1
|
Matsumoto Y, Honda T, Yasui F, Endo A, Sanada T, Toyama S, Takagi A, Munakata T, Kono R, Yamaji K, Yamamoto N, Saeki Y, Kohara M. Generation of a SARS-CoV-2-susceptible mouse model using adenovirus vector expressing human angiotensin-converting enzyme 2 driven by an elongation factor 1α promoter with leftward orientation. Front Immunol 2024; 15:1440314. [PMID: 39717778 PMCID: PMC11663739 DOI: 10.3389/fimmu.2024.1440314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction To analyze the molecular pathogenesis of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a small animal model such as mice is needed: human angiotensin converting enzyme 2 (hACE2), the receptor of SARS-CoV-2, needs to be expressed in the respiratory tract of mice. Methods We conferred SARS-CoV-2 susceptibility in mice by using an adenoviral vector expressing hACE2 driven by an elongation factor 1α (EF1α) promoter with a leftward orientation. Results In this model, severe pneumonia like human COVID-19 was observed in SARS-CoV-2-infected mice, which was confirmed by dramatic infiltration of inflammatory cells in the lung with efficient viral replication. An early circulating strain of SARS-CoV-2 caused the most severe weight loss when compared to SARS-CoV-2 variants such as Alpha, Beta and Gamma, although histopathological findings, viral replication, and cytokine expression characteristics were comparable. Discussion We found that a distinct proteome of an early circulating strain infected lung characterized by elevated complement activation and blood coagulation, which were mild in other variants, can contribute to disease severity. Unraveling the specificity of early circulating SARS-CoV-2 strains is important in elucidating the origin of the pandemic.
Collapse
Affiliation(s)
- Yusuke Matsumoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akinori Endo
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Sakiko Toyama
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Asako Takagi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tsubasa Munakata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Risa Kono
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yasushi Saeki
- Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
2
|
Beythien G, de le Roi M, Stanelle-Bertram S, Armando F, Heydemann L, Rosiak M, Becker S, Lamers MM, Kaiser FK, Haagmans BL, Ciurkiewicz M, Gabriel G, Osterhaus ADME, Baumgärtner W. Detection of Double-Stranded RNA Intermediates During SARS-CoV-2 Infections of Syrian Golden Hamsters with Monoclonal Antibodies and Its Implications for Histopathological Evaluation of In Vivo Studies. Int J Mol Sci 2024; 25:11425. [PMID: 39518980 PMCID: PMC11546166 DOI: 10.3390/ijms252111425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
The SARS-CoV-2 pandemic has highlighted the challenges posed by the emergence and rapid global spread of previously unknown viruses. Early investigations on the pathogenesis of newly identified viruses are often hampered by a lack of appropriate sample material and conventional detection methods. In this study, viral replication within the lungs of SARS-CoV-2-infected Syrian golden hamsters was assessed by immunolabeling dsRNA intermediates with three different monoclonal antibodies in formalin-fixed, paraffin-embedded tissue samples. The presence of dsRNA was compared to viral antigen levels, viral titers, and genomic RNA replicates using three different variants of concern and an ancestral virus strain at a single time point and during the course of infection with an ancestral variant, and then validated using fluorescent 2-plex in situ hybridization. The results indicate that the detection of viral infection using anti-dsRNA antibodies is restricted to an early phase of infection with high viral replication activity. Additionally, the combined detection of dsRNA intermediates and viral antigens may help to bridge the interpretation gaps between viral antigen levels and viral titers at a single time point. Further testing in other viral infections or species is needed to assess the potential of dsRNA as an early marker for viral infections.
Collapse
Affiliation(s)
- Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | | | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Pathology Unit, Department of Veterinary Science, University of Parma, 43121 Parma, Italy
| | - Laura Heydemann
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Malgorzata Rosiak
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Svenja Becker
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | - Mart M. Lamers
- Department of Viroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.M.L.); (B.L.H.)
- Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Franziska K. Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (F.K.K.); (A.D.M.E.O.)
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands; (M.M.L.); (B.L.H.)
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
| | - Gülşah Gabriel
- Leibniz Institute of Virology, 20251 Hamburg, Germany; (S.S.-B.); (G.G.)
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (F.K.K.); (A.D.M.E.O.)
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (G.B.); (M.d.l.R.); (F.A.); (L.H.); (M.R.); (S.B.)
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
3
|
Ruggeri A, Corrado F, Voza A, Wei LJ, Catalano G, Liberatore C, Nitti R, Fedeli C, Bruno A, Calabretta E, Giglio F, Sciutti F, Lunghi F, Landoni G, Aghemo A, Iacobelli M, Querini PR, Richardson PG, Assanelli A, Peccatori J, Ciceri F, Carlo-Stella C. Use of defibrotide in COVID-19 pneumonia: comparison of a phase II study and a matched real-world cohort control. Haematologica 2024; 109:3261-3268. [PMID: 38779740 PMCID: PMC11443376 DOI: 10.3324/haematol.2024.285345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic led to an unprecedented burden on healthcare systems around the world and a severe global socioeconomic crisis, with more than 750 million confirmed cases and at least 7 million deaths reported by December 31, 2023. The DEFI-VID19 study (clinicaltrials gov. Identifier: NCT04335201), a phase II, single-arm, multicenter, open-label trial was designed in mid-2020 to assess the safety and efficacy of defibrotide in treating patients with COVID-19 pneumonia. Defibrotide was administered at a dose of 25 mg/kg intravenously, divided into four daily doses over a planned 14-day period for patients with COVID-19 pneumonia receiving non-invasive ventilation. The primary endpoint was respiratory failure-free survival (RFFS). Overall survival (OS), the number of post-recovery days, and adverse events were the secondary endpoints. For comparison, a contemporaneous control cohort receiving standard of care only was retrospectively selected by applying the eligibility criteria of the DEFI-VID19 trial. To adjust for the imbalance between the two cohorts in terms of baseline variable distributions, an outcome regression analysis was conducted. In adjusted analysis, patients receiving defibrotide reported a trend towards higher RFFS (hazard ratio [HR]=0.71; 95% confidence interval [CI]: 0.34-1.29; P=0.138) and OS (HR=0.78; 95% CI: 0.33-1.53; P=0.248]) and showed a significantly increased number of post-recovery days (difference in means =3.61; 95% CI: 0.97-6.26; P=0.0037). Despite concomitant thromboprophylaxis with low molecular weight heparin, the safety profile of defibrotide proved to be favorable. Taken together, our findings suggest that defibrotide may represent a valuable addition to the COVID-19 therapeutic options.
Collapse
Affiliation(s)
- Annalisa Ruggeri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan
| | - Francesco Corrado
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan; Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan; Emergency Department, IRCCS Humanitas Research Hospital, Milan
| | - Lee-Jen Wei
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Gloria Catalano
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan
| | - Carmine Liberatore
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan
| | - Rosamaria Nitti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan
| | - Carlo Fedeli
- Emergency Department, IRCCS Humanitas Research Hospital, Milan
| | - Alessandro Bruno
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan
| | - Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan; Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan
| | - Fabio Giglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan
| | | | - Francesca Lunghi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan
| | - Giovanni Landoni
- Anesthesia and Intensive Care Department. IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan
| | - Alessio Aghemo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan
| | | | - Patrizia Rovere Querini
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan
| | - Paul G Richardson
- Dana-Farber/Brigham and Women's Cancer Center and Harvard Medical School, Boston, Massachusetts
| | - Andrea Assanelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan
| | - Jacopo Peccatori
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Milan
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan; Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan.
| |
Collapse
|
4
|
de Souza Goncalves B, Sangani D, Nayyar A, Puri R, Irtiza M, Nayyar A, Khalyfa A, Sodhi K, Pillai SS. COVID-19-Associated Sepsis: Potential Role of Phytochemicals as Functional Foods and Nutraceuticals. Int J Mol Sci 2024; 25:8481. [PMID: 39126050 PMCID: PMC11312872 DOI: 10.3390/ijms25158481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19. Phytochemicals of functional foods and nutraceutical importance have an incredible impact on the healthcare system, which includes the prevention and/or treatment of chronic diseases. Hence, in the present review, we aim to explore the pathogenesis of sepsis associated with COVID-19 that disrupts the physiological homeostasis of the body, resulting in severe organ damage. Furthermore, we have summarized the diverse pharmacological properties of some potent phytochemicals, which can be used as functional foods as well as nutraceuticals against sepsis-associated complications of SARS-CoV-2 infection. The phytochemicals explored in this article include quercetin, curcumin, luteolin, apigenin, resveratrol, and naringenin, which are the major phytoconstituents of our daily food intake. We have compiled the findings from various studies, including clinical trials in humans, to explore more into the therapeutic potential of each phytochemical against sepsis and COVID-19, which highlights their possible importance in sepsis-associated COVID-19 pathogenesis. We conclude that our review will open a new research avenue for exploring phytochemical-derived therapeutic agents for preventing or treating the life-threatening complications of sepsis associated with COVID-19.
Collapse
Affiliation(s)
- Bruno de Souza Goncalves
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Darshan Sangani
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Aleen Nayyar
- Department of Medicine, Sharif Medical and Dental College, Lahore 55150, Pakistan;
| | - Raghav Puri
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Mahir Irtiza
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Asma Nayyar
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Abdelnaby Khalyfa
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Komal Sodhi
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| | - Sneha S. Pillai
- Department of Surgery, Internal Medicine and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (B.d.S.G.); (D.S.); (R.P.); (M.I.); (A.N.); (A.K.); (K.S.)
| |
Collapse
|
5
|
Herder V, Caporale M, MacLean OA, Pintus D, Huang X, Nomikou K, Palmalux N, Nichols J, Scivoli R, Boutell C, Taggart A, Allan J, Malik H, Ilia G, Gu Q, Ronchi GF, Furnon W, Zientara S, Bréard E, Antonucci D, Capista S, Giansante D, Cocco A, Mercante MT, Di Ventura M, Da Silva Filipe A, Puggioni G, Sevilla N, Stewart ME, Ligios C, Palmarini M. Correlates of disease severity in bluetongue as a model of acute arbovirus infection. PLoS Pathog 2024; 20:e1012466. [PMID: 39150989 DOI: 10.1371/journal.ppat.1012466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/28/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
Most viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1IT2006, BTV-1IT2013 and BTV-8FRA2017). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to select the key viral and host processes associated with disease pathogenesis. We identified and experimentally validated five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, we showed that an agnostic machine learning approach can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.
Collapse
Affiliation(s)
- Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marco Caporale
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Xinyi Huang
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Haris Malik
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephan Zientara
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Emmanuel Bréard
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Daniela Antonucci
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Sara Capista
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Daniele Giansante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Noemi Sevilla
- Centro de Investigación en Sanidad Animal. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC). Valdeolmos, Madrid, Spain
| | - Meredith E Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
6
|
Alvarez N, Adam GC, Howe JA, Sharma V, Zimmerman MD, Dolgov E, Rasheed R, Nizar F, Sahay K, Nelson AM, Park S, Zhou X, Burlein C, Fay JF, Iwamoto DV, Bahnck-Teets CM, Getty KL, Lin Goh S, Salhab I, Smith K, Boyce CW, Cabalu TD, Murgolo N, Fox NG, Mayhood TW, Shurtleff VW, Layton ME, Parish CA, McCauley JA, Olsen DB, Perlin DS. Novel Pan-Coronavirus 3CL Protease Inhibitor MK-7845: Biological and Pharmacological Profiling. Viruses 2024; 16:1158. [PMID: 39066320 PMCID: PMC11281459 DOI: 10.3390/v16071158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to be a global threat due to its ability to evolve and generate new subvariants, leading to new waves of infection. Additionally, other coronaviruses like Middle East respiratory syndrome coronavirus (MERS-CoV, formerly known as hCoV-EMC), which first emerged in 2012, persist and continue to present a threat of severe illness to humans. The continued identification of novel coronaviruses, coupled with the potential for genetic recombination between different strains, raises the possibility of new coronavirus clades of global concern emerging. As a result, there is a pressing need for pan-CoV therapeutic drugs and vaccines. After the extensive optimization of an HCV protease inhibitor screening hit, a novel 3CLPro inhibitor (MK-7845) was discovered and subsequently profiled. MK-7845 exhibited nanomolar in vitro potency with broad spectrum activity against a panel of clinical SARS-CoV-2 subvariants and MERS-CoV. Furthermore, when administered orally, MK-7845 demonstrated a notable reduction in viral burdens by >6 log orders in the lungs of transgenic mice infected with SARS-CoV-2 (K18-hACE2 mice) and MERS-CoV (K18-hDDP4 mice).
Collapse
Affiliation(s)
- Nadine Alvarez
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| | | | | | - Vijeta Sharma
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| | - Matthew D. Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| | - Enriko Dolgov
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| | - Risha Rasheed
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| | - Fatima Nizar
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| | - Khushboo Sahay
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| | - Andrew M. Nelson
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| | - Steven Park
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA (D.S.P.)
| |
Collapse
|
7
|
Molinengo L, Estrin-Serlui T, Hanley B, Osborn M, Goldin R. Infectious diseases and the role of needle biopsy post-mortem. THE LANCET. MICROBE 2024; 5:707-716. [PMID: 38604206 DOI: 10.1016/s2666-5247(24)00044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 04/13/2024]
Abstract
Post-mortem examinations continue to play a crucial role in understanding the epidemiology and pathogenesis of infectious diseases. However, the perceived infection risk can preclude traditional, invasive, complete diagnostic autopsy. Post-mortem examination is especially important in emerging infectious diseases with potentially unknown infection risks, but rapid acquisition of good quality tissue samples is needed as part of the scientific and public health response. Needle biopsy post-mortem is a minimally invasive, rapid, closed-body autopsy technique that was originally developed to minimise the infection risk to practitioners. Since its inception, needle biopsy post-mortem has also been used as a technique to support complete diagnostic autopsy provision in poorly resourced regions and to facilitate post-mortem examinations in communities that might have religious or cultural objections to an invasive autopsy. This Review analyses the evolution and applicability of needle biopsy post-mortem in investigating endemic and emerging infectious diseases.
Collapse
Affiliation(s)
- Lucia Molinengo
- Cellular Pathology Department, Northwest London Pathology hosted by Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK.
| | - Theodore Estrin-Serlui
- Cellular Pathology Department, Northwest London Pathology hosted by Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Brian Hanley
- Cellular Pathology Department, Northwest London Pathology hosted by Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, London, UK; Department of Metabolism, Digestion and Reproduction, South Kensington Campus, Imperial College, London, UK
| | - Michael Osborn
- Cellular Pathology Department, Northwest London Pathology hosted by Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK
| | - Robert Goldin
- Department of Metabolism, Digestion and Reproduction, South Kensington Campus, Imperial College, London, UK
| |
Collapse
|
8
|
Riou M, Coste F, Meyer A, Enache I, Talha S, Charloux A, Reboul C, Geny B. Mechanisms of Pulmonary Vasculopathy in Acute and Long-Term COVID-19: A Review. Int J Mol Sci 2024; 25:4941. [PMID: 38732160 PMCID: PMC11084496 DOI: 10.3390/ijms25094941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the end of the pandemic, coronavirus disease 2019 (COVID-19) remains a major public health concern. The first waves of the virus led to a better understanding of its pathogenesis, highlighting the fact that there is a specific pulmonary vascular disorder. Indeed, COVID-19 may predispose patients to thrombotic disease in both venous and arterial circulation, and many cases of severe acute pulmonary embolism have been reported. The demonstrated presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the endothelial cells suggests that direct viral effects, in addition to indirect effects of perivascular inflammation and coagulopathy, may contribute to pulmonary vasculopathy in COVID-19. In this review, we discuss the pathological mechanisms leading to pulmonary vascular damage during acute infection, which appear to be mainly related to thromboembolic events, an impaired coagulation cascade, micro- and macrovascular thrombosis, endotheliitis and hypoxic pulmonary vasoconstriction. As many patients develop post-COVID symptoms, including dyspnea, we also discuss the hypothesis of pulmonary vascular damage and pulmonary hypertension as a sequela of the infection, which may be involved in the pathophysiology of long COVID.
Collapse
Affiliation(s)
- Marianne Riou
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Florence Coste
- EA4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, UFR Sciences Technologies Santé, Pôle Sport et Recherche, 74 rue Louis Pasteur, 84000 Avignon, France; (F.C.); (C.R.)
| | - Alain Meyer
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Irina Enache
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Samy Talha
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Anne Charloux
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| | - Cyril Reboul
- EA4278, Laboratoire de Pharm-Ecologie Cardiovasculaire, UFR Sciences Technologies Santé, Pôle Sport et Recherche, 74 rue Louis Pasteur, 84000 Avignon, France; (F.C.); (C.R.)
| | - Bernard Geny
- Translational Medicine Federation of Strasbourg (FMTS), University of Strasbourg, CRBS, Team 3072 “Mitochondria, Oxidative Stress and Muscle Protection”, 1 rue Eugène Boeckel, CS 60026, 67084 Strasbourg, France; (M.R.); (A.M.); (I.E.); (S.T.); (A.C.)
- Physiology and Functional Exploration Service, University Hospital of Strasbourg, 1 Place de l’hôpital, 67091 Strasbourg, France
| |
Collapse
|
9
|
Singh L, Kumar A, Rai M, Basnet B, Rai N, Khanal P, Lai KS, Cheng WH, Asaad AM, Ansari S. Spectrum of COVID-19 induced liver injury: A review report. World J Hepatol 2024; 16:517-536. [PMID: 38689748 PMCID: PMC11056898 DOI: 10.4254/wjh.v16.i4.517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/20/2024] [Accepted: 02/28/2024] [Indexed: 04/24/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused changes in the global health system, causing significant setbacks in healthcare systems worldwide. This pandemic has also shown resilience, flexibility, and creativity in reacting to the tragedy. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection targets most of the respiratory tract, resulting in a severe sickness called acute respiratory distress syndrome that may be fatal in some individuals. Although the lung is the primary organ targeted by COVID-19 viruses, the clinical aspect of the disease is varied and ranges from asymptomatic to respiratory failure. However, due to an unorganized immune response and several affected mechanisms, the liver may also experience liver cell injury, ischemic liver dysfunction, and drug-induced liver injury, which can result in respiratory failure because of the immune system's disordered response and other compromised processes that can end in multisystem organ failure. Patients with liver cirrhosis or those who have impaired immune systems may be more likely than other groups to experience worse results from the SARS-CoV-2 infection. We thus intend to examine the pathogenesis, current therapy, and consequences of liver damage concerning COVID-19.
Collapse
Affiliation(s)
- Lokjan Singh
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Anil Kumar
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Maya Rai
- Department of Microbiology, Karnali Academy of Health Science, Teaching Hospital, Jumla 21200, Karnali, Nepal
| | - Bibek Basnet
- Health Sciences, Asian College of Advance Studies, Purbanchal University, Satdobato 24122, Lalitpur, Nepal
| | - Nishant Rai
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Pukar Khanal
- Department of Pharmacology & Toxicology, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi 590010, Karnataka, India
| | - Kok-Song Lai
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Health and Life Sciences, INTI International University, Nilai 71800, Malaysia
| | - Ahmed Morad Asaad
- Department of Microbiology, College of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shamshul Ansari
- Division of Health Sciences, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates.
| |
Collapse
|
10
|
Deshmukh R, Harwansh RK, Garg A, Mishra S, Agrawal R, Jangde R. COVID-19: Recent Insight in Genomic Feature, Pathogenesis, Immunological Biomarkers, Treatment Options and Clinical Updates on SARS-CoV-2. Curr Genomics 2024; 25:69-87. [PMID: 38751601 PMCID: PMC11092912 DOI: 10.2174/0113892029291098240129113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 05/18/2024] Open
Abstract
SARS-CoV-2 is a highly contagious and transmissible viral infection that first emerged in 2019 and since then has sparked an epidemic of severe respiratory problems identified as "coronavirus disease 2019" (COVID-19) that causes a hazard to human life and safety. The virus developed mainly from bats. The current epidemic has presented a significant warning to life across the world by showing mutation. There are different tests available for testing Coronavirus, and RT-PCR is the best, giving more accurate results, but it is also time-consuming. There are different options available for treating n-CoV-19, which include medications such as Remdesivir, corticosteroids, plasma therapy, Dexamethasone therapy, etc. The development of vaccines such as BNT126b2, ChAdOX1, mRNA-1273 and BBIBP-CorV has provided great relief in dealing with the virus as they decreased the mortality rate. BNT126b2 and ChAdOX1 are two n-CoV vaccines found to be most effective in controlling the spread of infection. In the future, nanotechnology-based vaccines and immune engineering techniques can be helpful for further research on Coronavirus and treatment of this deadly virus. The existing knowledge about the existence of SARS-CoV-2, along with its variants, is summarized in this review. This review, based on recently published findings, presents the core genetics of COVID-19, including heritable characteristics, pathogenesis, immunological biomarkers, treatment options and clinical updates on the virus, along with patents.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Ranjit Kumar Harwansh
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura, Delhi Road, Chhatikara, 281001, Uttar Pradesh, India
| | - Sakshi Mishra
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, NH-2, Mathura, Delhi Road, Chhatikara, 281001, Uttar Pradesh, India
| | - Rajendra Jangde
- Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| |
Collapse
|
11
|
Bakhtiari E, Moazzen N. Pulmonary function in children post -SARS-CoV-2 infection: a systematic review and meta-analysis. BMC Pediatr 2024; 24:87. [PMID: 38302891 PMCID: PMC10832141 DOI: 10.1186/s12887-024-04560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
OBJECTIVE There are some concerns regarding long-term complications of COVID-19 in children. A systematic review and meta-analysis was performed evaluating the respiratory symptoms and pulmonary function, post-SARS-CoV-2 infection. METHODS A systematic search was performed in databases up to 30 March 2023. Studies evaluating respiratory symptoms and pulmonary function after COVID-19 infection in children were selected. The major outcomes were the frequency of respiratory symptoms and the mean of spirometry parameters. A pooled mean with 95% confidence intervals (CIs) was calculated. RESULTS A total of 8 articles with 386 patients were included in meta-analysis. Dyspnea, cough, exercise intolerance, and fatigue were the most common symptoms. The meta-mean of forced expiratory volume (FEV1) and forced vital capacity (FVC) was 101.72%, 95% CI= (98.72, 104.73) and 101.31%, 95% CI= (95.44, 107.18) respectively. The meta-mean of FEV1/FVC and Forced expiratory flow at 25 and 75% was 96.16%, 95% CI= (90.47, 101.85) and 105.05%, 95% CI= (101.74, 108.36) respectively. The meta-mean of diffusing capacity for carbon monoxide was 105.30%, 95%CI= (88.12, 122.49). There was no significant difference in spirometry parameters before and after bronchodilator inhalation. CONCLUSIONS Despite some clinical respiratory symptoms, meta-results showed no abnormality in pulmonary function in follow-up of children with SARS-CoV-2 infection. Disease severity and asthma background had not confounded this outcome.
Collapse
Affiliation(s)
- Elham Bakhtiari
- Clinical Research Development Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Moazzen
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pediatrics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Quarleri J, Delpino MV. Molecular mechanisms underlying SARS-CoV-2 hepatotropism and liver damage. World J Hepatol 2024; 16:1-11. [PMID: 38313242 PMCID: PMC10835487 DOI: 10.4254/wjh.v16.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
In coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) primarily targets the respiratory system, but evidence suggests extrapulmonary organ involvement, notably in the liver. Viral RNA has been detected in hepatic tissues, and in situ hybridization revealed virions in blood vessels and endothelial cells. Electron microscopy confirmed viral particles in hepatocytes, emphasizing the need for understanding hepatotropism and direct cytopathic effects in COVID-19-related liver injury. Various factors contribute to liver injury, including direct cytotoxicity, vascular changes, inflammatory responses, immune reactions from COVID-19 and vaccinations, and drug-induced liver injury. Although a typical hepatitis presentation is not widely documented, elevated liver biochemical markers are common in hospitalized COVID-19 patients, primarily showing a hepatocellular pattern of elevation. Long-term studies suggest progressive cholestasis may affect 20% of patients with chronic liver disease post-SARS-CoV-2 infection. The molecular mechanisms underlying SARS-CoV-2 infection in the liver and the resulting liver damage are complex. This "Editorial" highlights the expression of the Angiotensin-converting enzyme-2 receptor in liver cells, the role of inflammatory responses, the impact of hypoxia, the involvement of the liver's vascular system, the infection of bile duct epithelial cells, the activation of hepatic stellate cells, and the contribution of monocyte-derived macrophages. It also mentions that pre-existing liver conditions can worsen the outcomes of COVID-19. Understanding the interaction of SARS-CoV-2 with the liver is still evolving, and further research is required.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina.
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Universidad de Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1121, Argentina
| |
Collapse
|
13
|
Yu B, Drelich A, Hsu J, Tat V, Peng BH, Wei Q, Wang J, Wang H, Wages J, Mendelsohn AR, Larrick JW, Tseng CT. Protective Efficacy of Novel Engineered Human ACE2-Fc Fusion Protein Against Pan-SARS-CoV-2 Infection In Vitro and in Vivo. J Med Chem 2023; 66:16646-16657. [PMID: 38100534 DOI: 10.1021/acs.jmedchem.3c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Enduring occurrence of severe COVID-19 for unvaccinated, aged, or immunocompromised individuals remains an urgent need. Soluble human angiotensin-converting enzyme 2 (ACE2) has been used as a decoy receptor to inhibit SARS-CoV-2 infection, which is limited by moderate affinity. We describe an engineered, high-affinity ACE2 that is consistently effective in tissue cultures in neutralizing all strains tested, including Delta and Omicron. We also found that treatment of AC70 hACE2 transgenic mice with hACE2-Fc receptor decoys effectively reduced viral infection, attenuated tissue histopathology, and delayed the onset of morbidity and mortality caused by SARS-CoV-2 infection. We believe that using this ACE2-Fc protein would be less likely to promote the escape mutants of SARS-CoV-2 as frequently as did those neutralizing antibody therapies. Together, our results emphasize the suitability of our newly engineered hACE2-Fc fusion protein for further development as a potent antiviral agent against Pan-SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bo Yu
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Aleksandra Drelich
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jason Hsu
- Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Vivian Tat
- Pathology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Bi-Hung Peng
- Neuroscience, Cell Biology & Anatomy, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Qisheng Wei
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Jianming Wang
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Hong Wang
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - John Wages
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | | | - James W Larrick
- Larix Bioscience LLC, Sunnyvale, California 94089, United States
| | - Chien-Te Tseng
- Departments of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Pathology, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
14
|
Ong JWJ, Tan KS, Lee JJX, Seet JE, Choi HW, Ler SG, Gunaratne J, Narasaraju T, Sham LT, Patzel V, Chow VT. Differential effects of microRNAs miR-21, miR-99 and miR-145 on lung regeneration and inflammation during recovery from influenza pneumonia. J Med Virol 2023; 95:e29286. [PMID: 38087452 DOI: 10.1002/jmv.29286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/10/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023]
Abstract
In a mouse model of influenza pneumonia, we previously documented that proliferating alveolar type II (AT2) cells are the major stem cells involved in early lung recovery. Profiling of microRNAs revealed significant dysregulation of specific ones, including miR-21 and miR-99a. Moreover, miR-145 is known to exhibit antagonism to miR-21. This follow-up study investigated the roles of microRNAs miR-21, miR-99a, and miR-145 in the murine pulmonary regenerative process and inflammation during influenza pneumonia. Inhibition of miR-21 resulted in severe morbidity, and in significantly decreased proliferating AT2 cells due to impaired transition from innate to adaptive immune responses. Knockdown of miR-99a culminated in moderate morbidity, with a significant increase in proliferating AT2 cells that may be linked to PTEN downregulation. In contrast, miR-145 antagonism did not impact morbidity nor the proliferating AT2 cell population, and was associated with downregulation of TNF-alpha, IL1-beta, YM1, and LY6G. Hence, a complex interplay exists between expression of specific miRNAs, lung regeneration, and inflammation during recovery from influenza pneumonia. Inhibition of miR-21 and miR-99a (but not miR-145) can lead to deleterious cellular and molecular effects on pulmonary repair and inflammatory processes during influenza pneumonia.
Collapse
Affiliation(s)
- Joe Wee Jian Ong
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kai Sen Tan
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Ju Ee Seet
- Department of Pathology, National University of Singapore, Singapore
| | - Hyung Won Choi
- Department of Medicine, National University of Singapore, Singapore
| | | | | | - Teluguakula Narasaraju
- Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, Karnataka, India
| | - Lok-To Sham
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Volker Patzel
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Vincent T Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
15
|
Flagg M, Goldin K, Pérez-Pérez L, Singh M, Williamson BN, Pruett N, Hoang CD, de Wit E. Low level of tonic interferon signalling is associated with enhanced susceptibility to SARS-CoV-2 variants of concern in human lung organoids. Emerg Microbes Infect 2023; 12:2276338. [PMID: 37883246 PMCID: PMC10732190 DOI: 10.1080/22221751.2023.2276338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
There is tremendous heterogeneity in the severity of COVID-19 disease in the human population, and the mechanisms governing the development of severe disease remain incompletely understood. The emergence of SARS-CoV-2 variants of concern (VOC) Delta (B.1.617.2) and Omicron (B.1.1.529) further compounded this heterogeneity. Virus replication and host cell damage in the distal lung is often associated with severe clinical disease, making this an important site to consider when evaluating pathogenicity of SARS-CoV-2 VOCs. Using distal human lung organoids (hLOs) derived from multiple human donors, we compared the fitness and pathogenicity of SARS-CoV-2 VOC Delta and Omicron, along with an ancestral clade B variant D614G, and evaluated donor-dependent differences in susceptibility to infection. We observed substantial attenuation of Omicron in hLOs and demonstrated enhanced susceptibility to Omicron and D614G replication in hLOs from one donor. Transcriptomic analysis revealed that increased susceptibility to SARS-CoV-2 infection in these hLOs was associated with reduced tonic interferon signaling activity at baseline. We show that hLOs can be used to model heterogeneity of SARS-CoV-2 pathogenesis in humans, and propose that variability in tonic interferon signaling set point may impact susceptibility to SARS-CoV-2 VOCs and subsequent COVID-19 disease progression.
Collapse
Affiliation(s)
- Meaghan Flagg
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kerry Goldin
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Lizzette Pérez-Pérez
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Manmeet Singh
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Brandi N. Williamson
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Nathanael Pruett
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuong D. Hoang
- Thoracic Surgery Branch, Division of Intramural Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| |
Collapse
|
16
|
Liu X, Guo Y, Pan W, Xue Q, Fu J, Qu G, Zhang A. Exogenous Chemicals Impact Virus Receptor Gene Transcription: Insights from Deep Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18038-18047. [PMID: 37186679 DOI: 10.1021/acs.est.2c09837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Despite the fact that coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been disrupting human life and health worldwide since the outbreak in late 2019, the impact of exogenous substance exposure on the viral infection remains unclear. It is well-known that, during viral infection, organism receptors play a significant role in mediating the entry of viruses to enter host cells. A major receptor of SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2). This study proposes a deep learning model based on the graph convolutional network (GCN) that enables, for the first time, the prediction of exogenous substances that affect the transcriptional expression of the ACE2 gene. It outperforms other machine learning models, achieving an area under receiver operating characteristic curve (AUROC) of 0.712 and 0.703 on the validation and internal test set, respectively. In addition, quantitative polymerase chain reaction (qPCR) experiments provided additional supporting evidence for indoor air pollutants identified by the GCN model. More broadly, the proposed methodology can be applied to predict the effect of environmental chemicals on the gene transcription of other virus receptors as well. In contrast to typical deep learning models that are of black box nature, we further highlight the interpretability of the proposed GCN model and how it facilitates deeper understanding of gene change at the structural level.
Collapse
Affiliation(s)
- Xian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Yunhe Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Wenxiao Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Qiao Xue
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310012, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P.R. China
| |
Collapse
|
17
|
Erickson R, Huang C, Allen C, Ireland J, Roth G, Zou Z, Lu J, Lafont BAP, Garza NL, Brumbaugh B, Zhao M, Suzuki M, Olano L, Brzostowski J, Fischer ER, Twigg HL, Johnson RF, Sun PD. SARS-CoV-2 infection of human lung epithelial cells induces TMPRSS-mediated acute fibrin deposition. Nat Commun 2023; 14:6380. [PMID: 37821447 PMCID: PMC10567911 DOI: 10.1038/s41467-023-42140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Severe COVID-associated lung injury is a major confounding factor of hospitalizations and death with no effective treatments. Here, we describe a non-classical fibrin clotting mechanism mediated by SARS-CoV-2 infected primary lung but not other susceptible epithelial cells. This infection-induced fibrin formation is observed in all variants of SARS-CoV-2 infections, and requires thrombin but is independent of tissue factor and other classical plasma coagulation factors. While prothrombin and fibrinogen levels are elevated in acute COVID BALF samples, fibrin clotting occurs only with the presence of viral infected but not uninfected lung epithelial cells. We suggest a viral-induced coagulation mechanism, in which prothrombin is activated by infection-induced transmembrane serine proteases, such as ST14 and TMPRSS11D, on NHBE cells. Our finding reveals the inefficiency of current plasma targeted anticoagulation therapy and suggests the need to develop a viral-induced ARDS animal model for treating respiratory airways with thrombin inhibitors.
Collapse
Affiliation(s)
- Rachel Erickson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Chang Huang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Cameron Allen
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Gwynne Roth
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Beniah Brumbaugh
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Ming Zhao
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Motoshi Suzuki
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Lisa Olano
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA
| | - Elizabeth R Fischer
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, 1120 West Michigan Street, CL 260A, Indianapolis, IN, 46202, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter D Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5625 Fishers Ln, Rockville, MD, 20852, USA.
| |
Collapse
|
18
|
Tedesco I, Zito Marino F, Ronchi A, Duarte Neto AN, Dolhnikoff M, Municinò M, Campobasso CP, Pannone G, Franco R. COVID-19: detection methods in post-mortem samples. Pathologica 2023; 115:263-274. [PMID: 38054901 DOI: 10.32074/1591-951x-933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 12/07/2023] Open
Abstract
COVID-19 identification is routinely performed on fresh samples, such as nasopharyngeal and oropharyngeal swabs, even if, the detection of the virus in formalin-fixed paraffin-embedded (FFPE) autopsy tissues could help to underlie mechanisms of the pathogenesis that are not well understood. The gold standard for COVID-19 detection in FFPE samples remains the qRT-PCR as in swab samples, contextually other methods have been developed, including immunohistochemistry (IHC), and in situ hybridization (ISH). In this manuscript, we summarize the main data regarding the methods of COVID-19 detection in pulmonary and extra-pulmonary post-mortem samples, and especially the sensitivity and specificity of these assays will be discussed.
Collapse
Affiliation(s)
- Ilaria Tedesco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| | - Amaro Nunes Duarte Neto
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, Brazil
| | - Marisa Dolhnikoff
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Patologia, São Paulo, Brazil
| | - Maurizio Municinò
- Forensic Medicine Unit, "S. Giuliano" Hospital, Giugliano in Campania, Italy
| | - Carlo Pietro Campobasso
- Department of Experimental Medicine, University of Campania, Luigi Vanvitelli, Naples, Italy
| | - Giuseppe Pannone
- Anatomic Pathology Unit, Department of Clinic and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Renato Franco
- Pathology Unit, Department of Mental and Physical Health and Preventive Medicine, Università degli Studi della Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
19
|
Hao S, Ning K, Kuz CA, Xiong M, Zou W, Park SY, McFarlin S, Yan Z, Qiu J. SARS-CoV-2 infection of polarized human airway epithelium induces necroptosis that causes airway epithelial barrier dysfunction. J Med Virol 2023; 95:e29076. [PMID: 37671751 PMCID: PMC10754389 DOI: 10.1002/jmv.29076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause the ongoing pandemic of coronavirus disease 2019 (COVID19). One key feature associated with COVID-19 is excessive pro-inflammatory cytokine production that leads to severe acute respiratory distress syndrome. Although the cytokine storm induces inflammatory cell death in the host, which type of programmed cell death mechanism that occurs in various organs and cells remains elusive. Using an in vitro culture model of polarized human airway epithelium (HAE), we observed that necroptosis, but not apoptosis or pyroptosis, plays an essential role in the damage of the epithelial barrier of polarized HAE infected with SARS-CoV-2. Pharmacological inhibitors of necroptosis, necrostatin-2 and necrosulfonamide, efficiently prevented cell death and epithelial barrier dysfunction caused by SARS-CoV-2 infection. Moreover, the silencing of genes that are involved in necroptosis, RIPK1, RIPK3, and MLKL, ameliorated airway epithelial damage of the polarized HAE infected with SARS-CoV-2. This study, for the first time, confirms that SARS-CoV-2 infection triggers necroptosis that disrupts the barrier function of human airway epithelia in vitro.
Collapse
Affiliation(s)
- Siyuan Hao
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Cagla Aksu Kuz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Min Xiong
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Wei Zou
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Soo Yeun Park
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Shane McFarlin
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Ziying Yan
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
20
|
Huang E, Gao L, Yu R, Xu K, Wang L. A bibliometric analysis of programmed cell death in acute lung injury/acute respiratory distress syndrome from 2000 to 2022. Heliyon 2023; 9:e19759. [PMID: 37809536 PMCID: PMC10559065 DOI: 10.1016/j.heliyon.2023.e19759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Acute lung injury (ALI) is a prevalent critical disorder that disrupts the body's homeostasis in patients. The progression from ALI to acute respiratory distress syndrome (ARDS) is often accompanied by programmed cell death (PCD). However, there has been a lack of systematic research and comprehensive analysis on the role of different types of PCD in ALI/ARDS. This study aims to analyze the research status, trends, research hotspots, and compare the contribution of publications from different countries, institutions, journals and authors in the field of PCD in ALI/ARDS using bibliometric analysis. We collected publications regard to PCD and ALI/ARDS from Web of Science during 2000-2022. VOSviewer, Citespace, Scimago Graphica, Pajek, and GraphPad Prism 9.0 software were used for further analyzed and visualized. We identified a total of 3495 publications. The number of publications has increased since the beginning of the new century. China produced the most publications (1965), while the United States ranks first in the number of citations (40141). Shanghai Jiao Tong University and American Journal of Physiology-Lung Cellular and Molecular Physiology were the most prolific institution and journal, respectively. Wang, Ping has published most papers (23) while publications from Lee, Pj have most citations (2016). In terms of keywords, "apoptosis" and "inflammation" are the most frequently occurring, but there has been a recent shift from "apoptosis" and "autophagy" to "necroptosis", "pyroptosis", and "ferroptosis". Additionally, COVID-19 and long noncoding RNA (lncRNA) have become research hotspots in recent years. In conclusion, this bibliometric analysis reveals the research directions and frontier hotspots of PCD in ALI/ARDS. China and the United States have made important contributions to the development of this field. The research hotspots have recently focused on necroptosis, pyroptosis, ferroptosiss, COVID-19 and lncRNA.
Collapse
Affiliation(s)
- Enyao Huang
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Li Gao
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Ruiyu Yu
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Keying Xu
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
| | - Lihong Wang
- Department of Pathophysiology, Medical College of Southeast University, Nanjing, 210009, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Nanjing, 210009, China
| |
Collapse
|
21
|
Shi R, Duan Q, Dong W, Guo Y, Xu S. COVID-19 pneumonia in active pulmonary tuberculosis patients: a series of cases. Minerva Med 2023; 114:550-551. [PMID: 34761884 DOI: 10.23736/s0026-4806.21.07882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruiqi Shi
- Intensive Care Unit, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, China
| | - Qiuxia Duan
- Intensive Care Unit, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, China
| | - Weihao Dong
- Intensive Care Unit, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, China
| | - Yong Guo
- Intensive Care Unit, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, China
| | - Shengwei Xu
- Intensive Care Unit, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, China -
| |
Collapse
|
22
|
Cîrjaliu RE, Deacu M, Gherghișan I, Marghescu AȘ, Enciu M, Băltățescu GI, Nicolau AA, Tofolean DE, Arghir OC, Fildan AP. Clinicopathological Outlines of Post-COVID-19 Pulmonary Fibrosis Compared with Idiopathic Pulmonary Fibrosis. Biomedicines 2023; 11:1739. [PMID: 37371834 DOI: 10.3390/biomedicines11061739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
This review brings together the current knowledge regarding the risk factors and the clinical, radiologic, and histological features of both post-COVID-19 pulmonary fibrosis (PCPF) and idiopathic pulmonary fibrosis (IPF), describing the similarities and the disparities between these two diseases, using numerous databases to identify relevant articles published in English through October 2022. This review would help clinicians, pathologists, and researchers make an accurate diagnosis, which can help identify the group of patients selected for anti-fibrotic therapies and future therapeutic perspectives.
Collapse
Affiliation(s)
- Roxana-Elena Cîrjaliu
- Department of Pneumology, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Emergency "St. Andrew" Hospital of Constanta, 900591 Constanta, Romania
| | - Mariana Deacu
- Clinical Emergency "St. Andrew" Hospital of Constanta, 900591 Constanta, Romania
- Department of Anatomopathology, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Ioana Gherghișan
- Department of Pneumology, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Pneumology Hospital of Constanta, 900002 Constanta, Romania
| | - Angela-Ștefania Marghescu
- Department of Anatomopathology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Pneumology Institute "Marius Nasta", 50158 Bucharest, Romania
| | - Manuela Enciu
- Clinical Emergency "St. Andrew" Hospital of Constanta, 900591 Constanta, Romania
- Department of Anatomopathology, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
| | - Gabriela Izabela Băltățescu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Antonela Anca Nicolau
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, "Ovidius" University of Constanta, 900591 Constanta, Romania
| | - Doina-Ecaterina Tofolean
- Department of Pneumology, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Clinical Emergency "St. Andrew" Hospital of Constanta, 900591 Constanta, Romania
| | - Oana Cristina Arghir
- Department of Pneumology, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Pneumology Hospital of Constanta, 900002 Constanta, Romania
| | - Ariadna-Petronela Fildan
- Department of Pneumology, Faculty of Medicine, "Ovidius" University of Constanta, 900470 Constanta, Romania
- Pneumology Hospital of Constanta, 900002 Constanta, Romania
| |
Collapse
|
23
|
Ghorbaninejad M, Asadzadeh-Aghdaei H, Baharvand H, Meyfour A. Intestinal organoids: A versatile platform for modeling gastrointestinal diseases and monitoring epigenetic alterations. Life Sci 2023; 319:121506. [PMID: 36858311 DOI: 10.1016/j.lfs.2023.121506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/03/2023]
Abstract
Considering the significant limitations of conventional 2D cell cultures and tissue in vitro models, creating intestinal organoids has burgeoned as an ideal option to recapitulate the heterogeneity of the native intestinal epithelium. Intestinal organoids can be developed from either tissue-resident adult stem cells (ADSs) or pluripotent stem cells (PSCs) in both forms induced PSCs and embryonic stem cells. Here, we review current advances in the development of intestinal organoids that have led to a better recapitulation of the complexity, physiology, morphology, function, and microenvironment of the intestine. We discuss current applications of intestinal organoids with an emphasis on disease modeling. In particular, we point out recent studies on SARS-CoV-2 infection in human intestinal organoids. We also discuss the less explored application of intestinal organoids in epigenetics by highlighting the role of epigenetic modifications in intestinal development, homeostasis, and diseases, and subsequently the power of organoids in mirroring the regulatory role of epigenetic mechanisms in these conditions and introducing novel predictive/diagnostic biomarkers. Finally, we propose 3D organoid models to evaluate the effects of novel epigenetic drugs (epi-drugs) on the treatment of GI diseases where epigenetic mechanisms play a key role in disease development and progression, particularly in colorectal cancer treatment and epigenetically acquired drug resistance.
Collapse
Affiliation(s)
- Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh-Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
24
|
Pergolizzi JV, LeQuang JA, Varrassi M, Breve F, Magnusson P, Varrassi G. What Do We Need to Know About Rising Rates of Idiopathic Pulmonary Fibrosis? A Narrative Review and Update. Adv Ther 2023; 40:1334-1346. [PMID: 36692679 PMCID: PMC9872080 DOI: 10.1007/s12325-022-02395-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023]
Abstract
The most common type of idiopathic interstitial pneumonia is idiopathic pulmonary fibrosis (IPF), an irreversible, progressive disorder that has lately come into question for possible associations with COVID-19. With few geographical exceptions, IPF is a rare disease but its prevalence has been increasing markedly since before the pandemic. Environmental exposures are frequently implicated in IPF although genetic factors play a role as well. In IPF, healthy lung tissue is progressively replaced with an abnormal extracellular matrix that impedes normal alveolar function while, at the same time, natural repair mechanisms become dysregulated. While chronic viral infections are known risk factors for IPF, acute infections are not and the link to COVID-19 has not been established. Macrophagy may be a frontline defense against any number of inflammatory pulmonary diseases, and the inflammatory cascade that may occur in patients with COVID-19 may disrupt the activity of monocytes and macrophages in clearing up fibrosis and remodeling lung tissue. It is unclear if COVID-19 infection is a risk factor for IPF, but the two can occur in the same patient with complicating effects. In light of its increasing prevalence, further study of IPF and its diagnosis and treatment is warranted.
Collapse
Affiliation(s)
| | | | - Marco Varrassi
- Department of Radiology, University of L'Aquila, L'Aquila, Italy
| | | | - Peter Magnusson
- Institution of Medical Sciences, Orebro University, Orebro, Sweden
- Institute of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
25
|
Iwaniuk A, Jablonska E. Neutrophils in Health and Disease: From Receptor Sensing to Inflammasome Activation. Int J Mol Sci 2023; 24:ijms24076340. [PMID: 37047314 PMCID: PMC10094305 DOI: 10.3390/ijms24076340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Neutrophils—polymorphonuclear cells (PMNs) are the cells of the initial immune response and make up the majority of leukocytes in the peripheral blood. After activation, these cells modify their functional status to meet the needs at the site of action or according to the agent causing injury. They receive signals from their surroundings and “plan” the course of the response in both temporal and spatial contexts. PMNs dispose of intracellular signaling pathways that allow them to perform a wide range of functions associated with the development of inflammatory processes. In addition to these cells, some protein complexes, known as inflammasomes, also have a special role in the development and maintenance of inflammation. These complexes participate in the proteolytic activation of key pro-inflammatory cytokines, such as IL-1β and IL-18. In recent years, there has been significant progress in the understanding of the structure and molecular mechanisms behind the activation of inflammasomes and their participation in the pathogenesis of numerous diseases. The available reports focus primarily on macrophages and dendritic cells. According to the literature, the activation of inflammasomes in neutrophils and the associated death type—pyroptosis—is regulated in a different manner than in other cells. The present work is a review of the latest reports concerning the course of inflammasome activation and inflammatory cytokine secretion in response to pathogens in neutrophils, as well as the role of these mechanisms in the pathogenesis of selected diseases.
Collapse
|
26
|
Chiok K, Hutchison K, Miller LG, Bose S, Miura TA. Proinflammatory Responses in SARS-CoV-2 and Soluble Spike Glycoprotein S1 Subunit Activated Human Macrophages. Viruses 2023; 15:754. [PMID: 36992463 PMCID: PMC10052676 DOI: 10.3390/v15030754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Critically ill COVID-19 patients display signs of generalized hyperinflammation. Macrophages trigger inflammation to eliminate pathogens and repair tissue, but this process can also lead to hyperinflammation and resulting exaggerated disease. The role of macrophages in dysregulated inflammation during SARS-CoV-2 infection is poorly understood. We inoculated and treated human macrophage cell line THP-1 with SARS-CoV-2 and purified, glycosylated, soluble SARS-CoV-2 spike protein S1 subunit (S1) to clarify the role of macrophages in pro-inflammatory responses. Soluble S1 upregulated TNF-α and CXCL10 mRNAs, and induced secretion of TNF-α from THP-1 macrophages. While THP-1 macrophages did not support productive SARS-CoV-2 replication or viral entry, virus exposure resulted in upregulation of both TNF-α and CXCL10 genes. Our study shows that extracellular soluble S1 protein is a key viral component inducing pro-inflammatory responses in macrophages, independent of virus replication. Thus, virus- or soluble S1-activated macrophages may become sources of pro-inflammatory mediators contributing to hyperinflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Kim Chiok
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA (S.B.)
| | - Kevin Hutchison
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Lindsay Grace Miller
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA (S.B.)
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA (S.B.)
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
27
|
Nesterova IV, Atazhakhova MG, Teterin YV, Matushkina VA, Chudilova GA, Mitropanova MN. THE ROLE OF NEUTROPHIL EXTRACELLULAR TRAPS (NETS)
IN THE IMMUNOPATHOGENESIS OF SEVERE COVID-19: POTENTIAL IMMUNOTHERAPEUTIC STRATEGIES REGULATING NET FORMATION AND ACTIVITY. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-tro-2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The role of neutrophil granulocytes (NG) in the pathogenesis of COVID-19 is associated with the recruitment of NG into inflammatory foci, activation of their functions and enhanced formation of neutrophil extracellular networks (NETs). In this review, we analyzed a fairly large volume of scientific literature devoted to the peculiarities of the formation of NETs, their role in the pathogenesis of COVID-19, participation in the occurrence of immunothrombosis, vasculitis, acute respiratory distress syndrome, cytokine storm syndrome, multi-organ lesions. Convincing data are presented that clearly indicate the significant involvement of NETs in the immunopathogenesis of COVID-19 and the associated severe complications resulting from the intensification of the inflammation process, which is key for the course of infection caused by the SARS-CoV-2 virus. The presented role of NG and NETs, along with the role of other immune system cells and pro-inflammatory cytokines, is extremely important in understanding the development of an overactive immune response in severe COVID-19. The obtained scientific results, available today, allow identifying the possibilities of regulatory effects on hyperactivated NG, on the formation of NETs at various stages and on limiting the negative impact of already formed NETs on various tissues and organs. All of the above should help in the creation of new, specialized immunotherapy strategies designed to increase the chances of survival, reduce the severity of clinical manifestations in patients with COVID-19, as well as significantly reduce mortality rates. Currently, it is possible to use existing drugs and a number of new drugs are being developed, the action of which can regulate the amount of NG, positively affect the functions of NG and limit the intensity of NETs formation. Continuing research on the role of hyperactive NG and netosis, as well as understanding the mechanisms of regulation of the phenomenon of formation and restriction of NETs activity in severe COVID-19, apparently, are a priority, since in the future the new data obtained could become the basis for the development of targeted approaches not only to immunotherapy aimed at limiting education and blocking negative effects already formed NETs in severe COVID-19, but also to immunotherapy, which could be used in the complex treatment of other netopathies, first of all, autoimmune diseases, auto-inflammatory syndromes, severe purulent-inflammatory processes, including bacterial sepsis and hematogenous osteomyelitis.
Collapse
|
28
|
Dillard JA, Martinez SA, Dearing JJ, Montgomery SA, Baxter AK. Animal Models for the Study of SARS-CoV-2-Induced Respiratory Disease and Pathology. Comp Med 2023; 73:72-90. [PMID: 36229170 PMCID: PMC9948904 DOI: 10.30802/aalas-cm-22-000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Emergence of the betacoronavirus SARS-CoV-2 has resulted in a historic pandemic, with millions of deaths worldwide. An unprecedented effort has been made by the medical, scientific, and public health communities to rapidly develop and implement vaccines and therapeutics to prevent and reduce hospitalizations and deaths. Although SARS-CoV-2 infection can lead to disease in many organ systems, the respiratory system is its main target, with pneumonia and acute respiratory distress syndrome as the hallmark features of severe disease. The large number of patients who have contracted COVID-19 infections since 2019 has permitted a detailed characterization of the clinical and pathologic features of the disease in humans. However, continued progress in the development of effective preventatives and therapies requires a deeper understanding of the pathogenesis of infection. Studies using animal models are necessary to complement in vitro findings and human clinical data. Multiple animal species have been evaluated as potential models for studying the respiratory disease caused by SARSCoV-2 infection. Knowing the similarities and differences between animal and human responses to infection is critical for effective translation of animal data into human medicine. This review provides a detailed summary of the respiratory disease and associated pathology induced by SARS-CoV-2 infection in humans and compares them with the disease that develops in 3 commonly used models: NHP, hamsters, and mice. The effective use of animals to study SARS-CoV-2-induced respiratory disease will enhance our understanding of SARS-CoV-2 pathogenesis, allow the development of novel preventatives and therapeutics, and aid in the preparation for the next emerging virus with pandemic potential.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- agm, african green monkey
- ali, acute lung injury
- ards, acute respiratory distress syndrome
- balf, bronchoalveolar lavage fluid
- cards, covid-19-associated acute respiratory distress syndrome
- dad, diffuse alveolar damage
- dpi, days postinfection
- ggo, ground glass opacities
- s, spike glycoprotein
Collapse
Affiliation(s)
- Jacob A Dillard
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sabian A Martinez
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Justin J Dearing
- Biological and Biomedical Sciences Program, Office of Graduate Education, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie A Montgomery
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andvictoria K Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina;,
| |
Collapse
|
29
|
Shen X, Wang P, Shen J, Jiang Y, Wu L, Nie X, Liu J, Chen W. Neurological Manifestations of hospitalized patients with mild to moderate infection with SARS-CoV-2 Omicron variant in Shanghai, China. J Infect Public Health 2023; 16:155-162. [PMID: 36535135 PMCID: PMC9726211 DOI: 10.1016/j.jiph.2022.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Accumulating studies demonstrated that patients with coronavirus disease 2019(COVID-19) could develop a variety of neurological manifestations and long-term neurological sequelae, which may be different from the strains. At the peak of the Omicron variant outbreak in Shanghai, China, no relevant epidemiological data about neurological manifestations associated with this strain was reported. OBJECTIVE To investigate neurological manifestations and related clinical features in patients with mild to moderate COVID-19 patients with Omicron variant. METHODS A self-designed clinical information registration form was used to gather the neurological manifestations of mild to moderate COVID-19 patients admitted to a designated hospital in Shanghai from April 18, 2022 to June 1, 2022. Demographics, clinical presentations, laboratory findings, treatments and clinical outcomes were compared between patients with and without neurological manifestations. RESULTS One hundred sixty-nine(48.1 %) of 351 patients diagnosed with mild to moderate COVID-19 exhibited neurological manifestations, the most common of which were fatigue/weakness(25.1 %) and myalgia(20.7 %), whereas acute cerebrovascular disease(0.9 %), impaired consciousness(0.6 %) and seizure(0.6 %) were rare. Younger age(p = 0.001), female gender(p = 0.026) and without anticoagulant medication(p = 0.042) were associated with increasing proportions of neurological manifestations as revealed by multivariate logistic regressions. Patients with neurological manifestations had lower creatine kinase and myoglobin levels, as well as higher proportion of patchy shadowing on chest scan. Vaccination status, clinical classification of COVID-19 and clinical outcomes were similar between the two groups. CONCLUSIONS Nearly half of the involved patients have neurological manifestations which were relatively subjective and closely associated with younger age, female gender and without anticoagulation. Patients with neurologic manifestations may be accompanied by increased lung patchy shadowing.
Collapse
Affiliation(s)
- Xiaolei Shen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ping Wang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jun Shen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuhan Jiang
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Li Wu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xin Nie
- Biostatistics Office of Clinical Research Unit, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jianren Liu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Wei Chen
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
30
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
31
|
Tirelli C, De Amici M, Albrici C, Mira S, Nalesso G, Re B, Corsico AG, Mondoni M, Centanni S. Exploring the Role of Immune System and Inflammatory Cytokines in SARS-CoV-2 Induced Lung Disease: A Narrative Review. BIOLOGY 2023; 12:biology12020177. [PMID: 36829456 PMCID: PMC9953200 DOI: 10.3390/biology12020177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative pathogen of coronavirus disease 19 (COVID-19). COVID-19 can manifest with a heterogenous spectrum of disease severity, from mild upper airways infection to severe interstitial pneumonia and devastating acute respiratory distress syndrome (ARDS). SARS-CoV-2 infection may induce an over activation of the immune system and the release of high concentrations of pro-inflammatory cytokines, leading to a "cytokine storm", a recognized pathogenetic mechanism in the genesis of SARS-CoV-2-induced lung disease. This overproduction of inflammatory cytokines has been recognized as a poor prognostic factor, since it can lead to disease progression, organ failure, ARDS and death. Moreover, the immune system shows dysregulated activity, particularly through activated macrophages and T-helper cells and in the co-occurrent exhaustion of lymphocytes. We carried out a non-systematic literature review aimed at providing an overview of the current knowledge on the pathologic mechanisms played by the immune system and the inflammation in the genesis of SARS-CoV-2-induced lung disease. An overview on potential treatments for this harmful condition and for contrasting the "cytokine storm" has also been presented. Finally, a look at the experimented experimental vaccines against SARS-CoV-2 has been included.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Mara De Amici
- Immuno-Allergology Laboratory of Clinical Chemistry and Department of Pediatrics, IRCCS Policlinico San Matteo University Hospital, 27100 Pavia, Italy
| | - Cristina Albrici
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sabrina Mira
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Giulia Nalesso
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Beatrice Re
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Angelo Guido Corsico
- Pulmonology Unit, Department of Medical Sciences and Infectious Diseases, IRCCS Policlinico San Matteo University Hospital, 27100 Pavia, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
32
|
Linjawi M, Shakoor H, Hilary S, Ali HI, Al-Dhaheri AS, Ismail LC, Apostolopoulos V, Stojanovska L. Cancer Patients during COVID-19 Pandemic: A Mini-Review. Healthcare (Basel) 2023; 11:healthcare11020248. [PMID: 36673615 PMCID: PMC9859465 DOI: 10.3390/healthcare11020248] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Since its emergence, coronavirus disease 2019 (COVID-19) has affected the entire world and all commerce and industries, including healthcare systems. COVID-19 adversely affects cancer patients because they are immunocompromised. Increased COVID-19 infection and shortage of medical supplies, beds and healthcare workers in hospitals affect cancer care. This paper includes a description of the existing research that shows the impact of COVID-19 on the management of cancer patients. Aged people with various chronic conditions such as cancer and comorbidities face more challenges as they have a greater risk of disease severity. COVID-19 has affected care delivery, including patient management, and has been responsible for increased mortality among cancer patients. Cancer patients with severe symptoms require regular therapies and treatment; therefore, they have a higher risk of exposure. Due to the risk of transmission, various steps were taken to combat this disease; however, they have affected the existing operational efficiency. Herein, we present the changing priorities during COVID-19, which also affected cancer care, including delayed diagnosis, treatment, and surgeries.
Collapse
Affiliation(s)
- Maryam Linjawi
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Hira Shakoor
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Serene Hilary
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.H.); (L.S.)
| | - Habiba I. Ali
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ayesha S. Al-Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, OX3 9DU, UK
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Lily Stojanovska
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Correspondence: (S.H.); (L.S.)
| |
Collapse
|
33
|
Kalan Sarı I, Keskin O, Seremet Keskin A, Elli̇dağ HY, Harmandar O. Is Homocysteine Associated with the Prognosis of Covid-19 Pneumonia. Int J Clin Pract 2023; 2023:9697871. [PMID: 36908297 PMCID: PMC9998149 DOI: 10.1155/2023/9697871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
Background/Aim. Coronavirus disease 2019 (COVID-19) is a life-threatening disease characterized by a prothrombotic state. Because homocysteine (Hcy) is a potential biomarker in thrombotic disease, this article aims to highlight the role of Hcy in the prognosis of COVID-19 pneumonia. Methods. This prospective study was conducted between April 2021 and December 2021 at the University of Health Sciences, Antalya Training and Research Hospital. 162 patients admitted to the emergency department for COVID-19 pneumonia and scheduled for hospitalization in the intensive care unit (ICU) or COVID-19 ward of the chest disease department were included in the study. Hcy levels and other necessary laboratory parameters were analyzed. Results. 134 patients were admitted to the COVID-19 ward and 28 to the ICU. Hcy levels were significantly higher in ICU patients than in ward patients (p : 0.001). Of the 134 patients, 55 later required ICU treatment for various reasons and were transferred to the ICU. Hcy (p : 0.010), ferritin (p : 0.041), and LDH (p : 0.010) were significantly higher in patients who were transferred to the ICU than in patients who remained in the ward. The Hcy level was associated with a poor prognosis. It was found that each unit increase in the Hcy level approximately doubled the risk of death in patients with COVID-19 (odds ratio: 1.753). Discussion. There are few studies examining the association between high Hcy levels and disease severity in COVID-19. Our study supports previous studies and shows the association between the need for intensive care and high Hcy levels. Conclusion. A high Hcy value is a helpful marker in determining the need for critical care on admission to the emergency department and a marker of poor prognosis in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Işılay Kalan Sarı
- Department of Endocrinology and Metabolic Disorders, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Olgun Keskin
- Department of Chest Disease, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Ayşegül Seremet Keskin
- Department of Infectious Disease and Clinical Microbiology, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Hamit Yaşar Elli̇dağ
- Department of Clinic of Biochemistry, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| | - Orbay Harmandar
- Department of Critical Care, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Turkey
| |
Collapse
|
34
|
Zhu H, Li X, Chen H, Qian P. Genetic characterization and pathogenicity of a Eurasian avian-like H1N1 swine influenza reassortant virus. Virol J 2022; 19:205. [PMID: 36461007 PMCID: PMC9716174 DOI: 10.1186/s12985-022-01936-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Swine influenza viruses (SIV), considered the "mixing vessels" of influenza viruses, posed a significant threat to global health systems and are dangerous pathogens. Eurasian avian-like H1N1(EA-H1N1) viruses have become predominant in swine populations in China since 2016. METHODS Lung tissue samples were obtained from pregnant sows with miscarriage and respiratory disease in Heilongjiang province, and pathogens were detected by Next-generation sequencing (NGS) and PCR. The nucleic acid of isolates was extracted to detect SIV by RT-PCR. Then, SIV-positive samples were inoculated into embryonated chicken eggs. After successive generations, the isolates were identified by RT-PCR, IFA, WB and TEM. The genetic evolution and pathogenicity to mice of A/swine/Heilongjiang/GN/2020 were analyzed. RESULTS The major pathogens were influenza virus (31%), Simbu orthobunyavirus (15%) and Jingmen tick virus (8%) by NGS, while the pathogen that can cause miscarriage and respiratory disease was influenza virus. The SIV(A/swine/Heilongjiang/GN/2020) with hemagglutination activity was isolated from lung samples and was successfully identified by RT-PCR, IFA, WB and TEM. Homology and phylogenetic analysis showed that A/swine/Heilongjiang/GN/2020 is most closely related to A/swine/Henan/SN/10/2018 and belonged to EA-H1N1. Pathogenicity in mice showed that the EA-H1N1 could cause lethal or exhibit extrapulmonary virus spread and cause severe damage to respiratory tracts effectively proliferating in lung and trachea. CONCLUSION A/swine/Heilongjiang/GN/2020 (EA-H1N1) virus was isolated from pregnant sows with miscarriage and respiratory disease in Heilongjiang province, China. Clinical signs associated with influenza infection were observed during 14 days with A/swine/Heilongjiang/GN/2020 infected mice. These data suggest that A/swine/Heilongjiang/GN/2020 (EA-H1N1) had high pathogenicity and could be systemic spread in mice.
Collapse
Affiliation(s)
- Hechao Zhu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Xiangmin Li
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Huanchun Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Ping Qian
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| |
Collapse
|
35
|
Muacevic A, Adler JR, Mammen S, K A, Athani AV, K S, Sundari M, Ibrahim H, Nila U. Pattern of Lung Involvement in Predicting Severity and Sequelae in Patients With COVID-19. Cureus 2022; 14:e32973. [PMID: 36712734 PMCID: PMC9879588 DOI: 10.7759/cureus.32973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Background During the COVID pandemic, high-resolution CT scan has played a pivotal role in detecting lung involvement and severity based on the segments of the lung involved. The pattern of involvement was not considered, and our aim is to observe the pattern of lung involvement in predicting severity and guiding management protocol in patients with COVID-19. Methodology It was a prospective observational study conducted with 151 patients admitted with COVID-19 with a positive reverse transcriptase polymerase chain reaction test (RT-PCR) in a single tertiary care hospital in south India. Patients with pre-existing lung pathologies were excluded from the study. Eligible patients were then divided into mild, moderate, and severe categories based on Indian Council of Medical Research (ICMR) guidelines, and high-resolution computed tomography (HRCT) chest was done, findings of which were then categorized based on lung involvement; into ground glass opacities (GGO), interstitial involvement and mixture of both. These were then analyzed to determine their importance with respect to the duration of stay and severity of the disease. Results The data collected was analyzed by IBM SPSS software version 23.0 (IBM Corp., Armonk, NY, USA). The study population included 114 males (75.5%) and 37 females (24.5%). HRCT chest was done which showed 62.3% of patients had GGO, 14.6% had interstitial lung involvement, 18.5% had a mixture of both and 4.6% had normal lung findings. These findings, when compared to clinical categories of severity, showed a significant co-relation between pattern of involvement of the lung and the severity of the disease. It also showed significant co-relation with the duration of stay. Conclusion HRCT chest has proven to be useful in the determination of patient's severity and can guide with management. We suggest earlier initiation of steroids and anticoagulants in patients with interstitial involvement even for the patients not on oxygen therapy yet. It can be used as a triage modality for screening due to the advantage of presenting with immediate results as opposed to RT-PCR which might take hours and can delay treatment which can prevent worsening.
Collapse
|
36
|
Nguyenla X, Wehri E, Van Dis E, Biering SB, Yamashiro LH, Zhu C, Stroumza J, Dugast-Darzacq C, Graham TGW, Wang X, Jockusch S, Tao C, Chien M, Xie W, Patel DJ, Meyer C, Garzia A, Tuschl T, Russo JJ, Ju J, Näär AM, Stanley S, Schaletzky J. Discovery of SARS-CoV-2 antiviral synergy between remdesivir and approved drugs in human lung cells. Sci Rep 2022; 12:18506. [PMID: 36323770 PMCID: PMC9628577 DOI: 10.1038/s41598-022-21034-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir's apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.
Collapse
Affiliation(s)
- Xammy Nguyenla
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Eddie Wehri
- The Henry Wheeler Center for Emerging and Neglected Diseases, 344 Li Ka Shing, Berkeley, CA, 94720, USA
| | - Erik Van Dis
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, 94720, USA
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
| | - Livia H Yamashiro
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, 94720, USA
| | - Chi Zhu
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Julien Stroumza
- The Henry Wheeler Center for Emerging and Neglected Diseases, 344 Li Ka Shing, Berkeley, CA, 94720, USA
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, University of California, Berkeley, CA, 94720, USA
| | - Thomas G W Graham
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development, University of California, Berkeley, CA, 94720, USA
| | - Xuanting Wang
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Steffen Jockusch
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Minchen Chien
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Wei Xie
- Laboratory of Structural Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Dinshaw J Patel
- Laboratory of Structural Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY, 10065, USA
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY, 10065, USA
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY, 10065, USA
| | - James J Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY, 10027, USA
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, 10032, USA
| | - Anders M Näär
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
| | - Sarah Stanley
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, CA, 94720, USA.
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, CA, 94720, USA.
| | - Julia Schaletzky
- The Henry Wheeler Center for Emerging and Neglected Diseases, 344 Li Ka Shing, Berkeley, CA, 94720, USA.
| |
Collapse
|
37
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
38
|
Srinivasa Rao ASR, Krantz SG. Mathematical analysis and topology of SARS-CoV-2, bonding with cells and unbonding. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 2022; 514:125664. [PMID: 34538930 PMCID: PMC8438870 DOI: 10.1016/j.jmaa.2021.125664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 06/13/2023]
Abstract
We consider the structure of the novel coronavirus (SARS-Cov-2) in terms of the number of spikes that are critical in bonding with the cells in the host. Bonding formation is considered for selection criteria with and without any treatments. Functional mappings from the discrete space of spikes and cells and their analysis are performed. We found that careful mathematical constructions help in understanding the treatment impacts, and the role of vaccines within a host. Smale's famous 2-D horseshoe examples inspired us to create 3-D visualizations and understand the topological diffusion of spikes from one human organ to another organ. The pharma industry will benefit from such an analysis for designing efficient treatment and vaccine strategies.
Collapse
Affiliation(s)
- Arni S R Srinivasa Rao
- Laboratory for Theory and Mathematical Modeling, Medical College of Georgia, Department of Mathematics, Augusta University, GA, USA
| | - Steven G Krantz
- Department of Mathematics, Washington University in St. Louis, MO, USA
| |
Collapse
|
39
|
Pelle MC, Zaffina I, Lucà S, Forte V, Trapanese V, Melina M, Giofrè F, Arturi F. Endothelial Dysfunction in COVID-19: Potential Mechanisms and Possible Therapeutic Options. Life (Basel) 2022; 12:1605. [PMID: 36295042 PMCID: PMC9604693 DOI: 10.3390/life12101605] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2, a novel coronavirus found in Wuhan (China) at the end of 2019, is the etiological agent of the current pandemic that is a heterogeneous disease, named coronavirus disease 2019 (COVID-19). SARS-CoV-2 affects primarily the lungs, but it can induce multi-organ involvement such as acute myocardial injury, myocarditis, thromboembolic eventsandrenal failure. Hypertension, chronic kidney disease, diabetes mellitus and obesity increase the risk of severe complications of COVID-19. There is no certain explanation for this systemic COVID-19 involvement, but it could be related to endothelial dysfunction, due to direct (endothelial cells are infected by the virus) and indirect damage (systemic inflammation) factors. Angiotensin-converting enzyme 2 (ACE2), expressed in human endothelium, has a fundamental role in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In fact, ACE2 is used as a receptor by SARS-CoV-2, leading to the downregulation of these receptors on endothelial cells; once inside, this virus reduces the integrity of endothelial tissue, with exposure of prothrombotic molecules, platelet adhesion, activation of coagulation cascades and, consequently, vascular damage. Systemic microangiopathy and thromboembolism can lead to multi-organ failure with an elevated risk of death. Considering the crucial role of the immunological response and endothelial damage in developing the severe form of COVID-19, in this review, we will attempt to clarify the underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- Maria Chiara Pelle
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Zaffina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Stefania Lucà
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Valentina Forte
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Trapanese
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Melania Melina
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Giofrè
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| | - Franco Arturi
- Unit of Internal Medicine, Department of Medical and Surgical Sciences, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
- Research Centre for the Prevention and Treatment of Metabolic Diseases (CR METDIS), University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
40
|
Jaeger BR, Arron HE, Kalka-Moll WM, Seidel D. The potential of heparin-induced extracorporeal LDL/fibrinogen precipitation (H.E.L.P.)-apheresis for patients with severe acute or chronic COVID-19. Front Cardiovasc Med 2022; 9:1007636. [PMID: 36304538 PMCID: PMC9592739 DOI: 10.3389/fcvm.2022.1007636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with long COVID and acute COVID should benefit from treatment with H.E.L.P. apheresis, which is in clinical use for 37 years. COVID-19 can cause a severe acute multi-organ illness and, subsequently, in many patients the chronic illness long-COVID/PASC. The alveolar tissue and adjacent capillaries show inflammatory and procoagulatory activation with cell necrosis, thrombi, and massive fibrinoid deposits, namely, unsolvable microthrombi, which results in an obstructed gas exchange. Heparin-induced extracorporeal LDL/fibrinogen precipitation (H.E.L.P.) apheresis solves these problems by helping the entire macro- and microcirculation extracorporeally. It uses unfractionated heparin, which binds the spike protein and thereby should remove the virus (debris). It dissolves the forming microthrombi without bleeding risk. It removes large amounts of fibrinogen (coagulation protein), which immediately improves the oxygen supply in the capillaries. In addition, it removes the precursors of both the procoagulatory and the fibrinolytic cascade, thus de-escalating the entire hemostaseological system. It increases myocardial, cerebral, and pulmonary blood flow rates, and coronary flow reserve, facilitating oxygen exchange in the capillaries, without bleeding risks. Another factor in COVID is the “cytokine storm” harming microcirculation in the lungs and other organs. Intervention by H.E.L.P. apheresis could prevent uncontrollable coagulation and inflammatory activity by removing cytokines such as interleukin (IL)-6, IL-8, and TNF-α, and reduces C-reactive protein, and eliminating endo- and ecto-toxins, without touching protective IgM/IgG antibodies, leukocyte, or platelet function. The therapy can be used safely in combination with antiviral drugs, antibiotics, anticoagulants, or antihypertensive drugs. Long-term clinical experience with H.E.L.P. apheresis shows it cannot inflict harm upon patients with COVID-19.
Collapse
Affiliation(s)
- Beate Roxane Jaeger
- Lipidzentrum Nordrhein, Mülheim, Germany,*Correspondence: Beate Roxane Jaeger
| | - Hayley Emma Arron
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Wiltrud M. Kalka-Moll
- Institut für infektiologische und mikrobiologische Beratung (Infactio), Bedburg, Germany
| | - Dietrich Seidel
- Institut tür Klinische Chemie und Laboratoriumsmedizin, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
41
|
Liu KS, Mao XD, Ni W, Li TP. Laboratory detection of SARS-CoV-2: A review of the current literature and future perspectives. Heliyon 2022; 8:e10858. [PMID: 36212015 PMCID: PMC9527186 DOI: 10.1016/j.heliyon.2022.e10858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/16/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Nowadays, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), whose infectivity is awfully strong, has been a major global threat to the public health. Since lung is the major target of SARS-CoV-2, the infection can lead to respiratory distress syndrome (RDS), multiple organ failure (MOF), and even death. The studies on viral structure and infection mechanism have found that angiotensin-converting enzyme 2 (ACE2), a pivotal enzyme affecting the organ-targeting in the RAS system, is the receptor of the SARS-CoV-2 virus. Currently, the detection of SARSCoV-2 is mainly achieved using open plate real-time reverse-transcription polymerase chain reaction (RT-PCR). While open plate method has some limitations, such as a high false-negative rate, cumbersome manual operation, aerosol pollution and leakage risks. Therefore, a convenient method to rapidly detect SARS-CoV-2 virus is urgently and extremely required for timely epidemic control with the limited resources. In this review, the current real-time methods and principles for novel coronavirus detection are summarized, with the aim to provide a reference for real-time screening of coronavirus in areas with insufficient detection capacity and inadequate medical resources. The development and establishment of a rapid, simple, sensitive and specific system to detect SARS-CoV-2 is of vital importance for distinct diagnosis and effective treatment of the virus, especially in the flu season.
Collapse
Affiliation(s)
- Kang-Sheng Liu
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210029, China
| | - Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China,Key Laboratory of TCM Syndrome & Treatment of Yingbing of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Wenjing Ni
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China,Key Laboratory of TCM Syndrome & Treatment of Yingbing of State Administration of Traditional Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Tai-Ping Li
- Department of Neuro-Psychiatric Institute, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China,Corresponding author.
| |
Collapse
|
42
|
Panati K, Timmana LV, Reddy AT V, Reddy Saddala R, Ramireddy Narala V. Virology and Molecular Pathogenesis of Coronavirus Disease 2019: An Update. Eurasian J Med 2022; 54:299-304. [PMID: 35971283 PMCID: PMC9797742 DOI: 10.5152/eurasianjmed.2022.21133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The pandemic coronavirus disease 2019 outbreak's causative agent was identified as severe acute respiratory syndrome coronavirus 2. It is a positive-sense single-stranded RNA virus with a ~30 kb size genome that belongs to the Nidovirales. Molecular analysis revealed that severe acute respiratory syndrome coronavirus 2 is a variant of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus with some sequence similarity. The confirmed cases and death toll are high in severe acute respiratory syndrome coronavirus 2 compared to severe acute respiratory syndrome coronavirus and the estimated R0 is >1. The data on pathological findings on severe acute respiratory syndrome coronavirus 2 are scarce and present treatment management is based on symptoms that are similar to severe acute respiratory syndrome coronavirus. In this review, we have discussed the transmission, viral replication, and cytokine storm and highlighted the recent pathological findings of coronavirus disease 2019. The reported severe acute respiratory syndrome coronavirus 2 pathological findings were similar to that of severe acute respiratory syndrome coronavirus. Though these findings help notify the clinical course of the disease, it warrants further in vivo and ex vivo studies with larger samples obtained from the coronavirus disease 2019 patients.
Collapse
Affiliation(s)
- Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa, A.P, India
| | - Lokesh V Timmana
- Department of Zoology, Yogi Vemana University, Kadapa, A.P, India
| | | | | | | |
Collapse
|
43
|
Roy B, Runa SA. SARS-CoV-2 infection and diabetes: Pathophysiological mechanism of multi-system organ failure. World J Virol 2022; 11:252-274. [PMID: 36188734 PMCID: PMC9523319 DOI: 10.5501/wjv.v11.i5.252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/25/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Since the discovery of the coronavirus disease 2019 outbreak, a vast majority of studies have been carried out that confirmed the worst outcome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in people with preexisting health conditions, including diabetes, obesity, hypertension, cancer, and cardiovascular diseases. Likewise, diabetes itself is one of the leading causes of global public health concerns that impose a heavy global burden on public health as well as socio-economic development. Both diabetes and SARS-CoV-2 infection have their independent ability to induce the pathogenesis and severity of multi-system organ failure, while the co-existence of these two culprits can accelerate the rate of disease progression and magnify the severity of the disease. However, the exact pathophysiology of multi-system organ failure in diabetic patients after SARS-CoV-2 infection is still obscure. This review summarized the organ-specific possible molecular mechanisms of SARS-CoV-2 and diabetes-induced pathophysiology of several diseases of multiple organs, including the lungs, heart, kidneys, brain, eyes, gastrointestinal system, and bones, and sub-sequent manifestation of multi-system organ failure.
Collapse
Affiliation(s)
- Bipradas Roy
- Department of Physiology, Wayne State University, Detroit, MI 48201, United States
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Health System, Detroit, MI 48202, United States
| | - Sadia Afrin Runa
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| |
Collapse
|
44
|
Sheehan JR, Calpin P, Kernan M, Kelly C, Casey S, Murphy D, Alvarez-Iglesias A, Giacomini C, Cody C, Curley G, McGeary S, Hanley C, McNicholas B, van Haren F, Laffey JG, Cosgrave D. The CHARTER-Ireland trial: can nebulised heparin reduce acute lung injury in patients with SARS-CoV-2 requiring advanced respiratory support in Ireland: a study protocol and statistical analysis plan for a randomised control trial. Trials 2022; 23:774. [PMID: 36104785 PMCID: PMC9471050 DOI: 10.1186/s13063-022-06518-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background COVID-19 pneumonia is associated with the development of acute respiratory distress syndrome (ARDS) displaying some typical histological features. These include diffuse alveolar damage with extensive pulmonary coagulation activation. This results in fibrin deposition in the microvasculature, leading to the formation of hyaline membranes in the air sacs. Well-conducted clinical trials have found that nebulised heparin limits pulmonary fibrin deposition, attenuates progression of ARDS, hastens recovery and is safe in non-COVID ARDS. Unfractionated heparin also inactivates the SARS-CoV-2 virus and prevents entry into mammalian cells. Nebulisation of heparin may therefore limit fibrin-mediated lung injury and inhibit pulmonary infection by SARS-CoV-2. Based on these findings, we designed the CHARTER-Ireland Study, a phase 1b/2a randomised controlled study of nebulised heparin in patients requiring advanced respiratory support for COVID-19 pneumonia. Methods This is a multi-centre, phase 1b/IIa, randomised, parallel-group, open-label study. The study will randomise 40 SARs-CoV-2-positive patients receiving advanced respiratory support in a critical care area. Randomisation will be via 1:1 allocation to usual care plus nebulised unfractionated heparin 6 hourly to day 10 while receiving advanced respiratory support or usual care only. The study aims to evaluate whether unfractionated heparin will decrease the procoagulant response associated with ARDS up to day 10. The study will also assess safety and tolerability of nebulised heparin as defined by number of severe adverse events; oxygen index and respiratory oxygenation index of intubated and unintubated, respectively; ventilatory ratio; and plasma concentration of interleukin (IL)-1β, IL6, IL-8, IL-10 and soluble tumour necrosis factor receptor 1, C-reactive protein, procalcitonin, ferritin, fibrinogen and lactate dehydrogenase as well as the ratios of IL-1β/IL-10 and IL-6/IL-10. These parameters will be assessed on days 1, 3, 5 and 10; time to separation from advanced respiratory support, time to discharge from the intensive care unit and number tracheostomised to day 28; and survival to days 28 and 60 and to hospital discharge, censored at day 60. Some clinical outcome data from our study will be included in the international meta-trials, CHARTER and INHALE-HEP. Discussion This trial aims to provide evidence of potential therapeutic benefit while establishing safety of nebulised heparin in the management of ARDS associated with SARs-CoV-2 infection. Trial registration ClinicalTrials.govNCT04511923. Registered on 13 August 2020. Protocol version 8, 22/12/2021 Protocol identifier: NUIG-2020-003 EudraCT registration number: 2020-003349-12 9 October 2020 Supplementary Information The online version contains supplementary material available at 10.1186/s13063-022-06518-z.
Collapse
|
45
|
Atypical follicular hyperplasia with light chain-restricted germinal centers after COVID-19 booster: a diagnostic pitfall. Virchows Arch 2022; 482:905-910. [PMID: 36098816 PMCID: PMC9469053 DOI: 10.1007/s00428-022-03400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 10/26/2022]
Abstract
There has been a surge in COVID-19 vaccine-associated lymphadenopathy (LAD), including after the booster dose of vaccine. This can create diagnostic dilemmas in oncology patients as the relatively sudden LAD can mimic metastasis or cancer recurrence, at a risk of leading to additional but unnecessary anti-neoplastic therapy. Here we report the histopathologic features in a case of persistent LAD occurring in a patient with history of breast invasive ductal carcinoma which followed a COVID-19 vaccine booster. A needle core and then excisional biopsy showed atypical follicular hyperplasia with features that histologically and phenotypically could mimic follicular lymphoma, but the findings were ultimately interpreted to be reactive in nature and related temporally to COVID-19 vaccine. To our knowledge, this is the first case of an atypical lymphoproliferative lesion with features potentially mimicking lymphoma associated with COVID-19 vaccine.
Collapse
|
46
|
Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4032704. [PMID: 36132227 PMCID: PMC9484957 DOI: 10.1155/2022/4032704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023]
Abstract
The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a “proof of principle” for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.
Collapse
|
47
|
Trofimov NA, Babokin VE, Dubova AV, Koshelkova AV, Dimitrieva OV, Rodionov AL, Abizov IN, Oreshnikov EV, Anurov SA, Zamlikhanova SS, Igonin YA, Gordeeva KE, Surkova TV, Nikolsky VO. The use of an Inhaled Surfactant in Patients With Severe and Extremely Severe new Coronavirus Infection COVID-19 With Concomitant Cardiovascular Pathology. KARDIOLOGIIA 2022; 62:27-32. [PMID: 36066984 DOI: 10.18087/cardio.2022.8.n1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/29/2021] [Indexed: 06/15/2023]
Abstract
Aim To study the effectiveness of nebulized surfactant therapy as a part of a multimodality treatment of severe and extremely severe COVID-19 viral pneumonia with concomitant cardiovascular diseases (CVDs).Material and methods This retrospective controlled study analyzed a multimodality treatment of 38 patients with severe and extremely severe COVID-19 viral pneumonia and concomitant CVDs who were administered nebulized surfactant for correction of acute respiratory distress syndrome (ARDS). The control group consisted of 105 patients with severe and extremely severe novel coronavirus infection with concomitant CVDs who were not administered surfactant as a part of the multimodality therapy.Results Administration of nebulized surfactant as a part of the multimodality treatment in patients with COVID-19 allowed alleviating the severity of respiratory insufficiency (р<0.001), which decreased the death rate of patients with severe and extremely severe COVID-19 and undoubtedly demonstrated the effectiveness of this medicine. The timely multimodality therapy, including nebulized surfactant, improves the course of the disease. Thus, the absence of a possibility for administering nebulized surfactant for more than 4 days was associated with fatal outcomes (р=0.045).Conclusion Administration of nebulized surfactant as a part of the multimodality treatment of severe and extremely severe COVID-19 and concomitant CVDs increases the survival (р<0.001) and reduces the mortality by 46 %. The risk factors of an unfavorable outcome of this disease include an age older than 65 (р=0.020), a positive polymerase chain reaction test (р=0.037), a ferritin concentration at baseline >600 mg /ml (р<0.001), and a surfactant treatment duration < 4 days (р=0.045). Further study of the efficacy of nebulized surfactants as a part of the multimodality therapy is required and should include randomized clinical trials with a large number of patients and the development of distinct criteria for the treatment of ARDS.
Collapse
Affiliation(s)
- N A Trofimov
- I.N. Uljyanov Chuvash State University, Cheboksary; Chuvash Republic Cardiological Dispensary, Cheboksary; Institute for Advanced Medical Education, Cheboksary; Federal Center for Traumatology, Orthopedics, and Arthroplasty, Cheboksary; Privolzhsky Research Medical University, Nizhny Novgorod
| | - V E Babokin
- I.N. Uljyanov Chuvash State University, Cheboksary; Chuvash Republic Cardiological Dispensary, Cheboksary; Institute for Advanced Medical Education, Cheboksary
| | - A V Dubova
- I.N. Uljyanov Chuvash State University, Cheboksary; Chuvash Republic Cardiological Dispensary, Cheboksary
| | | | - O V Dimitrieva
- I.N. Uljyanov Chuvash State University, Cheboksary; Chuvash Republic Cardiological Dispensary, Cheboksary
| | - A L Rodionov
- I.N. Uljyanov Chuvash State University, Cheboksary; Chuvash Republic Cardiological Dispensary, Cheboksary
| | - I N Abizov
- I.N. Uljyanov Chuvash State University, Cheboksary
| | | | - S A Anurov
- I.N. Uljyanov Chuvash State University, Cheboksary
| | | | - Yu A Igonin
- I.N. Uljyanov Chuvash State University, Cheboksary
| | - K E Gordeeva
- I.N. Uljyanov Chuvash State University, Cheboksary; Chuvash Republic Cardiological Dispensary, Cheboksary
| | - T V Surkova
- I.N. Uljyanov Chuvash State University, Cheboksary
| | - V O Nikolsky
- Nizhny Novgorod Regional Clinical Antituberculosis Dispensary, Nizhny Novgorod
| |
Collapse
|
48
|
Omidian N, Mohammadi P, Sadeghalvad M, Mohammadi-Motlagh HR. Cerebral microvascular complications associated with SARS-CoV-2 infection: How did it occur and how should it be treated? Biomed Pharmacother 2022; 154:113534. [PMID: 35994816 PMCID: PMC9381434 DOI: 10.1016/j.biopha.2022.113534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023] Open
Abstract
Cerebral microvascular disease has been reported as a central feature of the neurological disorders in patients with SARS-CoV-2 infection that may be associated with an increased risk of ischemic stroke. The main pathomechanism in the development of cerebrovascular injury due to SARS-CoV-2 infection can be a consequence of endothelial cell dysfunction as a structural part of the blood-brain barrier (BBB), which may be accompanied by increased inflammatory response and thrombocytopenia along with blood coagulation disorders. In this review, we described the properties of the BBB, the neurotropism behavior of SARS-CoV-2, and the possible mechanisms of damage to the CNS microvascular upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Neda Omidian
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Sadeghalvad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
49
|
Zhao F, Wang J, Wang Q, Hou Z, Zhang Y, Li X, Wu Q, Chen H. Organoid technology and lung injury mouse models evaluating effects of hydroxychloroquine on lung epithelial regeneration. Exp Anim 2022; 71:316-328. [PMID: 35197405 PMCID: PMC9388344 DOI: 10.1538/expanim.21-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/20/2022] [Indexed: 11/04/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) damages lung epithelial stem/progenitor cells. Ideal anti-SARS-CoV-2 drug candidates should be screened to prevent secondary injury to the lungs. Here, we propose that in vitro three-dimensional organoid and lung injury repair mouse models are powerful models for the screening antiviral drugs. Lung epithelial progenitor cells, including airway club cells and alveolar type 2 (AT2) cells, were co-cultured with supportive fibroblast cells in transwell inserts. The organoid model was used to evaluate the possible effects of hydroxychloroquine, which is administered as a symptomatic therapy to the coronavirus disease 2019 (COVID-19) patients, on the function of mouse lung stem/progenitor cells. Hydroxychloroquine was observed to promote the self-renewal of club cells and differentiation of ciliated and goblet cells in vitro. Additionally, it inhibited the self-renewal ability of AT2 cells in vitro. Naphthalene- or bleomycin-induced lung injury repair mouse models were used to investigate the in vivo effects of hydroxychloroquine on the regeneration of club and AT2 cells, respectively. The naphthalene model indicated that the proliferative ability and differentiation potential of club cells were unaffected in the presence of hydroxychloroquine. The bleomycin model suggested that hydroxychloroquine had a limited effect on the proliferation and differentiation abilities of AT2 cells. These findings suggest that hydroxychloroquine has limited effects on the regenerative ability of epithelial stem/progenitor cells. Thus, stem/progenitor cell-derived organoid technology and lung epithelial injury repair mouse models provide a powerful platform for drug screening, which could possibly help end the pandemic.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
| | - Qi Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
| | - Zhili Hou
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
| | - Yingchao Zhang
- Department of Pulmonary and Critical Care Medicine, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, No. 8 Guangchuan Road, Baodi District, Tianjin 300350, P.R. China
| | - Xue Li
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
- Tianjin Key Laboratory of Lung Regenerative Medicine, No. 890, Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
| | - Qi Wu
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, No. 890 Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
- Tianjin Key Laboratory of Lung Regenerative Medicine, No. 890, Jingu Road, Shuanggang Town, Jinnan District, Tianjin 300350, P.R. China
| |
Collapse
|
50
|
Ferreira-da-Silva R, Ribeiro-Vaz I, Morato M, Junqueira Polónia J. A comprehensive review of adverse events to drugs used in COVID-19 patients: Recent clinical evidence. Eur J Clin Invest 2022; 52:e13763. [PMID: 35224719 PMCID: PMC9111855 DOI: 10.1111/eci.13763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 01/08/2023]
Abstract
BACKGROUND Since the breakthrough of the pandemic, several drugs have been used to treat COVID-19 patients. This review aims to gather information on adverse events (AE) related to most drugs used in this context. METHODS We performed a literature search to find articles that contained information about AE in COVID-19 patients. We analysed and reviewed the most relevant studies in the Medline (via PubMed), Scopus and Web of Science. The most frequent AE identified were grouped in our qualitative analysis by System Organ Class (SOC), the highest level of the MedDRA medical terminology for each of the drugs studied. RESULTS The most frequent SOCs among the included drugs are investigations (n = 7 drugs); skin and subcutaneous tissue disorders (n = 5 drugs); and nervous system disorders, infections and infestations, gastrointestinal disorders, hepatobiliary disorders, and metabolism and nutrition disorders (n = 4 drugs). Other SOCs also emerged, such as general disorders and administration site conditions, renal and urinary disorders, vascular disorders and cardiac disorders (n = 3 drugs). Less frequent SOC were eye disorders, respiratory, thoracic and mediastinal disorders, musculoskeletal and connective tissue disorders, and immune system disorders (n = 2 drugs). Psychiatric disorders, and injury, poisoning and procedural complications were also reported (n = 1 drug). CONCLUSIONS Some SOCs seem to be more frequent than others among the COVID-19 drugs included, although neither of the studies included reported causality analysis. For that purpose, further clinical studies with robust methodologies, as randomised controlled trials, should be designed and performed.
Collapse
Affiliation(s)
- Renato Ferreira-da-Silva
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,Department of Community Medicine, Health Information and Decision, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Inês Ribeiro-Vaz
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,Department of Community Medicine, Health Information and Decision, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal
| | - Manuela Morato
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, University of Porto, Porto, Portugal
| | - Jorge Junqueira Polónia
- Porto Pharmacovigilance Centre, INFARMED, I.P, University of Porto, Porto, Portugal.,CINTESIS - Center for Health Technology and Services Research, Porto, Portugal.,Department of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|