1
|
Ashique S, Mishra N, Mohanto S, Garg A, Taghizadeh-Hesary F, Gowda BJ, Chellappan DK. Application of artificial intelligence (AI) to control COVID-19 pandemic: Current status and future prospects. Heliyon 2024; 10:e25754. [PMID: 38370192 PMCID: PMC10869876 DOI: 10.1016/j.heliyon.2024.e25754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024] Open
Abstract
The impact of the coronavirus disease 2019 (COVID-19) pandemic on the everyday livelihood of people has been monumental and unparalleled. Although the pandemic has vastly affected the global healthcare system, it has also been a platform to promote and develop pioneering applications based on autonomic artificial intelligence (AI) technology with therapeutic significance in combating the pandemic. Artificial intelligence has successfully demonstrated that it can reduce the probability of human-to-human infectivity of the virus through evaluation, analysis, and triangulation of existing data on the infectivity and spread of the virus. This review talks about the applications and significance of modern robotic and automated systems that may assist in spreading a pandemic. In addition, this study discusses intelligent wearable devices and how they could be helpful throughout the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior, 474005, Madhya Pradesh, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Ashish Garg
- Guru Ramdas Khalsa Institute of Science and Technology, Pharmacy, Jabalpur, M.P, 483001, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Clinical Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - B.H. Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast, BT9 7BL, UK
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
2
|
Panda PK, Agarwal M. Use of Polypharmacy and Emergence of COVID-19 Variants - Are they
Co-Related? Curr Drug Saf 2023; 18:2-4. [DOI: https:/doi.org/10.2174/1574886317666220328155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/01/2022] [Accepted: 01/17/2022] [Indexed: 05/15/2025]
Affiliation(s)
- Prasan Kumar Panda
- Department of Internal Medicine (ID Division), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| | - Mayank Agarwal
- Department of Internal Medicine (ID Division), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| |
Collapse
|
3
|
Agarwal M, Panda PK. Use of Polypharmacy and Emergence of COVID-19 Variants - Are they Co-Related? Curr Drug Saf 2023; 18:2-4. [PMID: 35346002 DOI: 10.2174/1574886317666220328155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/01/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023]
Affiliation(s)
- Mayank Agarwal
- Department of Internal Medicine (ID Division), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| | - Prasan Kumar Panda
- Department of Internal Medicine (ID Division), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| |
Collapse
|
4
|
Cao JF, Yang X, Xiong L, Wu M, Chen S, Xiong C, He P, Zong Y, Zhang L, Fu H, Qi Y, Ying X, Liu D, Hu X, Zhang X. Mechanism of N-0385 blocking SARS-CoV-2 to treat COVID-19 based on molecular docking and molecular dynamics. Front Microbiol 2022; 13:1013911. [PMID: 36329841 PMCID: PMC9622768 DOI: 10.3389/fmicb.2022.1013911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2023] Open
Abstract
PURPOSE 2019 Coronavirus disease (COVID-19) has caused millions of confirmed cases and deaths worldwide. TMPRSS2-mediated hydrolysis and maturation of spike protein is essential for SARS-CoV-2 infection in vivo. The latest research found that a TMPRSS2 inhibitor called N-0385 could effectively prevent the infection of the SARS-CoV-2 and its variants. However, it is not clear about the mechanism of N-0385 treatment COVID-19. Therefore, this study used computer simulations to investigate the mechanism of N-0385 treatment COVID-19 by impeding SARS-CoV-2 infection. METHODS The GeneCards database was used to search disease gene targets, core targets were analyzed by PPI, GO and KEGG. Molecular docking and molecular dynamics were used to validate and analyze the binding stability of small molecule N-0385 to target proteins. The supercomputer platform was used to simulate and analyze the number of hydrogen bonds, binding free energy, stability of protein targets at the residue level, radius of gyration and solvent accessible surface area. RESULTS There were 4,600 COVID-19 gene targets from GeneCards database. PPI, GO and KEGG analysis indicated that signaling pathways of immune response and inflammation played crucial roles in COVID-19. Molecular docking showed that N-0385 could block SARS-CoV-2 infection and treat COVID-19 by acting on ACE2, TMPRSS2 and NLRP3. Molecular dynamics was used to demonstrate that the small molecule N-0385 could form very stable bindings with TMPRSS2 and TLR7. CONCLUSION The mechanism of N-0385 treatment COVID-19 was investigated by molecular docking and molecular dynamics simulation. We speculated that N-0385 may not only inhibit SARS-CoV-2 invasion directly by acting on TMPRSS2, ACE2 and DPP4, but also inhibit the immune recognition process and inflammatory response by regulating TLR7, NLRP3 and IL-10 to prevent SARS-CoV-2 invasion. Therefore, these results suggested that N-0385 may act through multiple targets to reduce SARS-CoV-2 infection and damage caused by inflammatory responses.
Collapse
Affiliation(s)
- Jun-Feng Cao
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xingyu Yang
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Li Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Mei Wu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Shengyan Chen
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chenyang Xiong
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Peiyong He
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | | | - Lixin Zhang
- Yunnan Academy of Forestry Sciences, Kunming, Yunnan, China
| | - Hongjiao Fu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yue Qi
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiran Ying
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Dengxin Liu
- Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaosong Hu
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| | - Xiao Zhang
- Chengdu Medical College of Basic Medical Sciences, Chengdu, China
| |
Collapse
|
5
|
Elhusseiny SM, El-Mahdy TS, Elleboudy NS, Yahia IS, Farag MMS, Ismail NSM, Yassien MA, Aboshanab KM. In vitro Anti SARS-CoV-2 Activity and Docking Analysis of Pleurotus ostreatus, Lentinula edodes and Agaricus bisporus Edible Mushrooms. Infect Drug Resist 2022; 15:3459-3475. [PMID: 35813084 PMCID: PMC9259418 DOI: 10.2147/idr.s362823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Shaza M Elhusseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Cairo, 12566, Egypt
| | - Taghrid S El-Mahdy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ibrahim S Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab, Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Mohamed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Nasser S M Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Mahmoud A Yassien
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Correspondence: Khaled M Aboshanab, Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abbassia, Cairo, 11566, Egypt, Tel +20 1-0075-82620, Fax +20 224051107, Email
| |
Collapse
|
6
|
Gungor S, Tosun B, Unal N, Dusak I. Evaluation of dyspnea severity and sleep quality in patients with novel coronavirus. Int J Clin Pract 2021; 75:e14631. [PMID: 34260144 PMCID: PMC8420154 DOI: 10.1111/ijcp.14631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
AIM Dyspnea, a common symptom of novel coronavirus, can negatively affect sleep quality. The aim of this study was to evaluate the relationship between dyspnea severity and sleep quality in patients with COVID-19. STUDY DESIGN A cross-sectional design was used. METHODS Using the researcher's mobile phone, data were collected via an online questionnaire from patients (n = 100) who agreed to participate in the study. The data-collection form comprised three parts: a patient descriptive information form, the Dyspnea-12 Questionnaire, and the Richards-Campbell Sleep Questionnaire (RCSQ). RESULTS The mean age of patients was 46.39 ± 12.61 years and 66.0% were men. Patients who were treated in the intensive care unit had bachelor's degree or more and patients with comorbid diseases had low mean scores from the RCSQ and high mean scores from the Dyspnea-12 Questionnaire (P < .001, P < .001; P = .047, P < .001; P < .001, P < .001, respectively). Patients who were not receiving oxygen therapy had higher RCSQ mean scores and lower Dyspnea-12 Questionnaire scores (P < .001, P < .001; P < .001, P < .001, respectively). There was a strong negative relationship between the total scores obtained from the RCSQ and the Dyspnea-12 Questionnaire (r = -.701, P < .001). CONCLUSIONS Sleep quality is affected by dyspnea severity in patients with COVID-19. Sleep quality and dyspnea severity are also influenced by quite different factors, and these should be addressed and eliminated by nurses as part of a holistic approach. The results of this study will help nurses, especially those providing treatment and care for patients with COVID-19, to identify the factors affecting dyspnea and sleep quality and to plan, implement and evaluate nursing interventions that will reduce their workload.
Collapse
Affiliation(s)
- Serap Gungor
- Kahramanmaras Sutcu Imam UniversityVocational School of Health ServicesKahramanmarasTurkey
| | - Betul Tosun
- Faculty of Health SciencesSchool of NursingHasan Kalyoncu UniversityGaziantepTurkey
| | - Nursemin Unal
- Faculty of Health SciencesSchool of NursingAnkara Medipol UniversityAnkaraTurkey
| | - Ismail Dusak
- Sanliurfa Mehmet Akif İnan Education and Research HospitalSanliurfaTurkey
| |
Collapse
|
7
|
Di Micco P, Imparato M, Iannuzzo MT, Fontanella A. Lesson learned by COVID-19 outbreak: multilevel triage strategies in patients admitted to the emergency room in southern Italy. ITALIAN JOURNAL OF MEDICINE 2021. [DOI: 10.4081/itjm.2021.1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
After identifying a novel disease inducing a severe acute respiratory syndrome-related to coronavirus 2 (SARS-CoV-2) for epidemic pneumonia in China, the diffusion of infection is ongoing around the world, and Italy has been the second country in which an epidemic has been demonstrated. Clinical features of this infection may be summarized in viral pneumonia that SARS or acute respiratory distress syndrome (ARDS) may complicate. For this reason, this epidemic has been considerably more aggressive than the previous epidemic of SARS and Middle-East respiratory syndrome. Coronavirus disease 2019 (COVID-19) showed an easy diffusion from human to human and also showed to be more contagious than other viruses. So human contact should be avoided at the emergency room and for inpatients too. The Triage should be adapted to these new features in order to speed up procedures for the care of infected patients at high risk of morbidity and mortality for SARS and ARDS and for traditional access to the emergency room. Based on our experiences, this flow chart has been designed with a multi-level triage in which patients have been divided for admission to the emergency room into patients with fever/respiratory symptoms and patients without fever\respiratory symptoms, to improve medical performances while treating COVID-19. This organized, multilevel triage permitted a good selection of patients admitted to the emergency room during the epidemic of COVID-19 in Southern Italy.
Collapse
|
8
|
Rasouli M, Vakilian F, Ranjbari J. Therapeutic and protective potential of mesenchymal stem cells, pharmaceutical agents and current vaccines against covid-19. Curr Stem Cell Res Ther 2021; 17:166-185. [PMID: 33349221 DOI: 10.2174/1574888x16666201221151853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
It has been almost 18 months since the first outbreak of COVID-19 disease was reported in Wuhan, China. This unexpected devastating phenomenon, raised a great deal of concerns and anxiety among people around the world and imposed a huge economic burden on the nations' health care systems. Accordingly, clinical scientists, pharmacologists and physicians worldwide felt an urgent demand for a safe, effective therapeutic agent, treatment strategy or vaccine in order to prevent or cure the recently-emerged disease. Initially, due to lack of specific pharmacological agents and approved vaccines to combat the COVID-19, the disease control in the confirmed cases was limited to supportive care. Accordingly, repositioning or repurposing current drugs and examining their possible therapeutic efficacy received a great deal of attention. Despite revealing promising results in some clinical trials, the overall results are conflicting. For this reason, there is an urgent to seek and investigate other potential therapeutics. Mesenchymal stem cells (MSC) representing immunomodulatory and regenerative capacity to treat both curable and intractable diseases, have been investigated in COVID-19 clinical trials carried out in different parts of the world. Nevertheless, up to now, none of MSC-based approaches has been approved in controlling COVID-19 infection. Thanks to the fact that the final solution for defeating the pandemic is developing a safe, effective vaccine, enormous efforts and clinical research have been carried out. In this review, we will concisely discuss the safety and efficacy of the most relevant pharmacological agents, MSC-based approaches and candidate vaccines for treating and preventing COVID-19 infection.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | | | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
9
|
Zhao B, Yang TF, Zheng R. Theory and reality of antivirals against SARS-CoV-2. World J Clin Cases 2021; 9:6663-6673. [PMID: 34447813 PMCID: PMC8362513 DOI: 10.12998/wjcc.v9.i23.6663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/16/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
At present, over 180 million people have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide and there have been more than 3.8 million deaths due to the virus. However, specific effective antiviral treatment for this infectious disease is absent. At the beginning of the epidemic, relevant cellular and animal experiments of antiviral treatment for SARS-CoV-2 were conducted based on the prior studies of SARS-CoV and Middle East respiratory syndrome coronavirus. Some antivirals were preliminarily validated to be potentially effective in the clinical settings. But as the epidemic continued and more studies were carried out, the efficacy of these antiviral drugs became controversial. This paper reviews the pharmacology and application of interferon, lopinavir/ritonavir, ribavirin, chloroquine, arbidol, favipiravir, remdesivir, and thymosin α1 in coronavirus disease 2019. The actual effect of these drugs remains controversial. Meanwhile, the efficacy and safety of these drugs for patients with coronavirus disease 2019 still need to be explored.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Teng-Fei Yang
- Department of Health Management and Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
10
|
Ren H, Guo X, Palazón-Bru A, Yang P, Huo N, Wang R, Sun Y, Hu Q, Yang H, Xu G. Regional Differences in Epidemiological and Clinical Characteristics, Treatment, and Clinical Outcomes of COVID-19 in Wuhan and Remote Areas of Hubei Province. Front Med (Lausanne) 2021; 8:667623. [PMID: 34336881 PMCID: PMC8319467 DOI: 10.3389/fmed.2021.667623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The Coronavirus disease 2019 (COVID-19) pandemic has been a major threat to global health. Regional differences in epidemiological and clinical characteristics, treatment and outcomes of patients have not yet been investigated. This study was conducted to investigate these differences amongCOVID-19 patients in Hubei Province, China. Methods: This retrospective cross-sectional study analyzed data on 289 COVID-19 patients from designated hospitals in three regions:Urban (Wuhan Union West Hospital), Suburban areas of Wuhan (Hannan Hospital) and Enshi city, between February 8 and 20, 2020. The final date of follow-up was December 14th, 2020. The outcomes were case fatality rate and epidemiological and clinical data. Results: Urban Wuhan experienced a significantly higher case fatality rate (21.5%) than suburban Wuhan (5.23%) and rural area of Enshi (3.51%). Urban Wuhan had a higher proportion of patients on mechanical ventilation (24.05%) than suburban Wuhan (0%) and rural Enshi (3.57%). Treatment with glucocorticoids was equivalent in urban and suburban Wuhan (46.84 and 45.75%, respectively) and higher than Enshi (25.00%). Urban Wuhan had a higher proportion of patients with abnormal tests including liver function and serum electrolytes and a higher rate of pneumonia (p < 0.01 for all). Urban Wuhan also had a higher incidence of respiratory failure, heart disease, liver disease and shock, compared with the other two regions (all p < 0.05). Conclusions: Our findings revealed that there are regional differences in COVID-19. These findings provide novel insights into the distribution of appropriate resources for the prevention, control and treatment of COVID-19 for the global community.
Collapse
Affiliation(s)
- Honggang Ren
- Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyi Guo
- Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Palazón-Bru
- Department of Clinical Medicine, Miguel Hernández University of Elche, Elche, Spain
| | | | - Nan Huo
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Runsheng Wang
- Second Medical Center, People's Liberation Army General Hospital, Beijing, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyong Hu
- Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Centre, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Yang
- Department of Respiratory Medicine, Minzu University Hospital of Hubei Minzu University, Enshi, China
| | - Guogang Xu
- The Second Medical Centre and National Clinical Research Centre for Geriatric Diseases, Chinese People's Liberation Army of China General Hospital, Beijing, China
| |
Collapse
|
11
|
Bokharee N, Khan YH, Khokhar A, Mallhi TH, Alotaibi NH, Rasheed M. Pharmacological interventions for COVID-19: a systematic review of observational studies and clinical trials. Expert Rev Anti Infect Ther 2021; 19:1219-1244. [PMID: 33719819 DOI: 10.1080/14787210.2021.1902805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Currently, there is no approved therapeutic entity for coronavirus disease 2019 (COVID-19) and clinicians are primarily relying on drug repurposing. However, findings across studies are widely disparate, making it difficult to draw firm conclusions. Since clinicians need accurate evidence to treat COVID-19, this manuscript systematically analyzed the published and ongoing studies evaluating the pharmacological interventions for COVID-19.Areas Covered: A systematic search of observational studies and Clinical Trials on the treatment and prevention of COVID-19 was performed by using various databases from inception to 2 December 2020.Expert Opinion: A total of 460 studies met the inclusion criteria. Of these, 37 were research studies, 386 were ongoing trials, and 37 were completed trials. Anti-virals, steroids, anti-malarial, plasma exchange, and monoclonal antibodies were the most common treatment modalities used alone or in combination in these studies. However, tocilizumab, plasma exchange, and steroids have shown significant improvements in patient's clinical and radiological status. Tocilizumab reported minimum hospital stay of 2 days along with maximum recovery and patient's stability rate. Existing literature demonstrate promising results of tocilizumab, plasma exchange, and steroids among COVID-19 patients. Nevertheless, these studies are accompanied by several methodological disparities which should be considered while interpreting the results.
Collapse
Affiliation(s)
- Nida Bokharee
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Yusra Habib Khan
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Aisha Khokhar
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| | - Tauqeer Hussain Mallhi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Nasser Hadal Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia
| | - Maria Rasheed
- Institute of Pharmacy, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
12
|
Phytochemicals of Rhus spp. as Potential Inhibitors of the SARS-CoV-2 Main Protease: Molecular Docking and Drug-Likeness Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8814890. [PMID: 33727943 PMCID: PMC7937479 DOI: 10.1155/2021/8814890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/27/2020] [Accepted: 01/31/2021] [Indexed: 12/25/2022]
Abstract
Background The outbreak of coronavirus disease 2019 (COVID-19) induced by the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in China and spread to cover the entire world with an ongoing pandemic. The magnitude of the situation and the fast spread of the new and deadly virus, as well as the lack of specific treatment, led to a focus on research to discover new therapeutic agents. Aim In this study, we explore the potential inhibitory effects of some active polyphenolic constituents of Rhus spp. (sumac) against the SARS-CoV-2 main protease enzyme (Mpro; 6LU7). Methods 26 active polyphenolic compounds of Rhus spp. were studied for their antiviral activity by molecular docking, drug likeness, and synthetic accessibility score (SAS) as inhibitors against the SARS-CoV-2 Mpro. Results The results show that all tested compounds of sumac provided good interaction with the main active site of SARS-CoV-2 Mpro, with better, lower molecular docking energy (kcal/mol) compared to the well-known drugs chloroquine and favipiravir (Avigan). Only six active polyphenolic compounds of Rhus spp. (sumac), methyl 3,4,5-trihydroxybenzoate, (Z)-1-(2,4-dihydroxyphenyl)-3-(3,4-dihydroxyphenyl)-2-hydroxyprop-2-en-1-one, (Z)-2-(3,4-dihydroxybenzylidene)-6-hydroxybenzofuran-3(2H)-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)chroman-4-one, 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-methoxy-4H-chroman-4-one, and 3,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one, were proposed by drug likeness, solubility in water, and SAS analysis as potential inhibitors of Mpro that may be used for the treatment of COVID-19. Conclusion Six phenolic compounds of Rhus spp. are proposed for synthesis as potential inhibitors against Mpro and have potential for the treatment of COVID-19. These results encourage further in vitro and in vivo investigations of the proposed ligands and research on the preventive use of Rhus spp. against SARS-CoV-2.
Collapse
|
13
|
Borah P, Deb PK, Chandrasekaran B, Goyal M, Bansal M, Hussain S, Shinu P, Venugopala KN, Al-Shar’i NA, Deka S, Singh V. Neurological Consequences of SARS-CoV-2 Infection and Concurrence of Treatment-Induced Neuropsychiatric Adverse Events in COVID-19 Patients: Navigating the Uncharted. Front Mol Biosci 2021; 8:627723. [PMID: 33681293 PMCID: PMC7930836 DOI: 10.3389/fmolb.2021.627723] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to the angiotensin-converting enzyme 2 (ACE2) receptor and invade the human cells to cause COVID-19-related pneumonia. Despite an emphasis on respiratory complications, the evidence of neurological manifestations of SARS-CoV-2 infection is rapidly growing, which is substantially contributing to morbidity and mortality. The neurological disorders associated with COVID-19 may have several pathophysiological underpinnings, which are yet to be explored. Hypothetically, SARS-CoV-2 may affect the central nervous system (CNS) either by direct mechanisms like neuronal retrograde dissemination and hematogenous dissemination, or via indirect pathways. CNS complications associated with COVID-19 include encephalitis, acute necrotizing encephalopathy, diffuse leukoencephalopathy, stroke (both ischemic and hemorrhagic), venous sinus thrombosis, meningitis, and neuroleptic malignant syndrome. These may result from different mechanisms, including direct virus infection of the CNS, virus-induced hyper-inflammatory states, and post-infection immune responses. On the other hand, the Guillain-Barre syndrome, hyposmia, hypogeusia, and myopathy are the outcomes of peripheral nervous system injury. Although the therapeutic potential of certain repurposed drugs has led to their off-label use against COVID-19, such as anti-retroviral drugs (remdesivir, favipiravir, and lopinavir-ritonavir combination), biologics (tocilizumab), antibiotics (azithromycin), antiparasitics (chloroquine and hydroxychloroquine), and corticosteroids (dexamethasone), unfortunately, the associated clinical neuropsychiatric adverse events remains a critical issue. Therefore, COVID-19 represents a major threat to the field of neuropsychiatry, as both the virus and the potential therapies may induce neurologic as well as psychiatric disorders. Notably, potential COVID-19 medications may also interact with the medications of pre-existing neuropsychiatric diseases, thereby further complicating the condition. From this perspective, this review will discuss the possible neurological manifestations and sequelae of SARS-CoV-2 infection with emphasis on the probable underlying neurotropic mechanisms. Additionally, we will highlight the concurrence of COVID-19 treatment-associated neuropsychiatric events and possible clinically relevant drug interactions, to provide a useful framework and help researchers, especially the neurologists in understanding the neurologic facets of the ongoing pandemic to control the morbidity and mortality.
Collapse
Affiliation(s)
- Pobitra Borah
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Manoj Goyal
- Department of Anesthesia Technology, College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Monika Bansal
- Department of Neuroscience Technology College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Snawar Hussain
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati, India
| | - Vinayak Singh
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
14
|
Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting Lipid Rafts as a Strategy Against Coronavirus. Front Cell Dev Biol 2021; 8:618296. [PMID: 33614627 PMCID: PMC7890255 DOI: 10.3389/fcell.2020.618296] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are functional membrane microdomains containing sphingolipids, including gangliosides, and cholesterol. These regions are characterized by highly ordered and tightly packed lipid molecules. Several studies revealed that lipid rafts are involved in life cycle of different viruses, including coronaviruses. Among these recently emerged the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main receptor for SARS-CoV-2 is represented by the angiotensin-converting enzyme-2 (ACE-2), although it also binds to sialic acids linked to host cell surface gangliosides. A new type of ganglioside-binding domain within the N-terminal portion of the SARS-CoV-2 spike protein was identified. Lipid rafts provide a suitable platform able to concentrate ACE-2 receptor on host cell membranes where they may interact with the spike protein on viral envelope. This review is focused on selective targeting lipid rafts components as a strategy against coronavirus. Indeed, cholesterol-binding agents, including statins or methyl-β-cyclodextrin (MβCD), can affect cholesterol, causing disruption of lipid rafts, consequently impairing coronavirus adhesion and binding. Moreover, these compounds can block downstream key molecules in virus infectivity, reducing the levels of proinflammatory molecules [tumor necrosis factor alpha (TNF-α), interleukin (IL)-6], and/or affecting the autophagic process involved in both viral replication and clearance. Furthermore, cyclodextrins can assemble into complexes with various drugs to form host-guest inclusions and may be used as pharmaceutical excipients of antiviral compounds, such as lopinavir and remdesivir, by improving bioavailability and solubility. In conclusion, the role of lipid rafts-affecting drugs in the process of coronavirus entry into the host cells prompts to introduce a new potential task in the pharmacological approach against coronavirus.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | | | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Agostina Longo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| |
Collapse
|
15
|
Mohamed K, Yazdanpanah N, Saghazadeh A, Rezaei N. Computational drug discovery and repurposing for the treatment of COVID-19: A systematic review. Bioorg Chem 2021; 106:104490. [PMID: 33261845 PMCID: PMC7676368 DOI: 10.1016/j.bioorg.2020.104490] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/24/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in finding a potential therapeutic agent for the disease. Considering the matter of time, the computational methods of drug repurposing offer the best chance of selecting one drug from a list of approved drugs for the life-threatening condition of COVID-19. The present systematic review aims to provide an overview of studies that have used computational methods for drug repurposing in COVID-19. METHODS We undertook a systematic search in five databases and included original articles in English that applied computational methods for drug repurposing in COVID-19. RESULTS Twenty-one original articles utilizing computational drug methods for COVID-19 drug repurposing were included in the systematic review. Regarding the quality of eligible studies, high-quality items including the use of two or more approved drug databases, analysis of molecular dynamic simulation, multi-target assessment, the use of crystal structure for the generation of the target sequence, and the use of AutoDock Vina combined with other docking tools occurred in about 52%, 38%, 24%, 48%, and 19% of included studies. Studies included repurposed drugs mainly against non-structural proteins of SARS-CoV2: the main 3C-like protease (Lopinavir, Ritonavir, Indinavir, Atazanavir, Nelfinavir, and Clocortolone), RNA-dependent RNA polymerase (Remdesivir and Ribavirin), and the papain-like protease (Mycophenolic acid, Telaprevir, Boceprevir, Grazoprevir, Darunavir, Chloroquine, and Formoterol). The review revealed the best-documented multi-target drugs repurposed by computational methods for COVID-19 therapy as follows: antiviral drugs commonly used to treat AIDS/HIV (Atazanavir, Efavirenz, and Dolutegravir Ritonavir, Raltegravir, and Darunavir, Lopinavir, Saquinavir, Nelfinavir, and Indinavir), HCV (Grazoprevir, Lomibuvir, Asunaprevir, Ribavirin, and Simeprevir), HBV (Entecavir), HSV (Penciclovir), CMV (Ganciclovir), and Ebola (Remdesivir), anticoagulant drug (Dabigatran), and an antifungal drug (Itraconazole). CONCLUSIONS The present systematic review provides a list of existing drugs that have the potential to influence SARS-CoV2 through different mechanisms of action. For the majority of these drugs, direct clinical evidence on their efficacy for the treatment of COVID-19 is lacking. Future clinical studies examining these drugs might come to conclude, which can be more useful to inhibit COVID-19 progression.
Collapse
Affiliation(s)
- Kawthar Mohamed
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Yazdanpanah
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
16
|
Abstract
The newly emerged severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has recently caused pandemic Coronavirus Disease-2019 (COVID-19). Considering the serious medical, economic and social consequences of this pandemic and the lack of definite medication and vaccine it is necessary to describe natural immune responses to the SARS-CoV-2 in order to exploit them for treating the patients and monitoring the general population. Moreover, detecting the most immunogenic antigens of the virus is fundamental for designing effective vaccines. Antibodies being valuable for diagnostic therapeutic and protective purposes are suitable to be addressed in this context. Herein, we have summarized the findings of serological investigations and the outcomes of neutralizing antibodies administration in COVID-19 patients.
Collapse
Affiliation(s)
- Sara Assadiasl
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Nicknam
- Molecular Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Sheervalilou R, Shirvaliloo M, Dadashzadeh N, Shirvalilou S, Shahraki O, Pilehvar‐Soltanahmadi Y, Ghaznavi H, Khoei S, Nazarlou Z. COVID-19 under spotlight: A close look at the origin, transmission, diagnosis, and treatment of the 2019-nCoV disease. J Cell Physiol 2020; 235:8873-8924. [PMID: 32452539 PMCID: PMC7283670 DOI: 10.1002/jcp.29735] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 01/07/2023]
Abstract
Months after the outbreak of a new flu-like disease in China, the entire world is now in a state of caution. The subsequent less-anticipated propagation of the novel coronavirus disease, formally known as COVID-19, not only made it to headlines by an overwhelmingly high transmission rate and fatality reports, but also raised an alarm for the medical community all around the globe. Since the causative agent, SARS-CoV-2, is a recently discovered species, there is no specific medicine for downright treatment of the infection. This has led to an unprecedented societal fear of the newly born disease, adding a psychological aspect to the physical manifestation of the virus. Herein, the COVID-19 structure, epidemiology, pathogenesis, etiology, diagnosis, and therapy have been reviewed.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- Cellular and Molecular Research Center, Resistant Tuberculosis InstituteZahedan University of Medical SciencesZahedanIran
| | | | - Nahid Dadashzadeh
- Legal Medicine Research Center, Legal Medicine OrganizationTehranIran
| | - Sakine Shirvalilou
- Finetech in Medicine Research CenterIran University of Medical SciencesTehranIran
| | - Omolbanin Shahraki
- Cellular and Molecular Research Center, Resistant Tuberculosis InstituteZahedan University of Medical SciencesZahedanIran
| | - Younes Pilehvar‐Soltanahmadi
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular MedicineUrmia University of Medical SciencesUrmiaIran
| | | | - Samideh Khoei
- Department of Medical PhysicsSchool of Medicine, Iran University of Medical SciencesTehranIran
| | - Ziba Nazarlou
- Material Engineering DepartmentCollege of Science Koç UniversityIstanbulTurkey
| |
Collapse
|
18
|
Januraga PP, Harjana NPA. Improving Public Access to COVID-19 Pandemic Data in Indonesia for Better Public Health Response. Front Public Health 2020; 8:563150. [PMID: 33330311 PMCID: PMC7732417 DOI: 10.3389/fpubh.2020.563150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pande Putu Januraga
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Udayana University, Denpasar, Indonesia.,Center for Public Health Innovation, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| | - Ngakan Putu Anom Harjana
- Center for Public Health Innovation, Faculty of Medicine, Udayana University, Denpasar, Indonesia
| |
Collapse
|
19
|
Tinôco D, Borschiver S. Development of research on COVID-19 by the World Scientific Community in the first half of 2020. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.04.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The World Scientific Community has carried out several studies on the novel coronavirus, responsible for the current COVID-19 pandemic. This study aimed to verify the development level and research evolution on COVID-19, summarizing experts' main trends in the first half of 2020. The most cited articles focused on understanding the disease, addressing aspects of its transmission, viral activity period, symptoms, health complications, risk factors, and the estimate of new cases. These papers also focused on the treatment/prevention and management of COVID-19. Several drugs and alternative treatments have been investigated, such as the convalescent plasma transfusion and stem cell transplantation, while an efficient vaccine is developed. Prevention and control measures, such as social isolation and immediate case identification, were also investigated. Therefore, the main COVID-19 trends were identified and classified in disease, treatment/prevention, and pandemic management, contributing to scientific understanding and future studies.
Collapse
Affiliation(s)
- Daniel Tinôco
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, 21941-909 RJ, Brazil
| | - Suzana Borschiver
- Department of Organic Processes, School of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro, 21941-909 RJ, Brazil
| |
Collapse
|
20
|
Dong X, Tian Z, Shen C, Zhao C. An overview of potential therapeutic agents to treat COVID-19. Biosci Trends 2020; 14:318-327. [PMID: 33100290 DOI: 10.5582/bst.2020.03345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The emerging novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has swept across the world and become a global threat to public health. More than 200 countries and territories worldwide are suffering from this COVID-19 pandemic. Worryingly, no specific vaccines or drugs have been approved for the prevention or treatment of COVID-19. Under the pressure of a sustained rise in the incidence and mortality of COVID-19, an unprecedented global effort is being implemented to identify effective drugs to combat the current coronavirus. As the understanding of SARS-CoV-2 virology, the underlying mechanism by which it attacks host cells, and the host response to the infection rapidly evolves, drugs are being repurposed and novel drugs are being identified and designed to target the SARS-CoV-2 pathogenesis. Presented here is a brief overview of both virus-based and host-based potential therapeutic drugs that are currently being investigated.
Collapse
Affiliation(s)
- Xueqin Dong
- Community Health Service Center of the Qianfo Mountain Office, the People's Hospital of Lixia District of Jinan, Ji'nan, Shandong, China
| | - Zhenxue Tian
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| | - Cuirong Zhao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, Shandong, China
| |
Collapse
|
21
|
Teimury A, Mahmoodi Khaledi E. Current Options in the Treatment of COVID-19: A Review. Risk Manag Healthc Policy 2020; 13:1999-2010. [PMID: 33116980 PMCID: PMC7549493 DOI: 10.2147/rmhp.s265030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Novel Coronavirus, also known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in December 2019 in China and spread rapidly all around the world infecting many people. To date, no specific vaccines and drugs have been developed for this disease. Also, due to the COVID-19 pandemic and high prevalence of the infected patients, the drugs and the therapies of other past viral epidemics have been used for this disease. Many studies have been performed on the specific treatments to find whether or not they are effective on COVID-19 patients. In this review, we collected information about the most widely used drugs to treat COVID-19 (coronavirus disease 2019) belonging to groups of antivirals, antibiotics, immune modulators, and anticoagulants. Some of these compounds and drugs were used directly by inpatients, so researchers have examined others in laboratory conditions. This study considered the pros and cons of using these treatments separately and together and compared their results. By studying this review, we hope to provide useful information for researchers.
Collapse
Affiliation(s)
- Azadeh Teimury
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Elahe Mahmoodi Khaledi
- Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
22
|
Sheikhpour M. The Current Recommended Drugs and Strategies for the Treatment of Coronavirus Disease (COVID-19). Ther Clin Risk Manag 2020; 16:933-946. [PMID: 33116543 PMCID: PMC7548336 DOI: 10.2147/tcrm.s262936] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The coronavirus 2019 (COVID-19) has been known as a pandemic disease by the World Health Organization (WHO) worldwide. The drugs currently used for treatment of COVID-19 are often selected and tested based on their effectiveness in other diseases such as influenza and AIDS and their major identified targets are viral protease, host cell produced protease, viral RNA polymerase, and the interaction site of viral protein with host cell receptors. Until now, there are no approved therapeutic drugs for definitive treatment of this dangerous disease. METHODS In this article, all of the documentary information, such as clinical trials, original research and reviews, government's database, and treatment guidelines, were reviewed critically and comprehensively. Moreover, it was attempted to present the most common and effective drugs and strategies, to suggest the possible treatment way of COVID19 by focusing on the body's defense mechanism against pathogens. RESULTS Antiviral drugs and immune-modulatory agents with the traditional medicines using the natural compound are usual accessible treatments. Accordingly, they have better beneficence due to the large existence studies, long time follow-ups, proximity to the natural system, and the normal physiological routine of the pathogen and host interactions. Besides, the serotonergic and dopaminergic pathways are considered as attractive targets to treat human immune, infectious, and cancerous diseases. Fluoxetine, as a host-targeted small molecule with immunomodulatory action, may be known as effective drug for treatment and prevention of COVID19 disease, in combination with antiviral drugs and natural compounds. CONCLUSION Co-administration of fluoxetine in the treatment of COVID19 could be considered due to the possibility of its interaction with ACE2 receptors, immune-modulatory function, and a proper immune response at the right time. Fluoxetine plays a beneficial role in reducing stress due to fear of infecting by COVID19 or worsening the disease and psychological support for the affected patients.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
23
|
Jomah S, Asdaq SMB, Al-Yamani MJ. Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review. J Infect Public Health 2020; 13:1187-1195. [PMID: 32773212 PMCID: PMC7396961 DOI: 10.1016/j.jiph.2020.07.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
The unprecedented challenge faced by mankind due to emergence of coronavirus 2019 (COVID-19) pandemic has obligated researchers across the globe to develop effective medicine for prevention and treatment of this deadly infection. The aim of this review is to compile recently published research articles on anti-COVID 19 management with their benefits and risk to facilitate decision making of the practitioners and policy makers. Unfortunately, clinical outcomes reported for antivirals are not consistent. Initial favorable reports on lopinavir/ritonavir contradicted by recent studies. Ostalmovir has conflicting reports. Short term therapy of remdesivir claimed to be beneficial. Favipiravir demonstrated good recovery in some of the cases of COVID-19. Umifenovir (Arbidol) was associated with reduction in mortality in few studies. Overall, until now, U.S. Food and Drug administration issued only emergency use authorization to remdesivir for the treatment of suspected or laboratory-confirmed COVID-19 in adults and children hospitalized with severe disease.
Collapse
Affiliation(s)
- Shahamah Jomah
- College of Pharmacy, Al Maarefa University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
24
|
Walsh KA, Jordan K, Clyne B, Rohde D, Drummond L, Byrne P, Ahern S, Carty PG, O'Brien KK, O'Murchu E, O'Neill M, Smith SM, Ryan M, Harrington P. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J Infect 2020; 81:357-371. [PMID: 32615199 PMCID: PMC7323671 DOI: 10.1016/j.jinf.2020.06.067] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To summarise the evidence on the detection pattern and viral load of SARS-CoV-2 over the course of an infection (including any asymptomatic or pre-symptomatic phase), and the duration of infectivity. METHODS A systematic literature search was undertaken in PubMed, Europe PubMed Central and EMBASE from 30 December 2019 to 12 May 2020. RESULTS We identified 113 studies conducted in 17 countries. The evidence from upper respiratory tract samples suggests that the viral load of SARS-CoV-2 peaks around symptom onset or a few days thereafter, and becomes undetectable about two weeks after symptom onset; however, viral loads from sputum samples may be higher, peak later and persist for longer. There is evidence of prolonged virus detection in stool samples, with unclear clinical significance. No study was found that definitively measured the duration of infectivity; however, patients may not be infectious for the entire duration of virus detection, as the presence of viral ribonucleic acid may not represent transmissible live virus. CONCLUSION There is a relatively consistent trajectory of SARS-CoV-2 viral load over the course of COVID-19 from respiratory tract samples, however the duration of infectivity remains uncertain.
Collapse
Affiliation(s)
- Kieran A Walsh
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland.
| | - Karen Jordan
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland
| | - Barbara Clyne
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland; Health Research Board Centre for Primary Care Research, Department of General Practice, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Daniela Rohde
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland
| | - Linda Drummond
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland
| | - Paula Byrne
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland
| | - Susan Ahern
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland
| | - Paul G Carty
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland
| | - Kirsty K O'Brien
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland
| | - Eamon O'Murchu
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland
| | - Michelle O'Neill
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland
| | - Susan M Smith
- Health Research Board Centre for Primary Care Research, Department of General Practice, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland
| | - Máirín Ryan
- Health Information and Quality Authority, Smithfield, Dublin 7, Ireland; Department of Pharmacology & Therapeutics, Trinity College Dublin, Trinity Health Sciences, James Street, Dublin 8, Ireland
| | | |
Collapse
|
25
|
Callender LA, Curran M, Bates SM, Mairesse M, Weigandt J, Betts CJ. The Impact of Pre-existing Comorbidities and Therapeutic Interventions on COVID-19. Front Immunol 2020; 11:1991. [PMID: 32903476 PMCID: PMC7437504 DOI: 10.3389/fimmu.2020.01991] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 01/08/2023] Open
Abstract
Evidence from the global outbreak of SARS-CoV-2 has clearly demonstrated that individuals with pre-existing comorbidities are at a much greater risk of dying from COVID-19. This is of great concern for individuals living with these conditions, and a major challenge for global healthcare systems and biomedical research. Not all comorbidities confer the same risk, however, many affect the function of the immune system, which in turn directly impacts the response to COVID-19. Furthermore, the myriad of drugs prescribed for these comorbidities can also influence the progression of COVID-19 and limit additional treatment options available for COVID-19. Here, we review immune dysfunction in response to SARS-CoV-2 infection and the impact of pre-existing comorbidities on the development of COVID-19. We explore how underlying disease etiologies and common therapies used to treat these conditions exacerbate COVID-19 progression. Moreover, we discuss the long-term challenges associated with the use of both novel and repurposed therapies for the treatment of COVID-19 in patients with pre-existing comorbidities.
Collapse
Affiliation(s)
- Lauren A. Callender
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, NIHR Cambridge Biomedical, Cambridge, United Kingdom
| | - Michelle Curran
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Surgery, University of Cambridge, NIHR Cambridge Biomedical, Cambridge, United Kingdom
| | - Stephanie M. Bates
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Maelle Mairesse
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Julia Weigandt
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Catherine J. Betts
- Immunotoxicology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
26
|
Byrne AW, McEvoy D, Collins AB, Hunt K, Casey M, Barber A, Butler F, Griffin J, Lane EA, McAloon C, O'Brien K, Wall P, Walsh KA, More SJ. Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open 2020; 10:e039856. [PMID: 32759252 PMCID: PMC7409948 DOI: 10.1136/bmjopen-2020-039856] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Our objective was to review the literature on the inferred duration of the infectious period of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and provide an overview of the variation depending on the methodological approach. DESIGN Rapid scoping review. Literature review with fixed search terms, up to 1 April 2020. Central tendency and variation of the parameter estimates for infectious period in (A) asymptomatic and (B) symptomatic cases from (1) virological studies (repeated testing), (2) tracing studies and (3) modelling studies were gathered. Narrative review of viral dynamics. INFORMATION SOURCES Search strategies developed and the following searched: PubMed, Google Scholar, MedRxiv and BioRxiv. Additionally, the Health Information Quality Authority (Ireland) viral load synthesis was used, which screened literature from PubMed, Embase, ScienceDirect, NHS evidence, Cochrane, medRxiv and bioRxiv, and HRB open databases. RESULTS There was substantial variation in the estimates, and how infectious period was inferred. One study provided approximate median infectious period for asymptomatic cases of 6.5-9.5 days. Median presymptomatic infectious period across studies varied over <1-4 days. Estimated mean time from symptom onset to two negative RT-PCR tests was 13.4 days (95% CI 10.9 to 15.8) but was shorter when studies included children or less severe cases. Estimated mean duration from symptom onset to hospital discharge or death (potential maximal infectious period) was 18.1 days (95% CI 15.1 to 21.0); time to discharge was on average 4 days shorter than time to death. Viral dynamic data and model infectious parameters were often shorter than repeated diagnostic data. CONCLUSIONS There are limitations of inferring infectiousness from repeated diagnosis, viral loads and viral replication data alone and also potential patient recall bias relevant to estimating exposure and symptom onset times. Despite this, available data provide a preliminary evidence base to inform models of central tendency for key parameters and variation for exploring parameter space and sensitivity analysis.
Collapse
Affiliation(s)
- Andrew William Byrne
- One-Health Scientific Support Unit, Government of Ireland Department of Agriculture Food and the Marine, Dublin, Ireland
| | - David McEvoy
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Aine B Collins
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Government of Ireland Department of Agriculture Food and the Marine, Dublin, Ireland
| | - Kevin Hunt
- Centre for Food Safety, School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Miriam Casey
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Ann Barber
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Francis Butler
- Centre for Food Safety, School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - John Griffin
- Government of Ireland Department of Agriculture Food and the Marine, Dublin, Ireland
| | - Elizabeth A Lane
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- Government of Ireland Department of Agriculture Food and the Marine, Dublin, Ireland
| | - Conor McAloon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Kirsty O'Brien
- Health Information and Quality Authority, Cork, Munster, Ireland
| | - Patrick Wall
- Department of Public Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Kieran A Walsh
- Health Information and Quality Authority, Cork, Munster, Ireland
| | - Simon J More
- Centre for Veterinary Epidemiology and Risk Analysis, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Wang SF, Chen KH, Wang SY, Yarmishyn AA, Lai WY, Lin YY, Wang ML, Chou SJ, Yang YP, Chang YL. The pharmacological development of direct acting agents for emerging needed therapy against severe acute respiratory syndrome coronavirus-2. J Chin Med Assoc 2020; 83:712-718. [PMID: 32433345 PMCID: PMC7493775 DOI: 10.1097/jcma.0000000000000353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Recently, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was quickly identified as the causal pathogen leading to the outbreak of SARS-like illness all over the world. As the SARS-CoV-2 infection pandemic proceeds, many efforts are being dedicated to the development of diverse treatment strategies. Increasing evidence showed potential therapeutic agents directly acting against SARS-CoV-2 virus, such as interferon, RNA-dependent RNA polymerase inhibitors, protease inhibitors, viral entry blockers, neuraminidase inhibitor, vaccine, antibody agent targeting the SARS-CoV-2 RNA genome, natural killer cells, and nucleocytoplasmic trafficking inhibitor. To date, several direct anti-SARS-CoV-2 agents have demonstrated promising in vitro and clinical efficacy. This article reviews the current and future development of direct acting agents against SARS-CoV-2.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Kuan-Hsuan Chen
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Szu-Yu Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | | | - Wei-Yi Lai
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Shih-Jie Chou
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan, ROC
- Faculty of Pharmacy, National Yang-Ming University, Taipei, Taiwan, ROC
- Address Correspondence: Dr. Yuh-Lih Chang, Pharmacy Department, Taipei Veterans General Hospital, 201, Section 2, Shi-Pai Road, Taipei 112, Taiwan, ROC. E-mail address: (Y.-L. Chang)
| |
Collapse
|
28
|
Benani A, Ben Mkaddem S. Mechanisms Underlying Potential Therapeutic Approaches for COVID-19. Front Immunol 2020; 11:1841. [PMID: 32793246 PMCID: PMC7385230 DOI: 10.3389/fimmu.2020.01841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is a betacoronavirus, and is associated with cytokine storm inflammation and lung injury, leading to respiratory distress. The transmission of the virus is mediated by human contact. To control and prevent the spread of this virus, the majority of people worldwide are facing quarantine; patients are being subjected to non-specific treatments under isolation. To prevent and stop the COVID-19 pandemic, several clinical trials are in the pipeline. The current clinical trials either target the intracellular replication and spread of the virus or the cytokine storm inflammation seen in COVID-19 cases during the later stages of the disease. Since both targeting strategies are different, the window drug administration plays a crucial role in the efficacy of the treatment. Here, we review the mechanism underlying SARS-CoV-2 cell infection and potential future therapeutic approaches.
Collapse
Affiliation(s)
- Abdelouaheb Benani
- Unité de Biologie Moléculaire, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Sanae Ben Mkaddem
- U978 Institut National de la Santé et de la Recherche Médicale, Bobigny, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
29
|
Instiaty, Darmayani IGAAPS, Marzuki JE, Angelia F, William, Siane A, Sary LD, Yohanes L, Widyastuti R, Nova R, Simorangkir DS, Lonah, Safitri Y, Aliska G, Gayatri A. Antiviral treatment of COVID-19: a clinical pharmacology narrative review. MEDICAL JOURNAL OF INDONESIA 2020. [DOI: 10.13181/mji.rev.204652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) in December 2019 in China, has become a pandemic in March 2020. Repurposing old and relatively safe drugs becomes an advantageous option to obtain the urgently needed effective treatment. Repurposing chloroquine, hydroxychloroquine, oseltamivir, lopinavir/ritonavir, andfavipiravir, and the use of investigational drug remdesivir for treatment of COVID-19, are reviewed from the clinical pharmacology perspective, particularly its efficacy and safety. Limited clinical studies of chloroquine, hydroxychloroquine, favipiravir, and remdesivir showed some efficacy in COVID-19 treatment with tolerable adverse effects. Potential serious adverse effect of chloroquine and hydroxychloroquine is cardiac arrhythmia. Oseltamivir has no documented activity against SARS-CoV-2, while lopinavir/ritonavir showed limited efficacy in COVID-19. Currently, there is no sufficient evidence to recommend any specific anti-COVID-19 treatment. The decision to use these drugs during the COVID-19 pandemic must be based on careful consideration of the potential benefits and risks to the patient.
Collapse
|
30
|
Huang L, Chen Y, Xiao J, Luo W, Li F, Wang Y, Wang Y, Wang Y. Progress in the Research and Development of Anti-COVID-19 Drugs. Front Public Health 2020; 8:365. [PMID: 32733842 PMCID: PMC7358523 DOI: 10.3389/fpubh.2020.00365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/25/2020] [Indexed: 12/23/2022] Open
Abstract
The outbreaks of COVID-19 due to SARS-CoV-2 has caused serious physical and psychological damage to global human health. COVID-19 spread rapidly around the world in a short time. Confronted with such a highly infectious respiratory disease, the research and development of anti-COVID-19 drugs became an urgent work due to the lack of specific drugs for the treatment of COVID-19. Nevertheless, several existing drugs are available to relieve the clinical symptoms of COVID-19. We reviewed information on selected anti-SARS-CoV-2 candidate therapeutic agents published until June 2, 2020. We also discussed the strategies of the development of anti-COVID-19 drugs in the future. Our review provides a novel insight into the future development of a safer, efficient, and toxic-less anti-COVID-19 drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Torequl Islam M, Nasiruddin M, Khan IN, Mishra SK, Kudrat-E-Zahan M, Alam Riaz T, Ali ES, Rahman MS, Mubarak MS, Martorell M, Cho WC, Calina D, Docea AO, Sharifi-Rad J. A Perspective on Emerging Therapeutic Interventions for COVID-19. Front Public Health 2020; 8:281. [PMID: 32733837 PMCID: PMC7362761 DOI: 10.3389/fpubh.2020.00281] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022] Open
Abstract
Coronaviruses are enveloped positive-sense RNA viruses with an unusual large RNA genome and a unique replication mechanism, which are characterized by club-like spikes that protrude from their surface. An outbreak of a novel coronavirus 2019 infection has posed significant threat to the health and economies in the whole world. This article reviewed the viral replication, pathogenicity, prevention and treatment strategies. With a lack of approved treatment options for this virus, alternative approaches to control the spread of disease is in urgent need. This article also covers some management strategies which may be applied to this virus outbreak. Ongoing clinical studies related to possible treatments for COVID-19, potential vaccines, and alternative medication such as natural compounds are also discussed.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md. Nasiruddin
- Department of Chemistry, Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Ishaq N. Khan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Siddhartha Kumar Mishra
- Cancer Biology Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | | - Thoufiqul Alam Riaz
- Department of Pharmacology, School of Medicine, Institute of New Drug Development, Jeonbuk National University, Jeonju, South Korea
| | - Eunus S. Ali
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - M. Safiur Rahman
- Environmental and Atmospheric Chemistry Laboratory, Bangladesh Atomic Energy Commission, Dhaka, Bangladesh
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Centre for Healthy Living, University of Concepción, Concepción, Chile
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Mehta N, Mazer-Amirshahi M, Alkindi N, Pourmand A. Pharmacotherapy in COVID-19; A narrative review for emergency providers. Am J Emerg Med 2020; 38:1488-1493. [PMID: 32336586 PMCID: PMC7158837 DOI: 10.1016/j.ajem.2020.04.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The COVID-19 pandemic has been particularly challenging due to a lack of established therapies and treatment guidelines. With the rapid transmission of disease, even the off-label use of available therapies has been impeded by limited availability. Several antivirals, antimalarials, and biologics are being considered for treatment at this time. The purpose of this literature review is to synthesize the available information regarding treatment options for COVID-19 and serve as a resource for health care professionals. OBJECTIVES This narrative review was conducted to summarize the effectiveness of current therapy options for COVID-19 and address the controversial use of non-steroidal anti-inflammatory drugs (NSAIDs), angiotensin converting enzyme (ACE) inhibitors, and angiotensin receptor blockers (ARBs). PubMed and SCOPUS were queried using a combination of the keywords "COVID 19," "SARS-CoV-2," and "treatment." All types of studies were evaluated including systematic reviews, case-studies, and clinical guidelines. DISCUSSION There are currently no therapeutic drugs available that are directly active against SARS-CoV-2; however, several antivirals (remdesivir, favipiravir) and antimalarials (chloroquine, hydroxychloroquine) have emerged as potential therapies. Current guidelines recommend combination treatment with hydroxychloroquine/azithromycin or chloroquine, if hydroxychloroquine is unavailable, in patients with moderate disease, although these recommendations are based on limited evidence. Remdesivir and convalescent plasma may be considered in critical patients with respiratory failure; however, access to these therapies may be limited. Interleukin-6 (IL-6) antagonists may be used in patients who develop evidence of cytokine release syndrome (CRS). Corticosteroids should be avoided unless there is evidence of refractory septic shock, acute respiratory distress syndrome (ARDS), or another compelling indication for their use. ACE inhibitors and ARBs should not be discontinued at this time and ibuprofen may be used for fever. CONCLUSION There are several ongoing clinical trials that are testing the efficacy of single and combination treatments with the drugs mentioned in this review and new agents are under development. Until the results of these trials become available, we must use the best available evidence for the prevention and treatment of COVID-19. Additionally, we can learn from the experiences of healthcare providers around the world to combat this pandemic.
Collapse
Affiliation(s)
- Nikita Mehta
- Emergency Medicine Department, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Nour Alkindi
- Emergency Medicine Department, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ali Pourmand
- Emergency Medicine Department, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
33
|
Shirani K, Sheikhbahaei E, Torkpour Z, Ghadiri Nejad M, Kamyab Moghadas B, Ghasemi M, Akbari Aghdam H, Ehsani A, Saber-Samandari S, Khandan A. A Narrative Review of COVID-19: The New Pandemic Disease. IRANIAN JOURNAL OF MEDICAL SCIENCES 2020; 45:233-249. [PMID: 32801413 PMCID: PMC7395956 DOI: 10.30476/ijms.2020.85869.1549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023]
Abstract
Nearly every 100 years, humans collectively face a pandemic crisis. After the Spanish flu, now the world is in the grip of coronavirus disease 2019 (COVID-19). First detected in 2019 in the Chinese city of Wuhan, COVID-19 causes severe acute respiratory distress syndrome. Despite the initial evidence indicating a zoonotic origin, the contagion is now known to primarily spread from person to person through respiratory droplets. The precautionary measures recommended by the scientific community to halt the fast transmission of the disease failed to prevent this contagious disease from becoming a pandemic for a whole host of reasons. After an incubation period of about two days to two weeks, a spectrum of clinical manifestations can be seen in individuals afflicted by COVID-19: from an asymptomatic condition that can spread the virus in the environment, to a mild/moderate disease with cold/flu-like symptoms, to deteriorated conditions that need hospitalization and intensive care unit management, and then a fatal respiratory distress syndrome that becomes refractory to oxygenation. Several diagnostic modalities have been advocated and evaluated; however, in some cases, diagnosis is made on the clinical picture in order not to lose time. A consensus on what constitutes special treatment for COVID-19 has yet to emerge. Alongside conservative and supportive care, some potential drugs have been recommended and a considerable number of investigations are ongoing in this regard.
Collapse
Affiliation(s)
- Kiana Shirani
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Sheikhbahaei
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Torkpour
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mazyar Ghadiri Nejad
- Industrial Engineering Department, Girne American University, Kyrenia, TRNC, Turkey
| | | | - Matina Ghasemi
- Faculty of Business and Economics, Business Department, Girne American University, Kyrenia, TRNC, Turkey
| | - Hossein Akbari Aghdam
- Department of Orthopedic Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Athena Ehsani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Amirsalar Khandan
- Department of Electrical Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
- 0Technology Incubator Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
34
|
Oliveira BA, de Oliveira LC, Sabino EC, Okay TS. SARS-CoV-2 and the COVID-19 disease: a mini review on diagnostic methods. Rev Inst Med Trop Sao Paulo 2020; 62:e44. [PMID: 32609256 PMCID: PMC7325591 DOI: 10.1590/s1678-9946202062044] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease initially reported in China and currently worldwide dispersed caused by a new coronavirus (SARS-CoV-2 or 2019-nCoV) affecting more than seven million people around the world causing more than 400 thousand deaths (on June 8th, 2020). The diagnosis of COVID-19 is based on the clinical and epidemiological history of the patient. However, the gold standard for COVID-19 diagnosis is the viral detection through the amplification of nucleic acids. Although the quantitative Reverse-Transcription Polymerase Chain Reaction (RT-PCR) has been described as the gold standard for diagnosing COVID-19, there are several difficulties involving its use. Here we comment on RT-PCR and describe alternative tests developed for the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Beatriz Araujo Oliveira
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM 46), São Paulo, São Paulo, Brazil
| | - Lea Campos de Oliveira
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM 46), São Paulo, São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Investigação Médica (LIM 46), São Paulo, São Paulo, Brazil
| | - Thelma Suely Okay
- Universidade de São Paulo, Instituto de Medicina Tropical de São Paulo, Laboratório de Soroepidemiologia e Imunologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Kandeel M, Abdelrahman AHM, Oh-Hashi K, Ibrahim A, Venugopala KN, Morsy MA, Ibrahim MAA. Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J Biomol Struct Dyn 2020; 39:5129-5136. [PMID: 32597315 PMCID: PMC7332862 DOI: 10.1080/07391102.2020.1784291] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 or Coronavirus disease 19 (COVID-19) is a rapidly spreading, highly contagious, and sometimes fatal disease for which drug discovery and vaccine development are critical. SARS-CoV-2 papain-like protease (PLpro) was used to virtually screen 1697 clinical FDA-approved drugs. Among the top results expected to bind with SARS-CoV-2 PLpro strongly were three cell protectives and antioxidants (NAD+, quercitrin, and oxiglutatione), three antivirals (ritonavir, moroxydine, and zanamivir), two antimicrobials (doripenem and sulfaguanidine), two anticancer drugs, three benzimidazole anthelmintics, one antacid (famotidine), three anti-hypertensive ACE receptor blockers (candesartan, losartan, and valsartan) and other miscellaneous systemically or topically acting drugs. The binding patterns of these drugs were superior to the previously identified SARS CoV PLpro inhibitor, 6-mercaptopurine (6-MP), suggesting a potential for repurposing these drugs to treat COVID-19. The objective of drug repurposing is the rapid relocation of safe and approved drugs by bypassing the lengthy pharmacokinetic, toxicity, and preclinical phases. The ten drugs with the highest estimated docking scores with favorable pharmacokinetics were subjected to molecular dynamics (MD) simulations followed by molecular mechanics/generalized Born surface area (MM/GBSA) binding energy calculations. Phenformin, quercetin, and ritonavir all demonstrated prospective binding affinities for COVID-19 PLpro over 50 ns MD simulations, with binding energy values of −56.6, −40.9, and −37.6 kcal/mol, respectively. Energetic and structural analyses showed phenformin was more stable than quercetin and ritonavir. The list of the drugs provided herein constitutes a primer for clinical application in COVID-19 patients and guidance for further antiviral studies. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Alaa H M Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Abdelazim Ibrahim
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-ahsa, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
36
|
Oldenburg CE, Doan T. Rigorous Randomized Controlled Trial Implementation in the Era of COVID-19. Am J Trop Med Hyg 2020; 102:1154-1155. [PMID: 32297590 DOI: 10.4269/ajtmh.20-0262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Catherine E Oldenburg
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California.,Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California.,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Thuy Doan
- Francis I. Proctor Foundation, University of California, San Francisco, San Francisco, California.,Department of Ophthalmology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
37
|
Khedkar PH, Patzak A. SARS-CoV-2: What do we know so far? Acta Physiol (Oxf) 2020; 229:e13470. [PMID: 32220035 PMCID: PMC7228362 DOI: 10.1111/apha.13470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Pratik H. Khedkar
- Institut für Vegetative PhysiologieCharité – Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt Universität zu Berlin and the Berlin Institute of HealthBerlinGermany
| | - Andreas Patzak
- Institut für Vegetative PhysiologieCharité – Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt Universität zu Berlin and the Berlin Institute of HealthBerlinGermany
| |
Collapse
|
38
|
Wang R, Pan M, Zhang X, Han M, Fan X, Zhao F, Miao M, Xu J, Guan M, Deng X, Chen X, Shen L. Epidemiological and clinical features of 125 Hospitalized Patients with COVID-19 in Fuyang, Anhui, China. Int J Infect Dis 2020; 95:421-428. [PMID: 32289565 PMCID: PMC7151431 DOI: 10.1016/j.ijid.2020.03.070] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the epidemiological and clinical features of patients with COVID-19 in Anhui province of China. METHOD In this descriptive study, we obtained epidemiological, demographic, manifestations, laboratory data and radiological findings of patients confirmed by real-time RT-PCR in the NO.2 People's Hospital of Fuyang City from Jan 20 to Feb 9, 2020. Clinical outcomes were followed up to Feb 18, 2020. RESULTS Of 125 patients infected SARS-CoV-2, the mean age was 38.76 years (SD, 13.799) and 71(56.8%) were male. Common symptoms include fever [116 (92.8%)], cough [102(81.6%)], and shortness of breath [57(45.6%)]. Lymphocytopenia developed in 48(38.4%) patients. 100(80.0%) patients showed bilateral pneumonia, 26(20.8%) patients showed multiple mottling and ground-glass opacity. All patients were given antiviral therapy. 19(15.2%) patients were transferred to the intensive care unit. By February 18, 47(37.6%) patients were discharged and none of patients died. Among the discharged patients, the median time of length of stay was 14.8 days (SD 4.16). CONCLUSION In this single-center, retrospective, descriptive study, fever is the most common symptom. Old age, chronic underlying diseases and smoking history may be risk factors to worse condition. Certain laboratory inspection may contribute to the judgment of the severity of illness.
Collapse
Affiliation(s)
- Ruirui Wang
- Department of Geriatric Respiratory and Critical Care, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China; Fuyang Infectious Disease Clinical College of Anhui Medical University, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China; Department of Respiratory and Critical Care, the Second People's Hospital of Fuyang City, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China
| | - Min Pan
- Department of Geriatric Respiratory and Critical Care, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China; Anhui Geriatric Institute, Jixi Road 218, Hefei, Anhui 230022, PR China; Institute of Respiratory Diseases, Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Xiumei Zhang
- Department of Geriatric Respiratory and Critical Care, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China; Anhui Geriatric Institute, Jixi Road 218, Hefei, Anhui 230022, PR China; Institute of Respiratory Diseases, Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Mingfeng Han
- Fuyang Infectious Disease Clinical College of Anhui Medical University, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China; Department of Respiratory and Critical Care, the Second People's Hospital of Fuyang City, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China.
| | - Xiaoyun Fan
- Department of Geriatric Respiratory and Critical Care, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China; Anhui Geriatric Institute, Jixi Road 218, Hefei, Anhui 230022, PR China; Institute of Respiratory Diseases, Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China.
| | - Fengde Zhao
- Fuyang Infectious Disease Clinical College of Anhui Medical University, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China; Department of Respiratory and Critical Care, the Second People's Hospital of Fuyang City, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China
| | - Manli Miao
- Department of Geriatric Respiratory and Critical Care, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China; Anhui Geriatric Institute, Jixi Road 218, Hefei, Anhui 230022, PR China; Institute of Respiratory Diseases, Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Jing Xu
- Fuyang Infectious Disease Clinical College of Anhui Medical University, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China; Department of Respiratory and Critical Care, the Second People's Hospital of Fuyang City, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China
| | - Minglong Guan
- Department of Geriatric Respiratory and Critical Care, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China; Anhui Geriatric Institute, Jixi Road 218, Hefei, Anhui 230022, PR China; Institute of Respiratory Diseases, Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Xia Deng
- Fuyang Infectious Disease Clinical College of Anhui Medical University, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China; Department of Respiratory and Critical Care, the Second People's Hospital of Fuyang City, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China
| | - Xu Chen
- Department of Geriatric Respiratory and Critical Care, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China; Anhui Geriatric Institute, Jixi Road 218, Hefei, Anhui 230022, PR China; Institute of Respiratory Diseases, Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Leilei Shen
- Fuyang Infectious Disease Clinical College of Anhui Medical University, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China; Department of Respiratory and Critical Care, the Second People's Hospital of Fuyang City, Yingzhou west Road 1088, Fuyang, Anhui 236015, PR China
| |
Collapse
|
39
|
Li J, Shao J, Wang C, Li W. The epidemiology and therapeutic options for the COVID-19. PRECISION CLINICAL MEDICINE 2020; 3:71-84. [PMID: 35960683 PMCID: PMC7376264 DOI: 10.1093/pcmedi/pbaa017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19), a disease caused by a novel pneumonia virus, has affected over 200 countries and regions worldwide. With the increasing number of patients and deaths, WHO have declared it as a global pandemic currently, indicating a third large-scale epidemic coronavirus has appeared since the emergence of severe acute respiratory syndrome coronavirus (SARS) and Middle-East respiratory syndrome (MERS) in the twenty-first century. Considering the great harm it has caused, researchers throughout the world have been chasing to exploit the pathophysiology, characteristics, and potential remedies for COVID-19 to better battle the outbreak. Therefore, the current study revisits advances of the virology, epidemiology, clinical features, therapeutic options, and prevention of COVID-19. The features of asymptomatic carriers are also been explored.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
40
|
Abstract
Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) affects people at all ages and it may be encountered in pregnant women and newborns also. The information about its clinical features, laboratory findings and prognosis in children and newborns is scarce. All the reported cases in pregnant women were in the 2nd or 3rd trimester and only 1% of them developed severe disease. Miscarriages are rare. Materno-fetal transmission of the disease is controversial. Definitive diagnosis can be made by a history of contact with a proven case, fever, pneumonia and gastrointestinal disorder and a Polymerase chain reaction (PCR) test of nasopharyngeal swabs. Lymphopenia as well as liver and renal dysfunctions may be seen. Suspected or proven cases of newborns with symptoms should be quarantined in the neonatal intensive care unit for at least 14 days with standart and droplet isolation precautions. Asymptomatic infants may be quaratined at home. Transport of the neonates should be performed in a dedicated transport incubator and ambulance with isolation precautions. There is no specific treatment for the disease, but hemodynamic stabilization of the infant, respiratory management and other daily care are essential. Drugs against cytokine storm syndrome such as corticosteroids or tocilizumab are under investigation. Routine antibiotics are not recommended. No deaths have been reported so far in the neonatal population. Families and healthcare staff should receive pyschological support. Since the infection is quite new and knowledge is constantly accumulating, following developments and continuous updates are crucial.
Collapse
Affiliation(s)
- Fahri Ovalı
- Division of Neonatology, Department of Pediatrics, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
41
|
Tahvildari A, Arbabi M, Farsi Y, Jamshidi P, Hasanzadeh S, Calcagno TM, Nasiri MJ, Mirsaeidi M. Clinical Features, Diagnosis, and Treatment of COVID-19 in Hospitalized Patients: A Systematic Review of Case Reports and Case Series. Front Med (Lausanne) 2020; 7:231. [PMID: 32574328 PMCID: PMC7242615 DOI: 10.3389/fmed.2020.00231] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 01/08/2023] Open
Abstract
Introduction: The 2019 novel coronavirus (COVID-19) has been declared a public health emergency worldwide. The objective of this systematic review was to characterize the clinical, diagnostic, and treatment characteristics of hospitalized patients presenting with COVID-19. Methods: We conducted a structured search using PubMed/Medline, Embase, and Web of Science to collect both case reports and case series on COVID-19 published up to April 24, 2020. There were no restrictions regarding publication language. Results: Eighty articles were included analyzing a total of 417 patients with a mean age of 48 years. The most common presenting symptom in patients who tested positive for COVID-19 was fever, reported in up to 62% of patients from 82% of the analyzed studies. Other symptoms including rhinorrhea, dizziness, and chills were less frequently reported. Additionally, in studies that reported C-reactive protein (CRP) measurements, a large majority of patients displayed an elevated CRP (60%). Progression to acute respiratory distress syndrome (ARDS) was the most common complication of patients testing positive for COVID-19 (21%). CT images displayed ground-glass opacification (GGO) patterns (80%) as well as bilateral lung involvement (69%). The most commonly used antiviral treatment modalities included, lopinavir (HIV protease inhibitor), arbidiol hydrochloride (influenza fusion inhibitor), and oseltamivir (neuraminidase inhibitor). Conclusions: Development of ARDS may play a role in estimating disease progression and mortality risk. Early detection of elevations in serum CRP, combined with a clinical COVID-19 symptom presentation may be used as a surrogate marker for the presence and severity of the disease. There is a paucity of data surrounding the efficacy of treatments. There is currently not a well-established gold standard therapy for the treatment of diagnosed COVID-19. Further prospective investigations are necessary.
Collapse
Affiliation(s)
- Azin Tahvildari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahta Arbabi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yeganeh Farsi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parnian Jamshidi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Hasanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tess Moore Calcagno
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Mehdi Mirsaeidi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Olsen O, Greene A, Makrides T, Delport A. Large-Scale Air Medical Operations in the Age of Coronavirus Disease 2019: Early Leadership Lessons From the Front Lines of British Columbia. Air Med J 2020; 39:340-342. [PMID: 33012469 PMCID: PMC7203048 DOI: 10.1016/j.amj.2020.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 11/24/2022]
Abstract
In late 2019, a novel coronavirus was identified as the cause of a cluster of atypical pneumonia cases in Wuhan, China. It subsequently spread throughout China and around the world, quickly becoming a public health emergency. In March 2020, the World Health Organization declared coronavirus disease 2019 a pandemic. This article explores the preparation and early experiences of a large Canadian critical care transport program during the coronavirus disease 2019 pandemic focused on 6 broad strategic objectives centered around staff welfare, regular and transparent communication, networking, evidenced-based approach to personal protective equipment, agile mission planning, and an expedited approach to clinical practice and policy updates and future state modeling.
Collapse
Affiliation(s)
- Ole Olsen
- Paramedic Practice Leader, Critical Care Paramedic, British Columbia Emergency Health Service.
| | - Adam Greene
- Unit Chief Vancouver Critical Care Team, Critical Care Paramedic, British Columbia Emergency Health Service
| | - Timothy Makrides
- Manager Critical Care Operations, Critical Care Paramedic, British Columbia Emergency Health Service; Graduate Research Student, Department of Paramedicine, School of Primary and Allied Health Care, Faculty of Medicine, Nursing & Health Science, Monash University, Melbourne, Victoria
| | - Aldon Delport
- Lecturer, School of Health Medical and Applied Sciences, Central Queensland University
| |
Collapse
|
43
|
Di Gennaro F, Pizzol D, Marotta C, Antunes M, Racalbuto V, Veronese N, Smith L. Coronavirus Diseases (COVID-19) Current Status and Future Perspectives: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2690. [PMID: 32295188 PMCID: PMC7215977 DOI: 10.3390/ijerph17082690] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 01/08/2023]
Abstract
At the end of 2019 a novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing severe acute respiratory syndrome expanded globally from Wuhan, China. In March 2020 the World Health Organization declared the SARS-Cov-2 virus a global pandemic. We performed a narrative review to describe existing literature with regard to Corona Virus Disease 2019 (COVID-19) epidemiology, pathophysiology, diagnosis, management and future perspective. MEDLINE, EMBASE and Scopus databases were searched for relevant articles. Although only when the pandemic ends it will be possible to assess the full health, social and economic impact of this global disaster, this review represents a picture of the current state of the art. In particular, we focus on public health impact, pathophysiology and clinical manifestations, diagnosis, case management, emergency response and preparedness.
Collapse
Affiliation(s)
- Francesco Di Gennaro
- IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy; (F.D.G.); (C.M.)
| | - Damiano Pizzol
- Italian Agency for Development Cooperation, Khartoum 79371, Sudan;
| | - Claudia Marotta
- IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy; (F.D.G.); (C.M.)
| | - Mario Antunes
- Department of Surgery, Central Hospital of Beira, Beira 2102, Mozambique;
| | | | - Nicola Veronese
- Geriatric Unit, Department of Internal Medicine and Geriatrics, University of Palermo, 90100 Palermo, Italy;
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| |
Collapse
|
44
|
Delang L, Neyts J. Medical treatment options for COVID-19. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2020; 9:209-214. [PMID: 32363880 PMCID: PMC7235633 DOI: 10.1177/2048872620922790] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
Therapeutic options for coronavirus disease 2019 are desperately needed to respond to the ongoing severe acute respiratory syndrome coronavirus 2 pandemic. Both antiviral drugs and immunomodulators might have their place in the management of coronavirus disease 2019. Unfortunately, no drugs have been approved yet to treat infections with human coronaviruses. As it will take years to develop new therapies for severe acute respiratory syndrome coronavirus 2, the current focus is on the repurposing of drugs that have been approved or are in development for other conditions. Several clinical trials have already been conducted or are currently ongoing to evaluate the efficacy of such drugs. Here, we discuss the potential of these therapies for the treatment of coronavirus disease 2019.
Collapse
Affiliation(s)
- Leen Delang
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Belgium
- Global Virus Network, GVN
| | - Johan Neyts
- KU Leuven Department of Microbiology and Immunology, Rega Institute for Medical Research, Belgium
- Global Virus Network, GVN
| |
Collapse
|
45
|
Bagherzade M, Parham M, Zohali S, Molaei S, Vafaeimanesh J. Plasmapheresis with corticosteroids and antiviral: a life-saving treatment for severe cases of Covid 19. CASPIAN JOURNAL OF INTERNAL MEDICINE 2020; 11:572-576. [PMID: 33425279 PMCID: PMC7780874 DOI: 10.22088/cjim.11.0.572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/04/2020] [Accepted: 08/22/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND COVID-19 pandemic is a global concern. Unfortunately, there is no exclusive treatment for critical patients to survive. In this study, we suggest using a novel three-dimensional treatment mainly based upon immune system modulation to fix the virus chaos, through cytokine storm as the main character of COVID-19 infection scenario. CASE PRESENTATION A young man infected by SARS-CoV-2 who suffered from respiratory arrest and loss of consciousness, underwent cardiopulmonary resuscitation and endotracheal intubation. Following ICU administration and confirmed diagnosis of COVID-19, considering critical condition of the young patient, plasmapheresis was performed once on a daily basis, three doses of interferon beta(IFN-β-1b) was injected subcutaneously every other day and dexamethasone was given at a dose of 4 mg every 8 hours along with common antiviral regimen. After 2 days, the patient was extubated and transferred from the ICU to the ward where plasmapheresis was performed 4 times daily for 4 days. Finally, after 7 days of hospitalization, the patient was discharged with a good general condition. CONCLUSION We modulated the immune system through plasmapheresis to sweep out the released cytokines. Also, corticosteroid along with interferon was added to common antiviral treatments. Our data suggest that this combined method is effective for critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Mohammad Bagherzade
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Mahmoud Parham
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Somayeh Zohali
- Student Research Committee, School of Medicine, University of Medical Sciences, Qom, Iran
| | - Sedighe Molaei
- Student Research Committee, School of Medicine, University of Medical Sciences, Qom, Iran
| | - Jamshid Vafaeimanesh
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
- Gastroenterology & Hepatology Disease Research Center, Qom University of Medical Science, Qom, Iran
| |
Collapse
|