1
|
Damaraju V, Krushna Karri JK, Gandrakota G, Marimuthu Y, Ravindra AG, Aravindakshan R, Singh N. Low Dose Computed Tomography for Lung Cancer Screening in Tuberculosis Endemic Countries: A Systematic Review and Meta-Analysis. J Thorac Oncol 2025; 20:296-310. [PMID: 39581379 DOI: 10.1016/j.jtho.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Lung cancer screening (LCS) using low-dose computed tomography (LDCT) reduces mortality. Nevertheless, in high tuberculosis-burden countries (HTBC), there are concerns about high false-positive rates due to persistent lung lesions from prior tuberculosis (TB) infections. This study aims to evaluate the screen-positive rate (SPR) of LDCT screening in HTBC. METHODS We conducted a systematic review and meta-analysis to identify studies utilizing LDCT for LCS in HTBC and reported SPR from inception to December 6, 2023. The primary outcome was the SPR, and the secondary outcome was the lung cancer detection rate (LCDR). The summary data was pooled using a random-effects model, and factors influencing the SPR were analyzed using multivariable meta-regression analysis. RESULTS A total of 44 studies with 477,424 individuals (59.3% men) were included in the systematic review. Lung Imaging Reporting and Data System (Lung-RADS) (31%, 14 studies) and National Lung Screening Trial (NLST) criteria (non-calcified nodule ≥ 4 mm; 10 studies) were the most common criteria used for assessing SPR. The pooled SPR and LCDR were 18.36% (95% confidence interval [CI]: 14.6-22.1) and 0.94% (95% confidence interval: 0.75-1.15), respectively. Although SPR was significantly higher with NLST criteria than Lung-RADS criteria (25.6% versus 10.4%, p < 0.0001), the LCDR remained similar (0.91% versus 0.95%, p = 0.92). Studies using NLST criteria had a higher SPR in multivariable meta-regression analysis. Nevertheless, the analysis is limited by significant statistical heterogeneity and publication bias. CONCLUSION Lung cancer screening by LDCT in HTBC demonstrates comparable SPR and LCDR to regions with lower TB incidence rates. Lung-RADS criteria are preferable to NLST criteria for LCS in HTBC to mitigate false-positive rates.
Collapse
Affiliation(s)
- Vikram Damaraju
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Mangalagiri, India.
| | | | - Gayathri Gandrakota
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Mangalagiri, India
| | - Yamini Marimuthu
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Mangalagiri, India
| | - Adimulam Ganga Ravindra
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Mangalagiri, India
| | - Rajeev Aravindakshan
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Mangalagiri, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Huang F, Lin X, Hong Y, Li Y, Li Y, Chen WT, Chen W. The feasibility and cost-effectiveness of implementing mobile low-dose computed tomography with an AI-based diagnostic system in underserved populations. BMC Cancer 2025; 25:345. [PMID: 40001094 PMCID: PMC11863806 DOI: 10.1186/s12885-025-13710-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Low-dose computed tomography (LDCT) significantly increases early detection rates of lung cancer and reduces lung cancer-related mortality by 20%. However, many significant screening barriers remain. This study conduct an initial feasibility and cost-effectiveness analysis of a community-based program that used a mobile low-dose computed tomography (LDCT) scan unit and discuss the operational challenges faced during its implementation. METHODS This study was conducted in rural areas in Fujian Province, China from July 2022 to August 2022. Individuals aged 40 years and above who had not previously undergone LDCT and who were socioeconomically marginalized were included. Participants received a LDCT program from a multidisciplinary research team. Physicians analyzed the images with the assistance of artificial intelligence "InferRead CT Lung Research" and completed structured reports on their impressions. The primary evaluation indicators for mobile LDCT screening effectiveness were the lung cancer detection rate and diagnosis rate, while the main evaluation indicators for cost-effective analysis were the cost-effective ratio and early detection cost index. RESULTS A total of 10,159 individuals participated in this study. The detection rates of suspected lung cancer cases and confirmed cases were 1.06% (n = 108) and 0.7% (n = 71), respectively. The cost of lung cancer screening (LCS) was ¥1,203,504 (US$188,847.71), the average cost per screening was ¥118.47 (US$18.65), and the cost effective ratios for the detection of suspected lung cancer and confirmed lung cancer were ¥11,143.56 (US$1,753.29) and ¥16,950.76 (US$2,669.94), respectively. The early detection cost indices for suspected lung cancer were 0.09 and 0.13 for confirmed lung cancer, respectively. CONCLUSION This LDCT with artificial intelligence model for LCS holds economic promise for reducing health disparities in underserved areas and promote larger populations in similar low-income country.
Collapse
Affiliation(s)
- Feifei Huang
- School of Nursing, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Xiujing Lin
- School of Nursing, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yuezhen Hong
- School of Nursing, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yue Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yonglin Li
- School of Nursing, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wei-Ti Chen
- School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Weisheng Chen
- Department of Thoracic oncology surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No 420 Fuma Road, Jin 'an District, Fuzhou City, Fujian Province, China.
| |
Collapse
|
3
|
Ren Y, Zhang Z, She Y, He Y, Li D, Shi Y, He C, Yang Y, Zhang W, Chen C. A Highly Sensitive and Specific Non-Invasive Test through Genome-Wide 5-Hydroxymethylation Mapping for Early Detection of Lung Cancer. SMALL METHODS 2024; 8:e2300747. [PMID: 37990399 DOI: 10.1002/smtd.202300747] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Indexed: 11/23/2023]
Abstract
Low-dose computed tomography screening can increase the detection for non-small-cell lung cancer (NSCLC). To improve the diagnostic accuracy of early-stage NSCLC detection, ultrasensitive methods are used to detect cell-free DNA (cfDNA) 5-hydroxymethylcytosine (5hmC) in plasma. Genome-wide 5hmC is profiled in 1990 cfDNA samples collected from patients with non-small cell lung cancer (NSCLC, n = 727), healthy controls (HEA, n = 1,092), as well as patients with small cell lung cancer (SCLC, n = 41), followed by sample randomization, differential analysis, feature selection, and modeling using a machine learning approach. Differentially modified features reflecting tissue origin. A weighted diagnostic model comprised of 105 features is developed to compute a detection score for each individual, which showed an area under the curve (AUC) range of 86.4%-93.1% in the internal and external validation sets for distinguishing lung cancer from HEA controls, significantly outperforming serum biomarkers (p < 0.001). The 5hmC-based model detected high-risk pulmonary nodules (AUC: 82%)and lung cancer of different subtypes with high accuracy as well. A highly sensitive and specific blood-based test is developed for detecting lung cancer. The 5hmC biomarkers in cfDNA offer a promising blood-based test for lung cancer.
Collapse
Affiliation(s)
- Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yayi He
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongdong Li
- Shanghai Epican Genetech, Co., Ltd., Shanghai, China
| | - Yixiang Shi
- Bionova (Shanghai) Medical Technology Co., Ltd, Shanghai, China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- The Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| |
Collapse
|
4
|
Yu Z, Ni P, Yu H, Zuo T, Liu Y, Wang D. Effectiveness of a single low-dose computed tomography screening for lung cancer: A population-based perspective cohort study in China. Int J Cancer 2024; 154:659-669. [PMID: 37819155 DOI: 10.1002/ijc.34741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023]
Abstract
The purpose of this perspective cohort study was to evaluate the effectiveness of low-dose computed tomography (LDCT) screening for lung cancer in China. This study was conducted under the China Urban Cancer Screening Program (CanSPUC). The analysis was based on participants aged 40 to 74 years from 2012 to 2019. A total of 255 569 eligible participants were recruited in the study. Among the 58 136 participants at high risk of lung cancer, 20 346 (35.00%) had a single LDCT scan (defined as the screened group) and 37 790 (65.00%) not (defined as the non-screened group). Overall, 1162 participants were diagnosed with lung cancer at median follow-up time of 5.25 years. The screened group had the highest cumulative incidence of lung cancer and the non-screened group had the highest cumulative lung cancer mortality and all-cause cumulative mortality. We performed inverse probability weighting (IPW) to account for potential imbalances, and Cox proportional hazards model to estimate the weighted association between mortality and LDCT scans. After IPW adjusted with baseline characteristics, the lung cancer incidence density was significantly increased (37.0% increase) (HR1.37 [95%CI 1.12-1.69]), lung cancer mortality was decreased (31.0% decrease) (HR0.69 [95%CI 0.49-0.97]), and the all-cause mortality was significantly decreased (23.0% lower) (HR0.77 [95% CI 0.68-0.87]) in the screened group. In summary, a single LDCT for lung cancer screening will reduce the mortality of lung cancer and all-cause mortality in China.
Collapse
Affiliation(s)
- Zhifu Yu
- Liaoning Office for Cancer Control and Research, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Ping Ni
- Liaoning Office for Cancer Control and Research, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Huihui Yu
- Liaoning Office for Cancer Control and Research, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Tingting Zuo
- Liaoning Office for Cancer Control and Research, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Yunyong Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Zeng F, Wang X, Wang C, Zhang Y, Fu D, Wang X. Analysis of screening outcomes and factors influencing compliance among community-based lung cancer high-risk population in Nanchang, China, 2018-2020. Front Oncol 2024; 14:1339036. [PMID: 38406800 PMCID: PMC10889114 DOI: 10.3389/fonc.2024.1339036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Objective To investigate the screening results and compliance of low-dose computed tomography (LDCT) screening among the high-risk lung cancer populations in Jiangxi Province from 2018 to 2020, and to explore the related influencing factors of compliance. Methods From November 2018 to October 2020, permanent residents in Nanchang City were selected and their demographic data and lung cancer risk factor data were collected to screen high-risk groups, and LDCT screening was performed on high-risk groups with diagnostic reports by 2 chief physicians. Descriptive analysis method was used to analyze the basic information of screening, screening results and screening compliance. χ2 and logistic regression test were used to conduct single and multi-factor analysis of screening compliance. Results A total of 26,588 people participated in this screening, of which 34.4% (n=9,139) were at high risk of lung cancer, 3,773 participants were completed LDCT screening, and the screening compliance rate was 41.3%. Screening results showed that 389 participants were positive for suspected pulmonary tumor or lung nodules, the screening positive rate of 10.3%. The logistic multivariable results of screening compliance showed that the compliance was better in males, those who quit smoking, those with chronic respiratory diseases and family history of cancer, and those who have primary education, those with a history of occupational harmful exposure had a poor compliance. Conclusion Compliance with lung cancer screening in Jiangxi Province, China still needs to be improved, and gender, education level, harmful occupational exposure, smoking, chronic respiratory diseases, and family history of tumors cancer play an important role on screening compliance.
Collapse
Affiliation(s)
- Fanfan Zeng
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Xiaobo Wang
- Cancer Center, Jiangxi Provincial Tumor Hospital, Nanchang, Jiangxi, China
| | - Chengman Wang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Yu Zhang
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, China
| | - Denggang Fu
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Xin Wang
- Jiangxi Provincial Key Laboratory of Systems Biomedicine, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
6
|
Poon C, Wilsdon T, Sarwar I, Roediger A, Yuan M. Why is the screening rate in lung cancer still low? A seven-country analysis of the factors affecting adoption. Front Public Health 2023; 11:1264342. [PMID: 38026274 PMCID: PMC10666168 DOI: 10.3389/fpubh.2023.1264342] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Strong evidence of lung cancer screening's effectiveness in mortality reduction, as demonstrated in the National Lung Screening Trial (NLST) in the US and the Dutch-Belgian Randomized Lung Cancer Screening Trial (NELSON), has prompted countries to implement formal lung cancer screening programs. However, adoption rates remain largely low. This study aims to understand how lung cancer screening programs are currently performing. It also identifies the barriers and enablers contributing to adoption of lung cancer screening across 10 case study countries: Canada, China, Croatia, Japan, Poland, South Korea and the United States. Adoption rates vary significantly across studied countries. We find five main factors impacting adoption: (1) political prioritization of lung cancer (2) financial incentives/cost sharing and hidden ancillary costs (3) infrastructure to support provision of screening services (4) awareness around lung cancer screening and risk factors and (5) cultural views and stigma around lung cancer. Although these factors have application across the countries, the weighting of each factor on driving or hindering adoption varies by country. The five areas set out by this research should be factored into policy making and implementation to maximize effectiveness and outreach of lung cancer screening programs.
Collapse
Affiliation(s)
| | - Tim Wilsdon
- Charles River Associates, London, United Kingdom
| | - Iqra Sarwar
- Charles River Associates, London, United Kingdom
| | | | - Megan Yuan
- Merck & Co., Inc., Kenilworth, NJ, United States
| |
Collapse
|
7
|
Wang L, Wang Y, Wang F, Gao Y, Fang Z, Gong W, Li H, Zhu C, Chen Y, Shi L, Du L, Li N. Disparity in Lung Cancer Screening Among Smokers and Nonsmokers in China: Prospective Cohort Study. JMIR Public Health Surveill 2023; 9:e43586. [PMID: 36917151 PMCID: PMC10131892 DOI: 10.2196/43586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Low-dose computed tomography (LDCT) screening is effective in reducing lung cancer mortality in smokers; however, the evidence in nonsmokers is scarce. OBJECTIVE This study aimed to evaluate the participant rate and effectiveness of one-off LDCT screening for lung cancer among smokers and nonsmokers. METHODS A population-based prospective cohort study was performed to enroll participants aged between 40 and 74 years from 2013 to 2019 from 4 cities in Zhejiang Province, China. Participants who were evaluated as having a high risk of lung cancer from an established risk score model were recommended to undergo LDCT screening. Follow-up outcomes were retrieved on June 30, 2020. The uptake rate of LDCT screening for evaluated high-risk participants and the detection rate of early-stage lung cancer (stage 0-I) were calculated. The lung cancer incidence, lung cancer mortality, and all-cause mortality were compared between the screened and nonscreened groups. RESULTS At baseline, 62.56% (18,818/30,079) of smokers and 6% (5483/91,455) of nonsmokers were identified as high risk (P<.001), of whom 41.9% (7885/18,818) and 66.31% (3636/5483) underwent LDCT screening (P<.001), respectively. After a median follow-up of 5.1 years, 1100 lung cancer cases and 456 all-cause death cases (116 lung cancer death cases) were traced. The proportion of early-stage lung cancer among smokers was 60.3% (173/287), which was lower than the proportion of 80.3% (476/593) among nonsmokers (P<.001). Among smokers, a higher proportion was found in the screened group (72/106, 67.9%) than the nonscreened group (56/114, 49.1%; P=.005), whereas no significance was found (42/44, 96% vs 10/12, 83%; P=.20) among nonsmokers. Compared with participants who were not screened, LDCT screening in smokers significantly increased lung cancer incidence (hazard ratio [HR] 1.39, 95% CI 1.09-1.76; P=.007) but reduced lung cancer mortality (HR 0.52, 95% CI 0.28-0.96; P=.04) and all-cause mortality (HR 0.47, 95% CI 0.32-0.69; P<.001). Among nonsmokers, no significant results were found for lung cancer incidence (P=.06), all-cause mortality (P=.89), and lung cancer mortality (P=.17). CONCLUSIONS LDCT screening effectively reduces lung cancer and all-cause mortality among high-risk smokers. Further efforts to define high-risk populations and explore adequate lung cancer screening modalities for nonsmokers are needed.
Collapse
Affiliation(s)
- Le Wang
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Youqing Wang
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, China
| | - Fei Wang
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yumeng Gao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhimei Fang
- Kecheng District People's Hospital of Quzhou, Quzhou, China
| | - Weiwei Gong
- Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, China
| | - Huizhang Li
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chen Zhu
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yaoyao Chen
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lei Shi
- Department of Radiology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Lingbin Du
- Department of Cancer Prevention, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Zhejiang Key Laboratory of Diagnosis & Treatment Technology on Thoracic Oncology (Lung and Esophagus), Hangzhou, China
| | - Ni Li
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Chinese Academy of Medical Sciences Key Laboratory for National Cancer Big Data Analysis and Implement, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
8
|
Almatrafi A, Thomas O, Callister M, Gabe R, Beeken RJ, Neal R. The prevalence of comorbidity in the lung cancer screening population: A systematic review and meta-analysis. J Med Screen 2023; 30:3-13. [PMID: 35942779 PMCID: PMC9925896 DOI: 10.1177/09691413221117685] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Comorbidity is associated with adverse outcomes for all lung cancer patients, but its burden is less understood in the context of screening. This review synthesises the prevalence of comorbidities among lung cancer screening (LCS) candidates and summarises the clinical recommendations for screening comorbid individuals. METHODS We searched MEDLINE, EMBASE, EBM Reviews, and CINAHL databases from January 1990 to February 2021. We included LCS studies that reported a prevalence of comorbidity, as a prevalence of a particular condition, or as a summary score. We also summarised LCS clinical guidelines that addressed comorbidity or frailty for LCS as a secondary objective for this review. Meta-analysis was used with inverse-variance weights obtained from a random-effects model to estimate the prevalence of selected comorbidities. RESULTS We included 69 studies in the review; seven reported comorbidity summary scores, two reported performance status, 48 reported individual comorbidities, and 12 were clinical guideline papers. The meta-analysis of individual comorbidities resulted in an estimated prevalence of 35.2% for hypertension, 23.5% for history of chronic obstructive pulmonary disease (COPD) (10.7% for severe COPD), 16.6% for ischaemic heart disease (IHD), 13.1% for peripheral vascular disease (PVD), 12.9% for asthma, 12.5% for diabetes, 4.5% for bronchiectasis, 2.2% for stroke, and 0.5% for pulmonary fibrosis. CONCLUSIONS Comorbidities were highly prevalent in LCS populations and likely to be more prevalent than in other cancer screening programmes. Further research on the burden of comorbid disease and its impact on screening uptake and outcomes is needed. Identifying individuals with frailty and comorbidities who might not benefit from screening should become a priority in LCS research.
Collapse
Affiliation(s)
- Anas Almatrafi
- Leeds Institute of Health Sciences,
University of Leeds, Leeds, UK,Department of Epidemiology, Umm Al-Qura University, Makkah, Saudi Arabia,Anas Almatrafi, Leeds Institute of Health
Sciences, University of Leeds, Leeds LS2 9NL, UK.
| | - Owen Thomas
- Leeds Institute of Health Sciences,
University of Leeds, Leeds, UK
| | - Matthew Callister
- Department of Respiratory Medicine, Leeds
Teaching Hospitals, St James's University Hospital, Leeds, UK
| | - Rhian Gabe
- Center for Evaluation and Methods, Wolfson Institute of Population
Health, Queen Mary University of
London, London, UK
| | - Rebecca J Beeken
- Leeds Institute of Health Sciences,
University of Leeds, Leeds, UK,Department of Behavioural Science and
Health, University College London, London, UK
| | - Richard Neal
- Leeds Institute of Health Sciences,
University of Leeds, Leeds, UK,College of Medicine and Health, University of Exeter, Exeter, UK
| |
Collapse
|
9
|
Nightingale C, Bavor C, Stone E, Rankin NM. Lung Cancer Screening: Implementation Challenges and Health Equity Considerations For the Western Pacific Region. JCO Glob Oncol 2023; 9:e2200329. [PMID: 36749907 PMCID: PMC10166439 DOI: 10.1200/go.22.00329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 02/09/2023] Open
Affiliation(s)
- Claire Nightingale
- Center for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Claire Bavor
- Center for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Emily Stone
- Department of Lung Transplantation and Thoracic Medicine, St Vincent's Hospital Sydney, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Kensington, Australia
| | - Nicole M. Rankin
- Center for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Sydney School of Public Health, The University of Sydney, Camperdown, Australia
| |
Collapse
|
10
|
Stone E, Leong TL. Contemporary Concise Review 2021: Pulmonary nodules from detection to intervention. Respirology 2022; 27:776-785. [PMID: 35581532 DOI: 10.1111/resp.14296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
The US Preventive Task Force (USPSTF) has updated screening criteria by expanding age range and reducing smoking history required for eligibility; the International Lung Screen Trial (ILST) data have shown that PLCOM2012 performs better for eligibility than USPSTF criteria. Screening adherence is low (4%-6% of potential eligible candidates in the United States) and depends upon multiple system and patient/candidate-related factors. Smoking cessation in lung cancer improves survival (past prospective trial data, updated meta-analysis data); smoking cessation is an essential component of lung cancer screening. Circulating biomarkers are emerging to optimize screening and early diagnosis. COVID-19 continues to affect lung cancer treatment and screening through delays and disruptions; specific operational challenges need to be met. Over 70% of suspected malignant lesions develop in the periphery of the lungs. Bronchoscopic navigational techniques have been steadily improving to allow greater accuracy with target lesion approximation and therefore diagnostic yield. Fibre-based imaging techniques provide real-time microscopic tumour visualization, with potential diagnostic benefits. With significant advances in peripheral lung cancer localization, bronchoscopically delivered ablative therapies are an emerging field in limited stage primary and oligometastatic disease. In advanced stage lung cancer, small-volume samples acquired through bronchoscopic techniques yield material of sufficient quantity and quality to support clinically relevant biomarker assessment.
Collapse
Affiliation(s)
- Emily Stone
- Department of Thoracic Medicine and Lung Transplantation, St Vincent's Hospital Sydney, Sydney, New South Wales, Australia.,School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia.,School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Tracy L Leong
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, Victoria, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|