1
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Ho QY, Hester J, Issa F. Regulatory cell therapy for kidney transplantation and autoimmune kidney diseases. Pediatr Nephrol 2025; 40:39-52. [PMID: 39278988 PMCID: PMC11584488 DOI: 10.1007/s00467-024-06514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/18/2024]
Abstract
Regulatory cell therapies, including regulatory T cells and mesenchymal stromal cells, have shown promise in early clinical trials for reducing immunosuppression burden in transplantation. While regulatory cell therapies may also offer potential for treating autoimmune kidney diseases, data remains sparse, limited mainly to preclinical studies. This review synthesises current literature on the application of regulatory cell therapies in these fields, highlighting the safety and efficacy shown in existing clinical trials. We discuss the need for further clinical validation, optimisation of clinical and immune monitoring protocols, and the challenges of manufacturing and quality control under Good Manufacturing Practice conditions, particularly for investigator-led trials. Additionally, we explore the potential for expanding clinical indications and the unique challenges posed in paediatric applications. Future directions include scaling up production, refining protocols to ensure consistent quality across manufacturing sites, and extending applications to other immune-mediated diseases.
Collapse
Affiliation(s)
- Quan Yao Ho
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
| | - Joanna Hester
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Fadi Issa
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, Oxfordshire, UK.
| |
Collapse
|
3
|
Aiyengar A, Romano M, Burch M, Lombardi G, Fanelli G. The potential of autologous regulatory T cell (Treg) therapy to prevent Cardiac Allograft Vasculopathy (CAV) in paediatric heart transplant recipients. Front Immunol 2024; 15:1444924. [PMID: 39315099 PMCID: PMC11416935 DOI: 10.3389/fimmu.2024.1444924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Paediatric heart transplant is an established treatment for end stage heart failure in children, however patients have to commit to lifelong medical surveillance and adhere to daily immunosuppressants to minimise the risk of rejection. Compliance with immunosuppressants can be burdensome with their toxic side effects and need for frequent blood monitoring especially in children. Though the incidence of early rejection episodes has significantly improved overtime, the long-term allograft health and survival is determined by Cardiac Allograft Vasculopathy (CAV) which affects a vast number of post-transplant patients. Once CAV has set in, there is no medical or surgical treatment to reverse it and graft survival is significantly compromised across all age groups. Current treatment strategies include novel immunosuppressant agents and drugs to lower blood lipid levels to address the underlying immunological pathophysiology and to manage traditional cardiac risk factors. Translational researchers are seeking novel immunological approaches that can lead to permanent acceptance of the allograft such as using regulatory T cell (Tregs) immunotherapy. Clinical trials in the setting of graft versus host disease, autoimmunity and kidney and liver transplantation using Tregs have shown the feasibility and safety of this strategy. This review will summarise current knowledge of the latest clinical therapies for CAV and pre-clinical evidence in support of Treg therapy for CAV. We will also discuss the different Treg sources and the considerations of translating this into a feasible immunotherapy in clinical practice in the paediatric population.
Collapse
Affiliation(s)
- Apoorva Aiyengar
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Research Department of Children’s Cardiovascular Disease, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Michael Burch
- Department of Cardiology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| | - Giorgia Fanelli
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College, London, United Kingdom
| |
Collapse
|
4
|
Meng YC, Wu LS, Li N, Li HW, Zhao J, Yan J, Li XQ, Li P, Wei JQ. Pathological diagnosis and immunohistochemical analysis of giant retrosternal goiter in the elderly: A case report. World J Clin Cases 2024; 12:643-649. [PMID: 38322453 PMCID: PMC10841947 DOI: 10.12998/wjcc.v12.i3.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Elderly giant retrosternal thyroid goiter is a rare yet significant medical condition, often presenting clinical symptoms that can be confused with other diseases, posing diagnostic and therapeutic challenges. This study aims to delve into the characteristics and potential mechanisms of this ailment through pathological diagnosis and immunohistochemical analysis, providing clinicians with more precise diagnostic and treatment strategies. CASE SUMMARY A 77-year-old male, was admitted to hospital with the chief complaint of finding a goiter in the semilunar month during physical examination, accompanied by dyspnea. Locally protruding into the superior mediastinum, the adjacent structure was compressed, the trachea was compressed to the right, and the local lumen was slightly narrowed. The patient was diagnosed with giant retrosternal goiter. Considering dyspnea caused by trachea compression, our department planned to perform giant retrosternal thyroidectomy. Immunohistochemical results: Tg (+), TTF-1 (+), Calcitonin (CT) (I), Ki-67 (+, about 20%), CD34 (-). Retrosternal goiter means that more than 50% of the volume of the thyroid gland is below the upper margin of the sternum. As retrosternal goiter disease is a relatively rare disease, once the disease is diagnosed, it should be timely surgical treatment, and the treatment is more difficult, the need for professional medical team for comprehensive treatment. CONCLUSION The imaging manifestations of giant retrosternal goiter are atypical, histomorphology and immunohistochemistry can assist in its diagnosis. This article reviews the relevant literature of giant retrosternal goiter immunohistochemistry and shows that giant retrosternal goiter is positive for Tg, TTF-1, and Ki-67.
Collapse
Affiliation(s)
- Yong-Chang Meng
- Department of Cardiothoracic Surgery, Xinxiang First People's Hospital, Xinxiang 453000, Henan Province, China
| | - Liu-Sheng Wu
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Ning Li
- Graduate School, Qinghai University, Xining 810016, Qinghai Province, China
| | - Hong-Wei Li
- Department of Cardiothoracic Surgery, Xinxiang First People's Hospital, Xinxiang 453000, Henan Province, China
| | - Jing Zhao
- Department of Pathology, Xinxiang First People's Hospital, Xinxiang 453000, Henan Province, China
| | - Jun Yan
- School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Xiao-Qiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Peng Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, Guangdong Province, China
| | - Jiang-Qi Wei
- Department of Cardiothoracic Surgery, Xinxiang First People's Hospital, Xinxiang 453000, Henan Province, China
| |
Collapse
|
5
|
Kennedy-Batalla R, Acevedo D, Luo Y, Esteve-Solé A, Vlagea A, Correa-Rocha R, Seoane-Reula ME, Alsina L. Treg in inborn errors of immunity: gaps, knowns and future perspectives. Front Immunol 2024; 14:1278759. [PMID: 38259469 PMCID: PMC10800401 DOI: 10.3389/fimmu.2023.1278759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Regulatory T cells (Treg) are essential for immune balance, preventing overreactive responses and autoimmunity. Although traditionally characterized as CD4+CD25+CD127lowFoxP3hi, recent research has revealed diverse Treg subsets such as Tr1, Tr1-like, and CD8 Treg. Treg dysfunction leads to severe autoimmune diseases and immune-mediated inflammatory disorders. Inborn errors of immunity (IEI) are a group of disorders that affect correct functioning of the immune system. IEI include Tregopathies caused by genetic mutations affecting Treg development or function. In addition, Treg dysfunction is also observed in other IEIs, whose underlying mechanisms are largely unknown, thus requiring further research. This review provides a comprehensive overview and discussion of Treg in IEI focused on: A) advances and controversies in the evaluation of Treg extended subphenotypes and function; B) current knowledge and gaps in Treg disturbances in Tregopathies and other IEI including Treg subpopulation changes, genotype-phenotype correlation, Treg changes with disease activity, and available therapies, and C) the potential of Treg cell-based therapies for IEI with immune dysregulation. The aim is to improve both the diagnostic and the therapeutic approaches to IEI when there is involvement of Treg. We performed a non-systematic targeted literature review with a knowledgeable selection of current, high-quality original and review articles on Treg and IEI available since 2003 (with 58% of the articles within the last 6 years) in the PubMed database.
Collapse
Affiliation(s)
- Rebeca Kennedy-Batalla
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Daniel Acevedo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Yiyi Luo
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Ana Esteve-Solé
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Immunology Department, Biomedic Diagnostic Center (CDB), Hospital Clínic of Barcelona, Clinical Immunology Unit Hospital Sant Joan de Déu-Hospital Clínic de Barcelona, Barcelona, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
| | - Ma Elena Seoane-Reula
- Laboratory of Immune-Regulation, Gregorio Marañón Health Research Institute (IISGM), Madrid, Spain
- Pediatric Immuno-Allergy Unit, Allergy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Primary Immunodeficiencies Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Laia Alsina
- Clinical Immunology and Primary Immunodeficiencies Unit, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Liu M, Chu W, Guo T, Zeng X, Shangguan Y, He F, Liang X. Challenges of Cell Counting in Cell Therapy Products. Cell Transplant 2024; 33:9636897241293628. [PMID: 39462979 PMCID: PMC11520012 DOI: 10.1177/09636897241293628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Cell counting is a common and fundamental cell measurement technique that plays a crucial role in the development and quality control of cell therapy products. However, accurate and reliable cell counting can be challenging owing to the complexity of cell preparations, diverse counting purposes, and various counting methods. This review summarizes the challenges encountered in cell counting for cell therapy products and provides strategies to improve the cell counting accuracy, thereby guiding the counting process and ensuring the quality of cell therapy products.
Collapse
Affiliation(s)
- Muyun Liu
- National Engineering Research Center of Foundational Technologies for CGT Industry, Shenzhen, People’s Republic of China
- Shenzhen Kenuo Medical Laboratory, Shenzhen, People’s Republic of China
| | - Wanglong Chu
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Tao Guo
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Xiuping Zeng
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Yan Shangguan
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Fangtao He
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| | - Xiao Liang
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, People’s Republic of China
| |
Collapse
|
7
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023; 19:2164159. [PMID: 36681905 PMCID: PMC9870008 DOI: 10.1080/15476278.2022.2164159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
Affiliation(s)
- Kassandra J. Baron
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Infectious Disease and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hēth R. Turnquist Departments of Surgery, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute 200 Lothrop Street, BST W1542, PittsburghPA 15213, USA
| |
Collapse
|
8
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
9
|
Bernaldo-de-Quirós E, Camino M, Martínez-Bonet M, Gil-Jaurena JM, Gil N, Hernández-Flórez D, Fernández-Santos ME, Butragueño L, Dijke IE, Levings MK, West LJ, Pion M, Correa-Rocha R. First-in-human therapy with Treg produced from thymic tissue (thyTreg) in a heart transplant infant. J Exp Med 2023; 220:e20231045. [PMID: 37906166 PMCID: PMC10619578 DOI: 10.1084/jem.20231045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Due to their suppressive capacity, regulatory T cells (Tregs) have attracted growing interest as an adoptive cellular therapy for the prevention of allograft rejection, but limited Treg recovery and lower quality of adult-derived Tregs could represent an obstacle to success. To address this challenge, we developed a new approach that provides large quantities of Tregs with high purity and excellent features, sourced from thymic tissue routinely removed during pediatric cardiac surgeries (thyTregs). We report on a 2-year follow-up of the first patient treated worldwide with thyTregs, included in a phase I/II clinical trial evaluating the administration of autologous thyTreg in infants undergoing heart transplantation. In addition to observing no adverse effects that could be attributed to thyTreg administration, we report that the Treg frequency in the periphery was preserved during the 2-year follow-up period. These initial results are consistent with the trial objective, which is to confirm safety of the autologous thyTreg administration and its capacity to restore the Treg pool.
Collapse
Affiliation(s)
- Esther Bernaldo-de-Quirós
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Manuela Camino
- Department of Pediatric Cardiology, Hospital Gregorio Marañón, Madrid, Spain
| | - Marta Martínez-Bonet
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | | | - Nuria Gil
- Department of Pediatric Cardiology, Hospital Gregorio Marañón, Madrid, Spain
| | - Diana Hernández-Flórez
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | | | - Laura Butragueño
- Pediatric Intensive Care Unit, Hospital Gregorio Marañón, Madrid, Spain
| | - I. Esmé Dijke
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
- Canadian Donation and Transplantation Research Program Investigator, Edmonton, Canada
- Alberta Transplant Institute, Edmonton, Canada
| | - Megan K. Levings
- Canadian Donation and Transplantation Research Program Investigator, Edmonton, Canada
- Department of Surgery and School of Biomedical Engineering, University of British Columbia, BC Children’s Hospital, Vancouver, Canada
| | - Lori J. West
- Canadian Donation and Transplantation Research Program Investigator, Edmonton, Canada
- Alberta Transplant Institute, Edmonton, Canada
- Department of Pediatrics, University of Alberta/Stollery Children’s Hospital, Edmonton, Canada
| | - Marjorie Pion
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Rafael Correa-Rocha
- Laboratory of Immune-Regulation, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
- Canadian Donation and Transplantation Research Program Investigator, Edmonton, Canada
| |
Collapse
|
10
|
Early Stage Professionals Committee Proceedings from the International Society for Cell & Gene Therapy 2022 Annual Meeting. Cytotherapy 2023; 25:590-597. [PMID: 36906481 DOI: 10.1016/j.jcyt.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 03/12/2023]
Abstract
In this Committee Proceedings, representatives from the Early Stage Professional (ESP) committee highlight the innovative discoveries and key take-aways from oral presentations at the 2022 International Society for Cell and Gene Therapy (ISCT) Annual Meeting that cover the following subject categories: Immunotherapy, Exosomes and Extracellular Vesicles, HSC/Progenitor Cells and Engineering, Mesenchymal Stromal Cells, and ISCT Late-Breaking Abstracts.
Collapse
|
11
|
Bluestone JA, McKenzie BS, Beilke J, Ramsdell F. Opportunities for Treg cell therapy for the treatment of human disease. Front Immunol 2023; 14:1166135. [PMID: 37153574 PMCID: PMC10154599 DOI: 10.3389/fimmu.2023.1166135] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmunity, and limiting chronic inflammatory diseases. This small CD4+ T cell population can develop in the thymus and in the peripheral tissues of the immune system through the expression of an epigenetically stabilized transcription factor, FOXP3. Treg cells mediate their tolerogenic effects using multiple modes of action, including the production of inhibitory cytokines, cytokine starvation of T effector (e.g., IL-2), Teff suppression by metabolic disruption, and modulation of antigen-presenting cell maturation or function. These activities together result in the broad control of various immune cell subsets, leading to the suppression of cell activation/expansion and effector functions. Moreover, these cells can facilitate tissue repair to complement their suppressive effects. In recent years, there has been an effort to harness Treg cells as a new therapeutic approach to treat autoimmune and other immunological diseases and, importantly, to re-establish tolerance. Recent synthetic biological advances have enabled the cells to be genetically engineered to achieve tolerance and antigen-specific immune suppression by increasing their specific activity, stability, and efficacy. These cells are now being tested in clinical trials. In this review, we highlight both the advances and the challenges in this arena, focusing on the efforts to develop this new pillar of medicine to treat and cure a variety of diseases.
Collapse
|
12
|
MacDonald KN, Salim K, Levings MK. Manufacturing next-generation regulatory T-cell therapies. Curr Opin Biotechnol 2022; 78:102822. [PMID: 36332342 DOI: 10.1016/j.copbio.2022.102822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/11/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Regulatory T-cell (Treg) therapy has shown promise in treating autoimmune diseases, transplant rejection, or graft-versus-host disease in early clinical trials. These trials have demonstrated that cell therapy using polyclonal Tregs is feasible and safe, however, the field has been limited by the lack of polyclonal cell specificity and consequent large cell numbers required, and the difficulty in generating autologous products for some patients. Thus, the field is moving toward 'next generation' Treg cell therapies that include genetic modification strategies to engineer specificity and/or modify function, as well as methods to generate Tregs in vitro. In this review, we describe how genetic modification of Tregs using viral transduction or gene editing may be incorporated into Treg manufacturing protocols. We also describe how Tregs may be generated via FOXP3 gene editing or overexpression, or by differentiation from pluripotent stem cells. The application of these various types of engineered Tregs is discussed.
Collapse
Affiliation(s)
- Katherine N MacDonald
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|