1
|
Ali A, Iqbal A, Khan S, Ahmad N, Shah S. A two-phase transfer learning framework for gastrointestinal diseases classification. PeerJ Comput Sci 2024; 10:e2587. [PMID: 39896396 PMCID: PMC11784777 DOI: 10.7717/peerj-cs.2587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/17/2024] [Indexed: 02/04/2025]
Abstract
Gastrointestinal (GI) disorders are common and often debilitating health issues that affect a significant portion of the population. Recent advancements in artificial intelligence, particularly computer vision algorithms, have shown great potential in detecting and classifying medical images. These algorithms utilize deep convolutional neural network architectures to learn complex spatial features in images and make predictions for similar unseen images. The proposed study aims to assist gastroenterologists in making more efficient and accurate diagnoses of GI patients by utilizing its two-phase transfer learning framework to identify GI diseases from endoscopic images. Three pre-trained image classification models, namely Xception, InceptionResNetV2, and VGG16, are fine-tuned on publicly available datasets of annotated endoscopic images of the GI tract. Additionally, two custom convolutional neural networks are constructed and fully trained for comparative analysis of their performance. Four different classification tasks are examined based on the endoscopic image categories. The proposed architecture employing InceptionResNetV2 achieves the most consistent and generalized performance across most classification tasks, yielding accuracy scores of 85.7% for general classification of GI tract (eight-category classification), 97.6% for three-diseases classification, 99.5% for polyp identification (binary classification), and 74.2% for binary classification of esophagitis severity on unseen endoscopic images. The results indicate the effectiveness of the two-phase transfer learning framework for clinical use to enhance the identification of GI diseases, aiding in their early diagnosis and treatment.
Collapse
Affiliation(s)
- Ahmed Ali
- School of Computing Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Arshad Iqbal
- School of Computing Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Haripur, Khyber Pakhtunkhwa, Pakistan
- Sino-Pak Center for Artificial Intelligence, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Sohail Khan
- Sino-Pak Center for Artificial Intelligence, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Mang, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ahmad
- College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Sajid Shah
- College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Nadia J, Roy D, Montoya CA, Singh H, Acevedo-Fani A, Bornhorst GM. A proposed framework to establish in vitro- in vivo relationships using gastric digestion models for food research. Food Funct 2024; 15:10233-10261. [PMID: 39302221 DOI: 10.1039/d3fo05663e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In vitro digestion methods have been utilized in food research to reduce in vivo studies. Although previous studies have related in vitro and in vivo data, there is no consensus on how to establish an in vitro-in vivo relationship (IVIVR) for food digestion. A framework that serves as a tool to evaluate the utility and limitations of in vitro approaches in simulating in vivo processes is proposed to develop IVIVRs for food digestion, with a focus on the gastric phase as the main location of food structural breakdown during digestion. The IVIVR consists of three quantitative levels (A, B, and C) and a qualitative level (D), which relate gastric digestion kinetic data on a point-to-point basis, parameters derived from gastric digestion kinetic data, in vitro gastric digestion parameters with in vivo absorption or appearance parameters, and in vitro and in vivo trends, respectively. Level A, B, and C IVIVRs can be used to statistically determine the agreement between in vitro and in vivo data. Level A and B IVIVRs can be utilized further evaluate the accuracy of the in vitro approach to mimic in vivo processes. To exemplify the utilization of this framework, case studies are provided using previously published static and dynamic gastric in vitro digestion data and in vivo animal study data. Future food digestion studies designed to establish IVIVRs should be conducted to refine and improve the current framework, and to improve in vitro digestion approaches to better mimic in vivo phenomena.
Collapse
Affiliation(s)
- Joanna Nadia
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Debashree Roy
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | - Carlos A Montoya
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Smart Foods & Bioproducts, AgResearch, Te Ohu Rangahau Kai Facility, Palmerston North 4474, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| | | | - Gail M Bornhorst
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North, New Zealand.
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Gulinac M, Kiprin G, Tsranchev I, Graklanov V, Chervenkov L, Velikova T. Clinical issues and challenges in imaging of gastrointestinal diseases: A minireview and our experience. World J Clin Cases 2024; 12:3304-3313. [PMID: 38983422 PMCID: PMC11229912 DOI: 10.12998/wjcc.v12.i18.3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Imaging techniques play a crucial role in the modern era of medicine, particularly in gastroenterology. Nowadays, various non-invasive and invasive imaging modalities are being routinely employed to evaluate different gastrointestinal (GI) diseases. However, many instrumental as well as clinical issues are arising in the area of modern GI imaging. This minireview article aims to briefly overview the clinical issues and challenges encountered in imaging GI diseases while highlighting our experience in the field. We also summarize the advances in clinically available diagnostic methods for evaluating different diseases of the GI tract and demonstrate our experience in the area. In conclusion, almost all imaging techniques used in imaging GI diseases can also raise many challenges that necessitate careful consideration and profound expertise in this field.
Collapse
Affiliation(s)
- Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Georgi Kiprin
- Department of Gastroenterology, MHAT Eurohospital, Plovdiv 4000, Bulgaria
| | - Ivan Tsranchev
- Department of Forensic Medicine and Deontology, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Vasko Graklanov
- First Department of Internal Diseases, Medical University of Plovdiv, Plovdiv 4000, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Plovdiv 4000, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
4
|
Che X, Yang C, Pan L, Gu D, Dai G, Shu J, Yang L. Achieving safe and high-performance gastrointestinal tract spectral CT imaging with small-molecule lanthanide complex. Biomater Res 2023; 27:119. [PMID: 37990349 PMCID: PMC10664581 DOI: 10.1186/s40824-023-00463-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Non-intrusive imaging of gastrointestinal (GI) tract using computed tomography (CT) contrast agents is of the most significant issues in the diagnosis and treatment of GI diseases. Moreover, spectral CT, which can generate monochromatic images to display the X-ray attenuation characteristics of contrast agents, provides a better imaging sensitivity for diagnose inflammatory bowel disease (IBD) than convention CT imaging. METHODS Herein, a convenient and one-pot synthesis method is provided for the fabrication of small-molecule lanthanide complex Holmium-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (Ho-DOTA) as a biosafe and high-performance spectral CT contrast agent for GI imaging with IBD. In vivo CT imaging was administered with both healthy mice and colitis mice induced by dextran sodium sulfate. RESULTS We found that Ho-DOTA accumulated in inflammation sites of large intestines and produced high CT contrast compared with healthy mice. Both in vitro and in vivo experimental results also showed that Ho-DOTA provided much more diagnostic sensitivity and accuracy due to the excellent X-ray attenuation characteristics of Ho-DOTA compared with clinical iodinate agent. Furthermore, the proposed contrast media could be timely excreted from the body via the urinary and digestive system, keeping away from the potential side effects due to long-term retention in vivo. CONCLUSION Accordingly, Ho-DOTA with excellent biocompatibility can be useful as a potential high-performance spectral CT contrast agent for further clinical imaging of gastrointestinal tract and diagnosis of intestinal system diseases.
Collapse
Affiliation(s)
- Xiaoling Che
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Liping Pan
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Didi Gu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Guidong Dai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Lu Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
5
|
Polymer-coated BiOCl nanosheets for safe and regioselective gastrointestinal X-ray imaging. J Control Release 2022; 349:475-485. [PMID: 35839934 DOI: 10.1016/j.jconrel.2022.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
Bismuth-based compounds are considered to be the best candidates for computed tomography (CT) imaging of gastrointestinal (GI) tract due to high X-ray absorption. Here, we report the introduction of polymer-coated bismuth oxychloride (BiOCl) nanosheets for highly efficient CT imaging in healthy mice and animal with colitis. We demonstrate simple, low cost and fast aqueous synthesis protocol which provides gram-quantity yield of chemically stable BiOCl nanosheets. The developed contrast gives 2.55-fold better CT enhancement compared to conventional contrast with negligible in vivo toxicity. As a major finding we report a regioselective CT imaging of GI tract by using nanoparticles coated with differentially charged polymers. Coating of nanoparticles with a positively charged polymer leads to their fast accumulation in small intestine, while the coating with negatively charged polymers stimulates prolonged stomach retention. We propose that this effect may be explained by a pH-controlled aggregation of nanoparticles in stomach. This feature may become the basis for advancement in clinical diagnosis of entire GI tract.
Collapse
|
6
|
Zhuang P, Xiang K, Meng X, Wang G, Li Z, Lu Y, Kan D, Zhang X, Sun SK. Gram-scale synthesis of a neodymium chelate as a spectral CT and second near-infrared window imaging agent for visualizing the gastrointestinal tract in vivo. J Mater Chem B 2021; 9:2285-2294. [PMID: 33616148 DOI: 10.1039/d0tb02276d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diagnosis of gastrointestinal (GI) tract diseases is frequently performed in the clinic, so it is crucial to develop high-performance contrast agents for real-time and non-invasive imaging examination of the GI tract. Herein, we show a novel method to synthesize a neodymium (Nd) chelate, Nd-diethylenetriaminepentaacetic acid (Nd-DTPA), on a large scale without byproducts for spectral computed tomography (CT) and second near-infrared window imaging of the GI tract in vivo. The Nd-DTPA was simply generated by heating the mixture of Nd2O3 and DTPA in water at 85 °C for 2 h. This dual-modal imaging agent has the advantages of a simple and green synthesis route, no need of purification process, high yield (86.24%), large-scale production capability (>10 g in lab synthesis), good chemical stability and excellent water solubility (≈2 g mL-1). Moreover, the Nd-DTPA emitted strong near-infrared fluorescence at 1308 nm, and exhibited superior X-ray attenuation ability compared to clinical iohexol. The proposed Nd-DTPA can integrate the complementary merits of dual-modal imaging to realize spatial-temporal and highly sensitive imaging of the GI tract in vivo, and accurate diagnosis of the location of intestinal obstruction and monitor its recovery after surgery. The developed highly efficient method for the gram-scale synthesis of Nd-DTPA and the proposed spectral CT and second near-infrared window dual-modal imaging strategy provide a promising route for accurate visualization of the GI tract in vivo.
Collapse
Affiliation(s)
- Pengrui Zhuang
- Department of Medical imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Ke Xiang
- Department of Medical imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Xiangxi Meng
- Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guohe Wang
- Department of Medical imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Ziyuan Li
- Department of Biomedical Engineering, Peking University, Beijing 100871, China
| | - Yanye Lu
- Department of Biomedical Engineering, Peking University, Beijing 100871, China
| | - Di Kan
- Department of Medical imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Xuejun Zhang
- Department of Medical imaging, Tianjin Medical University, Tianjin 300203, China.
| | - Shao-Kai Sun
- Department of Medical imaging, Tianjin Medical University, Tianjin 300203, China.
| |
Collapse
|
7
|
Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09565-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Mohapatra S, Swarnkar T, Mishra M, Al-Dabass D, Mascella R. Deep learning in gastroenterology. HANDBOOK OF COMPUTATIONAL INTELLIGENCE IN BIOMEDICAL ENGINEERING AND HEALTHCARE 2021:121-149. [DOI: 10.1016/b978-0-12-822260-7.00001-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
9
|
CUI FZ, LIU JH, LIU Y, YUAN BY, GONG X, YUAN QH, GONG TT, WANG L. Synthesis of PEGylated BaGdF5 Nanoparticles as Efficient CT/MRI Dual-modal Contrast Agents for Gastrointestinal Tract Imaging. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60039-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Sanchez JMS, McNally JS, Cortez MM, Hemp J, Pace LA, Clardy SL. Neuroimmunogastroenterology: At the Interface of Neuroimmunology and Gastroenterology. Front Neurol 2020; 11:787. [PMID: 32849234 PMCID: PMC7412790 DOI: 10.3389/fneur.2020.00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/25/2020] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) is an important regulator of the gastrointestinal tract, and CNS dysfunction can result in significant and disabling gastrointestinal symptom manifestation. For patients with neuroimmunologic and neuroinflammatory conditions, the recognition of gastrointestinal symptoms is under-appreciated, yet the gastrointestinal manifestations have a dramatic impact on quality of life. The current treatment strategies, often employed independently by the neurologist and gastroenterologist, raise the question of whether such patients are being treated optimally when siloed in one specialty. Neuroimmunogastroenterology lies at the borderlands of medical specialties, and there are few resources to guide neurologists in this area. Here, we provide an overview highlighting the potential mechanisms of crosstalk between immune-mediated neurological disorders and gastrointestinal dysfunction.
Collapse
Affiliation(s)
- John Michael S. Sanchez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - J. Scott McNally
- Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, United States
| | - Melissa M. Cortez
- Department of Neurology, Imaging and Neurosciences Center, University of Utah, Salt Lake City, UT, United States
| | - James Hemp
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Laura A. Pace
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Stacey L. Clardy
- Department of Neurology, Imaging and Neurosciences Center, University of Utah, Salt Lake City, UT, United States
- George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, United States
| |
Collapse
|
11
|
Zu Y, Yan L, Wang T, Ma D, Dong X, Du Z, Yin W. A Bi 2S 3@mSiO 2@Ag nanocomposite for enhanced CT visualization and antibacterial response in the gastrointestinal tract. J Mater Chem B 2020; 8:666-676. [PMID: 31904074 DOI: 10.1039/c9tb02562f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The non-invasive imaging of the gastrointestinal (GI) tract is highly desired for clinical research due to the various GI tract bacterial infection-induced diseases. To treat GI tract infections, various antibiotics have been used in the clinic. The growing problem of multidrug-resistant bacteria calls for effective antibiotic alternatives. Here, we construct a dual-functional Bi2S3@mSiO2@Ag nanocomposite for simultaneous enhanced X-ray computed tomography (CT) imaging and efficient antibacterial activity in the GI tract. The nanocomposite also has good stability, low cytotoxicity, and negligible hemolysis. Moreover, the investigation of the long-term toxicity and biodistribution of the Bi2S3@mSiO2@Ag nanocomposite after oral administration confirms its safety at the tested dosage. In particular, Ag nanoparticles (NPs) well dispersed on a silica substrate can reduce the antibacterial dosage and enhance the antibacterial activity of the Bi2S3@mSiO2@Ag nanocomposite. Furthermore, we have established bacterially infected enteritis animal models to confirm the antibacterial ability of the nanocomposite. This work opens up a new avenue for the design of a nanotheranostic agent that acts as both a contrast agent for the enhanced visualization of the GI tract and an antibacterial agent as an alternative to antibiotics.
Collapse
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Tao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Dongqing Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Xinghua Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Zhen Du
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
12
|
Frey A, Ramaker K, Röckendorf N, Wollenberg B, Lautenschläger I, Gébel G, Giemsa A, Heine M, Bargheer D, Nielsen P. Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. BIOLOGICAL RESPONSES TO NANOSCALE PARTICLES 2019. [DOI: 10.1007/978-3-030-12461-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Zu Y, Yong Y, Zhang X, Yu J, Dong X, Yin W, Yan L, Zhao F, Gu Z, Zhao Y. Protein-directed synthesis of Bi2S3 nanoparticles as an efficient contrast agent for visualizing the gastrointestinal tract. RSC Adv 2017. [DOI: 10.1039/c7ra01526g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BSA@Bi2S3 nanoparticles can be applied for CT imaging of the gastrointestinal tract, realizing the visualization of gastrointestinal structures.
Collapse
|
14
|
Liu Z, Ran X, Liu J, Du Y, Ren J, Qu X. Non-toxic lead sulfide nanodots as efficient contrast agents for visualizing gastrointestinal tract. Biomaterials 2016; 100:17-26. [DOI: 10.1016/j.biomaterials.2016.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 01/15/2023]
|
15
|
Wei B, Zhang X, Zhang C, Jiang Y, Fu YY, Yu C, Sun SK, Yan XP. Facile Synthesis of Uniform-Sized Bismuth Nanoparticles for CT Visualization of Gastrointestinal Tract in Vivo. ACS APPLIED MATERIALS & INTERFACES 2016; 8:12720-6. [PMID: 27144639 DOI: 10.1021/acsami.6b03640] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High-performance and biocompatible contrast agents are the key to accurate diagnosis of various diseases in vivo via CT imaging. Fabrication of pure Bi nanoparticles is the best way to maximize X-ray absorption efficiency due to the ultrahigh X-ray attenuation ability of Bi and 100% content of Bi element. However, high-quality Bi nanoparticles prepared through a facile strategy are still lacking. Herein, we report a simple noninjection method to fabricate uniformly sized pure Bi nanoparticles using only two commercial reagents by simply heating the mixture of raw materials in a short time. The obtained Bi nanoparticles owned highly uniform size, excellent monodispersity, and impressive antioxidant capacity. After being modified with oligosaccharide, the "sweet" Bi nanoprobe with comfortable patient experience and favorable biocompatibility was successfully used in CT visualization of gastrointestinal tract in detail.
Collapse
Affiliation(s)
- Boxiong Wei
- School of Medical Imaging, Tianjin Medical University , Tianjin 300203, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University , Tianjin 300203, China
| | - Cai Zhang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital , Tianjin 300052, China
| | - Ying Jiang
- School of Medical Imaging, Tianjin Medical University , Tianjin 300203, China
| | - Yan-Yan Fu
- School of Medical Imaging, Tianjin Medical University , Tianjin 300203, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital , Tianjin 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University , Tianjin 300203, China
| | - Xiu-Ping Yan
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology (Nankai University), Tianjin Key Laboratory of Molecular Recognition and Biosensing, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
16
|
Zheng X, Shi J, Bu Y, Tian G, Zhang X, Yin W, Gao B, Yang Z, Hu Z, Liu X, Yan L, Gu Z, Zhao Y. Silica-coated bismuth sulfide nanorods as multimodal contrast agents for a non-invasive visualization of the gastrointestinal tract. NANOSCALE 2015; 7:12581-12591. [PMID: 26145146 DOI: 10.1039/c5nr03068d] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Non-invasive and real-time imaging of the gastrointestinal (GI) tract is particularly desirable for research and clinical studies of patients with symptoms arising from gastrointestinal diseases. Here, we designed and fabricated silica-coated bismuth sulfide nanorods (Bi2S3@SiO2 NRs) for a non-invasive spatial-temporally imaging of the GI tract. The Bi2S3 NRs were synthesized by a facile solvothermal method and then coated with a SiO2 layer to improve their biocompatibility and stability in the harsh environments of the GI tract, such as the stomach and the small intestine. Due to their strong X-ray- and near infrared-absorption abilities, we demonstrate that, following oral administration in mice, the Bi2S3@SiO2 NRs can be used as a dual-modal contrast agent for the real-time and non-invasive visualization of NRs distribution and the GI tract via both X-ray computed tomography (CT) and photoacoustic tomography (PAT) techniques. Importantly, integration of PAT with CT provides complementary information on anatomical details with high spatial resolution. In addition, we use Caenorhabditis Elegans (C. Elegans) as a simple model organism to investigate the biological response of Bi2S3@SiO2 NRs by oral administration. The results indicate that these NRs can pass through the GI tract of C. Elegans without inducing notable toxicological effects. The above results suggest that Bi2S3@SiO2 NRs pave an alternative way for the fabrication of multi-modal contrast agents which integrate CT and PAT modalities for a direct and non-invasive visualization of the GI tract with low toxicity.
Collapse
Affiliation(s)
- Xiaopeng Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Alex A, Noti M, Wojno EDT, Artis D, Zhou C. Characterization of eosinophilic esophagitis murine models using optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:609-620. [PMID: 24575353 PMCID: PMC3920889 DOI: 10.1364/boe.5.000609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 05/29/2023]
Abstract
Pre-clinical studies using murine models are critical for understanding the pathophysiological mechanisms underlying immune-mediated disorders such as Eosinophilic esophagitis (EoE). In this study, an optical coherence tomography (OCT) system capable of providing three-dimensional images with axial and transverse resolutions of 5 µm and 10 µm, respectively, was utilized to obtain esophageal images from a murine model of EoE-like disease ex vivo. Structural changes in the esophagus of wild-type (Tslpr(+/+) ) and mutant (Tslpr(-/-) ) mice with EoE-like disease were quantitatively evaluated and food impaction sites in the esophagus of diseased mice were monitored using OCT. Here, the capability of OCT as a label-free imaging tool devoid of tissue-processing artifacts to effectively characterize murine EoE-like disease models has been demonstrated.
Collapse
Affiliation(s)
- Aneesh Alex
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA-18015, USA
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA-18015, USA
| | - Mario Noti
- Department of Microbiology University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elia D. Tait Wojno
- Department of Microbiology University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Artis
- Department of Microbiology University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA-18015, USA
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA-18015, USA
- Bioengineering Program, Lehigh University, Bethlehem, PA-18015, USA
| |
Collapse
|
18
|
Liu Z, Ju E, Liu J, Du Y, Li Z, Yuan Q, Ren J, Qu X. Direct visualization of gastrointestinal tract with lanthanide-doped BaYbF5 upconversion nanoprobes. Biomaterials 2013; 34:7444-52. [DOI: 10.1016/j.biomaterials.2013.06.060] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/26/2013] [Indexed: 01/23/2023]
|
19
|
Liu CJ, Huang SC, Huang YC, Liu CY, Chen HI. Sonographic demonstration of human small intestinal migrating motor complex phase III. Neurogastroenterol Motil 2013; 25:198-202. [PMID: 23072357 DOI: 10.1111/nmo.12023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Migrating motor complex phase III (MMC phase III) of intestine is an important physiological mechanism traditionally recognized by myoelectric recordings or pressure tracings. Direct imaging is difficult and sonographic visualization in human has not been reported. METHODS We have demonstrated this unique phenomenon in three patients who underwent abdominal sonographic examinations. Characteristic images were recorded by videotape and both spatial and temporal features were analyzed. KEY RESULTS Occurrences of multiple equally spaced, rhythmic intestinal contractions were observed. Parameters including wave frequency, propagation velocity, and duration of the events agreed with those of the well-known phase III. The presence of distinct cyclic patterns observed in two and abolition by meal in the other patient further support our conclusion. CONCLUSIONS & INFERENCES We conclude that the migrating waves observed in our study represent the human MMC phase III. This unique finding in human subjects merits further investigation.
Collapse
Affiliation(s)
- C J Liu
- Department of Internal Medicine, Mackay Memorial Hospital, Taitung Branch, Taitung, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Roccarina D, Garcovich M, Ainora ME, Caracciolo G, Ponziani F, Gasbarrini A, Zocco MA. Diagnosis of bowel diseases: the role of imaging and ultrasonography. World J Gastroenterol 2013; 19:2144-2153. [PMID: 23599640 PMCID: PMC3627878 DOI: 10.3748/wjg.v19.i14.2144] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/18/2012] [Accepted: 12/22/2012] [Indexed: 02/06/2023] Open
Abstract
Examinations with a visualisation of the anatomy and pathology of the gastrointestinal (GI) tract are often necessary for the diagnosis of GI diseases. Traditional radiology played a crucial role for many years. Endoscopy, despite some limitations, remains the main technique in the differential diagnosis and treatment of GI diseases. In the last decades, the introduction of, and advances in, non-invasive cross-sectional imaging modalities, including ultrasound (US), computed tomography (CT), positron-emission tomography (PET), and magnetic resonance imaging, as well as improvements in the resolution of imaging data, the acquisition of 3D images, and the introduction of contrast-enhancement, have modified the approach to the examination of the GI tract. Moreover, additional co-registration techniques, such as PET-CT and PET-MRI, allow multimodal data acquisition with better sensitivity and specificity in the study of tissue pathology. US has had a growing role in the development and application of the techniques for diagnosis and management of GI diseases because it is inexpensive, non-invasive, and more comfortable for the patient, and it has sufficient diagnostic accuracy to provide the clinician with image data of high temporal and spatial resolution. Moreover, Doppler and contrast-enhanced ultrasound (CEUS) add important information about blood flow. This article provides a general review of the current literature regarding imaging modalities used for the evaluation of bowel diseases, highlighting the role of US and recent developments in CEUS.
Collapse
|
21
|
Dinning PG, Arkwright JW, Gregersen H, o'grady G, Scott SM. Technical advances in monitoring human motility patterns. Neurogastroenterol Motil 2010; 22:366-80. [PMID: 20377792 DOI: 10.1111/j.1365-2982.2010.01488.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abnormal motor patterns are implicated in many motility disorders. However, for many regions of the gut, our knowledge of normal and abnormal motility behaviors and mechanisms remains incomplete. There have been many recent advances in the development of techniques to increase our knowledge of gastrointestinal motility, some readily available while others remain confined to research centers. This review highlights a range of these recent developments and examines their potential to help diagnose and guide treatment for motility disorders.
Collapse
Affiliation(s)
- P G Dinning
- University of New South Wales, Department of Gastroenterology, St George Hospital, Sydney, Australia.
| | | | | | | | | |
Collapse
|
22
|
Drewes AM, Gregersen H. New technologies in gastrointestinal research. World J Gastroenterol 2009; 15:129-30. [PMID: 19132760 PMCID: PMC2653302 DOI: 10.3748/wjg.15.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This issue presents different new techniques aiming to increase our understanding of the gastrointestinal system and to improve treatment. The technologies cover selected methods to evoke and assess gut pain, new methods for imaging and physiological measurements, histochemistry, pharmacological modelling etc. There is no doubt that the methods will revolutionize the diagnostic approach in near future.
Collapse
|