1
|
Uti DE, Atangwho IJ, Alum EU, Ntaobeten E, Obeten UN, Bawa I, Agada SA, Ukam CIO, Egbung GE. Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. DISCOVER NANO 2025; 20:70. [PMID: 40272665 PMCID: PMC12021792 DOI: 10.1186/s11671-025-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Emmanuella Ntaobeten
- Department of Cancer and Haematology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Uket Nta Obeten
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Inalegwu Bawa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | - Samuel A Agada
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | | | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
2
|
Zeng J, Zhang X, Lin Z, Zhang Y, Yang J, Dou P, Liu T. Harnessing ferroptosis for enhanced sarcoma treatment: mechanisms, progress and prospects. Exp Hematol Oncol 2024; 13:31. [PMID: 38475936 DOI: 10.1186/s40164-024-00498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Sarcoma is a malignant tumor that originates from mesenchymal tissue. The common treatment for sarcoma is surgery supplemented with radiotherapy and chemotherapy. However, patients have a 5-year survival rate of only approximately 60%, and sarcoma cells are highly resistant to chemotherapy. Ferroptosis is an iron-dependent nonapoptotic type of regulated programmed cell death that is closely related to the pathophysiological processes underlying tumorigenesis, neurological diseases and other conditions. Moreover, ferroptosis is mediated via multiple regulatory pathways that may be targets for disease therapy. Recent studies have shown that the induction of ferroptosis is an effective way to kill sarcoma cells and reduce their resistance to chemotherapeutic drugs. Moreover, ferroptosis-related genes are related to the immune system, and their expression can be used to predict sarcoma prognosis. In this review, we describe the molecular mechanism underlying ferroptosis in detail, systematically summarize recent research progress with respect to ferroptosis application as a sarcoma treatment in various contexts, and point out gaps in the theoretical research on ferroptosis, challenges to its clinical application, potential resolutions of these challenges to promote ferroptosis as an efficient, reliable and novel method of clinical sarcoma treatment.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yu Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Pengcheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
3
|
Luo L, Cai Y, Jiang Y, Gong Y, Cai C, Lai D, Jin X, Guan Z, Qiu Q. Pipecolic acid mitigates ferroptosis in diabetic retinopathy by regulating GPX4-YAP signaling. Biomed Pharmacother 2023; 169:115895. [PMID: 37984309 DOI: 10.1016/j.biopha.2023.115895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Diabetic retinopathy (DR) is currently recognized as the leading cause of end-stage eye disease. Pipecolic acid, a metabolite, has a significant regulatory effect on several pathological processes. However, the exact mechanism by which it causes damage in diabetic retinopathy is unknown. Between September 2021 and December 2022, 40 patients were retrospectively examined and divided into two groups: the healthy group (n = 20) and the DR group (n = 20). Metabolomic analysis found that pipecolic acid plays an important role in this process. Streptozotocin-induced diabetic mice and high-glucose cultured human retinal capillary endothelial cells (HRCECs) were then treated with pipecolic acid. Several oxidative stress measurements and RNA sequencing of retinal cells were tested. A gene interaction study was conducted using bioinformatics. Comparison of serological metabolites between healthy volunteers and DR patients showed that pipecolic acid was significantly lower in DR patients, and there was a negative correlation between the level of pipecolic acid with blood glucose and glycated hemoglobin. Yes-associated protein (YAP) mRNA, Malondialdehyde (MDA), and reactive oxygen species (ROS) levels were significantly higher in diabetic mice, but glutathione peroxidase (GSH-Px) levels were significantly lower. Pipecolic acid significantly alleviated oxidative stress and YAP expression. The number of vascular tubes was significantly higher in the DR group, and pipecolic acid treatment significantly reduced tube formation. RNA-Sequencing analysis revealed that YAP and glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) expression was reduced, and functional enrichment analysis revealed that ferroptosis and Hippo signaling pathways play an important role in this process. Additionally, pipecolic acid's ability to improve DR is diminished after YAP and GPX4 ablation. This study found that pipecolic acid, as a metabolite, may impede the progression of DR by inhibiting the YAP-GPX4 signaling pathway.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yuying Cai
- Department of Ophthalmology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingying Gong
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Xiao Jin
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu PR China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Guan Z, Jin X, Guan Z, Liu S, Tao K, Luo L. The gut microbiota metabolite capsiate regulate SLC2A1 expression by targeting HIF-1α to inhibit knee osteoarthritis-induced ferroptosis. Aging Cell 2023:e13807. [PMID: 36890785 DOI: 10.1111/acel.13807] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death that has been found to aggravate the progression of osteoarthritis (OA) and gut microbiota- OA axis refers to the bidirectional information network between the gut microbiota and OA, which may provide a new way to protect the OA. However, the role of gut microbiota-derived metabolites in ferroptosis-relative osteoarthritis remains unclear. The objective of this study was to analyze the protective effect of gut microbiota and its metabolite capsiate (CAT) on ferroptosis-relative osteoarthritis in vivo and in vitro experiments. From June 2021 to February 2022, 78 patients were evaluated retrospectively and divided into two groups: The health group (n = 39) and the OA group (n = 40). Iron and oxidative stress indicators were determined in peripheral blood samples. And then in vivo and in vitro experiments, a surgically destabilized medial meniscus (DMM) mice model was established and treated with CAT or Ferric Inhibitor-1 (Fer-1). Solute Carrier Family 2 Member 1 (SLC2A1) short hairpin RNA (shRNA) was utilized to inhibit SLC2A1 expression. Serum iron was increased significantly but total iron binding capacity was decreased significantly in OA patients than healthy people (p < 0.0001). The least absolute shrinkage and selection operator clinical prediction model suggested that serum iron, total iron binding capacity, transferrin, and superoxide dismutase were all independent predictors of OA (p < 0.001). Bioinformatics results suggested that SLC2A1, Metastasis-Associated Lung Adenocarcinoma Transcript 1 (MALAT1), and HIF-1α (Hypoxia Inducible Factor 1 Alpha)-related oxidative stress signaling pathways play an important role in iron homeostasis and OA. In addition, gut microbiota 16s RNA sequencing and untargeted metabolomics were used to find that gut microbiota metabolites CAT in mice with osteoarthritis were negatively correlated with Osteoarthritis Research Society International (OARSI) scores for chondrogenic degeneration (p = 0.0017). Moreover, CAT reduced ferroptosis-dependent osteoarthritis in vivo and in vitro. However, the protective effect of CAT against ferroptosis-dependent osteoarthritis could be eliminated by silencing SLC2A1. SLC2A1 was upregulated but reduced the SLC2A1 and HIF-1α levels in the DMM group. HIF-1α, MALAT1, and apoptosis levels were increased after SLC2A1 knockout in chondrocyte cells (p = 0.0017). Finally, downregulation of SLC2A1 expression by Adeno-associated Virus (AAV) -SLC2A1 shRNA improves osteoarthritis in vivo. Our findings indicated that CAT inhibited HIF-1a expression and reduced ferroptosis-relative osteoarthritis progression by activating SLC2A1.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China.,Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, The First People's Hospital of Xuzhou, Jiangsu, Xuzhou, China.,Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Jiangsu, Xuzhou, China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Jiangsu, Xuzhou, China
| | - Shengfu Liu
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Kun Tao
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhang G, Fang Y, Li X, Zhang Z. Ferroptosis: A novel therapeutic strategy and mechanism of action in glioma. Front Oncol 2022; 12:947530. [PMID: 36185243 PMCID: PMC9520297 DOI: 10.3389/fonc.2022.947530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system and resistance is easily developed to chemotherapy drugs during the treatment process, resulting in high mortality and short survival in glioma patients. Novel therapeutic approaches are urgently needed to improve the therapeutic efficacy of chemotherapeutic drugs and to improve the prognosis of patients with glioma. Ferroptosis is a novel regulatory cell death mechanism that plays a key role in cancer, neurodegenerative diseases, and other diseases. Studies have found that ferroptosis-related regulators are closely related to the survival of patients with glioma, and induction of ferroptosis can improve glioma resistance to chemotherapy drugs. Therefore, induction of tumor cell ferroptosis may be an effective therapeutic strategy for glioma. This review summarizes the relevant mechanisms of ferroptosis, systematically summarizes the key role of ferroptosis in the treatment of glioma and outlines the relationship between ferroptosis-related ncRNAs and the progression of glioma.
Collapse
|