1
|
Dasharathy S, Pranay, Devadas SK, Tripathi E, Karyala P. Emerging role of deubiquitinases in modulating cancer chemoresistance. Drug Discov Today 2025; 30:104339. [PMID: 40118446 DOI: 10.1016/j.drudis.2025.104339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/08/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
Chemotherapy remains a gold standard in cancer treatment by targeting the rapidly dividing cancer cells. However, chemoresistance is a major obstacle to successful cancer treatment, often leading to recurrence, metastasis, and high mortality. Deubiquitinases (DUBs), enzymes that remove ubiquitin and stabilize proteins, have been implicated in chemoresistance and can either promote therapeutic resistance or enhance sensitivity depending on their targets. In this review, we highlight the chemoresistance mechanisms of DUBs in various cancers, including breast, lung, liver, gastrointestinal, colorectal, ovarian, prostate, and blood cancers. Given these mechanisms, the development of DUB inhibitors has gained considerable attention in cancer therapeutics and combination therapies involving these inhibitors show potential to overcome drug resistance and improving treatment outcomes.
Collapse
Affiliation(s)
- Sukeerthi Dasharathy
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Pranay
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Santhosh K Devadas
- Department of Medical Oncology, Ramaiah Medical College and Hospital, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India
| | - Ekta Tripathi
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| | - Prashanthi Karyala
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bangalore 560054, India.
| |
Collapse
|
2
|
Jha S, Pispa J, Holmberg CI. Impairment of proteasome-associated deubiquitinating enzyme Uchl5/UBH-4 affects autophagy. Biol Open 2025; 14:bio061644. [PMID: 39912491 PMCID: PMC11832120 DOI: 10.1242/bio.061644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
The autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are the two major intracellular proteolytic systems that mediate protein turnover in eukaryotes. Although a crosstalk exists between these two systems, it is still unclear how UPS and ALP interact in vivo. Here, we investigated how impaired function of the proteasome-associated deubiquitinating enzyme (DUB) Uchl5/UBH-4 affects autophagy in human cells and in a multicellular organism. We show that downregulation of Uchl5 by siRNA reduces autophagy by partially blocking the fusion of autophagosomes with the lysosomes in HeLa cells, which is similar to a previously reported role of the proteasome-associated DUB Usp14 on autophagy. However, exposure of Caenorhabditis elegans to ubh-4 or usp-14 RNAi, or to their pharmacological inhibitors, results in diverse effects on numbers of autophagosomes and autolysosomes, without blocking the lysosomal fusion, in the intestine, hypodermal seam cells and the pharynx. Our results reveal that impairment of Uchl5/UBH-4 and Usp14 affects autophagy in a tissue context manner. A deeper insight into the interplay between UPS and ALP in various tissues in vivo has the potential to promote development of therapeutic approaches for disorders associated with proteostasis dysfunction.
Collapse
Affiliation(s)
- Sweta Jha
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Johanna Pispa
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Carina I. Holmberg
- Department of Biochemistry and Developmental Biology, Medicum, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| |
Collapse
|
3
|
Huang ML, Shen GT, Li NL. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J Clin Cases 2022; 10:11690-11701. [PMID: 36405275 PMCID: PMC9669866 DOI: 10.12998/wjcc.v10.i32.11690] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most frequently diagnosed cancer in women, accounting for 30% of new diagnosing female cancers. Emerging evidence suggests that ubiquitin and ubiquitination played a role in a number of breast cancer etiology and progression processes. As the primary deubiquitinases in the family, ubiquitin-specific peptidases (USPs) are thought to represent potential therapeutic targets. The role of ubiquitin and ubiquitination in breast cancer, as well as the classification and involvement of USPs are discussed in this review, such as USP1, USP4, USP7, USP9X, USP14, USP18, USP20, USP22, USP25, USP37, and USP39. The reported USPs inhibitors investigated in breast cancer were also summarized, along with the signaling pathways involved in the investigation and its study phase. Despite no USP inhibitor has yet been approved for clinical use, the biological efficacy indicated their potential in breast cancer treatment. With the improvements in phenotypic discovery, we will know more about USPs and USPs inhibitors, developing more potent and selective clinical candidates for breast cancer.
Collapse
Affiliation(s)
- Mei-Ling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Guang-Tai Shen
- Department of Breast Surgery, Xing'an League People's Hospital, Ulanhot 137400, Inner Mongolia Autonomous Region, China
| | - Nan-Lin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| |
Collapse
|
4
|
Chow PM, Dong JR, Chang YW, Kuo KL, Lin WC, Liu SH, Huang KH. The UCHL5 Inhibitor b-AP15 Overcomes Cisplatin Resistance via Suppression of Cancer Stemness in Urothelial Carcinoma. MOLECULAR THERAPY - ONCOLYTICS 2022; 26:387-398. [PMID: 36090476 PMCID: PMC9421311 DOI: 10.1016/j.omto.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
Abstract
Urothelial carcinoma (UC) comprises the majority of bladder cancers. Standard platinum-based chemotherapy has a response rate of approximately 50%, but drug resistance develops after short-term treatment. Deubiquitinating (DUB) enzyme inhibitors increase protein polyubiquitination and endoplasmic reticulum (ER) stress, which might further suppress cancer stemness and overcome cisplatin resistance. Therefore, we investigated the cytotoxic effect and potential mechanisms of b-AP15 on urothelial carcinoma. Our results revealed that b-AP15 induced ER stress and apoptosis in BFTC905, T24, T24/R (cisplatin-resistant), and RT4 urothelial carcinoma cell lines. Inhibition of the MYC signaling pathway and cancer stemness by b-AP15 was confirmed by RNA sequencing, RT-PCR, immunoblotting, and sphere-forming assays. In the mouse xenograft model, the combination of b-AP15 and cisplatin showed superior therapeutic effects compared with either monotherapy.
Collapse
Affiliation(s)
- Po-Ming Chow
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jun-Ren Dong
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Wei Chang
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Kuan-Lin Kuo
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wei-Chou Lin
- Department of Pathology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Kuo-How Huang
- Department of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Corresponding author Kuo-How Huang, MD, PhD, Department of Urology, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 7, Zhongshan S. Rd., Zhongzheng Dist., Taipei 100, Taiwan.
| |
Collapse
|
5
|
Gubat J, Selvaraju K, Sjöstrand L, Kumar Singh D, Turkina MV, Schmierer B, Sabatier P, Zubarev RA, Linder S, D’Arcy P. Comprehensive Target Screening and Cellular Profiling of the Cancer-Active Compound b-AP15 Indicate Abrogation of Protein Homeostasis and Organelle Dysfunction as the Primary Mechanism of Action. Front Oncol 2022; 12:852980. [PMID: 35530310 PMCID: PMC9076133 DOI: 10.3389/fonc.2022.852980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
Dienone compounds have been demonstrated to display tumor-selective anti-cancer activity independently of the mutational status of TP53. Previous studies have shown that cell death elicited by this class of compounds is associated with inhibition of the ubiquitin-proteasome system (UPS). Here we extend previous findings by showing that the dienone compound b-AP15 inhibits proteasomal degradation of long-lived proteins. We show that exposure to b-AP15 results in increased association of the chaperones VCP/p97/Cdc48 and BAG6 with proteasomes. Comparisons between the gene expression profile generated by b-AP15 to those elicited by siRNA showed that knock-down of the proteasome-associated deubiquitinase (DUB) USP14 is the closest related to drug response. USP14 is a validated target for b-AP15 and we show that b-AP15 binds covalently to two cysteines, Cys203 and Cys257, in the ubiquitin-binding pocket of the enzyme. Consistent with this, deletion of USP14 resulted in decreased sensitivity to b-AP15. Targeting of USP14 was, however, found to not fully account for the observed proteasome inhibition. In search for additional targets, we utilized genome-wide CRISPR/Cas9 library screening and Proteome Integral Solubility Alteration (PISA) to identify mechanistically essential genes and b-AP15 interacting proteins respectively. Deletion of genes encoding mitochondrial proteins decreased the sensitivity to b-AP15, suggesting that mitochondrial dysfunction is coupled to cell death induced by b-AP15. Enzymes known to be involved in Phase II detoxification such as aldo-ketoreductases and glutathione-S-transferases were identified as b-AP15-targets using PISA. The finding that different exploratory approaches yielded different results may be explained in terms of a “target” not necessarily connected to the “mechanism of action” thus highlighting the importance of a holistic approach in the identification of drug targets. We conclude that b-AP15, and likely also other dienone compounds of the same class, affect protein degradation and proteasome function at more than one level.
Collapse
Affiliation(s)
- Johannes Gubat
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karthik Selvaraju
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Linda Sjöstrand
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dhananjay Kumar Singh
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Pharmacy, Central University of South Bihar, Gaya, India
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Bernhard Schmierer
- Department of Medical Biochemistry and Biophysics, Division of Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Sabatier
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Roman A. Zubarev
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacological and Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Pádraig D’Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Pádraig D’Arcy,
| |
Collapse
|
6
|
Yang Q, Sun K, Xia W, Li Y, Zhong M, Lei K. Autophagy-related prognostic signature for survival prediction of triple negative breast cancer. PeerJ 2022; 10:e12878. [PMID: 35186475 PMCID: PMC8840057 DOI: 10.7717/peerj.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/12/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a highly aggressive type of cancer with few available treatment methods. The aim of the current study was to provide a prognostic autophagy-related gene (ARG) model to predict the outcomes for TNBC patients using bioinformatic analysis. METHODS mRNA expression data and its clinical information for TNBC samples obtained from The Cancer Genome Atlas (TCGA) and Metabric databases were extracted for bioinformatic analysis. Differentially expressed autophagy genes were identified using the Wilcoxon rank sum test in R software. ARGs were downloaded from the Human Autophagy Database. The Kaplan-Meier plotter was employed to determine the prognostic significance of the ARGs. The sample splitting method and Cox regression analysis were employed to establish the risk model and to demonstrate the association between the ARGs and the survival duration. The corresponding ARG-transcription factor interaction network was visualized using the Cytoscape software. RESULTS A signature-based risk score model was established for eight genes (ITGA3, HSPA8, CTSD, ATG12, CLN3, ATG7, MAP1LC3C, and WIPI1) using the TCGA data and the model was validated with the GSE38959 and Metabric datasets, respectively. Patients with high risk scores had worse survival outcomes than those with low risk scores. Of note, amplification of ATG12 and reduction of WIPI were confirmed to be significantly correlated with the clinical stage of TNBC. CONCLUSION An eight-gene autophagic signature model was developed in this study to predict the survival risk for TNBC. The genes identified in the study may favor the design of target agents for autophagy control in advanced TNBC.
Collapse
Affiliation(s)
- Qiong Yang
- Department of General Surgery, Cancer Center, Division of Breast Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kewang Sun
- Department of General Surgery, Cancer Center, Division of Breast Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Wenjie Xia
- Department of General Surgery, Cancer Center, Division of Breast Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ying Li
- Department of General Surgery, Cancer Center, Division of Breast Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Miaochun Zhong
- Department of General Surgery, Cancer Center, Division of Breast Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Kefeng Lei
- Department of General Surgery, Cancer Center, Division of Breast Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China,Department of General Surgery, The 7th Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
7
|
Zhu T, Xu L, Peng J, Chen M, Xu H. Molecular characteristics and immune function of ubiquitin C-terminal hydrolase-L3 in Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2022; 121:295-304. [PMID: 35032678 DOI: 10.1016/j.fsi.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Ubiquitin C-terminal hydrolase-L3 (UCHL3) is a deubiquitinating enzyme involved in the repair mechanism of homologous recombinations of DNA double strand breaks (DBS). However, the role of UCHL3 in crustacean immune regulation has not been studied. In this experiment, we cloned and analyzed the expression profile of the UCHL3 gene from Macrobrachium nipponense (MnUCHL3). The obtained full-length cDNA of the MnUCHL3 transcript was 1192 bp, and it had a 687 bp open reading frame encoding a 228 amino acid protein, and the structure of UCHL3 is highly similar to that of other invertebrates. Real-time PCR results indicated that MnUCHL3 was expressed in all detected tissues, with the highest expression levels in the hepatopancreas, and the expression of MnUCHL3 in the gill and hepatopancreas was downregulated to different degrees within 48 h after the infection of viruses and bacteria. Furthermore, knockdown of MnUCHL3 expression by double-stranded RNA (dsRNA) injection in Aeromonas hydrophila-infected prawns increased prawn mortality and bacterial growth. In addition, overexpression of MnUCHL3 in HEK293T cells in vitro suggested that MnUCHL3 could activate the NF-κB signal path and the expression levels of NF-κB signaling cascade members and AMPs, exhibiting remarkable downregulation in the MnUCHL3-silenced group. The above experimental conclusions revealed that UCHL3 gene might be involved in the innate immune response to bacterial infection by regulating the synthesis of a series of AMPs, and these results might provide new insights into UCHL3 in invertebrates.
Collapse
Affiliation(s)
- Tingyao Zhu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Liaoyi Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Jiacheng Peng
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Ming Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Haisheng Xu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China; South Taihu Lake Modern Agricultural Science and Technology Extension Center of Huzhou, Zhejiang University, 768, Luwang Road, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
8
|
Li S, Zhang H, Wei X. Roles and Mechanisms of Deubiquitinases (DUBs) in Breast Cancer Progression and Targeted Drug Discovery. Life (Basel) 2021; 11:life11090965. [PMID: 34575114 PMCID: PMC8467271 DOI: 10.3390/life11090965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinase (DUB) is an essential component in the ubiquitin—proteasome system (UPS) by removing ubiquitin chains from substrates, thus modulating the expression, activity, and localization of many proteins that contribute to tumor development and progression. DUBs have emerged as promising prognostic indicators and drug targets. DUBs have shown significant roles in regulating breast cancer growth, metastasis, resistance to current therapies, and several canonical oncogenic signaling pathways. In addition, specific DUB inhibitors have been identified and are expected to benefit breast cancer patients in the future. Here, we review current knowledge about the effects and molecular mechanisms of DUBs in breast cancer, providing novel insight into treatments of breast cancer-targeting DUBs.
Collapse
|
9
|
Maniam S, Maniam S. Small Molecules Targeting Programmed Cell Death in Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22189722. [PMID: 34575883 PMCID: PMC8465612 DOI: 10.3390/ijms22189722] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/10/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells.
Collapse
Affiliation(s)
- Subashani Maniam
- School of Science, STEM College, RMIT University, Melbourne, VIC 3001, Australia
- Correspondence: (S.M.); (S.M.); Tel.: +613-9925-5688 (S.M.); +60-397692322 (S.M.)
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (S.M.); (S.M.); Tel.: +613-9925-5688 (S.M.); +60-397692322 (S.M.)
| |
Collapse
|
10
|
Kurozumi N, Tsujioka T, Ouchida M, Sakakibara K, Nakahara T, Suemori SI, Takeuchi M, Kitanaka A, Shibakura M, Tohyama K. VLX1570 induces apoptosis through the generation of ROS and induction of ER stress on leukemia cell lines. Cancer Sci 2021; 112:3302-3313. [PMID: 34032336 PMCID: PMC8353915 DOI: 10.1111/cas.14982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/28/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
A novel proteasome deubiquitinase inhibitor, VLX1570, has been highlighted as a promising therapeutic agent mainly for lymphoid neoplasms and solid tumors. We examined in vitro effects of VLX1570 on eight myeloid and three lymphoid leukemia cell lines. From cell culture studies, 10 out of 11 cell lines except K562 were found to be susceptible to VLX1570 treatment and it inhibited cell growth mainly by apoptosis. Next, to identify the signaling pathways associated with apoptosis, we performed gene expression profiling using HL‐60 with or without 50 nmol/L of VLX1570 for 3 hours and demonstrated that VLX1570 induced the genetic pathway involved in “heat shock transcription factor 1 (HSF1) activation”, “HSF1 dependent transactivation”, and “Regulation of HSF1 mediated heat shock response”. VLX1570 increased the amount of high molecular weight polyubiquitinated proteins and the expression of HSP70 as the result of the suppression of ubiquitin proteasome system, the expression of heme oxygenase‐1, and the amount of phosphorylation in JNK and p38 associated with the generation of reactive oxygen species (ROS) induced apoptosis and the amount of phosphorylation in eIF2α, inducing the expression of ATF4 and endoplasmic reticulum (ER) stress dependent apoptosis protein, CHOP, and the amount of phosphorylation slightly in IRE1α, leading to increased expression of XBP‐1s in leukemia cell lines. In the present study, we demonstrate that VLX1570 induces apoptosis and exerts a potential anti‐leukemic effect through the generation of ROS and induction of ER stress in leukemia cell lines.
Collapse
Affiliation(s)
- Nami Kurozumi
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan.,Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Takayuki Tsujioka
- Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Mamoru Ouchida
- Department of Molecular Oncology, Graduate School of Medical, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kanae Sakakibara
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Takako Nakahara
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | | | - Masaki Takeuchi
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Akira Kitanaka
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan.,Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| | - Misako Shibakura
- Field of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Kaoru Tohyama
- Division of Medical Technology, Kawasaki University of Medical Welfare, Okayama, Japan.,Department of Laboratory Medicine, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
11
|
Deubiquitinating enzymes as possible drug targets for schistosomiasis. Acta Trop 2021; 217:105856. [PMID: 33577811 DOI: 10.1016/j.actatropica.2021.105856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Deubiquitinating enzymes (DUBs) are conserved in Schistosoma mansoni and may be linked to the 26S proteasome. Previous results from our group showed that b-AP15, an inhibitor of the 26S proteasome DUBs UCHL5 and USP14 induced structural and gene expression changes in mature S. mansoni pairs. This work suggests the use of the nonselective DUB inhibitor PR-619 to verify whether these enzymes are potential target proteins for new drug development. Our approach is based on previous studies with DUB inhibitors in mammalian cells that have shown that these enzymes are associated with apoptosis, autophagy and the transforming growth factor beta (TGF-β) signaling pathway. PR-619 inhibited oviposition in parasite pairs in vitro, leading to mitochondrial changes, autophagic body formation, and changes in expression of SmSmad2 and SmUSP9x, which are genes linked to the TGF-β pathway that are responsible for parasite oviposition and SmUCHL5 and SmRpn11 DUB maintenance. Taken together, these results indicate that DUBs may be used as targets for the development of new drugs against schistosomiasis.
Collapse
|
12
|
Reeg S, Castro JP, Hugo M, Grune T. Accumulation of polyubiquitinated proteins: A consequence of early inactivation of the 26S proteasome. Free Radic Biol Med 2020; 160:293-302. [PMID: 32822745 DOI: 10.1016/j.freeradbiomed.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
The proteasomal degradation system is one of the most important protein degradation systems in the cytosol and nucleus. This system is present in two major forms: the ATP-stimulated 26S/30 S proteasome or the ATP-independent 20S core proteasome. While the first recognize ubiquitin-tagged target proteins and degrade them, the 20S proteasome works also independent from ATP, but requires partially unfolded substrates. While the role of the proteasome in the selective removal of oxidized proteins is undoubted, the debate about a selective ubiquitination of oxidized proteins is still ongoing. Here we demonstrate, that under some conditions of oxidative stress an accumulation of oxidized and of K48-ubiquitinated proteins occurs. However, the removal of oxidized proteins seems not to be linked to ubiquitination. In further experiments, we could show that the accumulation of ubiquitinated proteins under certain oxidative stress conditions is rather a result of a different sensitivity of the 26S proteasome and the ubiquitination machinery towards oxidants.
Collapse
Affiliation(s)
- Sandra Reeg
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - José P Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Martin Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| |
Collapse
|
13
|
Ren H, Bakas NA, Vamos M, Chaikuad A, Limpert AS, Wimer CD, Brun SN, Lambert LJ, Tautz L, Celeridad M, Sheffler DJ, Knapp S, Shaw RJ, Cosford NDP. Design, Synthesis, and Characterization of an Orally Active Dual-Specific ULK1/2 Autophagy Inhibitor that Synergizes with the PARP Inhibitor Olaparib for the Treatment of Triple-Negative Breast Cancer. J Med Chem 2020; 63:14609-14625. [PMID: 33200929 DOI: 10.1021/acs.jmedchem.0c00873] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Inhibition of autophagy, the major cellular recycling pathway in mammalian cells, is a promising strategy for the treatment of triple-negative breast cancer (TNBC). We previously reported SBI-0206965, a small molecule inhibitor of unc-51-like autophagy activating kinase 1 (ULK1), which is a key regulator of autophagy initiation. Herein, we describe the design, synthesis, and characterization of new dual inhibitors of ULK1 and ULK2 (ULK1/2). One inhibitor, SBP-7455 (compound 26), displayed improved binding affinity for ULK1/2 compared with SBI-0206965, potently inhibited ULK1/2 enzymatic activity in vitro and in cells, reduced the viability of TNBC cells and had oral bioavailability in mice. SBP-7455 inhibited starvation-induced autophagic flux in TNBC cells that were dependent on autophagy for survival and displayed synergistic cytotoxicity with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib against TNBC cells. These data suggest that combining ULK1/2 and PARP inhibition may have clinical utility for the treatment of TNBC.
Collapse
Affiliation(s)
- Huiyu Ren
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Nicole A Bakas
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Mitchell Vamos
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Apirat Chaikuad
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Frankfurt 60438, Germany.,Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt 60438, Germany
| | - Allison S Limpert
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Carina D Wimer
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Sonja N Brun
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Lester J Lambert
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Lutz Tautz
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Maria Celeridad
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Douglas J Sheffler
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Stefan Knapp
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Frankfurt 60438, Germany.,Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt 60438, Germany
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, San Diego, California 92037, United States
| | - Nicholas D P Cosford
- Cancer Molecules & Structures Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Abstract
![]()
The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl
pharmacophore have been studied extensively. Despite their expected
general thiol reactivity, these compounds display considerable degrees
of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570,
RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these
compounds is their targeting of the ubiquitin–proteasome system
(UPS), known to be essential for the viability of tumor cells. Gene
expression profiling experiments have shown induction of responses
characteristic of UPS inhibition, and experiments using cellular reporter
proteins have shown that proteasome inhibition is associated with
cell death. Other mechanisms of action such as reactivation of mutant
p53, stimulation of steroid receptor coactivators, and induction of
protein cross-linking have also been described. Although unsuitable
as biological probes due to widespread reactivity, dienone compounds
are cytotoxic to apoptosis-resistant tumor cells and show activity
in animal tumor models.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stig Linder
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, SE-58183 Linköping, Sweden.,Department of Oncology and Pathology, Karolinska Institute, SE-17176 Stockholm, Sweden
| |
Collapse
|
15
|
Chen X, Lin Z, Su L, Cui X, Zhao B, Miao J. Discovery of a fluorescigenic pyrazoline derivative targeting ubiquitin. Biochem Biophys Res Commun 2020; 528:256-260. [PMID: 32473753 DOI: 10.1016/j.bbrc.2020.05.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
Despite significant process in ubiquitin modification by using traditional genetic methods, chemical small molecules that directly target and modify ubiquitin are little reported. Here, we find that a fluorescigenic pyrazoline derivative (FPD5) could do so effectively. Molecule docking revealed that lysine 11 of ubiquitin was the key contact residue. FPD5, with stronger fluorescence, elevated the ubiquitination of beclin 1 (BECN1) and promoted autophagy. This study highlights that targeting ubiquitin by chemical small molecules enables us to modulate ubiquitination and the downstream signaling in the ubiquitin system.
Collapse
Affiliation(s)
- XinPeng Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China; Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, School of Life Science, Hubei Normal University, Huangshi, 435002, PR China
| | - ZhaoMin Lin
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, 250033, PR China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - XiaoLing Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - BaoXiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| | - JunYing Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, China.
| |
Collapse
|
16
|
do Patrocinio AB, Cabral FJ, Bitencourt ALB, Brigato OM, Magalhães LG, de Lima Paula LA, Franco L, Guerra-Sá and R, Rodrigues V. Inhibition of 19S proteasome deubiquitinating activity in Schistosoma mansoni affects viability, oviposition, and structural changes. Parasitol Res 2020; 119:2159-2176. [DOI: 10.1007/s00436-020-06686-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/07/2020] [Indexed: 01/21/2023]
|
17
|
Zhang F, Xu R, Chai R, Xu Q, Liu M, Chen X, Chen X, Kong T, Zhang C, Liu SM, Zhang Z, Liu N. Deubiquitinase Inhibitor b-AP15 Attenuated LPS-Induced Inflammation via Inhibiting ERK1/2, JNK, and NF-Kappa B. Front Mol Biosci 2020; 7:49. [PMID: 32391376 PMCID: PMC7188916 DOI: 10.3389/fmolb.2020.00049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/13/2020] [Indexed: 01/15/2023] Open
Abstract
b-AP15 is a deubiquitinase (DUB) inhibitor of 19S proteasomes, which in turn targets ubiquitin C-terminal hydrolase 5 (UCHL5) and ubiquitin-specific peptidase 14 (USP14). Nuclear factor kappa B (NF-κB) is closely linked to cellular response in macrophages when the organism is in the state of microbial infection, and it acts as a vital part in the mechanism of inflammatory reaction. However, the molecular mechanism by which DUB inhibitors, especially b-AP15, regulates inflammation remains poorly understood. This study aimed to investigate the relationship between b-AP15 and inflammation. The results showed that b-AP15 treatment significantly reduced the amounts of inflammatory indicators, such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in lipopolysaccharide (LPS)-stimulated THP-1 and macrophages. Meanwhile, similar results were obtained from in vivo experiments. In addition, b-AP15 also significantly improved the survival rate of sepsis mouse via high-density LPS mediation. Furthermore, b-AP15 also inhibited the ERK1/2 and JNK phosphorylation, increased IκBα levels, and inhibited NF-κB p65 by removing them from the cytoplasm into the nucleus. All these findings suggested that b-AP15 has anti-inflammatory action and acts as a potential neoteric target drug for treating microbial infection.
Collapse
Affiliation(s)
- Fangcheng Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruqin Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Renjie Chai
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiong Xu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingke Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuke Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaohua Chen
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tianyu Kong
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chongyu Zhang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shi-Ming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhenhui Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Zhang X, Linder S, Bazzaro M. Drug Development Targeting the Ubiquitin-Proteasome System (UPS) for the Treatment of Human Cancers. Cancers (Basel) 2020; 12:cancers12040902. [PMID: 32272746 PMCID: PMC7226376 DOI: 10.3390/cancers12040902] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cells are characterized by a higher rate of protein turnover and greater demand for protein homeostasis compared to normal cells. In this scenario, the ubiquitin-proteasome system (UPS), which is responsible for the degradation of over 80% of cellular proteins within mammalian cells, becomes vital to cancer cells, making the UPS a critical target for the discovery of novel cancer therapeutics. This review systematically categorizes all current reported small molecule inhibitors of the various essential components of the UPS, including ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes (E2s), ubiquitin ligases (E3s), the 20S proteasome catalytic core particle (20S CP) and the 19S proteasome regulatory particles (19S RP), as well as their mechanism/s of action and limitations. We also discuss the immunoproteasome which is considered as a prospective therapeutic target of the next generation of proteasome inhibitors in cancer therapies.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Immunology, Genetics, and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Department of Medical and Health Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA;
- Correspondence:
| |
Collapse
|
19
|
Mofers A, Perego P, Selvaraju K, Gatti L, Gullbo J, Linder S, D'Arcy P. Analysis of determinants for in vitro resistance to the small molecule deubiquitinase inhibitor b-AP15. PLoS One 2019; 14:e0223807. [PMID: 31639138 PMCID: PMC6804958 DOI: 10.1371/journal.pone.0223807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND b-AP15/VLX1570 are small molecule inhibitors of the ubiquitin specific peptidase 14 (USP14) and ubiquitin carboxyl-terminal hydrolase 5 (UCHL5) deubiquitinases (DUBs) of the 19S proteasome. b-AP15/VLX1570 have been shown to be cytotoxic to cells resistant to bortezomib, raising the possibility that this class of drugs can be used as a second-line therapy for treatment-resistant multiple myeloma. Limited information is available with regard to potential resistance mechanisms to b-AP15/VLX1570. RESULTS We found that b-AP15-induced cell death is cell-cycle dependent and that non-cycling tumor cells may evade b-AP15-induced cell death. Such non-cycling cells may re-enter the proliferative state to form colonies of drug-sensitive cells. Long-term selection of cells with b-AP15 resulted in limited drug resistance (~2-fold) that could be reversed by buthionine sulphoximine, implying altered glutathione (GSH) metabolism as a resistance mechanism. In contrast, drug uptake and overexpression of drug efflux transporters were found not to be associated with b-AP15 resistance. CONCLUSIONS The proteasome DUB inhibitors b-AP15/VLX1570 are cell cycle-active. The slow and incomplete development of resistance towards these compounds is an attractive feature in view of future clinical use.
Collapse
Affiliation(s)
- Arjan Mofers
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Karthik Selvaraju
- Department of Medicine and Health, Linköping University, Linköping, Sweden
| | - Laura Gatti
- Cerebrovascular Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Joachim Gullbo
- Department of Radiology, Oncology and Radiation Science, Section of Oncology, Uppsala University, Uppsala, Sweden
| | - Stig Linder
- Department of Medicine and Health, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Padraig D'Arcy
- Department of Medicine and Health, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
20
|
Fukui S, Nagasaka K, Miyagawa Y, Kikuchi-Koike R, Kawata Y, Kanda R, Ichinose T, Sugihara T, Hiraike H, Wada-Hiraike O, Sasajima Y, Ayabe T. The proteasome deubiquitinase inhibitor bAP15 downregulates TGF-β/Smad signaling and induces apoptosis via UCHL5 inhibition in ovarian cancer. Oncotarget 2019; 10:5932-5948. [PMID: 31666925 PMCID: PMC6800272 DOI: 10.18632/oncotarget.27219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The ubiquitin-proteasome pathway plays an important role in the regulation of cellular proteins. As an alternative to the proteasome itself, recent research has focused on methods to modulate the regulation of deubiquitinating enzymes (DUBs) upstream of the proteasome, identifying DUBs as novel therapeutic targets in breast, endometrial, and prostate cancers, along with multiple myeloma. bAP15, an inhibitor of the 19S proteasome DUBs UCHL5 and USP14, results in cell growth inhibition in several human cancers; however, the mechanism remains poorly understood in ovarian cancer. Here, we found that aberrant UCHL5 expression predicted shorter progression-free survival (PFS) in a cohort of 1435 patients with ovarian cancer described in the Gene Expression Omnibus and The Cancer Genome Atlas databases. The subgroup of patients with TP53 mutations was significantly more likely to exhibit poor PFS (p <0.001). Moreover, we found bAP15 could suppress TP53-mutant ovarian cancer cell survival by regulating TGF-β signaling through inhibiting UCHL5 expression and dephosphorylating Smad2, consequently inducing apoptosis. bAP15 (2.5 and 5.0 mg/kg) also exerted significant anti-tumor effect on nude mice bearing subcutaneous SKOV3 xenografts. As activated TGF-β signaling is involved in ovarian cancer progression, these findings suggest that UCHL5 inhibition offers potential opportunities for a novel targeted therapy against TGF-β-activated ovarian cancer.
Collapse
Affiliation(s)
- Shiho Fukui
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yuko Miyagawa
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Ryoko Kikuchi-Koike
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshiko Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ranka Kanda
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takayuki Ichinose
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takeru Sugihara
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Haruko Hiraike
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuko Sasajima
- Department of Pathology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takuya Ayabe
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
21
|
Deubiquitylatinase inhibitor b-AP15 induces c-Myc-Noxa-mediated apoptosis in esophageal squamous cell carcinoma. Apoptosis 2019; 24:826-836. [DOI: 10.1007/s10495-019-01561-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Oxidative Stress Induced by the Deubiquitinase Inhibitor b-AP15 Is Associated with Mitochondrial Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1659468. [PMID: 31281566 PMCID: PMC6590552 DOI: 10.1155/2019/1659468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 12/17/2022]
Abstract
Inhibitors of the 20S proteasome such as bortezomib are cytotoxic to tumor cells and have been proven to be valuable for the clinical management of multiple myeloma. The therapeutic efficacy of bortezomib is, however, hampered by the emergence of acquired resistance. Available data suggest that blocking proteasome activity at the level of proteasome-associated deubiquitinases (DUBs) provides a mechanism to overcome resistance to bortezomib and also to other cancer therapies. The small molecule b-AP15 is an inhibitor of proteasome-associated DUB activity that induces both proteotoxic stress and increases in the levels of reactive oxygen species (ROS) in tumor cells. Antioxidants have been shown to decrease apoptosis induction by b-AP15 and we here addressed the question of the mechanism of redox perturbation by this compound. We show that oxidative stress induction by b-AP15 is abrogated in cells deprived of mitochondrial DNA (ρ0 cells). We also show associations between the level of proteotoxic stress, the degree of mitochondrial dysfunction, and the extent of induction of hemeoxygenase-1 (HO-1), a target of the redox-regulated Nrf-2 transcription factor. Decreased expression of COX5b (cytochrome c oxidase subunit 5b) and TOMM34 (translocase of outer mitochondrial membrane 34) was observed in b-AP15-treated cells. These findings suggest a mitochondrial origin of the increased levels of ROS observed in cells exposed to the DUB inhibitor b-AP15.
Collapse
|
23
|
Schmidt M, Altdörfer V, Schnitte S, Fuchs AR, Kropp KN, Maurer S, Müller MR, Salih HR, Rittig SM, Grünebach F, Dörfel D. The Deubiquitinase Inhibitor b-AP15 and Its Effect on Phenotype and Function of Monocyte-Derived Dendritic Cells. Neoplasia 2019; 21:653-664. [PMID: 31132676 PMCID: PMC6538843 DOI: 10.1016/j.neo.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system is elementary for cellular protein degradation and gained rising attention as a new target for cancer therapy due to promising clinical trials with bortezomib, the first-in class proteasome inhibitor meanwhile approved for multiple myeloma and mantle cell lymphoma. Both bortezomib and next-generation proteasome inhibitors mediate their effects by targeting the 20S core particle of the 26S proteasome. The novel small molecule inhibitor b-AP15 affects upstream elements of the ubiquitin-proteasome cascade by suppressing the deubiquitinase activity of both proteasomal regulatory 19S subunits and showed promising anticancer activity in preclinical models. Nonetheless, effects of inhibitors on the ubiquitin-proteasome system are not exclusively restricted to malignant cells: alteration of natural killer cell-mediated immune responses had already been described for drugs targeting either 19S or 20S proteasomal subunits. Moreover, it has been shown that bortezomib impairs dendritic cell (DC) phenotype and function at different levels. In the present study, we comparatively analyzed effects of bortezomib and b-AP15 on monocyte-derived DCs. In line with previous results, bortezomib exposure impaired maturation, antigen uptake, migration, cytokine secretion and immunostimulation, whereas treatment with b-AP15 had no compromising effects on these DC features. Our findings warrant the further investigation of b-AP15 as an alternative to clinically approved proteasome inhibitors in the therapy of malignancies, especially in the context of combinatorial treatment with DC-based immunotherapies.
Collapse
Affiliation(s)
- Moritz Schmidt
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Vanessa Altdörfer
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Sarah Schnitte
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Alexander Rolf Fuchs
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Korbinian Nepomuk Kropp
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Stefanie Maurer
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany
| | - Martin Rudolf Müller
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Helmut Rainer Salih
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany; Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Susanne Malaika Rittig
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany; Department of Hematology, Oncology and Tumor Immunology, Charité University Hospital Berlin, Germany
| | - Frank Grünebach
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany
| | - Daniela Dörfel
- CCU Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Germany; Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, UKT, Germany.
| |
Collapse
|
24
|
Zhang X, Pellegrini P, Saei AA, Hillert EK, Mazurkiewicz M, Olofsson MH, Zubarev RA, D'Arcy P, Linder S. The deubiquitinase inhibitor b-AP15 induces strong proteotoxic stress and mitochondrial damage. Biochem Pharmacol 2018; 156:291-301. [DOI: 10.1016/j.bcp.2018.08.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022]
|
25
|
Anchoori RK, Jiang R, Peng S, Soong RS, Algethami A, Rudek MA, Anders N, Hung CF, Chen X, Lu X, Kayode O, Dyba M, Walters KJ, Roden RBS. Covalent Rpn13-Binding Inhibitors for the Treatment of Ovarian Cancer. ACS OMEGA 2018; 3:11917-11929. [PMID: 30288466 PMCID: PMC6166221 DOI: 10.1021/acsomega.8b01479] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Substitution of the m,p-chloro groups of bis-benzylidinepiperidone RA190 for p-nitro, generating RA183, enhanced covalent drug binding to Cys88 of RPN13. Treatment of cancer cell lines with RA183 inhibited ubiquitin-mediated protein degradation, resulting in rapid accumulation of high-molecular-weight polyubiquitinated proteins, blockade of NFκB signaling, endoplasmic reticulum stress, an unfolded protein response, production of reactive oxygen species, and apoptotic cell death. High-grade ovarian cancer, triple-negative breast cancer, and multiple myeloma cell lines were particularly vulnerable to RA183. RA183 stabilized a tetraubiquitin-linked firefly luciferase reporter protein in cancer cell lines and mice, demonstrating in vitro and in vivo proteasomal inhibition, respectively. However, RA183 was rapidly cleared from plasma, likely reflecting its rapid degradation to the active compound RA9, as seen in human liver microsomes. Intraperitoneal administration of RA183 inhibited proteasome function and orthotopic tumor growth in mice bearing human ovarian cancer model ES2-luc ascites or syngeneic ID8-luc tumor.
Collapse
Affiliation(s)
- Ravi K. Anchoori
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Rosie Jiang
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Shiwen Peng
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Ruey-shyang Soong
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
- Department of General Surgery, Chang Gung
Memorial Hospital at Keelung, Keelung
City, Taiwan 204, ROC
- College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302, ROC
| | - Aliyah Algethami
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Michelle A. Rudek
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Nicole Anders
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Chien-Fu Hung
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| | - Xiang Chen
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Xiuxiu Lu
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Olumide Kayode
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Marzena Dyba
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Kylie J. Walters
- Protein Processing Section, Biophysics Resource, and Basic Science
Program, Leidos Biomedical Research, Inc., Biophysics Laboratory, Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702, United States
| | - Richard B. S. Roden
- Department
of Oncology, Department of Pathology, and Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, Maryland 21231, United States
| |
Collapse
|
26
|
Targeting proteasome-associated deubiquitinases as a novel strategy for the treatment of estrogen receptor-positive breast cancer. Oncogenesis 2018; 7:75. [PMID: 30250021 PMCID: PMC6155249 DOI: 10.1038/s41389-018-0086-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/05/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
Estrogen receptor α (ERα) is expressed in ~67% of breast cancers and is critical to their proliferation and progression. The expression of ERα is regarded as a major prognostic marker, making it a meaningful target to treat breast cancer (BCa). However, hormone receptor-positive BCa was sometimes irresponsive or even resistant to classic anti-hormonal therapies (e.g., fulvestrant and tamoxifen). Hence, novel anti-endocrine therapies are urgent for ERα+ BCa. A phase II study suggested that bortezomib, an inhibitor blocking the activity of 20 S proteasomes, intervenes in cancer progression for anti-endocrine therapy in BCa. Here we report that proteasome-associated deubiquitinases (USP14 and UCHL5) inhibitors b-AP15 and platinum pyrithione (PtPT) induce growth inhibition in ERα+ BCa cells. Further studies show that these inhibitors induce cell cycle arrest and apoptosis associated with caspase activation, endoplasmic reticulum (ER) stress and the downregulation of ERα. Moreover, we suggest that b-AP15 and PtPT block ERα signaling via enhancing the ubiquitin-mediated degradation of ERα and inhibiting the transcription of ERα. Collectively, these findings demonstrate that proteasome-associated deubiquitinases inhibitors b-AP15 and PtPT may have the potential to treat BCa resistant to anti-hormonal therapy.
Collapse
|
27
|
USP4 positively regulates RLR-induced NF-κB activation by targeting TRAF6 for K48-linked deubiquitination and inhibits enterovirus 71 replication. Sci Rep 2018; 8:13418. [PMID: 30194441 PMCID: PMC6128947 DOI: 10.1038/s41598-018-31734-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/24/2018] [Indexed: 12/25/2022] Open
Abstract
Retinoic acid-inducible gene I-like receptor (RLR) is one of the most important pattern recognition receptors of the innate immune system that detects positive and/or negative stranded RNA viruses. Subsequently, it stimulates downstream transcription of interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB) inducing the production of interferons (IFNs) and inflammatory cytokines. Tumour necrosis factor receptor associated factor 6 (TRAF6) is a key protein involved in the RLR-mediated antiviral signalling pathway, recruiting additional proteins to form a multiprotein complex capable of activating the NF-κB inflammatory pathway. Despite TRAF6 playing an important role in regulating host immunity and viral infection, the deubiquitination of TRAF6 induced by viral infection remains elusive. In this study, we found that enterovirus 71 (EV71) infection attenuated the expression of Ubiquitin-specific protease 4 (USP4) in vitro and in vivo, while overexpression of USP4 significantly suppressed EV71 replication. Furthermore, it was found that EV71 infection reduced the RLR signalling pathway and enhanced the degradation of TRAF6. USP4 was also found to interact with TRAF6 and positively regulate the RLR-induced NF-κB signalling pathway, inhibiting the replication of EV71. Therefore, as a novel positive regulator of TRAF6, USP4 plays an essential role in EV71 infection by deubiquitinating K48-linked ubiquitin chains.
Collapse
|
28
|
Ahmed ZSO, Li X, Li F, Cheaito HA, Patel K, Mosallam ESM, Elbargeesy GAEFH, Dou QP. Computational and biochemical studies of isothiocyanates as inhibitors of proteasomal cysteine deubiquitinases in human cancer cells. J Cell Biochem 2018; 119:9006-9016. [PMID: 30015387 DOI: 10.1002/jcb.27157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 01/13/2023]
Abstract
Isothiocyanates (ITCs) are natural chemoprotective products found abundantly in cruciferous vegetables. However, the cancer-relevant targets and molecular mechanisms of ITCs remain unclear. We hypothesize that ITCs, as electrophiles, can interact with the catalytic triads (CYS, HIS, and ASP) of the proteasomal cysteine deubiquitinases USP14 and UCHL5, ultimately inhibiting their activities. In the current study, we exploited this possibility by performing both computational docking and biochemical validation assays using human breast and prostate cancer cell models. Docking results suggest that benzyl isothiocyanate, phenethyl isothiocyanate, and DL-sulforaphane are more potent inhibitors of UCHL5 than USP14, and these ITCs could interact with the catalytic triads of UCHL5 and USP14. Indeed, ubiquitin vinyl sulfone assay confirmed the inhibitory activity of each ITC on the ubiquitin-binding activity of UCHL5 and USP14. We also found that inhibition of USP-14 and UCHL5 activities by the ITCs caused increased levels of USP14 and UCHL5 proteins, but not the third 19S-deubiquitinating enzyme (DUB), POH1/RPN11, suggesting feedback loop activation and further supporting that ITCs are inhibitors of proteasomal cysteine DUBs. Associated with DUB inhibition by ITCs, ubiquitinated proteins were significantly increased, accompanied with induction of apoptosis, inhibition of proliferation and suppression of cell invasion. Our findings of ITCs as proteasomal cysteine DUB inhibitors should provide insightful information for designing, discovering and developing potent, specific 19S-DUB inhibitors for cancer therapies.
Collapse
Affiliation(s)
- Zainab Sabry Othman Ahmed
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Wayne State University, Detroit, Michigan.,Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Xin Li
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Wayne State University, Detroit, Michigan.,Department of Biotechnology, Guangdong Polytechnic of Science and Trade, Guangzhou, Guangdong, China
| | - Feng Li
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Wayne State University, Detroit, Michigan.,Department of Food Science, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Hassan Ali Cheaito
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | - Kush Patel
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| | | | | | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
29
|
Kropp KN, Maurer S, Rothfelder K, Schmied BJ, Clar KL, Schmidt M, Strunz B, Kopp HG, Steinle A, Grünebach F, Rittig SM, Salih HR, Dörfel D. The novel deubiquitinase inhibitor b-AP15 induces direct and NK cell-mediated antitumor effects in human mantle cell lymphoma. Cancer Immunol Immunother 2018; 67:935-947. [PMID: 29556699 PMCID: PMC11028140 DOI: 10.1007/s00262-018-2151-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022]
Abstract
The first therapeutic proteasome inhibitor bortezomib has clinical efficacy in mantle cell lymphoma (MCL) which resulted in its incorporation in treatment algorithms for this disease. Impairment of proteasomal function by bortezomib is mediated via inhibition of the 20S core particle. However, proteasome function can also be modified by targeting upstream components of the ubiquitin-proteasome system. Recently, b-AP15 has been identified as a small molecule achieving proteasome inhibition by targeting the deubiquitinase (DUB) activity of the 19S regulatory subunit and was found to inhibit cancer cell growth in preclinical analyses. In the present study, both direct antitumor effects and the possibility to induce natural killer group 2 member D ligands (NKG2DL) to reinforce NK cell immunity with b-AP15 were investigated to provide a rational basis for clinical evaluation of this novel DUB inhibitor in MCL. Treatment with b-AP15 resulted in reduced viability as well as induction of apoptosis in a time- and dose-dependent manner, which could be attributed to caspase activation in MCL cells. In addition, treatment with b-AP15 differentially induced NKG2DL expression and subsequent NK cell lysis of MCL cells. These results indicate that the DUB inhibitor b-AP15 displays substantial antitumor activity in human MCL and suggest that b-AP15 might be a novel therapeutic option in the treatment of MCL that warrants clinical investigation.
Collapse
Affiliation(s)
- Korbinian N Kropp
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Kathrin Rothfelder
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Bastian J Schmied
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Kim L Clar
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Moritz Schmidt
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Benedikt Strunz
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Departments of Molecular Oncology and Thoracic Oncology, Robert-Bosch-Hospital Stuttgart, Auerbachstr. 110, 70376, Stuttgart, Germany
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Frank Grünebach
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Susanne M Rittig
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Hematology, Oncology and Tumor Immunology, Charité Universitätsmedizin Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany
| | - Daniela Dörfel
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner site Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmology, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
| |
Collapse
|
30
|
Didier R, Mallavialle A, Ben Jouira R, Domdom MA, Tichet M, Auberger P, Luciano F, Ohanna M, Tartare-Deckert S, Deckert M. Targeting the Proteasome-Associated Deubiquitinating Enzyme USP14 Impairs Melanoma Cell Survival and Overcomes Resistance to MAPK-Targeting Therapies. Mol Cancer Ther 2018; 17:1416-1429. [PMID: 29703842 DOI: 10.1158/1535-7163.mct-17-0919] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/26/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
Abstract
Advanced cutaneous melanoma is one of the most challenging cancers to treat because of its high plasticity, metastatic potential, and resistance to treatment. New targeted therapies and immunotherapies have shown remarkable clinical efficacy. However, such treatments are limited to a subset of patients and relapses often occur, warranting validation of novel targeted therapies. Posttranslational modification of proteins by ubiquitin coordinates essential cellular functions, including ubiquitin-proteasome system (UPS) function and protein homeostasis. Deubiquitinating enzymes (DUB) have been associated to multiple diseases, including cancer. However, their exact involvement in melanoma development and therapeutic resistance remains poorly understood. Using a DUB trap assay to label cellular active DUBs, we have observed an increased activity of the proteasome-associated DUB, USP14 (Ubiquitin-specific peptidase 14) in melanoma cells compared with melanocytes. Our survey of public gene expression databases indicates that high expression of USP14 correlates with melanoma progression and with a poorer survival rate in metastatic melanoma patients. Knockdown or pharmacologic inhibition of USP14 dramatically impairs viability of melanoma cells irrespective of the mutational status of BRAF, NRAS, or TP53 and their transcriptional cell state, and overcomes resistance to MAPK-targeting therapies both in vitro and in human melanoma xenografted mice. At the molecular level, we find that inhibition of USP14 rapidly triggers accumulation of poly-ubiquitinated proteins and chaperones, mitochondrial dysfunction, ER stress, and a ROS production leading to a caspase-independent cell death. Our results provide a rationale for targeting the proteasome-associated DUB USP14 to treat and combat melanomas. Mol Cancer Ther; 17(7); 1416-29. ©2018 AACR.
Collapse
Affiliation(s)
- Robin Didier
- Inserm, U1065, Team Microenvironment, Signaling and Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M) and Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Aude Mallavialle
- Inserm, U1065, Team Microenvironment, Signaling and Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M) and Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Rania Ben Jouira
- Inserm, U1065, Team Microenvironment, Signaling and Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M) and Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Marie Angela Domdom
- Inserm, U1065, Team Microenvironment, Signaling and Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M) and Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Mélanie Tichet
- Inserm, U1065, Team Microenvironment, Signaling and Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M) and Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | | | | | | | - Sophie Tartare-Deckert
- Inserm, U1065, Team Microenvironment, Signaling and Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M) and Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| | - Marcel Deckert
- Inserm, U1065, Team Microenvironment, Signaling and Cancer, Centre Méditerranéen de Médecine Moléculaire (C3M) and Université Côte d'Azur, Nice, France. .,Equipe labellisée Ligue Contre le Cancer 2016, Nice, France
| |
Collapse
|
31
|
Chen D, Gomes F, Abeykoon D, Lemma B, Wang Y, Fushman D, Fenselau C. Top-Down Analysis of Branched Proteins Using Mass Spectrometry. Anal Chem 2018; 90:4032-4038. [PMID: 29513006 PMCID: PMC6146919 DOI: 10.1021/acs.analchem.7b05234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-translational modifications by the covalent attachment of Rub1 (NEDD8), ubiquitin, SUMO, and other small signaling proteins have profound impacts on the functions and fates of cellular proteins. Investigations of the relationship of these bioactive structures and their functions are limited by analytical methods that are scarce and tedious. A novel strategy is reported here for the analysis of branched proteins by top-down mass spectrometry and illustrated by application to four recombinant proteins and one synthetic peptide modified by covalent bonds with ubiquitin or Rub1. The approach allows an analyte to be recognized as a branched protein; the participating proteins to be identified; the site of conjugation to be defined; and other chemical, native, and recombinant modifications to be characterized. In addition to the high resolution and high accuracy provided by the mass spectrometer, success is based on sample fragmentation by electron-transfer dissociation assisted by collisional activation and on software designed for graphic interpretation and adapted for branched proteins. The strategy allows for structures of unknown, two-component branched proteins to be elucidated directly the first time and can potentially be extended to more complex systems.
Collapse
Affiliation(s)
- Dapeng Chen
- University of Maryland , College Park , Maryland 20742 , United States
| | - Fabio Gomes
- University of Maryland , College Park , Maryland 20742 , United States
| | - Dulith Abeykoon
- University of Maryland , College Park , Maryland 20742 , United States
| | - Betsegaw Lemma
- University of Maryland , College Park , Maryland 20742 , United States
| | - Yan Wang
- University of Maryland , College Park , Maryland 20742 , United States
| | - David Fushman
- University of Maryland , College Park , Maryland 20742 , United States
| | | |
Collapse
|
32
|
Deubiquitinase inhibitor b-AP15 activates endoplasmic reticulum (ER) stress and inhibits Wnt/Notch1 signaling pathway leading to the reduction of cell survival in hepatocellular carcinoma cells. Eur J Pharmacol 2018; 825:10-18. [PMID: 29454609 DOI: 10.1016/j.ejphar.2018.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 02/01/2018] [Accepted: 02/14/2018] [Indexed: 12/11/2022]
Abstract
b-AP15, a potent and selective inhibitor of the ubiquitin-specific peptidase 14 (USP14), displays in vitro and in vivo antitumor abilities on some types of cancer cells. However, the mechanism underlying its action is not well elucidated. The purposes of the present study are to observe the potential impacts of b-AP15 on cell survival of hepatocellular carcinoma cells and to investigate whether and how this compound inhibits some survival-promoting signaling pathways. We found that b-AP15 significantly decreased cell viability and increased cell apoptosis in a dose-dependent manner in hepatocellular carcinoma cells, along with the perturbation of cell cycle and the decreased expressions of cell cycle-related proteins. We also demonstrated that the endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were enhanced by b-AP15 supplementation. The inhibition of ER stress/UPR only partly attenuated the cytotoxicity of b-AP15 on hepatocellular carcinoma cells. In addition, b-AP15 treatment inhibited Wnt/β-catenin and Notch1 signaling pathways, and suppressed phosphorylation of STAT3, Akt, and Erk1/2, which were not restored by the inhibition of ER stress/UPR. Furthermore, the expression levels of signaling molecules in Notch1 were reduced by specific inhibitor of Wnt/β-catenin pathway. Notably, either Wnt or Notch1 signaling inhibitor mitigated phosphorylation of STAT3, Akt, and Erk1/2, and mimicked the cytotoxicity of b-AP15 on hepatocellular carcinoma cells. These results clearly indicate that b-AP15 induced cytotoxic response to hepatocellular carcinoma cells by augmenting ER stress/UPR and inhibiting Wnt/Notch1 signaling pathways. This new finding provides a novel mechanism by which b-AP15 produces its antitumor therapeutic effects.
Collapse
|
33
|
USP14 is a predictor of recurrence in endometrial cancer and a molecular target for endometrial cancer treatment. Oncotarget 2018; 7:30962-76. [PMID: 27121063 PMCID: PMC5058731 DOI: 10.18632/oncotarget.8821] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
Endometrial adenocarcinoma is the most common gynecologic malignancy in the United States. Most endometrial cancer cases are diagnosed at an early stage and have good prognosis. Unfortunately a subset of patients with early stage and low grade disease experience recurrence for reasons that remain unclear. Recurrence is often accompanied by chemoresistance and high mortality. Deubiquitinating enzymes (DUBs) are key components of the ubiquitin-dependent protein degradation pathway and act as master regulators in a number of metabolic processes including cell growth, differentiation, and apoptosis. DUBs have been shown to be upregulated in a number of human cancers and their aberrant activity has been linked to cancer progression, initiation and onset of chemoresistance. Thus, selective inhibition of DUBs has been proposed as a targeted therapy for cancer treatment. This study suggests the DUB USP14 as a promising biomarker for stratifying endometrial cancer patients at diagnosis based on their risk of recurrence. Further USP14 is expressed along with the marker of proliferation Ki67 in endometrial cancer cells in situ. Lastly, pharmacological targeting of USP14 with the FDA approved small-molecule inhibitor VLX1570, decreases cell viability in chemotherapy resistant endometrial cancer cells with a mechanism consistent with cell cycle arrest and caspase-3 mediated apoptosis.
Collapse
|
34
|
Abstract
Although growing numbers of oncoproteins and pro-metastatic proteins have been extensively characterized, many of these tumor-promoting proteins are not good drug targets, which represent a major barrier to curing breast cancer and other cancers. There is a need, therefore, for alternative therapeutic approaches to destroying cancer-promoting proteins. The human genome encodes approximately 100 deubiquitinating enzymes (DUBs, also called deubiquitinases), which are amenable to pharmacologic inhibition by small molecules. By removing monoubiquitin or polyubiquitin chains from the target protein, DUBs can modulate the degradation, localization, activity, trafficking, and recycling of the substrate, thereby contributing substantially to the regulation of cancer proteins and pathways. Targeting certain DUBs may lead to destabilization or functional inactivation of some key oncoproteins or pro-metastatic proteins, including non-druggable ones, which will provide therapeutic benefits to cancer patients. In breast cancer, growing numbers of DUBs are found to be aberrantly expressed. Depending on their substrates, specific DUBs can either promote or suppress mammary tumors. In this article, we review the role and mechanisms of action of DUBs in breast cancer and discuss the potential of targeting DUBs for cancer treatment.
Collapse
|
35
|
Cai J, Xia X, Liao Y, Liu N, Guo Z, Chen J, Yang L, Long H, Yang Q, Zhang X, Xiao L, Wang X, Huang H, Liu J. A novel deubiquitinase inhibitor b-AP15 triggers apoptosis in both androgen receptor-dependent and -independent prostate cancers. Oncotarget 2017; 8:63232-63246. [PMID: 28968984 PMCID: PMC5609916 DOI: 10.18632/oncotarget.18774] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/22/2017] [Indexed: 12/16/2022] Open
Abstract
Prostate cancer (PCa) remains a leading cause of cancer-related death in men. Especially, a subset of patients will eventually progress to the metastatic castrate-resistant prostate cancer (CRPC) which is currently incurable. Deubiquitinases (DUBs) associated with the 19S proteasome regulatory particle are increasingly emerging as significant therapeutic targets in numerous cancers. Recently, a novel small molecule b-AP15 is identified as an inhibitor of the USP14/UCHL5 (DUBs) of the 19S proteasome, resulting in cell growth inhibition and apoptosis in several human cancer cell lines. Here, we studied the therapeutic effect of b-AP15 in PCa, and our results indicate that (i) b-AP15 decreases viability, proliferation and triggers cytotoxicity to both androgen receptor-dependent and -independent PCa cells in vitro and in vivo, associated with caspase activation, inhibition of mitochondria function, increased reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress; (ii) pan-caspase inhibitor z-VAD-FMK and ROS scavenger N-acetyl-L-cysteine (NAC) efficiently block apoptosis but not proteasome inhibition induced by exposure of b-AP15; (iii) treatment with b-AP15 in androgen-dependent prostate cancer (ADPC) cells down-regulates the expression of androgen receptor (AR), which is degraded via the ubiquitin proteasome system. Hence, the potent anti-tumor effect of b-AP15 on both androgen receptor-dependent and -independent PCa cells identifies a new promising therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Jianyu Cai
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Xiaohong Xia
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Yuning Liao
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Ningning Liu
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, China
| | - Zhiqiang Guo
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Jinghong Chen
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Li Yang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Huidan Long
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Qianqian Yang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Xiaolan Zhang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Lu Xiao
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Xuejun Wang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China.,Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Hongbiao Huang
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| | - Jinbao Liu
- Protein Modification and Degradation Lab, SKLRD, School of Basic Medical Sciences, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangdong 511436, China
| |
Collapse
|
36
|
Ling X, Huang Q, Xu Y, Jin Y, Feng Y, Shi W, Ye X, Lin Y, Hou L, Lin X. The deubiquitinating enzyme Usp5 regulates Notch and RTK signaling duringDrosophilaeye development. FEBS Lett 2017; 591:875-888. [PMID: 28140449 DOI: 10.1002/1873-3468.12580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Xuemei Ling
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Qinzhu Huang
- Taizhou Hospital of Zhejiang Province; Wenzhou Medical University; Linhai Zhejiang China
| | - Yanqin Xu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yuxiao Jin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ying Feng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Weijie Shi
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xiaolei Ye
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Yi Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Ling Hou
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Zhejiang China
| |
Collapse
|
37
|
Liao Y, Liu N, Hua X, Cai J, Xia X, Wang X, Huang H, Liu J. Proteasome-associated deubiquitinase ubiquitin-specific protease 14 regulates prostate cancer proliferation by deubiquitinating and stabilizing androgen receptor. Cell Death Dis 2017; 8:e2585. [PMID: 28151478 PMCID: PMC5386460 DOI: 10.1038/cddis.2016.477] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/14/2022]
Abstract
Androgen receptor (AR) is frequently over-expressed and plays a critical role in the growth and progression of human prostate cancer. The therapy attempting to target AR signalling was established in decades ago but the treatment of prostate cancer is far from being satisfactory. The assignable cause is that our understanding of the mechanism of AR regulation and re-activation remains incomplete. Increasing evidence suggests that deubiquitinases are involved in the regulation of cancer development and progression but the specific underlying mechanism often is not elucidated. In the current study, we have identified ubiquitin-specific protease 14 (USP14) as a novel regulator of AR, inhibiting the degradation of AR via deubiquitinating this oncoprotein in the androgen-responsive prostate cancer cells. We found that (i) USP14 could bind to AR, and additionally, both genetic and pharmacological inhibition of USP14 accelerated the ubiquitination and degradation of AR; (ii) downregulation or inhibition of USP14 suppressed cell proliferation and colony formation of LNcap cells and, conversely, overexpression of USP14 promoted the proliferation; and (iii) reduction or inhibition of USP14 induced G0/G1 phase arrest in LNcap prostate cancer cells. Hence, we conclude that USP14 promotes prostate cancer progression likely through stabilization of AR, suggesting that USP14 could be a promising therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Yuning Liao
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China
| | - Ningning Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China.,Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xianliang Hua
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China
| | - Jianyu Cai
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China
| | - Xiaohong Xia
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China
| | - Xuejun Wang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China.,Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, USA
| | - Hongbiao Huang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China
| | - Jinbao Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Department of Pathophysiology, Guangzhou Medical University, Guangdong, China
| |
Collapse
|
38
|
Abstract
Maintenance of proper cellular homeostasis requires constant surveillance and precise regulation of intracellular protein content. Protein monitoring and degradation is performed by two distinct pathways in a cell: the autophage-lysosome pathway and the ubiquitin-proteasome pathway. Protein degradation pathways are frequently dysregulated in multiple cancer types and can be both tumor suppressive and tumor promoting. This knowledge has presented the ubiquitin proteasome system (UPS) and autophagy as attractive cancer therapeutic targets. Deubiquitinating enzymes of the UPS have garnered recent attention in the field of cancer therapeutics due to their frequent dysregulation in multiple cancer types. The content of this chapter discusses reasoning behind and advances toward targeting autophagy and the deubiquitinating enzymes of the UPS in cancer therapy, as well as the compelling evidence suggesting that simultaneous targeting of these protein degradation systems may deliver the most effective, synergistic strategy to kill cancer cells.
Collapse
Affiliation(s)
- Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA.
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
39
|
Huang H, Liao Y, Liu N, Hua X, Cai J, Yang C, Long H, Zhao C, Chen X, Lan X, Zang D, Wu J, Li X, Shi X, Wang X, Liu J. Two clinical drugs deubiquitinase inhibitor auranofin and aldehyde dehydrogenase inhibitor disulfiram trigger synergistic anti-tumor effects in vitro and in vivo. Oncotarget 2016; 7:2796-808. [PMID: 26625200 PMCID: PMC4823072 DOI: 10.18632/oncotarget.6425] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
Inhibition of proteasome-associated deubiquitinases (DUBs) is emerging as a novel strategy for cancer therapy. It was recently reported that auranofin (Aur), a gold (I)-containing compound used clinically to treat rheumatoid arthritis, is a proteasome-associated DUB inhibitor. Disulfiram (DSF), an inhibitor of aldehyde dehydrogenase, is currently in clinical use for treating alcoholism. Recent studies have indicated that DSF can also act as an antitumor agent. We investigated the effect of combining DSF and Aur on apoptosis induction and tumor growth in hepatoma cancer cells. Here we report that (i) the combined treatment of Aur and DSF results in synergistic cytotoxicity to hepatoma cells in vitro and in vivo; (ii) Aur and DSF in combination induces caspase activation, endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS) production; (iii) pan-caspase inhibitor z-VAD-FMK could efficiently block apoptosis but not proteasome inhibition induced by Aur and DSF combined treatment, and ROS is not required for Aur+DSF to induce apoptosis. Collectively, we demonstrate a model of synergism between DSF and proteasome-associated DUB inhibitor Aur in the induction of apoptosis in hepatoma cancer cells, identifying a potential novel anticancer strategy for clinical use in the future.
Collapse
Affiliation(s)
- Hongbiao Huang
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Yuning Liao
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Ningning Liu
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China.,Guangzhou Research Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangdong 510260, People's Republic of China
| | - Xianliang Hua
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Jianyu Cai
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Changshan Yang
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Huidan Long
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Chong Zhao
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Xiaoying Lan
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Dan Zang
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Jinjie Wu
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Xiaofen Li
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Xianping Shi
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| | - Xuejun Wang
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China.,Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Jinbao Liu
- State Key Laboratory of Respiratory Disease, Protein Modification and Degradation Laboratory, Department of Pathophysiology, Guangzhou Medical University, Guangdong 511436, People's Republic of China
| |
Collapse
|
40
|
Paulus A, Akhtar S, Caulfield TR, Samuel K, Yousaf H, Bashir Y, Paulus SM, Tran D, Hudec R, Cogen D, Jiang J, Edenfield B, Novak A, Ansell SM, Witzig T, Martin P, Coleman M, Roy V, Ailawadhi S, Chitta K, Linder S, Chanan-Khan A. Coinhibition of the deubiquitinating enzymes, USP14 and UCHL5, with VLX1570 is lethal to ibrutinib- or bortezomib-resistant Waldenstrom macroglobulinemia tumor cells. Blood Cancer J 2016; 6:e492. [PMID: 27813535 PMCID: PMC5148058 DOI: 10.1038/bcj.2016.93] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/21/2016] [Accepted: 08/22/2016] [Indexed: 01/30/2023] Open
Abstract
The survival of Waldenstrom macroglobulinemia (WM) tumor cells hinges on aberrant B-cell receptor (BCR) and MYD88 signaling. WM cells upregulate the proteasome function to sustain the BCR-driven growth while maintaining homeostasis. Clinically, two treatment strategies are used to disrupt these complementary yet mutually exclusive WM survival pathways via ibrutinib (targets BTK/MYD88 node) and bortezomib (targets 20 S proteasome). Despite the success of both agents, WM patients eventually become refractory to treatment, highlighting the adaptive plasticity of WM cells and underscoring the need for development of new therapeutics. Here we provide a comprehensive preclinical report on the anti-WM activity of VLX1570, a novel small-molecule inhibitor of the deubiquitinating enzymes (DUBs), ubiquitin-specific protease 14 (USP14) and ubiquitin carboxyl-terminal hydrolase isozyme L5 (UCHL5). Both DUBs reside in the 19 S proteasome cap and their inhibition by VLX1570 results in rapid and tumor-specific apoptosis in bortezomib- or ibrutinib-resistant WM cells. Notably, treatment of WM cells with VLX1570 downregulated BCR-associated elements BTK, MYD88, NFATC, NF-κB and CXCR4, the latter whose dysregulated function is linked to ibrutinib resistance. VLX1570 administered to WM-xenografted mice resulted in decreased tumor burden and prolonged survival (P=0.0008) compared with vehicle-treated mice. Overall, our report demonstrates significant value in targeting USP14/UCHL5 with VLX1570 in drug-resistant WM and carries a high potential for clinical translation.
Collapse
Affiliation(s)
- A Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.,Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - S Akhtar
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - T R Caulfield
- Department of Molecular Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - K Samuel
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - H Yousaf
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Y Bashir
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - S M Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - D Tran
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - R Hudec
- Department of Molecular Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - D Cogen
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - J Jiang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - B Edenfield
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - A Novak
- Department of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - S M Ansell
- Department of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - T Witzig
- Department of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - P Martin
- Department of Medicine, Weill Cornell Medical College, Cornell, NY, USA
| | - M Coleman
- Department of Medicine, Weill Cornell Medical College, Cornell, NY, USA
| | - V Roy
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - S Ailawadhi
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - K Chitta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - S Linder
- Institute for Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - A Chanan-Khan
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.,Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
41
|
Grinchuk OV, Motakis E, Yenamandra SP, Ow GS, Jenjaroenpun P, Tang Z, Yarmishyn AA, Ivshina AV, Kuznetsov VA. Sense-antisense gene-pairs in breast cancer and associated pathological pathways. Oncotarget 2016; 6:42197-221. [PMID: 26517092 PMCID: PMC4747219 DOI: 10.18632/oncotarget.6255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023] Open
Abstract
More than 30% of human protein-coding genes form hereditary complex genome architectures composed of sense-antisense (SA) gene pairs (SAGPs) transcribing their RNAs from both strands of a given locus. Such architectures represent important novel components of genome complexity contributing to gene expression deregulation in cancer cells. Therefore, the architectures might be involved in cancer pathways and, in turn, be used for novel drug targets discovery. However, the global roles of SAGPs in cancer pathways has not been studied. Here we investigated SAGPs associated with breast cancer (BC)-related pathways using systems biology, prognostic survival and experimental methods. Gene expression analysis identified 73 BC-relevant SAGPs that are highly correlated in BC. Survival modelling and metadata analysis of the 1161 BC patients allowed us to develop a novel patient prognostic grouping method selecting the 12 survival-significant SAGPs. The qRT-PCR-validated 12-SAGP prognostic signature reproducibly stratified BC patients into low- and high-risk prognostic subgroups. The 1381 SAGP-defined differentially expressed genes common across three studied cohorts were identified. The functional enrichment analysis of these genes revealed the GABPA gene network, including BC-relevant SAGPs, specific gene sets involved in cell cycle, spliceosomal and proteasomal pathways. The co-regulatory function of GABPA in BC cells was supported using siRNA knockdown studies. Thus, we demonstrated SAGPs as the synergistically functional genome architectures interconnected with cancer-related pathways and associated with BC patient clinical outcomes. Taken together, SAGPs represent an important component of genome complexity which can be used to identify novel aspects of coordinated pathological gene networks in cancers.
Collapse
Affiliation(s)
- Oleg V Grinchuk
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Efthymios Motakis
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,Current address: RIKEN, Japan
| | - Surya Pavan Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Zhiqun Tang
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Aliaksandr A Yarmishyn
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Anna V Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore.,School of Computing Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
42
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
43
|
Nan L, Jacko AM, Tan J, Wang D, Zhao J, Kass DJ, Ma H, Zhao Y. Ubiquitin carboxyl-terminal hydrolase-L5 promotes TGFβ-1 signaling by de-ubiquitinating and stabilizing Smad2/Smad3 in pulmonary fibrosis. Sci Rep 2016; 6:33116. [PMID: 27604640 PMCID: PMC5015047 DOI: 10.1038/srep33116] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor β-1 (TGFβ-1)-induced phosphorylation of transcription factors Smad2 and Smad3 plays a crucial role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, the molecular regulation of Smad2/Smad3 proteins stability remains a mystery. Here, we show that ubiquitin carboxyl-terminal hydrolase-L5 (UCHL5 or UCH37) de-ubiquitinates both Smad2 and Smad3, up-regulates their stability, and promotes TGFβ-1-induced expression of profibrotic proteins, such as fibronectin (FN) and α-smooth muscle actin (α-SMA). Inhibition or down-regulation of UCHL5 reduced Smad2/Smad3 levels and TGFβ-1-induced the expression of FN and α-SMA in human lung fibroblast. We demonstrate that Smad2 and Smad3 ubiquitination was diminished by over-expression of UCHL5, while it was enhanced by inhibition or down-regulation of UCHL5. UCHL5 is highly expressed in IPF lungs. UCHL5, Smad2, and Smad3 levels were increased in bleomycin-injured lungs. Administration of UCHL5 inhibitor, b-AP15, reduced the expression of FN, type I collagen, Smad2/Smad3, and the deposition of collagen in lung tissues in a bleomycin-induced model of pulmonary fibrosis. Our studies provide a molecular mechanism by which UCHL5 mitigates TGFβ-1 signaling by stabilizing Smad2/Smad3. These data indicate that UCHL5 may contribute to the pathogenesis of IPF and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Ling Nan
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Anastasia M Jacko
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jiangning Tan
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dan Wang
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel J Kass
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Haichun Ma
- Department of Anesthesia, First Hospital of Jilin University, Changchun, China
| | - Yutong Zhao
- Department of Medicine, Acute Lung Injury Center of Excellence, Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
44
|
Lee AE, Geis-Asteggiante L, Dixon EK, Miller M, Wang Y, Fushman D, Fenselau C. Preparing to read the ubiquitin code: top-down analysis of unanchored ubiquitin tetramers. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:629-637. [PMID: 28239975 PMCID: PMC5618806 DOI: 10.1002/jms.3787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 05/13/2023]
Abstract
The characterization of polyubiquitin chains has been an analytical challenge for several decades. It has been shown that anchored and unanchored polyubiquitin chains with different isopeptide linkages and lengths exhibit a wide range of profoundly different cellular functions. However, structure function studies have been hindered by the difficulty of characterizing these complex chain structures. This report presents a broadly applicable workflow to characterize ubiquitin tetramers without the need for genetic mutations or reiterative immunoprecipitations. We use a top-down proteomic strategy that exploits ETciD activation on an orbitrap Fusion Lumos and manual interpretation aided by graphical interpretation of mass shifts to facilitate characterization of chain topography and lysine linkage sites. Our workflow differentiates all topological features of the numerous isomers of tetraubiquitin, which have molecular masses in excess of 34 000 Da and identifies linkage sites in these branched proteins. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Amanda E Lee
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Lucia Geis-Asteggiante
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Emma K Dixon
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Meredith Miller
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Yan Wang
- Proteomics Core Facility, University of Maryland, College Park, MD, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
45
|
Li Y, Zeng X, Wang S, Fan J, Wang Z, Song P, Mei X, Ju D. Blocking autophagy enhanced leukemia cell death induced by recombinant human arginase. Tumour Biol 2015; 37:6627-35. [DOI: 10.1007/s13277-015-4253-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
|
46
|
Magraoui FE, Reidick C, Meyer HE, Platta HW. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease. Cells 2015; 4:596-621. [PMID: 26445063 PMCID: PMC4695848 DOI: 10.3390/cells4040596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-receptors. Ubiquitination plays a central role in this process, because it regulates early signaling events during the induction of autophagy and is also used as a degradation-tag on the potential autophagic cargo protein. Here, we review how the ubiquitin-dependent steps of autophagy are balanced or counteracted by deubiquitination events. Moreover, we highlight the functional role of the corresponding deubiquitinating enzymes and discuss how they might be involved in the occurrence of cancer, neurodegenerative diseases or infection with pathogenic bacteria.
Collapse
Affiliation(s)
- Fouzi El Magraoui
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Hemut E Meyer
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|