1
|
Gao Y, Liu D, Xiao Q, Huang S, Li L, Xie B, Zhou L, Qi Y, Liu Y. Exploration of Pathogenesis and Cutting-Edge Treatment Strategies of Sarcopenia: A Narrative Review. Clin Interv Aging 2025; 20:659-684. [PMID: 40438271 PMCID: PMC12117577 DOI: 10.2147/cia.s517833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 05/12/2025] [Indexed: 06/01/2025] Open
Abstract
Sarcopenia a progressive and multifactorial musculoskeletal syndrome characterized by loss of muscle mass and function, poses a significant global health challenge, particularly in aging populations. Epidemiological studies reveal that sarcopenia affects approximately 5-10% of the general population, with prevalence rates escalating dramatically after age 60 to reach 10-27% in older adults. This age-associated increase contributes significantly to healthcare burdens by elevating risks of disability, frailty, and mortality. Despite its profound impact, current clinical approaches to sarcopenia remain limited. While resistance exercise and protein supplementation form the cornerstone of management, their efficacy is often constrained by poor long-term adherence and variable individual responses, highlighting the urgent need for more comprehensive and personalized treatment strategies. The pathogenesis of sarcopenia is complex and influenced by various factors, including aging, inflammation, nutritional deficits, physical inactivity, and mitochondrial dysfunction. However, the precise molecular mechanisms underlying this condition are still not fully understood. Recent research has made significant strides in elucidating the intricate mechanisms contributing to sarcopenia, revealing novel insights into its molecular and cellular underpinnings. Notably, emerging evidence points to the pivotal role of mitochondrial dysfunction, altered myokine profiles, and neuromuscular junction degeneration in sarcopenia progression. Additionally, breakthroughs in stem cell therapy, exosome-based treatments, and precision nutrition offer promising avenues for clinical intervention. This review aims to synthesize the latest advancements in sarcopenia research, focusing on the novel contributions to its pathogenesis and treatment strategies. We explore emerging trends such as the role of cellular senescence, epigenetic regulation, and targeted therapeutic interventions that could reshape future approaches to managing sarcopenia. By highlighting recent breakthroughs and cutting-edge research, we hope to advance the understanding of sarcopenia and foster the translation of these findings into effective clinical therapies.
Collapse
Affiliation(s)
- Yin Gao
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Di Liu
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Qixian Xiao
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
| | - Shan Huang
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Li Li
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, 52305, People’s Republic of China
| | - Limin Zhou
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, 52305, People’s Republic of China
| | - Yi Qi
- Marine Medical Research Institute of Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, People’s Republic of China
| | - Yanzhi Liu
- Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524037, People’s Republic of China
| |
Collapse
|
2
|
Gentile G, De Stefano F, Sorrentino C, D'Angiolo R, Lauretta C, Giovannelli P, Migliaccio A, Castoria G, Di Donato M. Androgens as the "old age stick" in skeletal muscle. Cell Commun Signal 2025; 23:167. [PMID: 40181329 PMCID: PMC11969971 DOI: 10.1186/s12964-025-02163-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Aging is associated with a reduction in skeletal muscle fiber size and number, leading to a decline in physical function and structural integrity-a condition known as sarcopenia. This syndrome is further characterized by elevated levels of inflammatory mediators that promote skeletal muscle catabolism and reduce anabolic signaling.Androgens are involved in various biological processes, including the maintenance, homeostasis and trophism of skeletal muscle mass. The decline in androgen levels contributes, indeed, to androgen deficiency in aging people. Such clinical syndrome exacerbates the muscle loss and fosters sarcopenia progression. Nevertheless, the mechanism(s) by which the reduction in androgen levels influences sarcopenia risk and progression remains debated and the therapeutic benefits of androgen-based interventions are still unclear. Given the significant societal and economic impacts of sarcopenia, investigating the androgen/androgen receptor axis in skeletal muscle function is essential to enhance treatment efficacy and reduce healthcare costs.This review summarizes current knowledge on the role of male hormones and their-dependent signaling pathways in sarcopenia. We also highlight the cellular and molecular features of this condition and discuss the mechanisms by which androgens preserve the muscle homeostasis. The pros and cons of clinical strategies and emerging therapies aimed at mitigating muscle degeneration and aging-related decline are also presented.
Collapse
Affiliation(s)
- Giulia Gentile
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Ferdinando De Stefano
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Carmela Sorrentino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Rosa D'Angiolo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Carmine Lauretta
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Pia Giovannelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, Naples, 80138, Italy.
| |
Collapse
|
3
|
Machekhina LV, Tkacheva ON, Dudinskaya EN, Shelley EM, Mamchur AA, Daniel VV, Ivanov MV, Kashtanova DA, Rumyantseva AM, Matkava LR, Yudin VS, Makarov VV, Keskinov AA, Kraevoy SA, Yudin SM, Strazhesko ID. Cluster analysis of sarcopenia in older adults: significant factors contributing to disease severity. Eur Geriatr Med 2025; 16:45-54. [PMID: 39808247 DOI: 10.1007/s41999-024-01153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION The European Working Group on Sarcopenia in Older People (EWGSOP2) defines sarcopenia as a muscle disease (muscle failure) rooted in adverse muscle changes that accrue across a lifetime; sarcopenia is common among adults of older age. New findings on the hormonal and metabolic characteristics of patients with sarcopenia have aided in developing more targeted therapeutic strategies. However, treating older patients with sarcopenia still poses a number of challenges. Despite numerous studies on sarcopenia, no comprehensive phenotyping of older sarcopenic patients has yet to be offered. Cluster analysis has been successfully used to study various diseases. It may be extremely advantageous for collecting data on specific sarcopenia progressions based on a simultaneous assessment of a whole range of factors. AIM To identify disease progression specific to older patients based on cluster analysis of blood biomarkers and lifestyle. METHODS This study included 1709 participants aged 90 and older. The median age was 92. Seventy-one percent of participants were female. Participants underwent a comprehensive geriatric assessment and had their metabolic, hormonal, and inflammatory blood biomarkers measured. The data were analyzed and clustered using the R programming language. RESULTS Seven sarcopenia clusters were identified. The most significant variables, in descending order, were malnutrition, physical activity, body mass index, handgrip strength, testosterone, albumin, sex, adiponectin, total protein, vitamin D, hemoglobin, estradiol, C-reactive protein, glucose, monocytes, and insulin. Handgrip strength measurements and free T3 levels increased linearly between the cluster with the lowest measurements and the cluster with the highest measurements. CONCLUSION The findings of this study may greatly aid in understanding the relationship between blood biomarkers, lifestyle and sarcopenia progression in older adults, and may help in developing better prevention and diagnostic strategies as well as more personalized therapeutic interventions.
Collapse
Affiliation(s)
- L V Machekhina
- Federal State Autonomous Educational Institution of Higher Education "Russian National Research Medical University named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, Separate structural unit "Russian Gerontology Research and Clinical Centre", 16 1st Leonova Street, Moscow, Russia, 129226.
| | - O N Tkacheva
- Federal State Autonomous Educational Institution of Higher Education "Russian National Research Medical University named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, Separate structural unit "Russian Gerontology Research and Clinical Centre", 16 1st Leonova Street, Moscow, Russia, 129226
| | - E N Dudinskaya
- Federal State Autonomous Educational Institution of Higher Education "Russian National Research Medical University named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, Separate structural unit "Russian Gerontology Research and Clinical Centre", 16 1st Leonova Street, Moscow, Russia, 129226
| | - E M Shelley
- Federal State Autonomous Educational Institution of Higher Education "Russian National Research Medical University named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, Separate structural unit "Russian Gerontology Research and Clinical Centre", 16 1st Leonova Street, Moscow, Russia, 129226
| | - A A Mamchur
- Federal State Autonomous Educational Institution of Higher Education "Russian National Research Medical University named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, Separate structural unit "Russian Gerontology Research and Clinical Centre", 16 1st Leonova Street, Moscow, Russia, 129226
| | - V V Daniel
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - M V Ivanov
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - D A Kashtanova
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - A M Rumyantseva
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - L R Matkava
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - V S Yudin
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - V V Makarov
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - A A Keskinov
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - S A Kraevoy
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - S M Yudin
- Federal State Budgetary Institution "Center for Strategic Planning and Management of Medical and Biological Health Risks" of the Federal Medical and Biological Agency, 10, Building 1, Pogodinskaya Street, Moscow, Russia, 119121
| | - I D Strazhesko
- Federal State Autonomous Educational Institution of Higher Education "Russian National Research Medical University named after N.I. Pirogov" of the Ministry of Health of the Russian Federation, Separate structural unit "Russian Gerontology Research and Clinical Centre", 16 1st Leonova Street, Moscow, Russia, 129226
| |
Collapse
|
4
|
Galkin F, Pulous FE, Fu Y, Zhang M, Pun FW, Ren F, Zhavoronkov A. Roles of hypoxia-inducible factor-prolyl hydroxylases in aging and disease. Ageing Res Rev 2024; 102:102551. [PMID: 39447706 DOI: 10.1016/j.arr.2024.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The prolyl hydroxylase domain-containing (PHD or EGL9-homologs) enzyme family is mainly known for its role in the cellular response to hypoxia. HIF-PH inhibitors can stabilize hypoxia-inducible factors (HIFs), activating transcriptional programs that promote processes such as angiogenesis and erythropoiesis to adapt to changes in oxygen levels. HIF-PH inhibitors have been clinically approved for treating several types of anaemia. While most discussions of the HIF-PH signalling axis focus on hypoxia, there is a growing recognition of its importance under normoxic conditions. Recent advances in PHD biology have highlighted the potential of targeting this pathway therapeutically for a range of aging-related diseases. In this article, we review these recent discoveries, situate them within the broader context of aging and disease, and explore current therapeutic strategies that target PHD enzymes for these indications.
Collapse
Affiliation(s)
- Fedor Galkin
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE
| | - Fadi E Pulous
- Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States
| | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Feng Ren
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine Shanghai Ltd., Suite 902, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong, Shanghai 201203, China; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR
| | - Alex Zhavoronkov
- Insilico Medicine AI Ltd., Level 6, Unit 08, Block A, IRENA HQ Building, Masdar City, Abu Dhabi, UAE; Insilico Medicine US Inc., 1000 Massachusetts Avenue, Suite 126, Cambridge, MA 02138, United States; Insilico Medicine Hong Kong Ltd., Unit 310, 3/F, Building 8W, Hong Kong Science and Technology Park, Hong Kong SAR; Insilico Medicine Canada Inc., 1250 René-Lévesque Ouest, Suite 3710, Montréal, Québec H3B 4W8, Canada; Buck Institute for Research on Aging, Novato, CA, United States.
| |
Collapse
|
5
|
Cacciatore S, Calvani R, Esposito I, Massaro C, Gava G, Picca A, Tosato M, Marzetti E, Landi F. Emerging Targets and Treatments for Sarcopenia: A Narrative Review. Nutrients 2024; 16:3271. [PMID: 39408239 PMCID: PMC11478655 DOI: 10.3390/nu16193271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Sarcopenia is characterized by the progressive loss of skeletal muscle mass, strength, and function, significantly impacting overall health and quality of life in older adults. This narrative review explores emerging targets and potential treatments for sarcopenia, aiming to provide a comprehensive overview of current and prospective interventions. METHODS The review synthesizes current literature on sarcopenia treatment, focusing on recent advancements in muscle regeneration, mitochondrial function, nutritional strategies, and the muscle-microbiome axis. Additionally, pharmacological and lifestyle interventions targeting anabolic resistance and neuromuscular junction integrity are discussed. RESULTS Resistance training and adequate protein intake remain the cornerstone of sarcopenia management. Emerging strategies include targeting muscle regeneration through myosatellite cell activation, signaling pathways, and chronic inflammation control. Gene editing, stem cell therapy, and microRNA modulation show promise in enhancing muscle repair. Addressing mitochondrial dysfunction through interventions aimed at improving biogenesis, ATP production, and reducing oxidative stress is also highlighted. Nutritional strategies such as leucine supplementation and anti-inflammatory nutrients, along with dietary modifications and probiotics targeting the muscle-microbiome interplay, are discussed as potential treatment options. Hydration and muscle-water balance are emphasized as critical in maintaining muscle health in older adults. CONCLUSIONS A combination of resistance training, nutrition, and emerging therapeutic interventions holds potential to significantly improve muscle function and overall health in the aging population. This review provides a detailed exploration of both established and novel approaches for the prevention and management of sarcopenia, highlighting the need for further research to optimize these strategies.
Collapse
Affiliation(s)
- Stefano Cacciatore
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Ilaria Esposito
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
| | - Claudia Massaro
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Giordana Gava
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
- Department of Medicine and Surgery, LUM University, Strada Statale 100 Km 18, 70100 Casamassima, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy; (R.C.); (I.E.); (C.M.); (G.G.); (F.L.)
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (A.P.); (M.T.)
| |
Collapse
|
6
|
Newman M, Donahue HJ, Neigh GN. Connecting the dots: sex, depression, and musculoskeletal health. J Clin Invest 2024; 134:e180072. [PMID: 39286983 PMCID: PMC11405046 DOI: 10.1172/jci180072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Depression and multiple musculoskeletal disorders are overrepresented in women compared with men. Given that depression is a modifiable risk factor and improvement of depressive symptoms increases positive outcomes following orthopedic intervention, efforts to improve clinical recognition of depressive symptoms and increased action toward ameliorating depressive symptoms among orthopedic patients are positioned to reduce complications and positively affect patient-reported outcomes. Although psychosocial factors play a role in the manifestation and remittance of depression, it is also well appreciated that primary biochemical changes are capable of causing and perpetuating depression. Unique insight for novel treatments of depression may be facilitated by query of the bidirectional relationship between musculoskeletal health and depression. This Review aims to synthesize the diverse literature on sex, depression, and orthopedics and emphasize the potential for common underlying biological substrates. Given the overrepresentation of depression and musculoskeletal disorders among women, increased emphasis on the biological drivers of the co-occurrence of these disorders is positioned to improve women's health.
Collapse
Affiliation(s)
- Mackenzie Newman
- Department of Orthopaedic Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University College of Engineering, Richmond, Virginia, USA
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
7
|
de Lima EP, Tanaka M, Lamas CB, Quesada K, Detregiachi CRP, Araújo AC, Guiguer EL, Catharin VMCS, de Castro MVM, Junior EB, Bechara MD, Ferraz BFR, Catharin VCS, Laurindo LF, Barbalho SM. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024; 12:2096. [PMID: 39335609 PMCID: PMC11428869 DOI: 10.3390/biomedicines12092096] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The triad of vascular impairment, muscle atrophy, and cognitive decline represents critical age-related conditions that significantly impact health. Vascular impairment disrupts blood flow, precipitating the muscle mass reduction seen in sarcopenia and the decline in neuronal function characteristic of neurodegeneration. Our limited understanding of the intricate relationships within this triad hinders accurate diagnosis and effective treatment strategies. This review analyzes the interrelated mechanisms that contribute to these conditions, with a specific focus on oxidative stress, chronic inflammation, and impaired nutrient delivery. The aim is to understand the common pathways involved and to suggest comprehensive therapeutic approaches. Vascular dysfunctions hinder the circulation of blood and the transportation of nutrients, resulting in sarcopenia characterized by muscle atrophy and weakness. Vascular dysfunction and sarcopenia have a negative impact on physical function and quality of life. Neurodegenerative diseases exhibit comparable pathophysiological mechanisms that affect cognitive and motor functions. Preventive and therapeutic approaches encompass lifestyle adjustments, addressing oxidative stress, inflammation, and integrated therapies that focus on improving vascular and muscular well-being. Better understanding of these links can refine therapeutic strategies and yield better patient outcomes. This study emphasizes the complex interplay between vascular dysfunction, muscle degeneration, and cognitive decline, highlighting the necessity for multidisciplinary treatment approaches. Advances in this domain promise improved diagnostic accuracy, more effective therapeutic options, and enhanced preventive measures, all contributing to a higher quality of life for the elderly population.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Claudia Rucco P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Edgar Baldi Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17525-902, SP, Brazil
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Research Coordination, UNIMAR Charity Hospital (HBU), University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
8
|
Tomaszewska E, Wojtysiak D, Grzegorzewska A, Świątkiewicz M, Donaldson J, Arciszewski MB, Dresler S, Puzio I, Szymańczyk S, Dobrowolski P, Bonior J, Mielnik-Błaszczak M, Kuc D, Muszyński S. Understanding Secondary Sarcopenia Development in Young Adults Using Pig Model with Chronic Pancreatitis. Int J Mol Sci 2024; 25:8735. [PMID: 39201422 PMCID: PMC11354544 DOI: 10.3390/ijms25168735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Chronic pancreatitis (CP) in young individuals may lead to disease-related secondary sarcopenia (SSARC), characterized by muscle loss and systemic inflammation. In this study, CP was induced in young pigs, and serum levels of key hormones, muscle fiber diameters in various muscles, and the mRNA expression of genes related to oxidative stress and programmed cell death were assessed. A decrease in muscle fiber diameters was observed in SSARC pigs, particularly in the longissimus and diaphragm muscles. Hormonal analysis revealed alterations in dehydroepiandrosterone, testosterone, oxytocin, myostatin, and cortisol levels, indicating a distinct hormonal response in SSARC pigs compared to controls. Oxytocin levels in SSARC pigs were significantly lower and myostatin levels higher. Additionally, changes in the expression of catalase (CAT), caspase 8 (CASP8), B-cell lymphoma 2 (BCL2), and BCL2-associated X protein (BAX) mRNA suggested a downregulation of oxidative stress response and apoptosis regulation. A reduced BAX/BCL2 ratio in SSARC pigs implied potential caspase-independent cell death pathways. The findings highlight the complex interplay between hormonal changes and muscle degradation in SSARC, underscoring the need for further research into the apoptotic and inflammatory pathways involved in muscle changes due to chronic organ inflammation in young individuals.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (I.P.); (S.S.)
| | - Dorota Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Kraków, 30-059 Kraków, Poland;
| | - Agnieszka Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Kraków, 30-059 Kraków, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, 32-083 Balice, Poland;
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg 2193, South Africa;
| | - Marcin B. Arciszewski
- Department of Animal Anatomy and Histology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Sławomir Dresler
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Plant Physiology and Biophysics, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Iwona Puzio
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (I.P.); (S.S.)
| | - Sylwia Szymańczyk
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (I.P.); (S.S.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Joanna Bonior
- Department of Medical Physiology, Chair of Biomedical Sciences, Institute of Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, 31-501 Kraków, Poland;
| | - Maria Mielnik-Błaszczak
- Chair and Department of Developmental Dentistry, Medical University of Lublin, 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Damian Kuc
- Chair and Department of Developmental Dentistry, Medical University of Lublin, 20-081 Lublin, Poland; (M.M.-B.); (D.K.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
9
|
Grosman Y, Kalichman L. Bidirectional Relationships between Sarcopenia and Pelvic Floor Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:879. [PMID: 39063456 PMCID: PMC11276977 DOI: 10.3390/ijerph21070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Sarcopenia and pelvic floor disorders (PFDs) are prevalent and often cooccurring conditions in the aging population. However, their bidirectional relationship and underlying mechanisms remain underexplored. This narrative review aims to elucidate this relationship by exploring potential causative interplays, shared pathophysiological mechanisms, and common risk factors. A comprehensive literature search was conducted to identify relevant studies focusing on epidemiological associations, interaction mechanisms, and implications for patient care. While epidemiological studies demonstrate associations between sarcopenia and PFDs, our findings reveal a cyclical relationship where sarcopenia may exacerbate PFDs through mechanisms such as decreased muscle strength and mobility. Conversely, the presence of PFDs often leads to reduced physical activity due to discomfort and mobility issues, which in turn exacerbate the muscle atrophy associated with sarcopenia. Additionally, shared risk factors such as physical inactivity, nutritional deficiencies, metabolic syndrome, and menopausal hormonal changes likely contribute to the onset and progression of both conditions. These interactions underscore the importance of concurrently integrated care approaches that address both conditions. Effective management requires comprehensive screening, the recognition of contributing factors, and tailored exercise regimens supported by a multidisciplinary approach. Future research should focus on longitudinal studies tracking disease progression and evaluating the efficacy of multidisciplinary care models in optimizing patient outcomes.
Collapse
Affiliation(s)
- Yacov Grosman
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
- Department of Physical Therapy, Meuhedet Health Maintenance Organization, Hadera 3824242, Israel
| | - Leonid Kalichman
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
10
|
Lavalle S, Valerio MR, Masiello E, Gebbia V, Scandurra G. Unveiling the Intricate Dance: How Cancer Orchestrates Muscle Wasting and Sarcopenia. In Vivo 2024; 38:1520-1529. [PMID: 38936901 PMCID: PMC11215601 DOI: 10.21873/invivo.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 06/29/2024]
Abstract
Sarcopenia is a prevalent and clinically significant condition, particularly among older age groups and those with chronic disease. Patients with cancer frequently suffer from sarcopenia and progressive loss of muscle mass, strength, and function. The complex interplay between cancer and its treatment, including medical therapy, radiotherapy, and surgery, significantly contributes to the onset and worsening of sarcopenia. Cancer induces muscle wasting through inflammatory processes, metabolic alterations, and hormonal imbalance. Moreover, medical and radiation therapies exert direct toxic effects on muscles, contributing to the impairment of physical function. Loss of appetite, malnutrition, and physical inactivity further exacerbate muscle wasting in cancer patients. Imaging techniques are the cornerstones for sarcopenia diagnosis. Magnetic resonance imaging, computed tomography, and dual-energy X-ray absorptiometry provide valuable insights into muscle structure and quality. Although each modality has advantages and limitations, magnetic resonance imaging produces high-resolution images and provides dynamic information about muscle function. Despite these challenges, addressing sarcopenia is essential for optimizing treatment outcomes and improving survival rates in patients with cancer. This review explored the factors contributing to sarcopenia in oncologic patients, emphasizing the importance of early detection and comprehensive management strategies.
Collapse
Affiliation(s)
- Salvatore Lavalle
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | | | - Edoardo Masiello
- Radiology Unit, Università Vita e Salute San Raffaele, Milan, Italy
| | - Vittorio Gebbia
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy;
| | | |
Collapse
|
11
|
Roch PJ, Noisser L, Böker KO, Hoffmann DB, Schilling AF, Sehmisch S, Komrakova M. Advantage of ostarine over raloxifene and their combined treatments for muscle of estrogen-deficient rats. J Endocrinol Invest 2024; 47:709-720. [PMID: 37672168 PMCID: PMC10904410 DOI: 10.1007/s40618-023-02188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE Selective androgen (ostarine, OST) and estrogen (raloxifene, RAL) receptor modulators with improved tissue selectivity have been developed as alternatives to hormone replacement therapy. We investigated the combined effects of OST and RAL on muscle tissue in an estrogen-deficient rat model of postmenopausal conditions. METHODS Three-month-old Sprague Dawley rats were divided into groups: (1) untreated non-ovariectomized rats (Non-OVX), (2) untreated ovariectomized rats (OVX), (3) OVX rats treated with OST, (4) OVX rats treated with RAL, (5) OVX rats treated with OST and RAL. Both compounds were administered in the diet. The average dose received was 0.6 ± 0.1 mg for OST and 11.1 ± 1.2 mg for RAL per kg body weight/day. After thirteen weeks, rat activity, muscle weight, structure, gene expression, and serum markers were analyzed. RESULTS OST increased muscle weight, capillary ratio, insulin-like growth factor 1 (Igf-1) expression, serum phosphorus, uterine weight. RAL decreased muscle weight, capillary ratio, food intake, serum calcium and increased Igf-1 and Myostatin expression, serum follicle stimulating hormone (FSH). OST + RAL increased muscle nucleus ratio, uterine weight, serum phosphorus, FSH and luteinizing hormone and decreased body and muscle weight, serum calcium. Neither treatment changed muscle fiber size. OVX increased body and muscle weight, decreased uterine weight, serum calcium and magnesium. CONCLUSION OST had beneficial effects on muscle in OVX rats. Side effects of OST on the uterus and serum electrolytes should be considered before using it for therapeutic purposes. RAL and RAL + OST had less effect on muscle and showed endocrinological side effects on pituitary-gonadal axis.
Collapse
Affiliation(s)
- P J Roch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - L Noisser
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - K O Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - D B Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - A F Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - S Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Department of Trauma Surgery, Hannover Medical School, University of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - M Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
12
|
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
13
|
Şenyuva İ, Acar DB, Demirel HH, Tunç E. The effects of progesterone on the healing of obstetric anal sphincter damage in female rats. Open Med (Wars) 2023; 18:20230786. [PMID: 37693836 PMCID: PMC10487381 DOI: 10.1515/med-2023-0786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
We aimed to evaluate the effects of postpartum progesterone on obstetric anal sphincter injury (OASI) healing in female rats using an experimental OASI model. Twenty-eight female rats were divided into four groups after birth: sham-30, sham-90, progesterone (P4)-30, and P4-90. Moreover, OASI model was established in all groups. Subsequently, except for the sham groups, medroxyprogesterone acetate (0.15 mg) was intramuscularly injected into the P4 groups. After 30 and 90 days, the rats were euthanized under general anesthesia after recording the data. The anal sphincter region was collected for histopathological examination. Progesterone and thiol/disulfide homeostasis studies were performed on blood samples. No significant differences were observed between the groups regarding the external anal sphincter (EAS), internal anal sphincter (IAS), or connective tissue thickness (p = 0.714, p = 0.135, and p = 0.314, respectively). No statistically significant differences in the total thiol, native thiol, disulfide, and progesterone levels were found between the groups (p = 0.917, p = 0.503, p = 0.361, and p = 0.294, respectively). The endometrial thickness was lower in the P4 groups than in the sham groups (p = 0.031). Postpartum progesterone administration did not affect IAS and EAS or connective tissue thickness or disrupt the thiol-disulfide balance. However, this administration led to endometrial thinning.
Collapse
Affiliation(s)
- İrem Şenyuva
- Medical Faculty, Department of Obstetrics and Gynecology, Uşak University, Uşak, Turkey
| | - Duygu Baki Acar
- Veterinary Faculty, Department of Obstetrics and Gynecology, Afyon Kocatepe University, Afyon, Turkey
| | - Hasan Hüseyin Demirel
- Veterinary Faculty, Department of Pathology, Bayat Vocational School, Afyon Kocatepe University, Afyon, Turkey
| | - Ece Tunç
- Veterinary Faculty, Department of Obstetrics and Gynecology, Afyon Kocatepe University, Afyon, Turkey
| |
Collapse
|
14
|
Marcotte-Chénard A, Oliveira B, Little JP, Candow DG. Sarcopenia and type 2 diabetes: Pathophysiology and potential therapeutic lifestyle interventions. Diabetes Metab Syndr 2023; 17:102835. [PMID: 37542749 DOI: 10.1016/j.dsx.2023.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
AIMS Sarcopenia generally refers to the age-related reduction in muscle strength, functional ability, and muscle mass. Sarcopenia is a multifactorial condition associated with poor glucose disposal, insulin resistance, and subsequently type 2 diabetes (T2D). The pathophysiological connection between sarcopenia and T2D is complex but likely involves glycemic control, inflammation, oxidative stress, and adiposity. METHODS AND RESULTS Resistance exercise and aerobic training are two lifestyle interventions that may improve glycemic control in older adults with T2D and counteract sarcopenia. Further, there is evidence that dietary protein, Omega-3 fatty acids, creatine monohydrate, and Vitamin D hold potential to augment some of these benefits from exercise. CONCLUSIONS The purpose of this narrative review is: (1) discuss the pathophysiological link between age-related sarcopenia and T2D, and (2) discuss lifestyle interventions involving physical activity and nutrition that may counteract sarcopenia and T2D.
Collapse
Affiliation(s)
- Alexis Marcotte-Chénard
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Barbara Oliveira
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Jonathan P Little
- School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Darren G Candow
- Faculty of Kinesiology & Health Studies, University of Regina, Saskatchewan, S4S 0A2, Canada.
| |
Collapse
|
15
|
Sheptulina AF, Antyukh KY, Kiselev AR, Mitkovskaya NP, Drapkina OM. Possible Mechanisms Linking Obesity, Steroidogenesis, and Skeletal Muscle Dysfunction. Life (Basel) 2023; 13:1415. [PMID: 37374197 DOI: 10.3390/life13061415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing evidence suggests that skeletal muscles may play a role in the pathogenesis of obesity and associated conditions due to their impact on insulin resistance and systemic inflammation. Skeletal muscles, as well as adipose tissue, are largely recognized as endocrine organs, producing biologically active substances, such as myokines and adipokines. They may have either beneficial or harmful effects on the organism and its functions, acting through the endocrine, paracrine, and autocrine pathways. Moreover, the collocation of adipose tissue and skeletal muscles, i.e., the amount of intramuscular, intermuscular, and visceral adipose depots, may be of major importance for metabolic health. Traditionally, the generalized and progressive loss of skeletal muscle mass and strength or physical function, named sarcopenia, has been thought to be associated with age. That is why most recently published papers are focused on the investigation of the effect of obesity on skeletal muscle function in older adults. However, accumulated data indicate that sarcopenia may arise in individuals with obesity at any age, so it seems important to clarify the possible mechanisms linking obesity and skeletal muscle dysfunction regardless of age. Since steroids, namely, glucocorticoids (GCs) and sex steroids, have a major impact on the amount and function of both adipose tissue and skeletal muscles, and are involved in the pathogenesis of obesity, in this review, we will also discuss the role of steroids in the interaction of these two metabolically active tissues in the course of obesity.
Collapse
Affiliation(s)
- Anna F Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Karina Yu Antyukh
- Republican Scientific and Practical Center of Cardiology, 220036 Minsk, Belarus
| | - Anton R Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Natalia P Mitkovskaya
- Republican Scientific and Practical Center of Cardiology, 220036 Minsk, Belarus
- Department of Cardiology and Internal Diseases, Belarusian State Medical University, 220116 Minsk, Belarus
| | - Oxana M Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
16
|
Wang T, Xu H, Wu S, Guo Y, Zhao G, Wang D. Mechanisms Underlying the Effects of the Green Tea Polyphenol EGCG in Sarcopenia Prevention and Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37316469 DOI: 10.1021/acs.jafc.3c02023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sarcopenia is prevalent among the older population and severely affects human health. Tea catechins may benefit for skeletal muscle performance and protect against secondary sarcopenia. However, the mechanisms underlying their antisarcopenic effect are still not fully understood. Despite initial successes in animal and early clinical trials regarding the safety and efficacy of (-)-epigallocatechin-3-gallate (EGCG), a major catechin of green tea, many challenges, problems, and unanswered questions remain. In this comprehensive review, we discuss the potential role and underlying mechanisms of EGCG in sarcopenia prevention and management. We thoroughly review the general biological activities and general effects of EGCG on skeletal muscle performance, EGCG's antisarcopenic mechanisms, and recent clinical evidence of the aforesaid effects and mechanisms. We also address safety issues and provide directions for future studies. The possible concerted actions of EGCG indicate the need for further studies on sarcopenia prevention and management in humans.
Collapse
Affiliation(s)
- Taotao Wang
- Department of Clinical Nutrition, Affiliated Hospital of Jiangsu University, 212000 Zhenjiang, China
| | - Hong Xu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Shanshan Wu
- College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| | - Guangshan Zhao
- College of Food Science & Technology, Henan Agricultural University, 450002 Zhengzhou, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, 212100 Zhenjiang, China
| |
Collapse
|
17
|
Zhang L, Zhang X, Zhang T, Guo Y, Pei W, Liu R, Chang M, Wang X. Linolenic acid ameliorates sarcopenia in C. elegans by promoting mitophagy and fighting oxidative stress. Food Funct 2023; 14:1498-1509. [PMID: 36651495 DOI: 10.1039/d2fo02974j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sarcopenia is a syndrome of age-related loss of muscle mass and strength that seriously affects human health, and there are currently no effective drugs to treat the disease. Linolenic acid as a common n-3 polyunsaturated fatty acid (n-3 PUFA) is known to have many beneficial functions. Some studies have found that n-3 PUFA might have the potential to improve sarcopenia. In this study, Caenorhabditis elegans (C. elegans) was used as a model animal to investigate the effects of linolenic acid on C. elegans muscles. The results showed that 50 μg mL-1 linolenic acid significantly improved sarcopenia by repairing mitochondrial function by promoting mitophagy and fighting oxidative stress (p < 0.05). This included the increase of the expression of the mitophagy gene pink-1 and DAF-16/FOXO transcription factors, respectively, by linolenic acid. This study could provide some evidence for the application of n-3 PUFA in improving sarcopenia.
Collapse
Affiliation(s)
- Lu Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xueyi Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Tao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Yiwen Guo
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wenjun Pei
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Sun L, Fu J, Mu Z, Duan X, Chan P, Xiu S. Association between body fat and sarcopenia in older adults with type 2 diabetes mellitus: A cross-sectional study. Front Endocrinol (Lausanne) 2023; 14:1094075. [PMID: 36777353 PMCID: PMC9911832 DOI: 10.3389/fendo.2023.1094075] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES To investigate the association between body fat (BF%) and sarcopenia in older adults with type 2 diabetes mellitus (T2DM) and potential link with increased levels of inflammatory indicators and insulin resistance. METHODS A total of 543 older adults with T2DM were included in this cross-sectional study. Appendicular skeletal muscle (ASM), handgrip strength and gait speed were measured to diagnose sarcopenia according to the updated Asian Working Group for Sarcopenia (AWGS) 2019 criteria. Body composition data were tested using dual-energy X-ray absorptiometry (DEXA). Levels of serum high-sensitive C-reactive protein (hs-CRP), interleukin-6, fasting blood insulin (FINS), hemoglobin A1c (HbA1c), 25-hydroxyvitamin D3 [25(OH) D3] were also determined. RESULTS The prevalence of sarcopenia in all participants was 8.84%, of which 11.90% were male and 5.84% females. The Pearson's correlation analysis revealed that BF% was negatively correlated with gait speed in men and women (R =-0.195, P=0.001; R = -0.136, P =0.025, respectively). After adjusting for all potential confounders, sarcopenia was positive associated with BF% (male, OR: 1.38, 95% CI: 1.15-1.65, P< 0.001; female, OR: 1.30, 95% CI: 1.07-1.56, P=0.007), and negatively associated with body mass index (BMI) (male, OR: 0.57, 95% CI: 0.44-0.73, P<0.001; female, OR: 0.48, 95% CI: 0.33-0.70, P<0.001). No significant differences were found in hs-CRP, interleukin-6, and insulin resistance between older T2DM adults with and without sarcopenia. CONCLUSION Higher BF% was linked to an increased risk of sarcopenia in older adults with T2DM, suggesting the importance of assessing BF% rather than BMI alone to manage sarcopenia.
Collapse
Affiliation(s)
- Lina Sun
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junling Fu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhijing Mu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoye Duan
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Piu Chan
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurobiology, Neurology and Geriatrics, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Clinical Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- Beijing Key Laboratory for Parkinson’s Disease, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- *Correspondence: Piu Chan, ; Shuangling Xiu,
| | - Shuangling Xiu
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Piu Chan, ; Shuangling Xiu,
| |
Collapse
|
19
|
Dalgaard LB, Oxfeldt M, Dam TV, Hansen M. Intramuscular sex steroid hormones are reduced after resistance training in postmenopausal women, but not affected by estrogen therapy. Steroids 2022; 186:109087. [PMID: 35809683 DOI: 10.1016/j.steroids.2022.109087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Animal and human studies suggest that low concentrations of circulating sex steroid hormones play a critical role in the accelerated loss of muscle mass and strength after menopause. The skeletal muscle can produce sex steroid hormones locally, however, their presence and regulation remain mostly elusive. The purpose of this study was to examine sex steroid hormone concentrations in skeletal muscle biopsies from postmenopausal women before and after 12-weeks of resistance training with (n = 15) or without (n = 16) estrogen therapy, and after acute exercise. Furthermore, associations between circulating sex hormones, intramuscular sex steroid hormones and muscle parameters related to muscle strength, mass and quality were elucidated. Blood and muscle samples, body composition (DXA-scan), muscle size (MR), and muscle strength measures were determined before and after the intervention. An additional blood and muscle sample was collected after the last resistance exercise bout. The results demonstrated reduced intramuscular estradiol, testosterone and dehydroepiandrosterone (DHEA) concentrations after resistance training irrespective of estrogen therapy. Acute exercise had no effect on intramuscular sex hormone levels. Low circulating levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) associated with high muscle mass at baseline, and a decline in circulating FSH after the intervention associated with a greater gain in muscle cross-sectional area in response to the resistance training. In conclusion, intramuscular estradiol, testosterone and DHEA were reduced by resistance training and unaffected by changes in circulating estrogen levels induced by estrogen therapy. Serum FSH and LH were superior predictors of muscle mass compared to other circulating and intramuscular sex steroid hormones.
Collapse
Affiliation(s)
- Line B Dalgaard
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Mikkel Oxfeldt
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Tine V Dam
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Mette Hansen
- Section for Sport Science, Department of Public Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
20
|
Lee SR, Lee YL, Lee SY. Effect of Ishige okamurae extract on musculoskeletal biomarkers in adults with relative sarcopenia: Study protocol for a randomized double-blind placebo-controlled trial. Front Nutr 2022; 9:1015351. [PMID: 36238450 PMCID: PMC9551569 DOI: 10.3389/fnut.2022.1015351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Sarcopenia is a phenomenon in which skeletal muscle mass decreases with age, causing many health problems. Many studies have been conducted to improve sarcopenia nutritionally. Ishige okamura (IO) is a genus of brown algae and plays a role in anti-diabetes, anti-obesity, and myogenesis. However, the effect of IO extract (IOE) on human muscle strength and mass is unclear. Therefore, we will examine the impact and safety of consumption of IOE for 12 weeks on muscle strength and mass in middle-aged and old-aged adults with relatively low skeletal muscle mass. MATERIALS AND METHODS A randomized controlled trial is conducted on 80 adults aged 50-80. A total of 80 participants will be enrolled in this study. Participants assign IOE-taking group (n = 40) and placebo taking group (n = 40). At a baseline and 12 weeks after treatment, the following parameters of the participants are checked: knee extension strength, handgrip strength, body composition, laboratory tests, dietary recall, physical activity, and EQ-5D-5L. DISCUSSION The present study will be the first randomized, double-blind placebo-controlled trial to examine the efficacy and tolerability of IOE supplementation in adults with relatively low muscle mass. The nutritional intake and physical activity that might influence muscle strength and mass will be considered as covariates for transparency of results. The results of this study will provide clinical evidence for sarcopenia patients with nutrient treatment. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov/, Identifier: NCT04617951.
Collapse
Affiliation(s)
- Sae Rom Lee
- Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Ye Li Lee
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea
| | - Sang Yeoup Lee
- Family Medicine Clinic and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, South Korea
- Integrated Research Institute for Natural Ingredients and Functional Foods, Yangsan, South Korea
- Department of Medical Education, Pusan National University School of Medicine, Yangsan, South Korea
| |
Collapse
|
21
|
Roch PJ, Wolgast V, Gebhardt MM, Böker KO, Hoffmann DB, Saul D, Schilling AF, Sehmisch S, Komrakova M. Combination of selective androgen and estrogen receptor modulators in orchiectomized rats. J Endocrinol Invest 2022; 45:1555-1568. [PMID: 35429299 PMCID: PMC9270269 DOI: 10.1007/s40618-022-01794-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Selective androgen and estrogen receptor modulators, ostarine (OST) and raloxifen (RAL), reportedly improve muscle tissue and offer therapeutic approaches to muscle maintenance in the elderly. The present study evaluated the effects of OST and RAL and their combination on musculoskeletal tissue in orchiectomized rats. METHODS Eight-month-old Sprague Dawley rats were analyzed. Experiment I: (1) Untreated non-orchiectomized rats (Non-ORX), (2) untreated orchiectomized rats (ORX), (3) ORX rats treated with OST during weeks 0-18 (OST-P), (4) ORX rats treated with OST during weeks 12-18 (OST-T). Experiment II: 1) Non-ORX, (2) ORX, 3) OST-P, (4) ORX rats treated with RAL, during weeks 0-18 (RAL-P), 5) ORX rats treated with OST + RAL, weeks 0-18 (OST + RAL-P). The average daily doses of OST and RAL were 0.4 and 7 mg/kg body weight (BW). Weight, fiber size, and capillarization of muscles, gene expression, serum markers and the lumbar vertebral body were analyzed. RESULTS OST-P exerted favorable effects on muscle weight, expression of myostatin and insulin growth factor-1, but increased prostate weight. OST-T partially improved muscle parameters, showing less effect on the prostate. RAL-P did not show anabolic effects on muscles but improved body constitution by reducing abdominal area, food intake, and BW. OST + RAL-P had an anabolic impact on muscle, reduced androgenic effect on the prostate, and normalized food intake. OST and RAL improved osteoporotic bone. CONCLUSIONS The OST + RAL treatment appeared to be a promising option in the treatment of androgen-deficient conditions and showed fewer side effects than the respective single treatments.
Collapse
Affiliation(s)
- P. J. Roch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - V. Wolgast
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - M.-M. Gebhardt
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - K. O. Böker
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - D. B. Hoffmann
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - D. Saul
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Kogod Center On Aging and Division of Endocrinology, Mayo Clinic, Rochester, MN 55905 USA
| | - A. F. Schilling
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - S. Sehmisch
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- Department of Trauma Surgery, Hannover Medical School, University of Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - M. Komrakova
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
22
|
Wu FCW. Ageing male (part 2): Management of functional hypogonadism in older men, a patient-centric holistic approach. Best Pract Res Clin Endocrinol Metab 2022; 36:101626. [PMID: 35461757 DOI: 10.1016/j.beem.2022.101626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The diagnosis of functional hypogonadism should prompt a thorough assessment and optimization of general health, including lifestyle changes, weight reduction, care of comorbidities and cessation of offending medications, some of which can lead to meaningful gains in endogenous testosterone (T) concentrations. Having excluded or addressed reversible causes and contra-indications, patients with functional hypogonadism can be offered a trial of testosterone replacement therapy (TRT) after full discussion on the anticipated benefits and potential risks. T treatment improves libido but may be less effective for erectile dysfunction (ED). T treatment can also have modest positive effects on insulin resistance, bone strength, some measures of physical strength, and mild depressive symptoms but the clinical significance of these relatively short-term improvements remain uncertain in terms of longer-term patient-important outcomes. Initiation of TRT is a joint decision between patient and clinician since longer-term benefits and risks have not been adequately defined.
Collapse
Affiliation(s)
- Frederick C W Wu
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9WL, UK.
| |
Collapse
|
23
|
Lynch GS. Identifying the challenges for successful pharmacotherapeutic management of sarcopenia. Expert Opin Pharmacother 2022; 23:1233-1237. [PMID: 35549577 DOI: 10.1080/14656566.2022.2076593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
24
|
Overview of the development of selective androgen receptor modulators (SARMs) as pharmacological treatment for osteoporosis (1998–2021). Eur J Med Chem 2022; 230:114119. [DOI: 10.1016/j.ejmech.2022.114119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
|