data sets of zebrafish and compiling a specific zebrafish gene panel focusing on the spliceosome and ribosome, to elucidate the potential disruptors targeting their biosynthesis. Transcriptomic data sets for 118 environmental substances and 1400 related gene expression profiles were integrated resulting in 513 exposure signatures. Among these substances, several categories including PCB126, transition metals Lanthanum (La) and praseodymium (Pr), heavy metals Cd2+ and AgNO3 and atrazine were highlighted for inducing the significant transcriptional alterations. Furthermore, we found that the transcriptional patterns were distinct between categories, yet overlapping patterns were generally observed within each group. For instance, over 82 % differentially expressed ribosomal genes were shared between La and Pr within the equivalent concentration range. Additionally, transcriptional complexities were also evident across various organs and developmental stages of zebrafish, with notable differences in the inhibition of the transcription of various spliceosome subunits. Overall, our results provide novel insights into the understanding of the adverse effects of environmental compounds, thereby contributing to their environmental risk assessments.
Collapse
Affiliation(s)
- Shaoqi Zuo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao Zu
- International Research Center for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Jie Wang
- International Research Center for Marine Biosciences, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xuehan Zheng
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
33
|
Liu S, Huang Y, Zheng Q, Zhan M, Hu Z, Ji H, Zhu D, Zhao X. Cd-Resistant Plant Growth-Promoting Rhizobacteria Bacillus siamensis R27 Absorbed Cd and Reduced Cd Accumulation in Lettuce ( Lactuca sativa L.). Microorganisms 2024; 12:2321. [PMID: 39597710 PMCID: PMC11596447 DOI: 10.3390/microorganisms12112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024] Open
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) for the bioremediation of heavy metal cadmium (Cd) and for enhancing plant growth in Cd-polluted soil is widely recognized as an effective approach. This study aimed to isolate Cd-resistant bacteria with plant growth-promoting (PGP) traits from the rhizosphere of vegetables subjected to metal contamination and to investigate the mechanisms associated with Cd adsorption as well as its impact on Cd uptake in lettuce. Six Cd-resistant bacterial strains were isolated from rhizosphere soil, among which the R27 strain exhibited the highest tolerance to Cd (minimum inhibitory concentration of 2000 mg/L) along with PGP traits, including phosphate solubilization (385.11 mg/L), the production of indole-3-acetic acid (IAA) (35.92 mg/L), and siderophore production (3.34 mg/L). Through a range of physiological, biochemical, and molecular assessments, the R27 strain was classified as Bacillus siamensis. This strain demonstrated notable efficiency in removing Cd2+ from the growth medium, achieving an efficacy of 80.1%. This removal was facilitated by cell surface adsorption through functional groups such as O-H, C=O, -CO-NH-, and C-O, alongside intracellular Cd accumulation, as evidenced by SEM, TEM, EDX, and FTIR analyses. Pot culture experiments indicated that R27 significantly promoted lettuce seedling growth and helped plants tolerate Cd stress, with the underlying mechanisms likely involving increased antioxidant activities for scavenging reactive oxygen species (ROS) induced by Cd stress, and reduced Cd2+ levels in lettuce seedlings to mitigate Cd2+ toxicity. These physiological changes were further supported by the down-regulation of genes associated with cadmium transport, including IRT1, Nramp1, HMA2, HMA4, ZIP4, and ZIP12, as well as the significantly reduced root bio-concentration factor (BCF) and translocation factor (TF). In summary, the R27 strain offers considerable potential in the bioremediation of Cd-polluted soils and can serve as a bio-fertilizer to enhance plant growth.
Collapse
Affiliation(s)
- Shaofang Liu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Yushan Huang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Qinyuan Zheng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Mengting Zhan
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhihong Hu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Hongjie Ji
- State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
| | - Du Zhu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (S.L.); (Y.H.); (Q.Z.); (M.Z.); (Z.H.)
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Xia Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Lanzhou 730000, China;
| |
Collapse
|
34
|
Heuer RM, Falagan-Lotsch P, Okutsu J, Deperalto M, Koop RR, Umeh OG, Guevara GA, Noor MI, Covington MA, Shelton DS. Therapeutic Efficacy of Selenium Pre-treatment in Mitigating Cadmium-Induced Cardiotoxicity in Zebrafish (Danio rerio). Cardiovasc Toxicol 2024; 24:1287-1300. [PMID: 39212842 PMCID: PMC11445284 DOI: 10.1007/s12012-024-09910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases are a rampant public health threat. Environmental contaminants, such as Cadmium (Cd), a toxic metal, are risk factors for cardiovascular diseases. Given that human exposure to Cd is increasing, there is a need for therapies to ameliorate Cd toxicity. Selenium (Se), an essential trace element, has been proposed to rescue the effects of Cd toxicity, with mixed effects. Se's narrow therapeutic window necessitates precise dosing to avoid toxicity. Here, we assessed the effects of various waterborne Cd and Se concentrations and sequences on cardiac function using zebrafish (Danio rerio). We showed that Cd induced pericardial edemas and modified heart rates in zebrafish larvae in a concentration-dependent manner. To identify the therapeutic range of Se for Cd-induced cardiotoxicity, zebrafish embryos were treated with 0, 10, 50, 100, 150, or 200 μg/L Se for 1-4 days prior to exposure to 2.5 and 5 μg/L Cd. We found that a 50 µg/L Se pre-treatment before 2.5 μg/L Cd, but not 5 μg/L Cd, reduced the prevalence of pericardial edemas and ameliorated Cd-induced bradycardia in zebrafish. Zebrafish exposed to 10 and 50 μg/L of Se for up to 4 days showed typical heart morphology, whereas other Se-exposed and control fish presented pericardial edemas. Longer Se pre-treatment durations led to fewer incidences of pericardial edemas. Overall, this study highlights the importance of optimizing Se concentrations and pre-treatment periods to harness its protective effects against Cd-induced cardiotoxicity. These findings provide insights into potential therapeutic strategies for reducing Cd-related cardiovascular damage in humans.
Collapse
Affiliation(s)
- Rachael M Heuer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA
| | - Priscila Falagan-Lotsch
- Department of Biological Sciences, Auburn University, Rouse Life Sciences Building, Auburn, AL, 36849, USA
| | - Jessica Okutsu
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Madison Deperalto
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA
| | - Rebekka R Koop
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA
| | - Olaedo G Umeh
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Gabriella A Guevara
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Md Imran Noor
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Myles A Covington
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA.
| |
Collapse
|
35
|
Herruzo-Ruiz AM, Trombini C, Sendra M, Michán C, Moreno-Garrido I, Alhama J, Blasco J. Accumulation, biochemical responses and changes in the redox proteome promoted by Ag and Cd in the burrowing bivalve Scrobicularia plana. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107123. [PMID: 39423745 DOI: 10.1016/j.aquatox.2024.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Silver (Ag) and cadmium (Cd) are non-essential metals that, as a result of natural processes and human activities, reach the aquatic environment where they interact with biota inducing potential toxic effects. To determine the biological effects of these metals on the endobenthic bivalve Scrobicularia plana, specimens were exposed to Ag and Cd at two concentrations, 5 and 50 μg∙L-1, for 7 days in a controlled microcosm system. The levels of the metals were measured in the seawater, sediments and clam tissues. The possible toxic biological effects of Ag and Cd were studied using a battery of biochemical biomarkers that are responsive to oxidative stress: superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) activities, and metallothioneins (MTs) and lipid peroxidation (LPO) levels. Since both metals have been linked to oxidative stress, redox modifications to proteins were studied by differential isotopic labelling of the oxidised and reduced forms of cysteines (Cys). An accumulation of metals was observed in the digestive gland and gills following exposure, together with the activation of enzyme activities (SOD for the Cd exposure; SOD, CAT, GST, and GR for the Ag exposure). The MT and LPO levels (after individual exposure to Ag and Cd) increased, which suggests the existence of antioxidant and detoxification processes to mitigate the toxic oxidative effects of both metals. The redox proteomic analysis identified 771 Cys-containing peptides (out of 514 proteins), of which 195 and 226 changed after exposure to Ag and Cd, respectively. Bioinformatics analysis showed that exposure to metal affects relevant functional pathways and biological processes in S. plana, such as: "cellular respiration" (Ag), "metabolism of amino acids" and "synthesis and degradation of proteins" (Ag and Cd), "carbohydrate metabolism" and "oxidative stress" (Cd). The proteomic approach implemented here is a powerful complement to conventional biochemical biomarkers, since it evaluates changes at the protein level in a high-throughput unbiased manner, thus providing a general appraisal of the biological responses altered by exposure to the contaminants.
Collapse
Affiliation(s)
- Ana María Herruzo-Ruiz
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Chiara Trombini
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Marta Sendra
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Carmen Michán
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Ignacio Moreno-Garrido
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - José Alhama
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, E-14071, Córdoba, Spain
| | - Julián Blasco
- Instituto de Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
36
|
Başeğmez M, Karakaya YA, Kan F, Gök S, Doğan MF. Protective Effects of Ascorbic Acid Against Cadmium-Induced Toxicity in the Placenta and Fetus of Rats. J Biochem Mol Toxicol 2024; 38:e70053. [PMID: 39503251 DOI: 10.1002/jbt.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
This study aimed to determine the protective role of l-ascorbic acid in a pregnant rat model of cadmium-induced toxicity. Cadmium is a toxic heavy metal that can seriously harm placenta and fetus tissue in pregnant women. Forty-two healthy female Wistar albino rats (250-300 g weight and 14-16 weeks) were randomly distributed into six equal groups (n = 7): control, cadmium 1 mg (CD1), cadmium 5 mg (CD5), ascorbic acid (AA), CD1+AA, CD5+AA. Cadmium was administered to pregnant rats by oral gavage every other day, and/or AA (200 mg) was administered every day. At the end of pregnancy (Day 21), blood, placenta, and fetuses were collected from rats. The results indicated that cadmium-induced oxidative stress by increasing the level of MDA and by decreasing the levels of GSH, SOD, and CAT activity in the serum of maternal. However, AA administration significantly decreased MDA levels and increased GSH levels, SOD, and CAT activity (p < 0.05). Cadmium (5 mg/kg) exposure significantly increased creatinine levels compared to AA and CD1+AA groups (p < 0.05). In addition, AA (200 mg/kg) significantly attenuated cadmium-induced histopathological alteration in the placental and fetal tissues. In conclusion, AA may prevent cadmium toxicity in maternal and fetal tissues, as it regulates oxidative imbalance in pregnant rat tissues and alleviates histopathological changes.
Collapse
Affiliation(s)
- Mehmet Başeğmez
- Department of Veterinary, Laboratory and Veterinary Health Program, Acipayam Vocational High School, Pamukkale University, Denizli, Turkey
| | - Yeliz Arman Karakaya
- Department of Pathology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Fahriye Kan
- Department of Biochemistry, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Soner Gök
- Department of Obstetrics and Gynecology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Muhammed Fatih Doğan
- Department of Pharmacology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
37
|
Qing Y, Zheng J, Luo Y, Li S, Liu X, Yang S, Du J, Li Y. The impact of metals on cognitive impairment in the elderly and the mediating role of oxidative stress: A cross-sectional study in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117152. [PMID: 39383823 DOI: 10.1016/j.ecoenv.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Cognitive impairment (CI) is a prodrome of many neurodegenerative diseases with complex and unclear pathogenesis. Metal exposure has been found to be associated with CI, but existing population studies are scarce and have the limitations of single outcome and ignoring mixed exposures. This cross-sectional study was conducted in Shanghai, China, enrolling 836 seniors aged over 60 years to investigate the relationship between combined metal exposure (Lead (Pb), cadmium (Cd), and mercury (Hg)) and CI in the elderly and the mediating effect of oxidative stress. It was found that there were significant differences in urinary Pb, Cd, Hg and blood Pb levels between the CI and normal groups. Urinary Pb and Cd levels were significantly negatively correlated with Montreal Cognitive Assessment (MoCA) score, amyloid β42 (Aβ42), and Aβ42/40, while urinary Cd, Hg and blood Hg were significantly positively correlated with phosphorylated tau protein (P-tau). Weighted quantile sum (WQS) regression indicated that combined metal exposure had a more significant effect on CI than individual exposure. Mediation modeling revealed that plasma superoxide dismutase (SOD) was involved in the effects of urinary Cd on Aβ42/40 and P-tau, with mediation effects accounting for 20 % of the total effect. This study emphasized the combined exposure to metals, and the results can help to properly understand the association between mixed metals exposure and CI in the elderly, as well as provide population data and theoretical basis for identifying early environmental risk factors and discovering potential mechanisms of CI.
Collapse
Affiliation(s)
- Ying Qing
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China; Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | | | - Yingyi Luo
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shichun Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiufen Liu
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Shuyu Yang
- Nutrilite Health Institute, Shanghai 201203, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai 201203, China.
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201300, China.
| |
Collapse
|
38
|
Nyvltova P, Capek J, Handl J, Petira F, Rousarova E, Ticha L, Jelinkova S, Rousar T. Mitochondrial damage precedes the changes of glutathione metabolism in CdCl 2 treated neuronal SH-SY5Y cells. Food Chem Toxicol 2024; 193:114953. [PMID: 39209146 DOI: 10.1016/j.fct.2024.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Cadmium crosses the blood-brain barrier inducing damage to neurons. Cell impairment is predominantly linked to oxidative stress and glutathione (GSH) depletion. On the other hand, several reports have described an increase of GSH levels in neuronal cells after CdCl2 exposure. Therefore, the aim of the present report was to investigate the relation between changes in GSH levels and mitochondrial damage in neuronal cells after CdCl2 treatment. To characterize neuronal impairment after CdCl2 treatment (0-200 μM) for 1-48 h, we used the SH-SY5Y cell line. We analyzed GSH metabolism and determined mitochondrial activity using high-resolution respirometry. CdCl2 treatment induced both the decreases and increases of GSH levels in SH-SY5Y cells. GSH concentration was significantly increased in cells incubated with up to 50 μM CdCl2 but only 100 μM CdCl2 induced GSH depletion linked to increased ROS production. The overexpression of proteins involved in GSH synthesis increased in response to 50 and 100 μM CdCl2 after 6 h. Finally, strong mitochondrial impairment was detected even in 50 μM CdCl2 treated cells after 24 h. We conclude that a significant decrease in mitochondrial activity can be observed in 50 μM CdCl2 even without the occurrence of GSH depletion in SH-SY5Y cells.
Collapse
Affiliation(s)
- Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Filip Petira
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Erika Rousarova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Lenka Ticha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Stepanka Jelinkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
39
|
Hou D, Yu J, Gao S, Wang X, Dong J, Qian Z, Sun C. The mitigating effects and mechanisms of Bacillus cereus on chronic cadmium poisoning in Litopenaeus vannamei based on histopathological, transcriptomic, and metabolomic analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116891. [PMID: 39153280 DOI: 10.1016/j.ecoenv.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Shrimp are non-negligible victims of cadmium (Cd) contamination, and there is still a lack of strategies for mitigating Cd toxicity in shrimp. Bacillus cereus, with its significant heavy metal (HM) tolerance and chelating effects, is a representative beneficial bacterium to be investigated for mitigating the toxicity of Cd exposure. This study revealed the effects and potential mechanisms of B. cereus in mitigating chronic Cd toxicity in shrimp by analyzing growth performance, hepatopancreatic Cd accumulation, pathology, as well as comprehensive hepatopancreatic transcriptomics and metabolomics in Litopenaeus vannamei. The results showed that shrimp's growth inhibition, hepatopancreatic Cd accumulation and physiological structure damage in B. cereus+chronic Cd group were effectively alleviated compared with the chronic Cd treatment group. The pathways related to amino acid metabolism, glycolipid metabolism, immune response, and antioxidant stress were significantly activated in the B. cereus+chronic Cd group, including glycolysis, pentose phosphate pathway, oxidative phosphorylation, biosynthesis of amino acids, and biosynthesis of unsaturated fatty acids pathways. The key differentially expressed genes (e.g., macrophage migration inhibitory factor, glycine cleavage system H protein, glycine dehydrogenase, phosphoglucomutase-2, asparaginase, ATP synthase subunit, cytochrome c, and 4-hydroxyphenylpyruvate dioxygenase) and metabolites (e.g., L-leucine, D-ribose, gluconic acid, 6-Phosphogluconic acid, sedoheptulose 7-phosphate, 1-Kestose, glyceric acid, arachidic acid, prostaglandins, 12-Keto-tetrahydro-leukotriene B4, and gamma-glutamylcysteine) associated with the above pathways were significantly altered. This study demonstrated that B. cereus is an effective mitigator for the treatment of chronic Cd poisoning in shrimp. B. cereus may play a role in alleviating the toxicity of Cd by enhancing the antioxidant performance, immune defense ability, metabolic stability, and energy demand regulation of shrimp. The study provides reference materials for the study of B. cereus in alleviating Cd toxicity of shrimp and broadens the application of probiotics in treating HM toxicity.
Collapse
Affiliation(s)
- Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jianbo Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shan Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Xuejie Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiaxin Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhaoying Qian
- School of Economics, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, China.
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China.
| |
Collapse
|
40
|
Algammal AA, Mohamed MA, Abd Eldaim M, Eisa AMAE, El-Shenawy AA, Bazh EK, Ammar NI, Hamad R. Anticoccidial potentials of Azadirachta indica ethosomal nanovesicle in broiler chicks. Vet Parasitol 2024; 331:110270. [PMID: 39079237 DOI: 10.1016/j.vetpar.2024.110270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
This study evaluated the efficacy of Azadirachta indica ethosomal nanovesicle against Eimeria tenella infection in broiler chicks. Azadirachta indica ethanolic extract was screened phtochemically and analyzed active components of the extracts using high‑performance liquid chromatography (HPLC). Azadirachta indica ethosomal nanovesicle was synthesized and characterized by zeta potential and scanning electron microscope. Broiler chicks were allocated into seven groups. Control group. The second group administered nanosized ethosomal vesicles (1 mL/kg b.wt.). The third group administered Azadirachta indica nanovesicles (30 mg/kg b.wt.) from 10th day of age. Fourth group was infected with E. tenella at a dose of 1 mL containing 40000 oocyst/ chick at 14th day of age. The fifth group administered Azadirachta indica nanovesicle (30 mg/kg b.wt.) from 10th day of age and infected with E. tenella as fourth group. The sixth group infected with E. tenella as the fourth group and treated with Azadirachta indica nanovesicle (30 mg/kg b.wt. for 4 days after clinical signs appearance. The seventh group infected with E. tenella as the fourth group and treated with diclazuril group (1 mL/4 L of water) for 2 successive days. Coccidiosis significantly decreased body weight, feed intake, reduced glutathione (GSH) level while increased feed conversion ratio, oocyst count, malonaldehyde (MDA) and nitric oxide (NO) serum levels, protein expression of interleukin-1 beta (IL-1β), interleukin 6 (IL-6), BAX and Caspase 3, in cecal tissue and induced cecal tissue injury. However, administration of coccidiosis chicks Azadirachta indica nanovesicle enhanced body weight, and serum GSH. While decreased feed intake, feed conversion ratio, oocyst count, MDA, and NO serum levels, and protein expression of IL-1β, IL-6, BAX, and caspase 3 in cecal tissues and ameliorated cecal tissue damage. This study indicated that, A. indica ethosomal nanovesicle had potent anticoccidial properties.
Collapse
Affiliation(s)
| | - Mostafa Abdelgaber Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebeen El-kom 32511, Egypt
| | - Mabrouk Abd Eldaim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Menoufia University, Shebeen El-kom 32511, Egypt.
| | | | - Ahmed Ahmed El-Shenawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Eman Kamal Bazh
- Department of Parasitology, Faculty of Veterinary Medicine, Menoufia University, Shebeen El-kom, Menoufia 32511, Egypt
| | - Noha Ibrahim Ammar
- Animal Health Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Rania Hamad
- Department of Pathology, Faculty of Veterinary Medicine, Menoufia University, Shebeen El-kom 32511, Egypt
| |
Collapse
|
41
|
Alruhaimi RS, Hassanein EHM, Ahmeda AF, Atwa AM, Alnasser SM, Sayed GA, Alotaibi M, Alzoghaibi MA, Mahmoud AM. Farnesol attenuates cadmium-induced kidney injury by mitigating oxidative stress, inflammation and necroptosis and upregulating cytoglobin and PPARγ in rats. Tissue Cell 2024; 90:102526. [PMID: 39181090 DOI: 10.1016/j.tice.2024.102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Heavy metals are environmental pollutants that can harm animals and humans even at low concentrations. Cadmium (Cd) is known for its serious health effects on different organs and its toxicity is associated with oxidative stress (OS) and inflammation. Farnesol (FAR), a sesquiterpene alcohol found in many vegetables and fruits, possesses promising anti-inflammatory and antioxidant activities. This study evaluated the effect of FAR on Cd-induced kidney injury, pinpointing its effect of the redox status, inflammation, fibrosis and necroptosis. Rats in this study received FAR for 14 days and Cd on day 7. Elevated serum creatinine, urea and uric acid, and several kidney histopathological alterations were observed in Cd-administered rats. Cd increased MDA, decreased antioxidants, downregulated PPARγ and upregulated NF-κB p65, IL-6, TNF-α, and IL-1β. Necroptosis mediators (RIP1, RIP3, MLKL, and caspase-8) and α-SMA were upregulated, and collagen deposition was increased in Cd-administered rats. FAR ameliorated kidney injury markers and tissue damage, attenuated OS, suppressed NF-κB and inflammatory mediators, and enhanced antioxidants. In addition, FAR suppressed RIP1, RIP3, MLKL, caspase-8, and α-SMA, and enhanced kidney cytoglobin and PPARγ. In conclusion, FAR protects against Cd nephrotoxicity by suppressing OS, inflammatory response and necroptosis, effects associated with enhanced antioxidants, cytoglobin, and PPARγ.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Meshal Alotaibi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Albatin, Hafar Al Batin 39524, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
42
|
Neyshabouri FA, Ghotbi-Ravandi AA, Shariatmadari Z, Tohidfar M. Cadmium toxicity promotes hormonal imbalance and induces the expression of genes involved in systemic resistances in barley. Biometals 2024; 37:1147-1160. [PMID: 38615113 DOI: 10.1007/s10534-024-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/07/2024] [Indexed: 04/15/2024]
Abstract
Cadmium (Cd) is a widely distributed pollutant that adversely affects plants' metabolism and productivity. Phytohormones play a vital role in the acclimation of plants to metal stress. On the other hand, phytohormones trigger systemic resistances, including systemic acquired resistance (SAR) and induced systemic resistance (ISR), in plants in response to biotic interactions. The present study aimed to investigate the possible induction of SAR and ISR pathways in relation to the hormonal alteration of barley seedlings in response to Cd stress. Barley seedlings were exposed to 1.5 mg g-1 Cd in the soil for three days. The nutrient content, oxidative status, phytohormones profile, and expression of genes involved in SAR and ISR pathways of barley seedlings were examined. Cd accumulation resulted in a reduction in the nutrient content of barley seedlings. The specific activity of superoxide dismutase and the hydrogen peroxide content significantly increased in response to Cd toxicity. Abscisic acid, jasmonic acid, and ethylene content increased under Cd exposure. Cd treatment resulted in the upregulation of NPR1, PR3, and PR13 genes in SAR pathways. The transcripts of PAL1 and LOX2.2 genes in the ISR pathway were also significantly increased in response to Cd treatment. These findings suggest that hormonal-activated systemic resistances are involved in the response of barley to Cd stress.
Collapse
Affiliation(s)
- Fatemeh Alzahra Neyshabouri
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Zeinab Shariatmadari
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Tohidfar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
43
|
Hassan J, Elmetwalli A, Helal M, Al Munajer EA, Hussien TM, Azem Saad AA, El-Sikaily A. Cadmium exposure and its association with oxidative stress, MT1A methylation, and idiopathic male infertility in Egypt: A case-control study. Food Chem Toxicol 2024; 192:114925. [PMID: 39142552 DOI: 10.1016/j.fct.2024.114925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Idiopathic male infertility, a significant health concern, lacks a clear etiology. Cadmium (Cd), a widespread environmental pollutant known to impact male reproductive health negatively, can accumulate in mussels, a common food source in Egypt. This study investigated the link between ecological Cd exposure, oxidative stress, MT1A methylation, and idiopathic male infertility in two regions of Alexandria. Thirty-three infertile men and 33 fertile controls were included. Cd levels were measured in mussels from the study sites and in participants' blood and semen. Biomarkers reflecting Cd exposure and its effects were assessed. Mussel Cd levels exceeded regulatory limits. Infertile men revealed significantly higher blood and semen Cd levels, reduced semen quality, increased oxidative stress, and elevated MT1A methylation compared to controls. MT1A methylation was inversely correlated with sperm count and is the strongest predictor of idiopathic male infertility, demonstrating the lowest p-value and considerable effect size. This study suggests that environmental Cd exposure, potentially through mussel consumption, may contribute to idiopathic male infertility in Egypt by increasing oxidative stress, inducing epigenetic modifications, and impairing semen quality. These findings underscore the need for further research into the mechanisms underlying Cd-induced male infertility and the development of preventative strategies.
Collapse
Affiliation(s)
- Jihan Hassan
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt; Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries (NIOF), 11865, Cairo, Egypt; Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Eyad Abdulrahim Al Munajer
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek Mahmoud Hussien
- Department of Dermatology, Venerology and Andrology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aziza Abdel Azem Saad
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amany El-Sikaily
- National Institute of Oceanography and Fisheries (NIOF), 11865, Cairo, Egypt
| |
Collapse
|
44
|
Yu D, Liu S, Yu Y, Wang Y, Li L, Peijnenburg WJGM, Yuan Y, Peng X. Transcriptomic analysis reveals interactive effects of polyvinyl chloride microplastics and cadmium on Mytilus galloprovincialis: Insights into non-coding RNA responses and environmental implications. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 275:107062. [PMID: 39217792 DOI: 10.1016/j.aquatox.2024.107062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 09/04/2024]
Abstract
Despite increasing concerns regarding the interactions of microplastic and heavy metal pollution, there is limited knowledge on the molecular responses of marine organisms to these stressors. In this study, we used whole-transcriptome sequencing to investigate the molecular responses of the ecologically and economically important bivalve Mytilus galloprovincialis to individual and combined exposures of environmentally relevant concentrations of PVC microplastics and cadmium (Cd). Our results revealed distinct transcriptional changes in M. galloprovincialis, with significant overlap in the differentially expressed genes between the individual and combined exposure groups. Genes involved in cellular senescence, oxidative stress, and galactose metabolism were differentially expressed. Additionally, key signaling pathways related to apoptosis and drug metabolism were significantly modulated. Notably, the interaction of PVC microplastics and Cd resulted in differential expression of genes involved in drug metabolism and longevity regulating compared to single exposures. This suggests that the interaction between these two stressors may have amplified effects on mussel health. Overall, this comprehensive transcriptomic analysis provides valuable insights into the adaptive and detrimental responses of M. galloprovincialis to PVC microplastics and Cd in the environment.
Collapse
Affiliation(s)
- Deliang Yu
- Laoshan Laboratory, Qingdao 266237, PR China
| | - Shaochong Liu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yaqi Yu
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yanhao Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Lianzhen Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven, The Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong 523808, PR China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
45
|
Guo Z, Guo J, Yu H, Huang H, Ye D, Liu T, Zhang X, Zhang L, Zheng Z, Wang Y, Li T. OsWNK9 regulates cadmium concentration in brown rice by restraining cadmium transport from straw to brown rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116810. [PMID: 39096692 DOI: 10.1016/j.ecoenv.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Selecting and breeding rice cultivars that enable strong cadmium (Cd) accumulation in rice straw but low accumulation in brown rice is a promising way to achieve Cd phytoremediation as well as to ensure the food safety of rice. Herein, we isolated a gene OsWNK9 from the quantitative trait locus associated with reducing Cd translocation from rice straw to brown rice and decreasing the Cd concentration in brown rice (BRCdC). Continuous strong expression of OsWNK9 was observed in nodes and internode and was induced after Cd supply. OsWNK9 was localized in the rice cell nucleus and participated in the regulation of Cd transport in yeast. Two independent oswnk9 rice mutants were generated via CRISPR/Cas9 gene-editing and showed significantly higher BRCdC than that of the wild type (WT). The BRCdC of knockout oswnk9 mutants was 0.227 mg kg-1and 0.238 mg kg-1, increased by 14 % and 19 % compared with that of the WT due to the lower Cd allocation in the basal stem, internode, and node III, which was unrelated to Cd uptake. Interestingly, OsWNK9 could promote iron (Fe) accumulation in rice under Cd-contaminated conditions, suggesting that OsWNK9 is an ideal gene for Cd phytoremediation and Fe biofortification in rice to support safe food production.
Collapse
Affiliation(s)
- Zhipeng Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Jingyi Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China; Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben 06466, Germany
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Lu Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China.
| |
Collapse
|
46
|
Li J, Fang X, Cui D, Ma Z, Yang J, Niu Y, Liu H, Xiang P. Mechanistic insights into cadmium exacerbating 2-Ethylhexyl diphenyl phosphate-induced human keratinocyte toxicity: Oxidative damage, cell apoptosis, and tight junction disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116858. [PMID: 39137464 DOI: 10.1016/j.ecoenv.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Organophosphate flame retardants 2-ethylhexyldiphenyl phosphate (EHDPP) and cadmium (Cd) are ubiquitous in environmental matrices, and dermal absorption is a major human exposure pathway. However, their detrimental effects on the human epidermis remain largely unknown. In this study, human keratinocytes (HaCaT cells) were employed to examine the toxicity and underlying mechanisms of co-exposure to EHDPP and Cd. Their influence on cell morphology and viability, oxidative damage, apoptosis, and tight junction were determined. The results showed that co-exposure decreased cell viability by >40 %, induced a higher level of oxidative damage by increasing the generation of reactive oxygen species (1.3 folds) and inhibited CAT (79 %) and GPX (90 %) activities. Moreover, Cd exacerbated EHDPP-induced mitochondrial disorder and cellular apoptosis, which was evidenced by a reduction in mitochondrial membrane potential and an elevation of cyt-c and Caspase-3 mRNA expression. In addition, greater loss of ZO-1 immunoreactivity at cellular boundaries was observed after co-exposure, indicating skin epithelial barrier function disruption, which may increase the human bioavailability of contaminants via the dermal absorption pathway. Taken together, oxidative damage, cell apoptosis, and tight junction disruption played a crucial role in EHDPP + Cd triggered cytotoxicity in HaCaT cells. The detrimental effects of EHDPP + Cd co-exposure were greater than individual exposure, suggesting the current health risk assessment or adverse effects evaluation of individual exposure may underestimate their perniciousness. Our data imply the importance of considering the combined exposure to accurately assess their health implication.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Xianlei Fang
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Daolei Cui
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ziya Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ji Yang
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China
| | - Youya Niu
- School of Basic Medical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Hai Liu
- Affiliated Hospital of Yunnan University, Eye Hospital of Yunnan Province, Kunming 650224, China.
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
47
|
Frings S, Schmidt-Schippers R, Lee WK. Epigenetic alterations in bioaccumulators of cadmium: Lessons from mammalian kidneys and plants. ENVIRONMENT INTERNATIONAL 2024; 191:109000. [PMID: 39278047 DOI: 10.1016/j.envint.2024.109000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Faced with unpredictable changes in global weather patterns, release and redistribution of metals through land erosion and water movements add to the increasing use of metals in industrial activities causing high levels of environmental pollution and concern to the health of all living organisms. Cadmium is released into the environment by smelting and mining, entering the food chain via contaminated soils, water, and phosphate fertilizers. Bioaccumulation of cadmium in plants represents the first major step into the human food chain and contributes to toxicity of several organs, especially the kidneys, where biomagnification of cadmium occurs over decades of exposure. Even in small amounts, cadmium brings about alterations at the molecular and cellular levels in eukaryotes through mutagenicity, molecular mimicry at metal binding sites and oxidative stress. The epigenome dictates expression of a gene's output through a number of regulatory steps involving chromatin remodeling, nucleosome unwinding, DNA accessibility, or nucleic acid modifications that ultimately impact the transcriptional and translational machinery. Several epigenetic enzymes exhibit zinc-dependence as zinc metalloenzymes and zinc finger proteins thus making them susceptible to deregulation through displacement by cadmium. In this review, we summarize the literature on cadmium-induced epigenetic mechanisms in mammalian kidneys and plants, compare similarities in the epigenetic defense between these bioaccumulators, and explore how future studies could advance our understanding of the cadmium-induced stress response and disruption to biological health.
Collapse
Affiliation(s)
- Stephanie Frings
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Center for Biotechnology, University of Bielefeld, 33615 Bielefeld, Germany; Plant Biotechnology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany.
| |
Collapse
|
48
|
Panigrahi AK, Pal PK, Sarkar Paria D. Melatonin as an Ameliorative Agent Against Cadmium- and Lead-Induced Toxicity in Fish: an Overview. Appl Biochem Biotechnol 2024; 196:5790-5820. [PMID: 38224395 DOI: 10.1007/s12010-023-04723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 01/16/2024]
Abstract
Diverse anthropogenic activities and lack of knowledge on its consequences have promoted serious heavy metal contaminations in different aquatic systems throughout the globe. The non-biodegradable nature of most of these toxic heavy metals has increased the concern on their possible bioaccumulation in aquatic organisms as well as in other vertebrates. Among these aquatic species, fish are most sensitive to such contaminated water that not only decreases their chance of survivability in the nature but also increases the probability of biomagnifications of these heavy metals in higher order food chain. After entering the fish body, heavy metals induce detrimental changes in different vital organs by impairing multiple physiological and biochemical pathways that are essential for the species. Such alterations may include tissue damage, induction of oxidative stress, immune-suppression, endocrine disorders, uncontrolled cell proliferation, DNA damage, and even apoptosis. Although uncountable reports have explored the toxic effects of different heavy metals in diverse fish species, but surprisingly, only a few attempts have been made to ameliorate such toxic effects. Since, oxidative stress seems to be the underlying common factor in such heavy metal-induced toxicity, therefore, a potent and endogenous antioxidant with no side effect may be an appropriate therapeutic solution. Apart from summarizing the toxic effects of two important toxicants, i.e., cadmium and lead in fish, the novelty of the present treatise lies in its arguments in favor of using melatonin, an endogenous free radical scavenger and indirect antioxidant, in ameliorating the toxic effects of heavy metals in any fish species.
Collapse
Affiliation(s)
- Ashis Kumar Panigrahi
- The University of Burdwan, Burdwan, West Bengal, 713104, India
- Eco-toxicology, Fisheries & Aquaculture Extension Laboratory, Department of Zoology, University of Kalyani, Kalyani, West Beng, al-741235, India
| | - Palash Kumar Pal
- Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Dipanwita Sarkar Paria
- Department of Zoology, Chandernagore College, The University of Burdwan, Chandernagore, West Beng, al-712136, India.
| |
Collapse
|
49
|
Tetteh PA, Kalvani Z, Stevens D, Sappal R, Kamunde C. Interactions of binary mixtures of metals on rainbow trout (Oncorhynchus mykiss) heart mitochondrial H 2O 2 homeodynamics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:106986. [PMID: 38851027 DOI: 10.1016/j.aquatox.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
For continuous pumping of blood, the heart needs a constant supply of energy (ATP) that is primarily met via oxidative phosphorylation in the mitochondria of cardiomyocytes. However, sustained high rates of electron transport for energy conversion redox reactions predisposes the heart to the production of reactive oxygen species (ROS) and oxidative stress. Mitochondrial ROS are fundamental drivers of responses to environmental stressors including metals but knowledge of how combinations of metals alter mitochondrial ROS homeodynamics remains sparse. We explored the effects and interactions of binary mixtures of copper (Cu), cadmium (Cd), and zinc (Zn), metals that are common contaminants of aquatic systems, on ROS (hydrogen peroxide, H2O2) homeodynamics in rainbow trout (Oncorhynchus mykiss) heart mitochondria. Isolated mitochondria were energized with glutamate-malate or succinate and exposed to a range of concentrations of the metals singly and in equimolar binary concentrations. Speciation analysis revealed that Cu was highly complexed by glutamate or Tris resulting in Cu2+ concentrations in the picomolar to nanomolar range. The concentration of Cd2+ was 7.2-7.5 % of the total while Zn2+ was 15 % and 21 % of the total during glutamate-malate and succinate oxidation, respectively. The concentration-effect relationships for Cu and Cd on mitochondrial H2O2 emission depended on the substrate while those for Zn were similar during glutamate-malate and succinate oxidation. Cu + Zn and Cu + Cd mixtures exhibited antagonistic interactions wherein Cu reduced the effects of both Cd and Zn, suggesting that Cu can mitigate oxidative distress caused by Cd or Zn. Binary combinations of the metals acted additively to reduce the rate constant and increase the half-life of H2O2 consumption while concomitantly suppressing thioredoxin reductase and stimulating glutathione peroxidase activities. Collectively, our study indicates that binary mixtures of Cu, Zn, and Cd act additively or antagonistically to modulate H2O2 homeodynamics in heart mitochondria.
Collapse
Affiliation(s)
- Pius Abraham Tetteh
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Zahra Kalvani
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada
| | - Ravinder Sappal
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, New York, USA
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, PE, Canada.
| |
Collapse
|
50
|
Qian Z, Hou D, Gao S, Wang X, Yu J, Dong J, Sun C. Toxic effects and mechanisms of chronic cadmium exposure on Litopenaeus vannamei growth performance based on combined microbiome and metabolome analysis. CHEMOSPHERE 2024; 361:142578. [PMID: 38857631 DOI: 10.1016/j.chemosphere.2024.142578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Cadmium (Cd) pollution seriously affects marine organisms' health and poses a threat to food safety. Although Cd pollution has attracted widespread attention in aquaculture, little is known about the toxic mechanisms of chronic Cd exposure on shrimp growth performance. The study investigated the combined effects of chronic exposure to Cd of different concentrations including 0, 75, 150, and 300 μg/L for 30 days on the growth performance, tissue bioaccumulation, intestinal microbiology, and metabolic responses of Litopenaeus vannamei. The results revealed that the growth was significantly inhibited under exposure to 150 and 300 μg/L Cd2+. The bioaccumulation in gills and intestines respectively showed an increasing and inverted "U" shaped trend with increasing Cd2+ concentration. Chronic Cd altered the intestinal microflora with a significant decrease in microbial richness and increasing trends in the abundances of the potentially pathogenic bacteria Vibrio and Maribacter at exposure to 75 and 150 μg/L Cd2+, and Maribacter at 300 μg/L. In addition, chronic Cd interfered with intestinal metabolic processes. The expressions of certain metabolites associated with growth promotion and enhanced antioxidant power, including N-methyl-D-aspartic acid, L-malic acid, guanidoacetic acid, betaine, and gluconic acid were significantly down-regulated, especially at exposure to 150 and 300 μg/L Cd2+, and were negatively correlated with Vibrio and Maribacter abundance levels. In summary, chronic Cd exposure resulted in severe growth inhibition and increased Cd accumulation in shrimp tissues. Increased levels of intestinal pathogenic bacteria and decreased levels of growth-promoting metabolites may be the key causes of growth inhibition. Harmful bacteria Vibrio and Maribacter may be associated with the inhibition of growth-promoting metabolite expression and may be involved in disrupting intestinal metabolic functions, ultimately impairing shrimp growth potential. This study sheds light on the potential toxicological mechanisms of chronic Cd inhibition on shrimp growth performance, offering new insights into Cd toxicity studies in aquaculture.
Collapse
Affiliation(s)
- Zhaoying Qian
- School of Economics, Guizhou University of Finance and Economics, Guiyang, 550025, Guizhou, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Shan Gao
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Xuejie Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jianbo Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxin Dong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|