1
|
Yao C, Xie D, Zhang Y, Shen Y, Sun P, Ma Z, Li J, Tao J, Fang M. Tryptophan metabolism and ischemic stroke: An intricate balance. Neural Regen Res 2026; 21:466-477. [PMID: 40326980 DOI: 10.4103/nrr.nrr-d-24-00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/27/2024] [Indexed: 05/07/2025] Open
Abstract
Ischemic stroke, which is characterized by hypoxia and ischemia, triggers a cascade of injury responses, including neurotoxicity, inflammation, oxidative stress, disruption of the blood-brain barrier, and neuronal death. In this context, tryptophan metabolites and enzymes, which are synthesized through the kynurenine and 5-hydroxytryptamine pathways, play dual roles. The delicate balance between neurotoxic and neuroprotective substances is a crucial factor influencing the progression of ischemic stroke. Neuroprotective metabolites, such as kynurenic acid, exert their effects through various mechanisms, including competitive blockade of N-methyl-D-aspartate receptors, modulation of α7 nicotinic acetylcholine receptors, and scavenging of reactive oxygen species. In contrast, neurotoxic substances such as quinolinic acid can hinder the development of vascular glucose transporter proteins, induce neurotoxicity mediated by reactive oxygen species, and disrupt mitochondrial function. Additionally, the enzymes involved in tryptophan metabolism play major roles in these processes. Indoleamine 2,3-dioxygenase in the kynurenine pathway and tryptophan hydroxylase in the 5-hydroxytryptamine pathway influence neuroinflammation and brain homeostasis. Consequently, the metabolites generated through tryptophan metabolism have substantial effects on the development and progression of ischemic stroke. Stroke treatment aims to restore the balance of various metabolite levels; however, precise regulation of tryptophan metabolism within the central nervous system remains a major challenge for the treatment of ischemic stroke. Therefore, this review aimed to elucidate the complex interactions between tryptophan metabolites and enzymes in ischemic stroke and develop targeted therapies that can restore the delicate balance between neurotoxicity and neuroprotection.
Collapse
Affiliation(s)
- Chongjie Yao
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Xie
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Zhang
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanhao Shen
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pingping Sun
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhao Ma
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin Li
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiming Tao
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Fang
- Rehabilitation Department, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Research Institute of Tuina, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Ye Z, Liu R, Wang H, Zuo A, Jin C, Wang N, Sun H, Feng L, Yang H. Neuroprotective potential for mitigating ischemia-reperfusion-induced damage. Neural Regen Res 2025; 20:2199-2217. [PMID: 39104164 PMCID: PMC11759025 DOI: 10.4103/nrr.nrr-d-23-01985] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
Reperfusion following cerebral ischemia causes both structural and functional damage to brain tissue and could aggravate a patient's condition; this phenomenon is known as cerebral ischemia-reperfusion injury. Current studies have elucidated the neuroprotective role of the sirtuin protein family (Sirtuins) in modulating cerebral ischemia-reperfusion injury. However, the potential of utilizing it as a novel intervention target to influence the prognosis of cerebral ischemia-reperfusion injury requires additional exploration. In this review, the origin and research progress of Sirtuins are summarized, suggesting the involvement of Sirtuins in diverse mechanisms that affect cerebral ischemia-reperfusion injury, including inflammation, oxidative stress, blood-brain barrier damage, apoptosis, pyroptosis, and autophagy. The therapeutic avenues related to Sirtuins that may improve the prognosis of cerebral ischemia-reperfusion injury were also investigated by modulating Sirtuins expression and affecting representative pathways, such as nuclear factor-kappa B signaling, oxidative stress mediated by adenosine monophosphate-activated protein kinase, and the forkhead box O. This review also summarizes the potential of endogenous substances, such as RNA and hormones, drugs, dietary supplements, and emerging therapies that regulate Sirtuins expression. This review also reveals that regulating Sirtuins mitigates cerebral ischemia-reperfusion injury when combined with other risk factors. While Sirtuins show promise as a potential target for the treatment of cerebral ischemia-reperfusion injury, most recent studies are based on rodent models with circadian rhythms that are distinct from those of humans, potentially influencing the efficacy of Sirtuins-targeting drug therapies. Overall, this review provides new insights into the role of Sirtuins in the pathology and treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zi Ye
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Runqing Liu
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hangxing Wang
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aizhen Zuo
- The Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Cen Jin
- School of Medical Imaging, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Nan Wang
- Division of Gastroenterology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huiqi Sun
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Luqian Feng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
3
|
Yu L, Zhang C, Wu B, Guo J, Fan D, Wang G, Zhang W, Lin L, Xu X, Du X, Zhang XY, Xie Y, Zhao J. Combined exposure of sleep deprivation and environmental particulate matter drives aging in multiple systems. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137914. [PMID: 40090303 DOI: 10.1016/j.jhazmat.2025.137914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Sleep disturbance accelerates aging, with accompanying exposure to air pollution. However, most studies ignore the combined exposure. This study aimed to investigate the combined effects of sleep deprivation and PM2.5 exposure on multi-system aging and to explore the damage mechanisms. The sleep deprivation instrument and the Shanghai Meteorological and Environmental Animal Exposure System (Shanghai-METAS) were used to construct a combined exposure model for one month. Our study used multiple behavioral, imaging, and molecular biological examinations to describe the aging characteristics in the cardiovascular system, metabolism, and central nervous system. Besides, the mechanisms in Sirt1, Wnt10β pathways were explored and correlation of damage among tissues was clarified. Based on sleep disruption, PM2.5 exposure was able to induce elevated serum T-CHO levels, impaired conditioned learning ability, abnormal brain tissue metabolic levels, and aberrant expression of multiple molecular markers related to cellular senescence, whereas PM2.5 exposure alone did not induce changes in the above indices. In addition, the Sirt1, Wnt10β pathway mediated cardiac and hepatic aging induced by combined exposure. Moreover, there was a significant correlation between heart and liver aging damage, which suggesting heart-liver axis may be involved in the aging process. Sleep deprivation and PM2.5 exposure trigger senescence in multiple tissues. In particular, on the basis of sleep deprivation, PM2.5 accelerates of the aging process in several tissues and organs. The problem of air pollution on top of sleep disturbance should be taken seriously, as it has a greater potential to accelerate aging than air pollution.
Collapse
Affiliation(s)
- Lu Yu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Chihang Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Biao Wu
- Jinhua Center for Disease Control and Prevention, Jinhua, Zhejiang, China
| | - Jianshu Guo
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Dongxia Fan
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Ge Wang
- Eye & Ent Hospital, Fudan University, Shanghai, China
| | - Wenqing Zhang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Lin Lin
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Xinlei Xu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Xihao Du
- Department of Epidemiology and Biostatistics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yong Zhang
- College of Health Science and Technology & Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuquan Xie
- Department of Cardiology, Renji Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China.
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, Shanghai, China; IRDR International Center of Excellence on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai 200433, China.
| |
Collapse
|
4
|
Wang Y, Chen Y, Yang J, Sun W, Zhang X. Electro-Acupuncture Therapy Alleviates Post-Stroke Insomnia by Regulating Sirt1 and the Nrf2-ARE Pathway. Neuromolecular Med 2025; 27:37. [PMID: 40381125 DOI: 10.1007/s12017-025-08862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Post-stroke insomnia (PSI) is a common complication following stroke, which seriously affects patients' life quality. Electro-acupuncture (EA) is an innovative form of traditional Chinese acupuncture that combines electricity with needles to achieve the prevention and treatment of diseases. However, there is limited understanding regarding the treatment mechanism of EA in PSI. In our study, we aimed to investigate the role of EA on PSI development. Our study findings indicated that the quality of sleep, levels of neurotransmitters 5-hydroxytryptamine (5-HT) and gamma-aminobutyric acid (γ-GABA), and antioxidant levels showed significant improvement following EA treatment in PSI clinical samples and rat models, while the levels of pro-inflammatory factor interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and astrocyte damage were notably reduced. Furthermore, it was discovered that the levels of sirtuin 1 (Sirt1) were reduced in PSI, a condition that was significantly ameliorated by EA treatment. Additionally, the inhibition of Sirt1 caused a marked elevation in astrocyte apoptosis, inflammatory response, and oxidative stress. Besides, the nuclear factor E2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway was deactivated in the PSI rat model and Sirt1-silenced cells. However, the suppressive impact was successfully counteracted by EA or estazolam (ES), and the overexpression of Nrf2 partially alleviated the increase in apoptosis, inflammation, and oxidative stress caused by Sirt1 knockdown. Taken together, these findings indicated that EA improved sleep quality and silenced Sirt1-induced apoptosis, inflammation, and oxidative stress in PSI by activating the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Yiming Wang
- The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Chinese Medicine Hospital, Urumqi, Xinjiang, China
| | - Yifei Chen
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianbo Yang
- Second Department of Neurology, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Chinese Medicine Hospital, No.116, Huanghe Road, Shaybak District, Urumqi, 830000, Xinjiang, China
| | - Wei Sun
- Second Department of Neurology, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Chinese Medicine Hospital, No.116, Huanghe Road, Shaybak District, Urumqi, 830000, Xinjiang, China
| | - Xiaoning Zhang
- Second Department of Neurology, The Fourth Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region Chinese Medicine Hospital, No.116, Huanghe Road, Shaybak District, Urumqi, 830000, Xinjiang, China.
| |
Collapse
|
5
|
Li Z, Xing J. Role of sirtuins in cerebral ischemia-reperfusion injury: Mechanisms and therapeutic potential. Int J Biol Macromol 2025; 310:143591. [PMID: 40300682 DOI: 10.1016/j.ijbiomac.2025.143591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/22/2025] [Accepted: 04/26/2025] [Indexed: 05/01/2025]
Abstract
The high incidence and mortality rate of cardiac arrest (CA) establishes it as a critical clinical challenge in emergency medicine globally. Despite continuous advances in advanced life support (ALS) technology, the prognosis for patients experiencing cardiac arrest remains poor, with cerebral ischemia and reperfusion injury (CIRI) being a significant determinant of adverse neurological outcomes and increased mortality. Sirtuins (SIRTs) are a class of highly evolutionarily conserved NAD+-dependent histone deacylenzymes capable of regulating the expression of various cytoprotective genes to play a neuroprotective role in CIRI. SIRTs mainly regulate the levels of downstream proteins such as PGC 1-α, Nrf 2, NLRP 3, FoxOs, and PINK 1 to inhibit inflammatory response, attenuate oxidative stress, improve mitochondrial dysfunction, promote angiogenesis, and inhibit apoptosis while reducing CIRI. Natural active ingredients are widely used in regulating the protein level of SIRTs in the body because of their multi-components, multi-pathway, multi-target, and minimal toxic side effects. However, these naturally active ingredients still face many challenges related to drug targeting, pharmacokinetic properties, and drug delivery. The emergence and vigorous development of new drug delivery systems, such as nanoparticles, micromilk, and exosomes, provide strong support for solving the above problems. In the context of the rapid development of molecular biology technology, non-coding RNA (NcRNA), represented by miRNA and LncRNA, offers great potential for achieving gene-level precision medicine. In the context of multidisciplinary integration, combining SIRTs proteins with biotechnology, omics technologies, artificial intelligence, and material science will strongly promote the deepening of their basic research and expand their clinical application. This review describes the major signaling pathways of targeting SIRTs to mitigate CIRI, as well as the current research status of Chinese and Western medicine and medical means for the intervention level of SIRTs. Meanwhile, the challenges and possible solutions in the clinical application of targeted drugs are summarized. In the context of medical and industrial crossover, the development direction of SIRTs in the future is discussed to provide valuable reference for basic medical researchers and clinicians to improve the clinical diagnosis and treatment effects of CIRI.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Zhu J, Ge X, Cao Y, Xiao R, Deng X. Neuroprotective effects of electroacupuncture in ischemic stroke: from mechanisms to clinical implications. Front Aging Neurosci 2025; 17:1562925. [PMID: 40353059 PMCID: PMC12063359 DOI: 10.3389/fnagi.2025.1562925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Ischemic stroke is a condition caused by an interruption of blood flow to the brain that can lead to neurological damage. The severe neurological damage caused by an ischemic stroke can lead to cognitive impairment and even disability. Reperfusion therapy is the mainstay of treatment for ischemic stroke. However, while restoring oxygen and blood flow to the brain tissue can reduce or prevent neuronal cell damage and death caused by cerebral ischemia, ischemia/reperfusion may trigger pathological tissue reactions leading to neuronal cell damage. Excessive autophagy in neuronal cells, disruption of cellular oxidative homeostasis leading to oxidative stress, apoptosis, glutamatergic excitatory damage, ferroptosis, and neuroinflammation are all key pathways contributing to cerebral ischemia/reperfusion injury. Electroacupuncture, as an extension of traditional Chinese acupuncture, has obvious effects on alleviating cerebral ischemia/reperfusion injury. Many experiments have observed that after electroacupuncture treatment or pretreatment in rats, cognitive impairment was reduced, brain tissue morphology was improved, and the damage pathways such as autophagy, oxidative stress, neuroinflammation, and apoptosis were significantly inhibited, and the recovery pathways such as the blood-brain barrier and angiogenesis were significantly promoted. Although the specific mechanism of electroacupuncture therapy is not known, it has great potential in the treatment of ischemic stroke and cerebral ischemia/reperfusion injury. Electroacupuncture to improve cerebral ischemia/reperfusion injury is a new target for therapeutic approaches. In the future, electroacupuncture is expected to become an effective therapy for cerebral ischemia/reperfusion by conducting more clinical trials and enriching the understanding of its mechanism for improving cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Jinxi Zhu
- Department of Operating Room, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang University Queen Mary School, Nanchang, Jiangxi, China
| | - Xinyi Ge
- Department of Operating Room, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang University Queen Mary School, Nanchang, Jiangxi, China
| | - Yulong Cao
- Department of Operating Room, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang University Queen Mary School, Nanchang, Jiangxi, China
| | - Renjie Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Deng
- Department of Operating Room, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
7
|
Han J, Hong R, Cao C, Feng W, Zhuang W, Wang G, Tang J, Yang Y, Zhang C, Zhou A, Qu X. CXCL13 Damages Blood Spinal Cord Barrier by Promoting RNF6/Sqstm1-Ubiquitination Induced Autophagy in Experimental Allergic Encephalomyelitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414550. [PMID: 40231770 DOI: 10.1002/advs.202414550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/27/2025] [Indexed: 04/16/2025]
Abstract
The damage of blood spinal cord barrier (BSCB) is contributing to the disruption of immune microenvironment within central nervous system during the progression of multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE). Nevertheless, the underlying mechanisms responsible for barrier impairment remain inadequately understood. Here, by analyzing the protein profiles in peripheral blood serum, chemokine (C-X-C motif) ligand 13 (CXCL13) was identified to be increased with the progression of MS and EAE. The absence of CXCL13 resulted in alleviation of EAE symptoms, as evidenced by a reduced clinical score, decreased barrier damage, as well as diminished demyelination and inflammatory response in the spinal cord. In the BSCB model, CXCL13 was found to impair barrier structure and function in a dose- and time-dependent manner, which was associated with exacerbated autophagy in endothelial cells, while the application of autophagy inhibitors partially mitigated this damage. Mechanistically, CXCL13 enhanced the expression of RNF6, an E3 ubiquitin-protein ligase, facilitating the conjugation to Sqstm1 for the ubiquitination at the K314 residue. These findings suggest that CXCL13 significantly contributes to the impairment of the BSCB by promoting RNF6/Sqstm1-ubiquitination-induced autophagy during the progression of EAE, thereby offering a promising diagnostic and therapeutic target for MS.
Collapse
Affiliation(s)
- Jingjing Han
- Department of Basic Medical Science, Jiangsu Medical College, Yancheng, Jiangsu, 224005, China
| | - Rui Hong
- Department of Basic Medical Science, Jiangsu Medical College, Yancheng, Jiangsu, 224005, China
| | - Cong Cao
- The Fourth People's Hospital of Yancheng, Yancheng, Jiangsu, 224003, China
| | - Wanhua Feng
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Wei Zhuang
- Emergency Medicine Department of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Gui Wang
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jingchao Tang
- Department of Basic Medical Science, Jiangsu Medical College, Yancheng, Jiangsu, 224005, China
| | - Ya Yang
- Group Health Section, The Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University, Yancheng, Jiangsu, 224000, China
| | - Chu Zhang
- Department of Cell Biology and Neurobiology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Aihua Zhou
- The Fourth People's Hospital of Yancheng, Yancheng, Jiangsu, 224003, China
| | - Xuebin Qu
- Department of Basic Medical Science, Jiangsu Medical College, Yancheng, Jiangsu, 224005, China
| |
Collapse
|
8
|
Chen D, Xiang Y, Wu D, Wang H, Huang Y, Xiao H. Electroacupuncture Ameliorates Neuronal Damage and Neurological Deficits after Cerebral Ischemia-Reperfusion Injury via Restoring Telomerase Reverse Transcriptase. Cell Biochem Biophys 2025; 83:717-727. [PMID: 39235509 DOI: 10.1007/s12013-024-01504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
The purpose of this study is to identify the therapeutic effect of electroacupuncture (EA) on cerebral ischemia-reperfusion (I/R) injury, and to clarify the regulatory mechanism related to telomerase reverse transcriptase (TERT)-mediated telomerase activity. A Middle cerebral artery occlusion/reperfusion (MCAO/R) animal model was constructed and rats were treated by EA invention at the Baihui (GV20) and Fengchi (GB20) acupoints. Neurological deficits were assessed via rotarod test and Morris water maze test. 2,3,5-Triphenyltertrazolium chloride (TTC) staining was performed to evaluate infarct volume. Histological changes were observed under H&E staining and Nissl staining. TERT expression was examined using qRT-PCR and western blot. Telomerase activity was assessed with TRAP method. Neuron apoptosis and senescence were assessed by TUNEL and immunofluorescence assays. Inflammatory cytokines and oxidative stress-indicators were examined using commercial kits. EA intervention at both GV20 and GB20 acupoints reduced infarct volumes (2.48 ± 1.89 vs. 29.56 ± 2.55), elevated the telomerase activity (0.84 ± 0.08 vs. 0.34 ± 0.09), and upregulated the levels of total TERT protein (0.61 ± 0.09 vs. 0.21 ± 0.05) and mitochondrial TERT (Mito-TERT; 0.54 ± 0.03 vs. 0.27 ± 0.03) in hippocampus tissues of MCAO/R rats. EA intervention attenuated motor dysfunction (112.00 ± 6.69 vs. 30.02 ± 2.60) and improved spatial learning (23.87 ± 1.90 vs. 16.23 ± 1.45) and memory ability (8.38 ± 1.06 vs. 4.13 ± 1.13) of rats with cerebral I/R injury. In addition, EA intervention significantly attenuated histopathological changes of injured neurons, mitigated neuron apoptosis (32.27 ± 5.52 vs. 65.83 ± 4.31) and senescence in MCAO/R rats, as well as inhibited excessive production of inflammatory cytokines and attenuated oxidative stress. However, the above therapeutic efficiency of EA intervention in MCAO/R rats was partly eliminated by TERT knockdown. EA intervention at GB20 and GV20 acupoints exerted a protective role in cerebral I/R injury partly through restoring TERT function, implying the clinical potential of EA treatment in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Dan Chen
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Yunxia Xiang
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Di Wu
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Hui Wang
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Yaping Huang
- Department of Rehabilitation Medicine, Xuancheng People's Hospital, Xuancheng, Anhui, China
| | - Hongbo Xiao
- Department of Acupuncture and Moxibustion Rehabilitation, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China.
| |
Collapse
|
9
|
Pu Y, Cheng J, Wang Z, Zhang J, Liang F, Zhang X, Zheng Z, Yin M, Wang Z. Electroacupuncture pretreatment inhibits ferroptosis and inflammation after middle cerebral artery occlusion in rats by activating Nrf2. Histol Histopathol 2025; 40:357-367. [PMID: 38958062 DOI: 10.14670/hh-18-780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
OBJECTIVE Electroacupuncture (EA) pretreatment can effectively increase the tolerance of the brain to ischemic stroke. The mechanism of ischemic tolerance induced by EA is related to Nrf2, but its specific mechanism has not been elucidated. This paper was designed to explore the effect of EA pretreatment on brain injury and the related mechanisms. METHODS Rats were pretreated with EA before middle cerebral artery occlusion (MCAO) modeling. The symptoms of neurological deficit and the volume of cerebral infarction were measured. The levels of inflammatory factors, oxidative stress-related factors, LPO, ROS, and Fe2+ were evaluated by the corresponding kits. Cell apoptosis was determined through TUNEL staining. The mRNA expression of inflammatory factors was examined by RT-qPCR, and the protein expression of ferroptosis-related factors, pyroptosis-related proteins, Keap1, Nrf2, HO-1, and NQO1 by western blotting. RESULTS EA pretreatment improved the symptoms of neurological deficit and reduced the volume of cerebral infarction. EA pretreatment significantly inhibited oxidative stress, inflammatory response, ferroptosis, pyroptosis, and apoptosis in brain tissues of MCAO rats. Mechanistically, EA pretreatment could activate Nrf2 expression and reduce Keap1 expression. CONCLUSION EA pretreatment reduced inflammation and oxidative stress and inhibited ferroptosis by activating Nrf2 expression, ultimately delaying the development of ischemic stroke.
Collapse
Affiliation(s)
- Yanpeng Pu
- Department of Encephalopathy, the Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Jingyan Cheng
- Department of Rehabilitation Center, the Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Zhenya Wang
- Department of Encephalopathy, the Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Jingbo Zhang
- Department of Encephalopathy, the Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Fajun Liang
- Department of Encephalopathy, the Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Xianbao Zhang
- Department of Encephalopathy, the Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Zhijun Zheng
- Department of Encephalopathy, the Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Miaomiao Yin
- Department of Encephalopathy, the Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China
| | - Zhen Wang
- Department of Encephalopathy, the Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, PR China.
| |
Collapse
|
10
|
Wang XQ, Chang YH, Wang XC, Liu RQ, Yang SJ, Hu ZY, Jiang FW, Chen MS, Wang JX, Liu S, Zhu HM, Shi YS, Zhao Y, Li JL. SIRT1 Regulates Fumonisin B1-Induced LMH Cell PANoptosis and Antagonism of Lycopene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4923-4935. [PMID: 39934003 DOI: 10.1021/acs.jafc.4c11658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Mycotoxin contamination is a universal agricultural problem and a critical health issue. Fumonisin B1 (FB1) is one of the most toxic and extensive fumonisins that exist in various agro-products and foods. Lycopene (LYC), as a natural carotenoid, is becoming increasingly favored owing to its oxidation resistance. Here, we aim to explore the mechanism of FB1-induced hepatotoxicity and the antagonism of LYC. In this study, our findings indicated that FB1 induced mitochondrial structure damage and loss of mitochondrial function in chicken hepatocytes. Furthermore, FB1 upregulated the expression of PANoptosis-related signal molecules. FB1 also reduced the levels of SIRT1 and Ac-FOXO1 protein expression, which then inhibited mitophagy. However, LYC relieved these FB1-induced alterations. Most importantly, SIRT1 knockdown inhibited the protective effects of LYC in FB1-induced mitochondrial damage and PANoptosis. Our study provides evidence for the role of LYC in mycotoxin-induced chicken hepatocyte injury and points to SIRT1 as a potential target for liver protection.
Collapse
Affiliation(s)
- Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Chun Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
11
|
Yuan CX, Wang X, Liu Y, Xu TC, Yu Z, Xu B. Electroacupuncture alleviates diabetic peripheral neuropathy through modulating mitochondrial biogenesis and suppressing oxidative stress. World J Diabetes 2025; 16:93130. [PMID: 39959279 PMCID: PMC11718478 DOI: 10.4239/wjd.v16.i2.93130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/15/2024] [Accepted: 10/31/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Peripheral neuropathy caused by diabetes is closely related to the vicious cycle of oxidative stress and mitochondrial dysfunction resulting from metabolic abnormalities. The effects mediated by the silent information regulator type 2 homolog-1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) axis present new opportunities for the treatment of type 2 diabetic peripheral neuropathy (T2DPN), potentially breaking this harmful cycle. AIM To validate the effectiveness of electroacupuncture (EA) in the treatment of T2DPN and investigate its potential mechanism based on the SIRT1/PGC-1α axis. METHODS The effects of EA were evaluated through assessments of metabolic changes, morphological observations, and functional examinations of the sciatic nerve, along with measurements of inflammation and oxidative stress. Proteins related to the SIRT1/PGC-1α axis, involved in the regulation of mitochondrial biogenesis and antioxidative stress, were detected in the sciatic nerve using Western blotting to explain the underlying mechanism. A counterevidence group was created by injecting a SIRT1 inhibitor during EA intervention to support the hypothesis. RESULTS In addition to diabetes-related metabolic changes, T2DPN rats showed significant reductions in pain threshold after 9 weeks, suggesting abnormal peripheral nerve function. EA treatment partially restored metabolic control and reduced nerve damage in T2DPN rats. The SIRT1/PGC-1α axis, which was downregulated in the model group, was upregulated by EA intervention. The endogenous antioxidant system related to the SIRT1/PGC-1α axis, previously inhibited in diabetic rats, was reactivated. A similar trend was observed in inflammatory markers. When SIRT1 was inhibited in diabetic rats, these beneficial effects were abolished. CONCLUSION EA can alleviate the symptoms of T2DNP in experimental rats, and its effects may be related to the mitochondrial biogenesis and endogenous antioxidant system mediated by the SIRT1/PGC-1α axis.
Collapse
Affiliation(s)
- Chong-Xi Yuan
- Department of Traditional Chinese Medicine, Suzhou Xiangcheng People's Hospital, Suzhou 215100, Jiangsu Province, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Xuan Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
- College of Traditional Chinese Medicine, Jiangsu Vocational College of Medicine, Yancheng 224000, Jiangsu Province, China
| | - Yun Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Tian-Cheng Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
12
|
He J, He M, Sun M, Chen H, Dou Z, Nie R, Zhou J, Tang Q, Che C, Liu J, Li T. The Mechanism of Acupuncture Regulating Autophagy: Progress and Prospect. Biomolecules 2025; 15:263. [PMID: 40001566 PMCID: PMC11852493 DOI: 10.3390/biom15020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Autophagy plays a crucial role in the physiopathological mechanisms of diseases by regulating cellular functions and maintaining cellular homeostasis, which has garnered extensive attention from researchers worldwide. The holistic regulation and bidirectional regulation effects of acupuncture can modulate cellular autophagy, promoting or restoring the homeostasis of the body's internal environment to achieve therapeutic outcomes. This paper systematically reviews the research progress on the use of acupuncture for treating various diseases via the autophagy pathway, summarizes signal pathways related to acupuncture regulating autophagy, and analyzes the deficiencies present in the existing research. The review results indicate that the mechanism of action of acupuncture on autophagy dysfunction is reflected in the changes in LC3, Beclin1, p53, and autophagy-associated (ATG) protein expression, and regulates signaling pathways and key proteins or genes. The regulatory effect of acupuncture on autophagy capacity is bidirectional: it inhibits the abnormal activation of autophagy to prevent exacerbation of injury and reduce apoptosis, while also activating or enhancing autophagy to promote the elimination of inflammation and reduce oxidative stress. Further analysis suggests that the mechanisms of acupuncture regulating autophagy are insufficiently explored. Future research should prioritize the development of more appropriate animal models, analyzing the accuracy of relevant pathways and the specificity of indicators, exploring the synergistic effects among targets and signaling pathways, clarifying the regulatory mechanisms of acupuncture at various stages of autophagy, and evaluating the efficacy of acupuncture in autophagy modulating. This paper offers valuable insights into the regulation of autophagy by acupuncture.
Collapse
Affiliation(s)
- Jing He
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Min He
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Mengmeng Sun
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Hongxiu Chen
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Zhiqiang Dou
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Ru Nie
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jun Zhou
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Qingqing Tang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Cong Che
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| | - Jie Liu
- Academic Affairs Office, Changchun University of Chinese Medicine, Changchun 130117, China;
| | - Tie Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun 130117, China; (J.H.); (H.C.); (Z.D.); (R.N.); (Q.T.); (C.C.)
| |
Collapse
|
13
|
Li J, Cui S, Li Y, Zhang C, Chang C, Jian F. Sirtuin1 in Spinal Cord Injury: Regulatory Mechanisms, Microenvironment Remodeling and Therapeutic Potential. CNS Neurosci Ther 2025; 31:e70244. [PMID: 39915897 PMCID: PMC11802336 DOI: 10.1111/cns.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a complex central nervous system disorder characterized by multifaceted pathological processes, including inflammation, oxidative stress, programmed cell death, autophagy, and mitochondrial dysfunction. Sirtuin 1 (Sirt1), a critical NAD+-dependent deacetylase, has emerged as a promising therapeutic target for SCI repair due to its potential to protect neurons, regulate glial and vascular cells, and optimize the injury microenvironment. However, the regulatory roles of Sirt1 in SCI are complex and challenging, as its effects vary depending on activation timing, expression levels, and cell types. METHODS A systematic literature review was conducted using PubMed, Scopus, and Web of Science to identify studies investigating Sirt1 in SCI. Relevant publications were analyzed to synthesize current evidence on Sirt1's mechanisms, therapeutic effects, and challenges in SCI repair. RESULTS Sirt1 exerts broad regulatory effects across diverse pathological processes and cell types post-SCI. It promotes neuronal survival and axonal regeneration, modulates astrocytes and microglia to resolve inflammation, supports oligodendrocyte-mediated myelination, and enhances vascular endothelial function. Proper Sirt1 activation may mitigate secondary injury, whereas excessive or prolonged activation could impair inflammatory resolution or disrupt cellular homeostasis. This review highlights Sirt1 activation as potential therapies, but challenges include optimizing spatiotemporal activation and addressing dual roles in different cell types. CONCLUSION Targeting Sirt1 represents a viable strategy for SCI repair, given its multifaceted regulation of neuroprotection, immunomodulation, and tissue remodeling. However, translating these findings into therapies requires resolving critical issues such as cell type-specific delivery, precise activation timing, and dosage control. This review provides a theoretical foundation and practical insights for advancing Sirt1-based treatments for SCI.
Collapse
Affiliation(s)
- Jinze Li
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Shengyu Cui
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Yanqiu Li
- Center for Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingChina
| | - Can Zhang
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
- Department of NeurosurgeryThe First Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chao Chang
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
| | - Fengzeng Jian
- Department of NeurosurgeryXuanwu Hospital, Capital Medical UniversityBeijingChina
- Spine CenterChina International Neuroscience Institute (CHINA‐INI)BeijingChina
- Lab of Spinal Cord Injury and Functional ReconstructionChina International Neuroscience Institute (CHINA‐INI), Xuanwu Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
14
|
Qiu Z, Ma J, Zhang X, Jiao M, Zhi L. Electroacupuncture combined with trigonelline inhibits pyroptosis in cerebral ischemia-reperfusion by suppressing autophagy via the PI3K/AKT/mTOR signaling pathway. Brain Res Bull 2025; 221:111200. [PMID: 39788460 DOI: 10.1016/j.brainresbull.2025.111200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Electroacupuncture (EA) and trigonelline (TG) have been reported to be beneficial in alleviating cerebral ischemia/reperfusion injury (CIRI). However, the synergistic effects of EA and TG in CIRI and the underlying mechanism have not been demonstrated. METHODS Rats were subjected to middle cerebral artery occlusion (MCAO) surgery and reperfusion (MCAO/R) to establish a CIRI model. Neurological deficit score was evaluated using Garcia's scale. Cerebral infarction in rats was determined using TTC staining. Brain tissue morphology was assessed by HE staining. The expression of various proteins was measured using IF assay and western blot. RESULTS EA or TG treatment could effectively ameliorate neurological disorders, attenuate cerebral infarction and reduce neuronal damage in brain tissue in CIRI rats. In addition, EA or TG treatment suppressed autophagy and pyroptosis in CIRI rats. More importantly, synergistic effects of EA and TG intervention in CIRI rats were observed in ameliorating neuronal damage and suppressing autophagy and pyroptosis, while Rapa, an inducer of autophagy, strengthened these effects in MCAO/R-induced rats. Furthermore. Rapa reversed EA in combination with TG-mediated improvement of neuronal damage and suppression of autophagy and pyroptosis in CIRI rats. Notably, the PI3K/AKT/mTOR pathway was inactivated in CIRI rats and EA combined with TG enhanced the activation of the PI3K/AKT/mTOR pathway. LY294002, an inhibitor of the PI3K/AKT/mTOR pathway, stimulated autophagy and pyroptosis in CIRI rats and reversed EA combined with TG-mediated suppression of autophagy and pyroptosis. CONCLUSION EA combined with TG suppressed pyroptosis, which was dependent on inhibition of autophagy in CIRI rats through activation of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhengguo Qiu
- Department of Anesthesiology, Banan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianbing Ma
- Department of Joint, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi East Road, Xi'an, Shaanxi 710054, PR China
| | - Xiaqing Zhang
- Department of Anesthesiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, PR China
| | - Mingna Jiao
- Department of Anesthesiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, PR China
| | - Liqiang Zhi
- Department of Joint, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi East Road, Xi'an, Shaanxi 710054, PR China.
| |
Collapse
|
15
|
Yang XC, Jin YJ, Ning R, Mao QY, Zhang PY, Zhou L, Zhang CC, Peng YC, Chen N. Electroacupuncture attenuates ferroptosis by promoting Nrf2 nuclear translocation and activating Nrf2/SLC7A11/GPX4 pathway in ischemic stroke. Chin Med 2025; 20:4. [PMID: 39755657 DOI: 10.1186/s13020-024-01047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
OBJECTIVE Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation. METHODS The ischemic stroke model was established by middle cerebral artery occlusion/reperfusion (MCAO/R) in adult rats. These rats have been randomly divided into the EA + MCAO/R group, the MCAO/R group, the EA + MCAO/R + Brusatol group (the inhibitor of Nrf2), and the EA + MCAO/R + DMSO group, and the Sham group. The EA + MCAO/R group, EA + MCAO/R + Brusatol group, and the EA + MCAO/R + DMSO group received EA intervention 24 h after modeling for 7 consecutive days. The behavioral function was evaluated by Neurologic severity score (NSS), Garcia score, Foot-fault Test, and Rotarod Test. The infarct volume was detected by TTC staining, and the neuronal damage was observed by Nissl staining. The levels of Fe2+, reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) were measured by ELISA. The immunofluorescence and Western blotting were used to detect the expression of Total Nrf2, p-Nrf2, Nuclear Nrf2, and Cytoplasmic Nrf2, and the essential ferroptosis proteins, including glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11) and ferritin heavy chain 1 (FTH1). The mitochondria were observed by transmission electron microscopy (TEM). RESULTS Electroacupuncture improved neurological deficits in rats model of MCAO/R, decreased the brain infarct volume, alleviated neuronal damage, inhibited the Fe2+, ROS, and MDA accumulation, increased SOD levels, increased the expression of GPX4, SLC7A11 and FTH1, and rescued injured mitochondria. Especially, we found that the electroacupuncture up-regulated the expression of Nrf2, and promoted phosphorylation of Nrf2 and nuclear translocation, However, Nrf2 inhibitor Brusatol reversed the neuroprotective effect of electroacupuncture. CONCLUSION Electroacupuncture can alleviate cerebral I/R injury-induced ferroptosis by promoting Nrf2 nuclear translocation. It is expected that these data will provide novel insights into the mechanisms of electroacupuncture protecting against cerebral I/R injury and potential targets underlying ferroptosis in the stroke.
Collapse
Affiliation(s)
- Xi-Chen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Ya-Ju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qiu-Yue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Peng-Yue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Cheng-Cai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yi-Chen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
16
|
Hu L, Zhang Y, Li Y, Wang R, Xu H. Effect of electroacupuncture on internal carotid artery blood flow in patients undergoing laparoscopic gallbladder surgery: A randomized clinical trial. Integr Med Res 2024; 13:101097. [PMID: 39635076 PMCID: PMC11616594 DOI: 10.1016/j.imr.2024.101097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024] Open
Abstract
Background Little is known about the effect of electroacupuncture (EA) on cerebral blood flow. We investigated this question in patients undergoing laparoscopic cholecystectomy, hypothesizing that EA would increase cerebral blood flow during surgery. Methods Eighty-two patients undergoing laparoscopic cholecystectomy were randomly divided into receiving electroacupuncture and intravenous anesthesia (EA+IA) and receving intravenous anesthesia alone (IA). The patients in EA+IA were treated with EA at Baihui (GV 20), Shuigou (GV 26), unilateral Neiguan (PC 6) and unilateral Zusanli (ST 36) points 20 min before anesthesia until the end of the operation. The patients in IA received intravenous anesthesia alone. The internal carotid artery blood flow (Q), mean arterial pressure (MAP), end-tidal carbon dioxide pressure (PETCO2) and heart rate (HR) were recorded respectively before anesthesia induction (T1), 2 min after anesthesia induction (T2), 1 min after pneumoperitoneum (T3), 1 min after head-up tilt (T4) and after anesthesia resuscitation (T5). Results The internal carotid artery blood flow was significantly higher in EA+IA (mean [SD], T3, 294.0 [89.6] ml min-1; T4, 303.8 [90.6] ml min-1) than in IA (mean [SD], T3, 246.4 [80.9] ml min-1; T4, 253.5 [78.4] ml min-1) at T3 and T4 (P < 0.05). There was no difference in blood flow between the two groups at T2 and T5. As compared with baseline (T1), the internal carotid artery blood flow decreased at T2-T4 in two groups (P < 0.05). There were no differences in MAP, PETCO2, and HR between the two groups. Conclusion Electroacupuncture intervention could reduce the decline of internal carotid artery blood flow in patients undergoing laparoscopic cholecystectomy. Trial registration ChiCTR: 2,100,041,761.
Collapse
Affiliation(s)
- Lili Hu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongyan Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | - Hua Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Lei B, Wu H, You G, Wan X, Chen S, Chen L, Wu J, Zheng N. Silencing of ALOX15 reduces ferroptosis and inflammation induced by cerebral ischemia-reperfusion by regulating PHD2/HIF2α signaling pathway. Biotechnol Genet Eng Rev 2024; 40:4341-4360. [PMID: 37154013 DOI: 10.1080/02648725.2023.2210449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE To investigate the potential mechanism of arachidonic acid deoxyribozyme 15 (ALOX15) in ferroptosis and inflammation induced by cerebral ischemia reperfusion injury. METHODS The mice and cell models of cerebral ischemia-reperfusion injury were constructed. Western Blot was used to detect the protein expression levels of ALOX15, glutathione peroxidase (GPX4), hypoxia-inducible factor-2α (HIF-2α), prolyl hydroxylase (PHD) and inflammatory factors (NLRP3, IL-1β, IL-18) in brain tissues and cells. Cell proliferation activity was detected by CCK-8 method. LDH assay was used to detect the release of lactate dehydrogenase. TTC staining was used to observe cerebral infarction. RESULTS In cerebral ischemia-reperfusion mice and cell models, the expression of ALOX15 protein was increased, the expression of GPX4, a key marker of ferroptosis was decreased, and silencing of ALOX15 down-regulated the GPX4 expression. HIF-2α expression was down-regulated in animal and cell models of cerebral ischemia reperfusion, and silencing of ALOX15 increased the HIF-2α expression by inhibiting PHD2 expression. Inhibition of ALOX15 expression reduced inflammatory factors levels (NLRP3, IL-1β, and IL-18) in cerebral ischemia. Inhibitor of PHD2 (IXOC-4) alleviating brain injury and cell death induced by cerebral ischemia reperfusion and stabilize HIF-2α expression in vivo. CONCLUSION The expression of ALOX15 was up-regulated in cerebral ischemia-reperfusion animals and cells model. Inhibition of ALOX15 up-regulated the GPX4 expression, and promoted HIF-2α expression by inhibiting PHD2, thus alleviating ferroptosis and inflammation caused by cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Bo Lei
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan City, Sichuan provincial, China
| | - Honggang Wu
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan City, Sichuan provincial, China
| | - Guoliang You
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan City, Sichuan provincial, China
| | - Xiaoqiang Wan
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan City, Sichuan provincial, China
| | - Shu Chen
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan City, Sichuan provincial, China
| | - Li Chen
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan City, Sichuan provincial, China
| | - Jiachuan Wu
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan City, Sichuan provincial, China
| | - Niandong Zheng
- Department of Cerebrovascular Disease, People's Hospital of Leshan, Leshan City, Sichuan provincial, China
| |
Collapse
|
18
|
Chen L, Chen S, Bai Y, Zhang Y, Li X, Wang Y, Xiao Y, Wan J, Sun K. Electroacupuncture improves cognitive impairment after ischemic stroke based on regulation of mitochondrial dynamics through SIRT1/PGC-1α pathway. Brain Res 2024; 1844:149139. [PMID: 39111521 DOI: 10.1016/j.brainres.2024.149139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/20/2024] [Accepted: 08/03/2024] [Indexed: 08/21/2024]
Abstract
In recent years, the mechanism of acupuncture in the treatment of post-stroke cognitive impairment (PSCI) has not been fully elucidated. The balance between mitochondrial fission and fusion is important for PSCI. Our previous research demonstrated that electroacupuncture can improve learning and memory in middle cerebral artery ischemia reperfusion (MCAO/R) rats. However, the specific mechanism by which electroacupuncture improves learning and memory in MCAO/R rats by regulating mitochondrial fission and fusion needs to be further investigated. The MCAO/R rats was developed using the line-bolt method. The rats were randomly divided into sham-operated (Sham), model (MCAO/R), electroacupuncture (MCAO/R + EA) and sham-electroacupuncture (MCAO/R + sham EA) groups. Investigating the effects of EA on the expression of Sirtuin1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), Optic atrophy 1R + (OPA1) and Dynamin-related protein 1 (DRP1) in hippocampal neurons and on the morphology and function of hippocampal neurons and mitochondria. EA was able to reduce neurologic deficit scores and cerebral infarct volume and improve new object discrimination in MCAO/R rats, but there were no significant changes in these indices in the sham-electroacupuncture group. Moreover, EA increased the expression of SIRT1, PGC-1α, and OPA1 in hippocampal tissues, inhibited the expression of DRP1, attenuated neuronal and mitochondrial damage, and reduced mitochondrial fragmentation. The mechanism by which EA improves learning memory deficits in MCAO/R rats may be related to the inhibition of SIRT1/PGC-1α expression, the enhancement of mitochondrial fusion and the obstruction of its fission, and the reduction of hippocampal neuronal damage.
Collapse
Affiliation(s)
- Limin Chen
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, People's Hospital of Henan University of Chinese Medicine, Department of Rehabilitation Medicine of Zhengzhou People's Hospital (South Hospital), Zhengzhou, Henan, China
| | - Shuying Chen
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yanjie Bai
- Rehabilitation Centre of the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Yongchuang Zhang
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoxiao Li
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yan Wang
- Rehabilitation Centre of the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yuqian Xiao
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jun Wan
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kexin Sun
- Rehabilitation Medicine School of Henan University of Chinese Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
19
|
Lee J, Geum D, Park DH, Kim JH. Molecular Targeting of Ischemic Stroke: The Promise of Naïve and Engineered Extracellular Vesicles. Pharmaceutics 2024; 16:1492. [PMID: 39771472 PMCID: PMC11678501 DOI: 10.3390/pharmaceutics16121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS. Recently, extracellular vesicles (EVs) secreted naturally by various cell types have emerged as promising therapeutic agents because of their ability to facilitate selective cell-to-cell communication, neuroprotection, and tissue regeneration. Furthermore, engineered EVs, designed to enhance targeted delivery and therapeutic cargo, hold the potential to improve their therapeutic benefits by mitigating neuronal damage and promoting neurogenesis and angiogenesis. This review summarizes the characteristics of EVs, the molecular mechanisms underlying IS pathophysiology, and the emerging role of EVs in IS treatment at the molecular level. This review also explores the recent advancements in EV engineering, including the incorporation of specific proteins, RNAs, or pharmacological agents into EVs to enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Jihun Lee
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| | - Dongho Geum
- Department of Medical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Dong-Hyuk Park
- Department of Neurosurgery, Anam Hospital, College of Medicine, Korea University, Seoul 02841, Republic of Korea;
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
20
|
Liu Y, Liu Q, Shang H, Li J, Chai H, Wang K, Guo Z, Luo T, Liu S, Liu Y, Wang X, Zhang H, Wu C, Song SJ, Yang J. Potential application of natural compounds in ischaemic stroke: Focusing on the mechanisms underlying "lysosomocentric" dysfunction of the autophagy-lysosomal pathway. Pharmacol Ther 2024; 263:108721. [PMID: 39284368 DOI: 10.1016/j.pharmthera.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Ischaemic stroke (IS) is the second leading cause of death and a major cause of disability worldwide. Currently, the clinical management of IS still depends on restoring blood flow via pharmacological thrombolysis or mechanical thrombectomy, with accompanying disadvantages of narrow therapeutic time window and risk of haemorrhagic transformation. Thus, novel pathophysiological mechanisms and targeted therapeutic candidates are urgently needed. The autophagy-lysosomal pathway (ALP), as a dynamic cellular lysosome-based degradative process, has been comprehensively studied in recent decades, including its upstream regulatory mechanisms and its role in mediating neuronal fate after IS. Importantly, increasing evidence has shown that IS can lead to lysosomal dysfunction, such as lysosomal membrane permeabilization, impaired lysosomal acidity, lysosomal storage disorder, and dysfunctional lysosomal ion homeostasis, which are involved in the IS-mediated defects in ALP function. There is tightly regulated crosstalk between transcription factor EB (TFEB), mammalian target of rapamycin (mTOR) and lysosomal function, but their relationship remains to be systematically summarized. Notably, a growing body of evidence emphasizes the benefits of naturally derived compounds in the treatment of IS via modulation of ALP function. However, little is known about the roles of natural compounds as modulators of lysosomes in the treatment of IS. Therefore, in this context, we provide an overview of the current understanding of the mechanisms underlying IS-mediated ALP dysfunction, from a lysosomal perspective. We also provide an update on the effect of natural compounds on IS, according to their chemical structural types, in different experimental stroke models, cerebral regions and cell types, with a primary focus on lysosomes and autophagy initiation. This review aims to highlight the therapeutic potential of natural compounds that target lysosomal and ALP function for IS treatment.
Collapse
Affiliation(s)
- Yueyang Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hanxiao Shang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jichong Li
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - He Chai
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kaixuan Wang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhenkun Guo
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Tianyu Luo
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shiqi Liu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xuemei Wang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hangyi Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Chunfu Wu
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Jingyu Yang
- Key Laboratory of Efficacy Evaluation of New Drug Candidate, Liaoning Province; Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
21
|
Fang H, Fan LL, Ding YL, Wu D, Zheng JY, Cai YF, Huang Y, Qiao LJ, Zhang SJ, Zhan J. Pre-electroacupuncture Ameliorates Cerebral Ischemia-reperfusion Injury by Inhibiting Microglial RhoA/pyrin/GSDMD Signaling Pathway. Neurochem Res 2024; 49:3105-3117. [PMID: 39167346 DOI: 10.1007/s11064-024-04228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Cerebral ischemia reperfusion injury is a severe neurological impairment that occurs after blood flow reconstruction in stroke, and microglia cell pyroptosis is one of its important mechanisms. Electroacupuncture has been shown to be effective in mitigating and alleviating cerebral ischemia reperfusion injury by inhibiting neuroinflammation, reducing cellular pyroptosis, and improving neurological function. In this experiment, we divided the rats into three groups, including the sham operation (Sham) group, the middle cerebral artery occlusion/reperfusion (MCAO/R) group, and the pre-electroacupuncture (EAC) group. Pre-electroacupuncture group was stimulated with electroacupuncture of a certain intensity on the Baihui (GV 20) and Dazhui (GV 14) of the rat once a day from the 7th day to the 1st day before the MCAO/R operation. The extent of cerebral infarction was detected by TTC staining. A modified Zea-Longa five-point scale scoring system was used to determine neurologic function in MCAO rats. The number of neurons and morphological changes were accessed by Nissl staining and HE staining. The cellular damage was detected by TUNEL staining. In addition, the expression levels of RhoA, pyrin, GSDMD, Caspase1, cleaved-Caspase1, Iba-1, CD206, and ROCK2 were examined by western blotting and immunofluorescence. The results found that pre-electroacupuncture significantly attenuated neurological impairment and cerebral infarction compared to the post-MCAO/R rats. In addition, pre-electroacupuncture therapy promoted polarization of microglia to the neuroprotective (M2) phenotype. In addition, pre-electroacupuncture inhibited microglia pyroptosis by inhibiting RhoA/pyrin/GSDMD signaling pathway, thereby reducing neuronal injury and increasing neuronal survival in the MCAO/R rats. Taken together, these results demonstrated that pre-acupuncture could attenuate cerebral ischemia-reperfusion injury by inhibiting microglial pyroptosis. Therefore, pre-electroacupuncture might be a potential preventive strategy for ischemic stroke patients.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Ling-Ling Fan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Ye-Ling Ding
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Dan Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Jia-Yi Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510000, China
| | - Yan Huang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510000, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510000, China.
| | - Jie Zhan
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Rehabilitation, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
22
|
Chen M, Xiong HR, Hu Y, Wang S, Zhou F, Xiang C, Zhao X. Electroacupuncture alleviates sciatic nerve injury and inhibits autophagy in rats. Acupunct Med 2024; 42:268-274. [PMID: 39340157 DOI: 10.1177/09645284241280074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
BACKGROUND Sciatic nerve injury is a common form of peripheral nerve injury (PNI). It has been suggested that electroacupuncture (EA) stimulation at GB30 and ST36 can improve nerve dysfunction post-PNI. Autophagy is an important factor in the regeneration of sciatic nerves and recovery of motor function. Therefore, we investigated the biological effects of EA and examined whether these were mediated by autophagy in sciatic nerve injury. METHODS Mechanical clamping of the sciatic nerve in Sprague-Dawley rats was performed to establish an experimental model of sciatic nerve injury. EA stimulation was administered once daily for 15 min for seven consecutive days beginning 1 week after successful modeling. The recovery of sciatic nerve function was examined via the sciatic functional index (SFI) test. Morphometric analysis was conducted by staining nerve samples with toluidine blue. Autophagy-associated protein levels were measured via Western blotting. RESULTS EA stimulation at GB30 and ST36 significantly increased the number of myelinated fibers, axonal and fiber diameters, and the thickness of the myelin sheath in our rat model of sciatic nerve injury. In addition, EA stimulation greatly facilitated nerve regeneration following sciatic nerve injury. Moreover, sciatic nerve injury-induced autophagy was inhibited by EA stimulation. CONCLUSION EA facilitates recovery of injured sciatic nerves and inhibits autophagy in a rat model.
Collapse
Affiliation(s)
- Meiling Chen
- Department of Cardiology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - He Ran Xiong
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Yanping Hu
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Song Wang
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Fan Zhou
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Chao Xiang
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xin Zhao
- Department of Massage, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
23
|
Zhang Q, Xiang S, Chen X, Rong Y, Huang L, Chen Z, Yao K, Chen W, Deng C, Wang J. Irisin attenuates acute glaucoma-induced neuroinflammation by activating microglia-integrin αVβ5/AMPK and promoting autophagy. Int Immunopharmacol 2024; 138:112545. [PMID: 38955026 DOI: 10.1016/j.intimp.2024.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
Neuroinflammation, characterized by microglial activation and the release of multiple inflammatory mediators, is a key factor in acute glaucomatous injury leading to retinal ganglion cell (RGC) death and ultimately irreversible vision loss. Irisin, a novel exercise-induced myokine, has demonstrated anti-inflammatory activity in ischemia/reperfusion injuries across multiple organs and has displayed a significant neuroprotective role in experimental stroke disease models. This study examined the protective impact of irisin and investigated its potential mechanism involved in this process utilizing an acute ocular hypertension (AOH)-induced retinal injury model in mice and a microglia inflammation model induced by lipopolysaccharide (LPS). There was a transient downregulation of irisin in the retina after AOH injury, with parallel emergence of retinal neuroinflammation and RGC death. Irisin attenuated retinal and optic nerve damage and promotes the phenotypic conversion of microglia from M1 to M2. Mechanistically, irisin significantly upregulated the expression of integrin αVβ5, p-AMPK, and autophagy-related markers. Integrin αVβ5 was highly expressed on microglia but hardly expressed on RGC. The integrin αVβ5 inhibitor cilengitide, the AMPK inhibitor dorsomorphin, and the autophagy inhibitor 3-Methyladenine (3-MA) blocked the neuroprotective effects of irisin. Our results suggest irisin attenuates acute glaucoma-induced neuroinflammation and RGC death by activating integrin αVβ5/AMPK in microglia and promoting autophagy. It should be considered a potential neuroprotective therapy for acute glaucoma.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sifei Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Rong
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Lan Huang
- Department of Ophthalmology, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei 443000, China
| | - Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Yao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wei Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chaohua Deng
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Junming Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
24
|
Ye T, Zhang N, Zhang A, Sun X, Pang B, Wu X. Electroacupuncture pretreatment alleviates rats cerebral ischemia-reperfusion injury by inhibiting ferroptosis. Heliyon 2024; 10:e30418. [PMID: 38807610 PMCID: PMC11130460 DOI: 10.1016/j.heliyon.2024.e30418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Objective To explore the preventive effect of electroacupuncture pretreatment on stroke in rats by inhibiting ferroptosis and oxidative stress. Methods Rats were randomly assigned to the sham, middle cerebral artery occlusion/reperfusion (MCAO/R), MCAO/R + EP, MCAO/R + EP + erastin, and MCAO/R + EP + ferrostatin 1 groups. Daily electroacupuncture was performed 2 weeks before establishing the MCAO/R model utilizing the modified Zea Longa suture method. Rats were sacrificed 1 day after reperfusion, and brain tissues were collected. They were prepared for hematoxylin and eosin staining, prussian blue staining, transmission electron microscope. Measurement of total iron levels using a commercial kit, detection of malondialdehyde (MDA) and superoxide dismutase (SOD) levels by ELISA, and examination of 15-lox2, GPX4, SLC7A11, ACSL4, and TFR1 by western blotting. Results Compared with sham rats, cerebral infarction size was dramatically larger in MCAO/R rats. Moreover, the MCAO/R group displayed damaged mitochondria with a disarranged structure of cristae; free iron, total iron levels, and oxidative stress were significantly higher. Cerebral pathological lesions, oxidative stress, total iron levels, and protein levels of ACSL4, TFR1, and 15-lox2 were significantly reduced in the MCAO/R + EP and MCAO/R + EP + ferrostatin 1 groups, while the protective effect of electroacupuncture pretreatment on cerebral ischemia-reperfusion injury was inhibited by treatment with the ferroptosis activator erastin. Conclusion Electroacupuncture pretreatment can protect rats from cerebral ischemia-reperfusion injury by reducing the area of cerebral infarction and inhibiting ferroptosis and oxidative stress.
Collapse
Affiliation(s)
- Tao Ye
- Department of Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Ning Zhang
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Anbang Zhang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Xiuqi Sun
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Bo Pang
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Xuemei Wu
- Department of Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| |
Collapse
|
25
|
Luo J, Lang J, Xu W, Wang L, Zhao Z, Jia J, Lang B. Electroacupuncture Alleviates Post-stroke Cognitive Impairment Through Inhibiting miR-135a-5p/mTOR/NLRP3 Axis-mediated Autophagy. Neuroscience 2024; 545:185-195. [PMID: 38522660 DOI: 10.1016/j.neuroscience.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Post-stroke cognitive impairment is a significant challenge with limited treatment options. Electroacupuncture (EA) has shown promise in improving cognitive function after stroke. Our study explores the underlying mechanism of EA in alleviating cognitive impairment through the inhibition of autophagy. We utilized a rat model of stroke induced by middle cerebral artery occlusion (MCAO) to evaluate the efficacy of EA. Treatment with EA was observed to markedly improve cognitive function and reduce inflammation in MCAO rats, as evidenced by decreased neurological deficit scores, shorter latencies in the water maze test, and diminished infarct volumes. EA also attenuated tissue damage in the hippocampus and lowered the levels of pro-inflammatory cytokines and oxidative stress markers. Although autophagy was upregulated in MCAO rats, EA treatment suppressed this process, indicated by a reduction in autophagosome formation and alteration of autophagy-related protein expression. The protective effects of EA were reversed by the autophagy activator rapamycin. EA treatment elevated the levels of microRNA (miR)-135a-5p expression, and suppression of this elevation attenuated the remedial efficacy of EA in addressing cognitive impairment and inflammation. MiR-135a-5p targeted mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling to repress autophagy. EA treatment inhibits autophagy and alleviates cognitive impairment in post-stroke rats. It exerts its beneficial effects by upregulating miR-135a-5p and targeting the mTOR/NLRP3 axis.
Collapse
Affiliation(s)
- Jianchang Luo
- Department of Rehabilitation Medicine, Taizhou Municipal Hospital, Taizhou 318000, China.
| | - Jiawang Lang
- Department of Rehabilitation Medicine, Taizhou Municipal Hospital, Taizhou 318000, China.
| | - Wenbin Xu
- Department of Rehabilitation Medicine, Taizhou Municipal Hospital, Taizhou 318000, China.
| | - Luodan Wang
- Department of Rehabilitation Medicine, Taizhou Municipal Hospital, Taizhou 318000, China.
| | - Zhipeng Zhao
- Department of Rehabilitation Medicine, School of Medicine, Taizhou University, Taizhou 318000, China.
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Boxu Lang
- Department of Rehabilitation Medicine, Taizhou Municipal Hospital, Taizhou 318000, China.
| |
Collapse
|
26
|
Yu S, Wu J, Sun Y, Lyu J. Advances in acupuncture treatment for tinnitus. Am J Otolaryngol 2024; 45:104215. [PMID: 38218028 DOI: 10.1016/j.amjoto.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Tinnitus is the abnormal perception of sound in the absence of a corresponding external acoustic stimulus, which seriously affects the patients' quality of life, physical and mental health, and the safety of life. There is almost no effective cure for tinnitus, primarily due to its complicated etiopathogenesis and unclear mechanisms. As a major and ancient physical therapy in Traditional Chinese Medicine, acupuncture has been widely used in tinnitus because of its simple operation, rapid effect, and low cost. This paper reviews the relevant literature on the treatment of different kinds of tinnitus by acupuncture, and summarizes the therapeutic efficacy and mechanism of acupuncture on tinnitus, which is expected to provide new ideas and research directions for the study of tinnitus treatment by acupuncture. Tinnitus is the abnormal perception of sound in the absence of a corresponding external acoustic stimulus, which seriously affects the patients' quality of life, physical and mental health, and the safety of life. There is almost no effective cure for tinnitus, primarily due to its complicated etiopathogenesis and unclear mechanisms. As a major and ancient physical therapy in Traditional Chinese Medicine, acupuncture has been widely used in tinnitus because of its simple operation, rapid effect, and low cost. This paper reviews the relevant literature on the treatment of different kinds of tinnitus by acupuncture, and summarizes the therapeutic efficacy and mechanism of acupuncture on tinnitus, which is expected to provide new ideas and research directions for the study of tinnitus treatment by acupuncture.
Collapse
Affiliation(s)
- Shencun Yu
- Department of Traditional Chinese Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, China
| | - Jingfen Wu
- Qingdao Municipal Hospital, No.1 Jiaozhou Road, Qingdao, Shandong, 266011, China
| | - Yize Sun
- Department of Traditional Chinese Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, China
| | - Jian Lyu
- Department of Traditional Chinese Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong, 266035, China.
| |
Collapse
|
27
|
Xu M, Qian Z, Zhang Y, Gao X, Ma Z, Jin X, Wu S. Sirt1 alleviates osteoarthritis via promoting FoxO1 nucleo-cytoplasm shuttling to facilitate autophagy. Int Immunopharmacol 2024; 131:111893. [PMID: 38513577 DOI: 10.1016/j.intimp.2024.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
This study aims to investigate the role and underlying mechanisms of Sirt1 in the pathophysiological process of OA. Safranine O and HE staining were utilized to identify pathological changes in the cartilage tissue. Immunohistochemistry was employed to evaluate the expression levels of proteins. IL-1β treatment and TamCartSirt1flox/flox mice were utilized to induce OA model both in vitro and in vivo. Key autophagy-related transcription factors, autophagy-related genes, and chondrocyte extracellular matrix (ECM) breakdown enzyme markers were examined using multi assays. Immunofluorescence staining revealed subcellular localization and gene expression patterns. ChIP assay and Co-immunoprecipitation assay were conducted to investigate the interactions between FoxO1 and the promoter regions of Atg7 and Sirt1. Our results demonstrate that Sirt1 deficiency exhibited inhibitory effects on ECM synthesis and autophagy, as well as exacerbated angiogenesis. Moreover, Atg7, Foxo1, and Sirt1 could form a protein complex. Sirt1 was observed to facilitate nuclear translocation of FoxO1, enhancing its transcriptional activity. Furthermore, FoxO1 was found to bind to the promoter regions of Atg7 and Sirt1, potentially regulating their expression. This study provides valuable insights into the involvement of Sirt1-Atg7-FoxO1 loop in OA, opening new avenues for targeted therapeutic interventions aiming to mitigate cartilage degradation and restore joint function.
Collapse
Affiliation(s)
- Mao Xu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Ying Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Zhengmin Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China.
| |
Collapse
|
28
|
Deng J, Liu Q, Ye L, Wang S, Song Z, Zhu M, Qiang F, Zhou Y, Guo Z, Zhang W, Chen T. The Janus face of mitophagy in myocardial ischemia/reperfusion injury and recovery. Biomed Pharmacother 2024; 173:116337. [PMID: 38422659 DOI: 10.1016/j.biopha.2024.116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
In myocardial ischemia/reperfusion injury (MIRI), moderate mitophagy is a protective or adaptive mechanism because of clearing defective mitochondria accumulates during MIRI. However, excessive mitophagy lead to an increase in defective mitochondria and ultimately exacerbate MIRI by causing overproduction or uncontrolled production of mitochondria. Phosphatase and tensin homolog (PTEN)-induced kinase 1 (Pink1), Parkin, FUN14 domain containing 1 (FUNDC1) and B-cell leukemia/lymphoma 2 (BCL-2)/adenovirus E1B19KD interaction protein 3 (BNIP3) are the main mechanistic regulators of mitophagy in MIRI. Pink1 and Parkin are mitochondrial surface proteins involved in the ubiquitin-dependent pathway, while BNIP3 and FUNDC1 are mitochondrial receptor proteins involved in the non-ubiquitin-dependent pathway, which play a crucial role in maintaining mitochondrial homeostasis and mitochondrial quality. These proteins can induce moderate mitophagy or inhibit excessive mitophagy to protect against MIRI but may also trigger excessive mitophagy or insufficient mitophagy, thereby worsening the condition. Understanding the actions of these mitophagy mechanistic proteins may provide valuable insights into the pathological mechanisms underlying MIRI development. Based on the above background, this article reviews the mechanism of mitophagy involved in MIRI through Pink1/Parkin pathway and the receptor mediated pathway led by FUNDC1 and BNIP3, as well as the related drug treatment, aim to provide effective strategies for the prevention and treatment of MIRI.
Collapse
Affiliation(s)
- Jiaxin Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qian Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Linxi Ye
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuo Wang
- State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhenyan Song
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mingyan Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Fangfang Qiang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yulin Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhen Guo
- Hunan Provincial Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha 410219, China.
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Ting Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China; National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Changsha 410208, China.
| |
Collapse
|
29
|
Gu X, Xie Y, Cao Q, Hou Z, Zhang Y, Wang W. Fisetin alleviates cerebral ischemia/reperfusion injury by regulating Sirt1/Foxc1/Ubqln1 pathway-mediated proteostasis. Int Immunopharmacol 2024; 130:111742. [PMID: 38452414 DOI: 10.1016/j.intimp.2024.111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (IRI) is pathologically associated with protein damage. The flavonoid fisetin has good therapeutic effects on cerebral IRI. However, the role of fisetin in regulating protein damage during cerebral IRI development remains unclear. This study investigated the pharmacological effects of fisetin on protein damage during cerebral IRI progression and defined the underlying mechanism of action. METHODS In vivo and in vitro models of cerebral IRI were established by middle cerebral artery occlusion/reperfusion (MACO/R) and oxygen-glucose deprivation/reperfusion (OGD/R) treatment, respectively. Triphenyl tetrazolium chloride staining was performed to detect cerebral infarct size, and the modified neurologic severity score was used to examine neurological deficits. LDH activity and protein damage were assessed using kits. HT22 cell vitality and apoptosis were examined using CCK-8 assay and TUNEL staining, respectively. Interactions between Foxc1, Ubqln1, Sirt1, and Ezh2 were analyzed using CoIP, ChIP and/or dual-luciferase reporter gene assays. RESULTS Fisetin alleviated protein damage and ubiquitinated protein aggregation and neuronal death caused by MCAO/R and OGD/R. Ubqln1 knockdown abrogated the inhibitory effect of fisetin on OGD/R-induced protein damage, ubiquitinated protein aggregation, and neuronal death in HT22 cells. Further experiments demonstrated that Foxc1 functions as a transcriptional activator of Ubqln1 and that Sirt1 promotes Foxc1 expression by deacetylating Ezh2 and inhibiting its activity. Furthermore, Sirt1 knockdown abrogated fisetin-mediated biological effects on OGD/R-treated HT22 cells. CONCLUSION Fisetin improved proteostasis during cerebral IRI by regulating the Sirt1/Foxc1/Ubqln1 signaling axis. Our findings strongly suggest that fisetin-mediated inhibition of protein damage after ischemic stroke is a part of the mechanism through which fisetin is neuroprotective in cerebral IRI.
Collapse
Affiliation(s)
- Xunhu Gu
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yuqin Xie
- Department of Laboratory Medicine, Nanchang medical College, Nanchang 330006, Jiangxi, China
| | - Qian Cao
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhuo Hou
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yan Zhang
- Department of Neurosurgery, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Wei Wang
- Department of Neurology, The Second Affliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
30
|
李 新, 刘 玉, 邓 克, 胡 义. [Modulating gut microbiota improves neurological function and depressive symptoms in rats with post-stroke depression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:405-410. [PMID: 38501427 PMCID: PMC10954514 DOI: 10.12122/j.issn.1673-4254.2024.02.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To evaluate the effect of modulating gut microbiota for improving brain injury in rats with post-stroke depression. METHODS Adult SD rats were randomized into normal control, middle cerebral artery occlusion (MCAO), post-stroke depression (PSD), PSD with fecal transplantation, PSD with antibiotics (rifaximin), PSD with probiotics (lactobacilli), and PSD with fluoxetine treatment groups (n=9). Neurological function scores of the rats were determined, and the changes in sugar water preference and immobility time in forced swimming test were observed; plasma levels of trimethylamine N-oxide (TMAO) and hydrogen sulfide (H2S) were detected with ELISA, Occludin, and the expressions of occludin, caudin-5 and IgG proteins Ⅰ the brain tissues were determined using Western blotting. RESULTS Compared with those in the control group, the rats in MCAO and PSD groups had significantly increased neurological function scores, TMAO level, the ratio of TMAO/H2S, and immobility time in forced swimming test with a lowered level of H2S (P < 0.05). These changes were more obvious in PSD rats, which also exhibited a reduced sugar water preference with increased IgG protein and decreased occluding and caudin-5 expressions in the brain tissue (P < 0.05). TMAO/H2S ratio in PSD rats was positively correlated with neurological function score (R2=0.3235, P=0.0269) and immobility time in swimming (R2=0.6290, P=0.0004) and negatively with sugar water preference (R2=-0.4534, P=0.0059). Treatment with fecal transplantation, antibiotics, probiotics and fluoxetine all significantly reduced neurological function scores, immobility time in forced swimming, TMAO/H2S ratio, and IgG protein expression and increased sugar water preference and brain occludin and caudin-5 expressions of the PSD rats (P < 0.05). CONCLUSION In PSD rats, TMAO/H2S ratio is correlated with neurological function score, immobility time in forced swimming and sugar water preference, and modulating intestinal flora can improve neurological function and depressive symptoms and improve the integrity of the blood-brain barrier.
Collapse
Affiliation(s)
- 新翼 李
- />武汉市武昌医院//武汉科技大学附属武昌医院,湖北 武汉 430061Wuhan Wuchang Hospital/Wuhan University of Science and Technology Affiliated Wuchang Hospital, Wuhan 430061, China
| | - 玉杰 刘
- />武汉市武昌医院//武汉科技大学附属武昌医院,湖北 武汉 430061Wuhan Wuchang Hospital/Wuhan University of Science and Technology Affiliated Wuchang Hospital, Wuhan 430061, China
| | - 克崇 邓
- />武汉市武昌医院//武汉科技大学附属武昌医院,湖北 武汉 430061Wuhan Wuchang Hospital/Wuhan University of Science and Technology Affiliated Wuchang Hospital, Wuhan 430061, China
| | - 义奎 胡
- />武汉市武昌医院//武汉科技大学附属武昌医院,湖北 武汉 430061Wuhan Wuchang Hospital/Wuhan University of Science and Technology Affiliated Wuchang Hospital, Wuhan 430061, China
| |
Collapse
|
31
|
Wang YK, Lin H, Wang SR, Bian RT, Tong Y, Zhang WT, Cui YL. Application and mechanisms of Sanhua Decoction in the treatment of cerebral ischemia-reperfusion injury. World J Clin Cases 2024; 12:688-699. [PMID: 38322692 PMCID: PMC10841129 DOI: 10.12998/wjcc.v12.i4.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored. However, it is highly likely to lead to further aggravation of pathological damage to ischemic tissues or the nervous system., and has accordingly been a focus of extensive clinical research. As a traditional Chinese medicinal formulation, Sanhua Decoction has gradually gained importance in the treatment of cerebrovascular diseases. Its main constituents include Citrus aurantium, Magnolia officinalis, rhubarb, and Qiangwu, which are primarily used to regulate qi. In the treatment of neurological diseases, the therapeutic effects of the Sanhua Decoction are mediated via different pathways, including antioxidant, anti-inflammatory, and neurotransmitter regulatory pathways, as well as through the protection of nerve cells and a reduction in cerebral edema. Among the studies conducted to date, many have found that the application of Sanhua Decoction in the treatment of neurological diseases has clear therapeutic effects. In addition, as a natural treatment, the Sanhua Decoction has received widespread attention, given that it is safer and more effective than traditional Western medicines. Consequently, research on the mechanisms of action and efficacy of the Sanhua Decoctions in the treatment of cerebral ischemia-reperfusion injury is of considerable significance. In this paper, we describe the pathogenesis of cerebral ischemia-reperfusion injury and review the current status of its treatment to examine the therapeutic mechanisms of action of the Sanhua Decoction. We hope that the findings of the research presented herein will contribute to a better understanding of the efficacy of this formulation in the treatment of cerebral ischemia-reperfusion, and provide a scientific basis for its application in clinical practice.
Collapse
Affiliation(s)
- Ya-Kuan Wang
- Department of Encephalopathy, The Second Clinical College of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- Department of Encephalopathy, Henan Provincial Hospital of Integrated Chinese and Western Medicine, Zhengzhou 450000, Henan Province, China
| | - Huang Lin
- Department of Traditional Chinese Medicine Classics, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450000, Henan Province, China
| | - Shu-Rui Wang
- Department of Encephalopathy, The Second Clinical College of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Ru-Tao Bian
- Department of Central Laboratory, Zhengzhou Traditional Chinese Medicine Hospital, Zhengzhou 450000, Henan Province, China
| | - Yang Tong
- Department of Encephalopathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450000, Henan Province, China
| | - Wen-Tao Zhang
- Department of Encephalopathy, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450000, Henan Province, China
| | - Ying-Lin Cui
- Famous Doctor Hall, Henan Provincial Hospital of Traditional Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou 450000, Henan Province, China
| |
Collapse
|
32
|
Yang T, Liu X, Zhou Y, Du L, Fu Y, Luo Y, Zhang W, Feng Z, Ge J, Mei Z. Sanpian decoction ameliorates cerebral ischemia-reperfusion injury by regulating SIRT1/ERK/HIF-1α pathway through in silico analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116898. [PMID: 37467820 DOI: 10.1016/j.jep.2023.116898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemia-reperfusion injury (CIRI) is a complex pathophysiological process involving multiple factors, and becomes the footstone of rehabilitation after ischemic stroke. Sanpian decoction (SPD) has exhibited protective effects against CIRI, migraine, and other cerebral vascular diseases. However, the underlying mechanisms have not been completely elucidated. AIM OF THE STUDY This study sought to explore the potential mechanisms underlying the effect of SPD against CIRI. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) and ultra-high-performance liquid chromatography (UPLC) were carried out to determine the chemical constituents of SPD. A network pharmacology approach combined with experimental verification was conducted to elucidate SPD's multi-component, multi-target, and multi-pathway mechanisms in CIRI occurrence. The pharmacodynamics of the decoction was evaluated by establishing the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). In vivo and in vitro experiments were carried out, and the therapeutic effects of SPD were performed using 2,3,5-triphenyltetrazolium chloride (TTC) staining, hematoxylin-eosin (HE) staining, and Nissl staining. We used terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and flow cytometry to evaluate cortex apoptosis. The quantification of mRNA and corresponding proteins were performed using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot respectively. RESULTS Our research showed that pretreatment with SPD improved neurological function and inhibited CIRI. Network pharmacology revealed that the hypoxia-inducible factor-1 (HIF-1) signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway-mediated apoptosis may be associated with CIRI. In vivo and in vitro experiments, we confirmed that SPD increased cerebral blood flow, improved neural function, and reduced neural apoptosis via up-regulating the expression of sirtuin 1 (SIRT1) and down-regulating phospho-extracellular regulated protein kinases (p-ERK)/ERK and HIF-1α levels in CIRI rats. CONCLUSION Taken together, the present study systematically revealed the potential targets and signaling pathways of SPD in the treatment of CIRI using in silico prediction and verified the therapeutic effects of SPD against CIRI via ameliorating apoptosis by regulating SIRT1/ERK/HIF-1α.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China; State Key Laboratory of Natural Medicines and School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yang Fu
- Xiangyang Hospital of Traditional Chinese Medicine, Xiangyang, 441000, Hubei, China
| | - Yanan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, 443002, Hubei, China.
| |
Collapse
|
33
|
Wang Q, Zhang Q, Lu F, Hu H, Zhu M. Trends in Acupuncture Therapy for Microcirculation and Hemorheology from 1998 to 2023: A Bibliometric and Visualized Study. J Pain Res 2024; 17:177-196. [PMID: 38223661 PMCID: PMC10785693 DOI: 10.2147/jpr.s441512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND The aim of this study is to explore and illustrate the focal points concerning acupuncture's impact on microcirculation and hemorheology over the past 26 years, and to identify future directions in this field. METHODS Data in this area were gathered from the Web of Science Core Collection database. Employing CiteSpace, VOSviewer, Scimago Graphica, and Microsoft Excel software, we analyzed authors, institutions, and countries to evaluate scientific collaboration. Moreover, we carried out an analysis of keyword clustering, references, and burst detection to examine the prominent research areas and emerging trends in this domain. RESULTS The study analyzed 706 documents, 471 institutions, 632 journals, 40 countries, 581 keywords, and 3289 authors related to acupuncture for microcirculation and hemorheology. Data revealed a consistent increase in research output over 26 years. China, with the most publications and citations, significantly contributed to the field, often collaborating with the United States. Elisabet Stener-Victorin and the China Academy of Chinese Medical Sciences were the most productive author and institution, respectively. The journal Evidence-based Complementary and Alternative Medicine held the most influence. Common keywords included "vasoactive substances", "neurotransmitters", "signaling pathways", and "oxidative stress", among others. Research topics focused on female infertility, ischemic stroke, and pain syndromes, with treatment approaches such as electroacupuncture, manual acupuncture, auricular acupuncture, and cupping therapy. CONCLUSION Women's infertility, ischemic stroke, and pain syndromes have emerged as hotspots in research. Future directions may include comparative studies of traditional and modern acupuncture techniques to evaluate their respective therapeutic effects. There is potential for in-depth research in these areas and the discovery of new intervention strategies as well as mechanisms.
Collapse
Affiliation(s)
- Qi Wang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Quanai Zhang
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fengyan Lu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hantong Hu
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Muru Zhu
- Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
34
|
Zhang HR, Ma GQ, Lv HQ, Feng YT, Peng YJ. Electroacupuncture Alleviates Cerebral Ischemia-reperfusion Injury by Regulating the S1PR2/TLR4/NLRP3 Signaling Pathway via m6A Methylation of lncRNA H19. Curr Neurovasc Res 2024; 21:64-73. [PMID: 38409728 DOI: 10.2174/0115672026294183240207115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024]
Abstract
Electroacupuncture (EA) treatment plays a protective role in cerebral ischemiareperfusion (CIR) injury. However, the underlying molecular mechanism is still not fully elucidated. METHODS All rats were randomly divided into five groups: the SHAM group, MCAO group, MCAO+EA (MEA) group, MCAO+METTL3 overexpression+EA (METTL3) group and MCAO+lncRNA H19 overexpression+EA (lncRNA H19) group. The middle cerebral artery occlusion (MCAO) rats were established to mimic CIR injury. The overexpression of lncRNA H19 and METTL3 was induced by stereotactic injection of lentiviruses into the rat lateral ventricles. The rats in the MEA, METTL3, and lncRNA H19 groups were treated with EA therapy on "Renzhong" (DU26) and "Baihui" (DU20) acupoints (3.85/6.25Hz; 1mA). Besides, the neurological deficit scoring, cerebral infarction area, pathological changes in brain tissue, total RNA m6A level, and the expression of METTL3, S1PR2, TLR4, NLRP3 and lncRNA H19 were detected in this experiment. RESULTS EA improved the neurological deficit scoring, cerebral infarction area, and pathological injury in MCAO rats, while these beneficial effects of EA on CIR injury were attenuated by the overexpression of METTL3 or lncRNA H19. More importantly, EA down-regulated the total RNA m6A level and the expression of METTL3, S1PR2, TLR4, NLRP3 and lncRNA H19 in MCAO rats. Instead, the overexpression of METTL3 or lncRNA H19 was found to reverse the EA-induced down-regulation. CONCLUSION The findings indicated that EA might down-regulate the S1PR2/TLR4/NLRP3 signaling pathway via m6A methylation of lncRNA H19 to alleviate CIR injury. Our findings provide a new insight into the molecular mechanism of EA on CIR injury.
Collapse
Affiliation(s)
- Han-Rui Zhang
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Gu-Quan Ma
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - He-Qun Lv
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yao-Ting Feng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| | - Yong-Jun Peng
- Department of Acupuncture and Rehabilitation, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
35
|
Yang JW, Zou Y, Chen J, Cui C, Song J, Yang MM, Gao J, Hu HQ, Xia LQ, Wang LM, Lv XY, Chen L, Hou XG. Didymin alleviates metabolic dysfunction-associated fatty liver disease (MAFLD) via the stimulation of Sirt1-mediated lipophagy and mitochondrial biogenesis. J Transl Med 2023; 21:921. [PMID: 38115075 PMCID: PMC10731721 DOI: 10.1186/s12967-023-04790-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is one of the most prevalent metabolic syndromes worldwide. However, no approved pharmacological treatments are available for MAFLD. Chenpi, one kind of dried peel of citrus fruits, has traditionally been utilized as a medicinal herb for liver diseases. Didymin is a newly identified oral bioactive dietary flavonoid glycoside derived from Chenpi. In this study, we investigated the therapeutic potential of Didymin as an anti-MAFLD drug and elucidated its underlying mechanisms. METHODS High-fat diet (HFD)-induced MAFLD mice and alpha mouse liver 12 (AML12) cells were utilized to evaluate the effects and mechanisms of Didymin in the treatment of MAFLD. Liver weight, serum biochemical parameters, and liver morphology were examined to demonstrate the therapeutic efficacy of Didymin in MAFLD treatment. RNA-seq analysis was performed to identify potential pathways that could be affected by Didymin. The impact of Didymin on Sirt1 was corroborated through western blot, molecular docking analysis, microscale thermophoresis (MST), and deacetylase activity assay. Then, a Sirt1 inhibitor (EX-527) was utilized to confirm that Didymin alleviates MAFLD via Sirt1. Western blot and additional assays were used to investigate the underlying mechanisms. RESULTS Our results suggested that Didymin may possess therapeutic potential against MAFLD in vitro and in vivo. By promoting Sirt1 expression as well as directly binding to and activating Sirt1, Didymin triggers downstream pathways that enhance mitochondrial biogenesis and function while reducing apoptosis and enhancing lipophagy. CONCLUSIONS These suggest that Didymin could be a promising medication for MAFLD treatment. Furthermore, its therapeutic effects are mediated by Sirt1.
Collapse
Affiliation(s)
- Jing-Wen Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Ying Zou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng-Meng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Gao
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui-Qing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Long-Qing Xia
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li-Ming Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Yu Lv
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China
| | - Xin-Guo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, China.
- Institute of Endocrine and Metabolic Diseases, Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, China.
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
36
|
Zhang Y, Sun M, Zhao H, Wang Z, Shi Y, Dong J, Wang K, Wang X, Li X, Qi H, Zhao X. Neuroprotective Effects and Therapeutic Potential of Dichloroacetate: Targeting Metabolic Disorders in Nervous System Diseases. Int J Nanomedicine 2023; 18:7559-7581. [PMID: 38106446 PMCID: PMC10725694 DOI: 10.2147/ijn.s439728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Dichloroacetate (DCA) is an investigational drug used to treat lactic acidosis and malignant tumours. It works by inhibiting pyruvate dehydrogenase kinase and increasing the rate of glucose oxidation. Some studies have documented the neuroprotective benefits of DCA. By reviewing these studies, this paper shows that DCA has multiple pharmacological activities, including regulating metabolism, ameliorating oxidative stress, attenuating neuroinflammation, inhibiting apoptosis, decreasing autophagy, protecting the blood‒brain barrier, improving the function of endothelial progenitor cells, improving mitochondrial dynamics, and decreasing amyloid β-protein. In addition, DCA inhibits the enzyme that metabolizes it, which leads to peripheral neurotoxicity due to drug accumulation that may be solved by individualized drug delivery and nanovesicle delivery. In summary, in this review, we analyse the mechanisms of neuroprotection by DCA in different diseases and discuss the causes of and solutions to its adverse effects.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Meiyan Sun
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Hongxiang Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Zhengyan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Yanan Shi
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Jianxin Dong
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Kaifang Wang
- Department of Anesthesia, Tangdu Hospital, Fourth Military Medical University, Xian, Shanxi Province, People’s Republic of China
| | - Xi Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xingyue Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
| | - Haiyan Qi
- Department of Anesthesiology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, People’s Republic of China
| | - Xiaoyong Zhao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Weifang Medical University, Weifang, Shandong Province, People’s Republic of China
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
37
|
Liu M, Wang W, Zhang Y, Xu Z. Effects of combined electroacupuncture and medication therapy on the RhoA/ROCK-2 signaling pathway in the striatal region of rats afflicted by cerebral ischemia. Brain Res Bull 2023; 205:110828. [PMID: 38029846 DOI: 10.1016/j.brainresbull.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To investigate the effects of electroacupuncture(EA), gastrodin(Gas), and their combination on the signaling pathways involving Ras homologous gene family member A (RhoA) and Rho-associated frizzled helix protein kinase (ROCK-2) within the striatal region of rats subjected to cerebral ischemia. Additionally, we aim to elucidate the therapeutic effects and potential underlying mechanisms associated with the concurrent application of electroacupuncture and medication in the treatment of cerebral ischemia. METHODS Rats were randomly assigned to one of five groups, namely, the sham operation (Sham) group, model group, EA group, Gas group, and the EA combined with Gas group (referred to as the "EA+Gas group"). Each group consisted of ten rats. Following the induction of cerebral ischemia, the EA group and EA+Gas group received EA stimulation at the Baihui(GV20) and Zusanli(ST36) acupoints for 30 min per session, administered once daily for 14 consecutive days. The Gas group and EA+Gas group were intraperitoneally injected with Gas at a dosage of 10 mg/kg, also administered once daily for 14 consecutive days. Nissl staining was employed to observe morphological alterations in the striatal nerve cells of rats in each group. Immunohistochemistry and western blot techniques were employed to evaluate the expression levels of striatal RhoA and ROCK-2 proteins. RESULTS In comparison to the Sham group, the model group exhibited a substantial reduction in the number of striatal nerve cells on the ischemic side, accompanied by notable changes in cell morphology, characterized by reduced cytoplasm, defective and atrophied cytosol, solidified nuclei, loosely arranged cells, and enlarged intercellular spaces. Additionally, there was a notable increase in the positive expression of RhoA and ROCK-2. In contrast, when compared to the model group, the EA, Gas, and EA+Gas groups demonstrated an elevated number of normal nerve cells within the ischemic striatal region, with a significant improvement in cell count and morphology. Furthermore, positive expression levels of RhoA and ROCK-2 were notably reduced in these groups. Compared with the EA group or the GAS group, the number of normal nerve cells in the striatum on the ischemic side of the EA+GAS group was further increased, and the positive expression level of RhoA and ROCK-2 were both further reduced. CONCLUSION The protective mechanism underlying the therapeutic efficacy of EA combined with Gas against cerebral ischemic striatal injury in rats may be associated with the inhibition of the activation of the RhoA/ROCK-2 signaling pathway. Importantly, the therapeutic effects observed with the combination of electroacupuncture and medication were superior to those achieved with EA alone or the sole administration of Gas.
Collapse
Affiliation(s)
- Min Liu
- Department of Human Anatomy, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Wei Wang
- Department of Human Anatomy, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Yegui Zhang
- Department of Human Anatomy, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, Wannan Medical College, 241002 Wuhu, Anhui, China.
| |
Collapse
|
38
|
Li X, Yang H, Cheng J, Zhao H, Yan Y, Wang Q, Wang D, Wang G. Compound musk injection in the treatment of ischemic stroke: A network analysis of the mechanism of action. Medicine (Baltimore) 2023; 102:e36179. [PMID: 38013375 PMCID: PMC10681625 DOI: 10.1097/md.0000000000036179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Ischemic stroke (IS) is affected by a wide range of factors and has certain treatment limitations. Studies have reported that compound musk injection (CMI) is effective in the treatment of IS, however, its mechanism of action is still unclear. METHODS The main active ingredients in CMI were retrieved from HERB, TCMSP and BATMAN databases, and the relevant targets were predicted by Swiss Target Prediction platform. MalaCards, OMIM, DrugBank, DisGeNET, Genecards and TTD databases were used to obtain the genes related to IS. The intersection of drugs and disease targets was used to construct protein-protein interaction networks, and gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. AutoDock Vina software was used for molecular docking, and cell experiments were conducted to verify the results. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the expression level of relative mRNA in cells. RESULTS Network analysis and molecular docking results showed that the key targets of CMI in the treatment of IS were SRC, TP53, PIK3R1, MAPK3, PIK3CA, MAPK1, etc. KEGG pathway enrichment analysis mainly involved PI3K/Akt signaling pathway, Rap1 signaling pathway and MAPK signaling pathway. The molecular docking results all showed that the key ingredients were strong binding activity with the key targets. The quantitative RT-PCR results indicated that CMI may increase the expression of PIK3CA, MAPK3 mRNA and decrease the expression of SRC mRNA. CONCLUSIONS CMI can treat IS by regulating pathways and targets related to inflammatory response and apoptosis in a multi-component manner.
Collapse
Affiliation(s)
- Xiaoqing Li
- The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Hua Yang
- The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| | - Jianjie Cheng
- The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| | - Hairong Zhao
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Ya Yan
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Qian Wang
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Dexiao Wang
- College of Pharmacy, Dali University, Dali, Yunnan Province, China
| | - Guangming Wang
- The First Affiliated Hospital of Dali University, Dali, Yunnan Province, China
| |
Collapse
|
39
|
Li J, Han Y, Zhou M, Liu N, Li H, Huang G, Yu Z, Luo D, Zhang H, Zheng X, Liang F, Chen R. Electroacupuncture ameliorates AOM/DSS-induced mice colorectal cancer by inhibiting inflammation and promoting autophagy via the SIRT1/miR-215/Atg14 axis. Aging (Albany NY) 2023; 15:13194-13212. [PMID: 38006398 DOI: 10.18632/aging.205236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/12/2023] [Indexed: 11/27/2023]
Abstract
Colorectal cancer (CRC) is one of the most common tumors of the digestive tract, with the third-highest incidence and the second-highest mortality rate among all malignant tumors worldwide. However, treatment options for CRC remain limited. As a complementary therapy, acupuncture or electro-acupuncture (EA) has been widely applied in the treatment of various inflammation-related diseases, such as obesity, ulcerative colitis and tumors. Although numerous pre-clinical and clinical studies have investigated the beneficial effects of acupuncture on CRC, the mechanism underlying the therapeutic action of EA is largely unknown. Evidence from previous studies has revealed that SIRT1 participates in CRC progression by activating autophagy-related miRNAs. Using azoxymethane/dextran sulfate sodium- (AOM/DSS-) induced colorectal cancer model in mice, we explored whether EA treatment can inhibit inflammation and promote autophagy via the SIRT1/miR-215/Atg14 axis. Our results showed that EA notably alleviated the CRC in mice, by decreasing the tumor number and DAI scores, inflammation, and increasing body weight of mice. Besides, EA increased the expression of SIRT1 and autophagy. Further experiments showed that SIRT1 overexpression downregulated miR-215, and promoted the expression of Atg14, whereas SIRT1 knockdown induced opposite results. In conclusion, EA can ameliorate AOM/DSS-induced CRC through regulating the SIRT1-mediated miR-215/Atg14 axis by suppressing inflammation and promoting autophagy in mice. These findings reveal a potential molecular mechanism underlying the anti-CRC effect of EA indicating that EA is a promising therapeutic candidate for CRC.
Collapse
Affiliation(s)
- Jinxiao Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Ying Han
- Hong Kong Baptist University, Hong Kong, China
| | - Minfeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Na Liu
- Rehabilitation Department of Traditional Chinese Medicine, Union Red Cross Hospital, Wuhan 430015, China
| | - Huarong Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Guichen Huang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhaomin Yu
- Department of Oncology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan 430071, China
| | - Dan Luo
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Haiming Zhang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Xiangyi Zheng
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Fengxia Liang
- College of Acupuncture and Moxibustion and Orthopaedics, Hubei University of Chinese Medicine, Wuhan 430060, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
40
|
Li X, Yi L, Liu X, Chen X, Chen S, Cai S. Isoquercitrin Played a Neuroprotective Role in Rats After Cerebral Ischemia/Reperfusion Through Up-Regulating Neuroglobin and Anti-Oxidative Stress. Transplant Proc 2023; 55:1751-1761. [PMID: 37391332 DOI: 10.1016/j.transproceed.2023.04.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND This study aims to investigate whether isoquercitrin (Iso) exerts a neuroprotective role effect after cerebral ischemia-reperfusion (CIR) via up-regulating neuroglobin (Ngb) or reducing oxidative stress. METHODS The middle cerebral artery occlusion/reperfusion (MCAO/R) model was constructed using Sprague Dawley rats. First, we divided 40 mice into 5 groups (n = 8): sham, MCAO/R, Low-dosed Iso (5 mg/kg Iso), Mid-dosed Iso (10 mg/kg Iso), and High-dosed Iso (20 mg/kg Iso). Then, 48 rats were separated into 6 groups (n = 8): sham, MCAO/R, Iso, artificial cerebrospinal fluid, Ngb antisense oligodeoxynucleotides (AS-ODNs), and AS-ODNs ± Iso. The effects of Iso on brain tissue injury and oxidative stress were evaluated using hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunofluorescence, western blotting, and real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and reactive oxygen species (ROS) detection. RESULTS The neurologic score, infarct volume, histopathology, apoptosis rate, and ROS production were reduced in Iso dose-dependent. The Ngb expression enhanced in Iso dose-dependent. The oxidative stress-related factors SOD, GSH, CAT, Nrf2, HO-1, and HIF-1α levels also increased in Iso dose-dependent, whereas the MDA levels decreased. However, related regulation of Iso on brain tissue damage and oxidative stress were reversed after low expression of Ngb. CONCLUSION Isoquercitrin played a neuroprotective role after CIR through up-regulating of Ngb and anti-oxidative stress.
Collapse
Affiliation(s)
- Xiuping Li
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Liming Yi
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xing Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Xia Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China
| | - Sanchun Chen
- Hunan Bestcome Traditional Medicine Co, Ltd, Huaihua, China
| | - Shichang Cai
- Department of Human Anatomy, School of Basic Medical Sciences, Hunan University of Medicine, Huaihua, China.
| |
Collapse
|
41
|
Xiao H, Wei C, Liu H, Li Z, Zheng C, Luo J. Lentinan alleviates sciatic nerve injury by promoting autophagy to remove myelin fragments. Phytother Res 2023; 37:4042-4058. [PMID: 37165703 DOI: 10.1002/ptr.7862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/12/2023]
Abstract
Lentinan, a natural drug with wide-ranging pharmacological activities, can regulate autophagy-the process through which Schwann cells (SCs) eliminate myelin fragments after peripheral nerve injury (PNI). However, the effect of lentinan after PNI and the role of accelerated myelin debris removal via autophagy in this process are unclear. This study examined the effect of lentinan on rat sciatic nerve repair following crush injury and the underlying mechanisms. After the successful establishment of the sciatic nerve compression injury model, group-specific treatments were performed. The treatment group received 20 mg/kg lentinan via intraperitoneal injection, while the model group was treated with normal saline. The recovery in each group was then evaluated. Further, a rat SC line (RSC96) was cultured in medium with/without lentinan after supplementation with homogenous myelin fractions to evaluate the removal of myelin particles. Our results showed that lentinan promotes autophagic flux in vivo via the AMPK/mTOR signaling pathway, accelerates the clearance of myelin debris by SCs, and inhibits neuronal apoptosis, thereby promoting neurological recovery. Similarly, in vitro experiments showed that lentinan promotes the phagocytosis of myelin debris by SCs. In conclusion, our results suggest that lentinan primarily promotes nerve regeneration by accelerating the autophagic clearance of myelin debris in SCs, and this process is likely regulated by the AMPK/mTOR signaling pathway. Therefore, this study provides compelling evidence that lentinan may be a cost-effective and natural treatment agent for PNI.
Collapse
Affiliation(s)
- Haili Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Wei
- Department of Hepatobiliary surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huiying Liu
- Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiqiang Li
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Cihua Zheng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
42
|
Min YJ, Yao HH, Wang L, Cheng LH, Hong ES. Comparison and effect of moxibustion and acupuncture on Nogo/NgR signaling pathway in rats with cerebral ischemia/reperfusion injury. J Tradit Complement Med 2023; 13:430-440. [PMID: 37693099 PMCID: PMC10491986 DOI: 10.1016/j.jtcme.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Background and aim In China, acupuncture and moxibustion have been used effectively to treat various diseases for thousands of years. However, the evidence for a difference in the efficacies of moxibustion and acupuncture in cerebral infarction treatment is scarce. We aimed to compare the effects of acupuncture and moxibustion treatment on the Nogo/NgR signaling pathway in rats with cerebral ischemia/reperfusion (I/R) injury. Experimental procedure Eighty male SD rats were randomly divided into five groups, based on treatment received: sham surgery (sham group), middle cerebral artery occlusion (MCAO, MCAO group), MCAO and NEP(1-40) inhibitor injection (MCAO + block group), MCAO and moxibustion (MCAO + moxi group), and MCAO and minimal acupuncture (MCAO + MA group). Neurological status was evaluated before treatment, and cerebral infarction volume (IV) and neurological function; Nogo-A, NgR, p75NTR, and LINGO-1 expressions; and NgR and LINGO-1 co-expression were assessed after treatment. Results and conclusion After treatment, barring Nogo-A mRNA and protein expression in the MCAO + block group, the Longa score and IV significantly decreased; Nogo-A, NgR, p75NTR, and LINGO-1 mRNA and protein expressions as well as NgR and LINGO-1 co-expression significantly decreased in cerebral tissues; whereas the BWT score increased (P < 0.01) in the MCAO + moxi group, compared with the MCAO group. Except for NgR and LINGO-1 protein expressions, there were no significant differences in the abovementioned parameters between rats that underwent acupuncture and moxibustion. Acupuncture and moxibustion have similar effects on Nogo/NgR signaling pathway inhibition after cerebral infarction.
Collapse
Affiliation(s)
- You-jiang Min
- School of Traditional Chinese Medicine, Nanchang Medical College, Nanchang, 330052, Jiangxi, China
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - Hai-hua Yao
- Shanghai Eighth People's Hospital, Shanghai, 200235, Shanghai, China
| | - Li Wang
- School of Traditional Chinese Medicine, Nanchang Medical College, Nanchang, 330052, Jiangxi, China
| | - Li-hong Cheng
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi, China
| | - En-si Hong
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, Jiangxi, China
| |
Collapse
|
43
|
Wang J, Deng X, Jiang J, Yao Z, Ju Y, Luo Y. Evaluation of electroacupuncture as a non-pharmacological therapy for astrocytic structural aberrations and behavioral deficits in a post-ischemic depression model in mice. Front Behav Neurosci 2023; 17:1239024. [PMID: 37700911 PMCID: PMC10493307 DOI: 10.3389/fnbeh.2023.1239024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Background Ascending clinical evidence supports that electroacupuncture (EA) is effective in treating post-ischemic depression (PID), but little is known about how it works at the cellular level. Astrocytes are exquisitely sensitive to their extracellular environment, and under stressful conditions, they may experience aberrant structural remodeling that can potentially cause neuroplastic disturbances and contribute to subsequent changes in mood or behavior. Objectives This study aimed to investigate the effect of EA on behavioral deficits associated with PID in mice and verify the hypothesis that astrocytic morphology may be involved in this impact. Methods We established a PID animal model induced by transient bilateral common carotid artery occlusion (BCCAO, 20 min) and chronic restraint stress (CRS, 21 days). EA treatment (GV20 + ST36) was performed for 3 weeks, from Monday to Friday each week. Depressive- and anxiety-like behaviors and sociability were evaluated using SPT, FST, EPM, and SIT. Immunohistochemistry combined with Sholl and cell morphological analysis was utilized to assess the process morphology of GFAP+ astrocytes in mood-related regions. The potential relationship between morphological changes in astrocytes and behavioral output was detected by correlation analysis. Results Behavioral assays demonstrated that EA treatment induced an overall reduction in behavioral deficits, as measured by the behavioral Z-score. Sholl and morphological analyses revealed that EA prevented the decline in cell complexity of astrocytes in the prefrontal cortex (PFC) and the CA1 region of the hippocampus, where astrocytes displayed evident deramification and atrophy of the branches. Eventually, the correlation analysis showed there was a relationship between behavioral emotionality and morphological changes. Conclusion Our findings imply that EA prevents both behavioral deficits and structural abnormalities in astrocytes in the PID model. The strong correlation between behavioral Z-scores and the observed morphological changes confirms the notion that the weakening of astrocytic processes may play a crucial role in depressive symptoms, and astrocytes could be a potential target of EA in the treatment of PID.
Collapse
Affiliation(s)
- Jingwen Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengyu Yao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaxin Ju
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
44
|
Dong W, Gong F, Zhao Y, Bai H, Yang R. Ferroptosis and mitochondrial dysfunction in acute central nervous system injury. Front Cell Neurosci 2023; 17:1228968. [PMID: 37622048 PMCID: PMC10445767 DOI: 10.3389/fncel.2023.1228968] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Acute central nervous system injuries (ACNSI), encompassing traumatic brain injury (TBI), non-traumatic brain injury like stroke and encephalomeningitis, as well as spinal cord injuries, are linked to significant rates of disability and mortality globally. Nevertheless, effective and feasible treatment plans are still to be formulated. There are primary and secondary injuries occurred after ACNSI. Most ACNSIs exhibit comparable secondary injuries, which offer numerous potential therapeutic targets for enhancing clinical outcomes. Ferroptosis, a newly discovered form of cell death, is characterized as a lipid peroxidation process that is dependent on iron and oxidative conditions, which is also indispensable to mitochondria. Ferroptosis play a vital role in many neuropathological pathways, and ACNSIs may induce mitochondrial dysfunction, thereby indicating the essentiality of the mitochondrial connection to ferroptosis in ACNSIs. Nevertheless, there remains a lack of clarity regarding the involvement of mitochondria in the occurrence of ferroptosis as a secondary injuries of ACNSIs. In recent studies, anti-ferroptosis agents such as the ferroptosis inhibitor Ferrostain-1 and iron chelation therapy have shown potential in ameliorating the deleterious effects of ferroptosis in cases of traumatic ACNSI. The importance of this evidence is extremely significant in relation to the research and control of ACNSIs. Therefore, our review aims to provide researchers focusing on enhancing the therapeutic outcomes of ACNSIs with valuable insights by summarizing the physiopathological mechanisms of ACNSIs and exploring the correlation between ferroptosis, mitochondrial dysfunction, and ACNSIs.
Collapse
Affiliation(s)
- Wenxue Dong
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Fanghe Gong
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Yu Zhao
- School of Medicine, Xizang Minzu University, Xianyang, China
| | - Hongmin Bai
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Ruixin Yang
- Department of Neurosurgery, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| |
Collapse
|
45
|
Duan Q, Wu J. Dihydroartemisinin ameliorates cerebral I/R injury in rats via regulating VWF and autophagy-mediated SIRT1/FOXO1 pathway. Open Med (Wars) 2023; 18:20230698. [PMID: 37415610 PMCID: PMC10320570 DOI: 10.1515/med-2023-0698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 07/08/2023] Open
Abstract
Dihydroartemisinin (DHA) has been found to inhibit the expression of von Willebrand factor (VWF), a marker of endothelial cell injury, but its mechanism in cerebral ischemia/reperfusion (I/R) injury remains obscure. In this study, I/R model was constructed through middle cerebral artery occlusion (MCAO) in rats, followed by DHA administration. The effect of DHA on rat cerebral I/R injury was investigated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin and eosin staining, TUNEL staining, and Western blot. Brain microvascular endothelial cells (BMVECs) isolated from newborn rats were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), and then treated with DHA. The results showed that MCAO treatment induced infarction, nerve cell apoptosis, and brain tissue impairment in rats, which was mitigated by DHA. OGD/R inhibited viability and accelerated apoptosis of BMVECs, which was alleviated by DHA. I/R procedures or OGD/R up-regulated expressions of VWF, ATG7, Beclin1, and LC3-II/LC3-I ratio, while down-regulating Occludin, Claudin-5, ZO-1, P62, SIRT1, and FOXO1 expressions in vivo and in vitro; however, these effects of I/R procedures or OGD/R were offset by DHA. VWF overexpression reversed the above effects of DHA on OGD/R-induced BMVECs. In summary, DHA ameliorates cerebral I/R injury in rats by reducing VWF level and activating autophagy-mediated SIRT1/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Qi Duan
- Emergency Department, Nantong Rich Hospital, Nantong, Jiangsu, 226006, China
| | - Junxia Wu
- Emergency Department, The Sixth People’s Hospital of Nantong, No. 500 Yonghe Road, Gangzha District, Nantong, Jiangsu, 226000, China
| |
Collapse
|
46
|
Chen X, Yang T, Luo Y, Feng Z, Fang R, Ge J, Mei Z. Methodological and reporting quality evaluation of Buyang Huanwu decoction for experimental cerebral ischemia-reperfusion injury: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:831-849. [PMID: 36637472 PMCID: PMC10079735 DOI: 10.1007/s00210-022-02362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
Buyang Huanwu decoction, a classic traditional Chinese prescription, has been used to prevent and treat stroke for hundreds of years. An increasing number of the laboratory research on Buyang Huanwu decoction used in treating cerebral ischemia-reperfusion injury have been published recently. However, the problem of methodological and reporting quality of some studies is lack of assessment. This study aims to evaluate the methodological and reporting quality of the research on Buyang Huanwu decoction against experimental cerebral ischemia-reperfusion injury. A comprehensive search on six databases was performed. Two researchers independently screened the literature considering the eligibility criteria. Methodological and reporting quality of the included studies were evaluated by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk-of-bias tool and Animal Research: Reporting of In Vivo Experiments (ARRIVE) guideline. Forty-five studies met the inclusion criteria. No study achieved a decent overall rating in using the SYRCLE tool (percentage of items with "low risk" ≥ 50%). Of the 22 items on the SYRCLE tool, only 7 items (31.82%) were rated as "low risk" in more than 50% of the included studies. Of the 39 items of ARRIVE guideline, 14 (35.9%) items were rated as "yes" in more than 50% of the included studies. The methodological and reporting quality of Buyang Huanwu decoction for experimental cerebral ischemia-reperfusion injury was substandard, which needed to be further improved. The limitations should be addressed when planning similar studies in the future. Additionally, these findings provided evidence-based guidance for future preclinical studies evaluating the efficacy of Buyang Huanwu decoction in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiangyu Chen
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| | - Tong Yang
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| | - Yanan Luo
- Third-Grade Pharmacological Laboratory On Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002 Hubei China
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory On Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, 443002 Hubei China
| | - Rui Fang
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| | - Zhigang Mei
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine On Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| |
Collapse
|
47
|
Fan W, Rong J, Shi W, Liu W, Wang J, Tan J, Yu B, Tong J. GATA6 Inhibits Neuronal Autophagy and Ferroptosis in Cerebral ischemia-reperfusion Injury Through a miR-193b/ATG7 axis-dependent Mechanism. Neurochem Res 2023:10.1007/s11064-023-03918-8. [PMID: 37059928 DOI: 10.1007/s11064-023-03918-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023]
Abstract
Ferroptosis is a newly described form of regulated necrotic cell death, which is engaged in the pathological cell death related to stroke, contributing to cerebral ischemia-reperfusion (I/R) injury. Therefore, we performed this study to clarify the role of GATA6 in neuronal autophagy and ferroptosis in cerebral I/R injury. The cerebral I/R injury-related differentially expressed genes (DEGs) as well as the downstream factors of GATA6 were predicted bioinformatically. Moreover, the relations between GATA6 and miR-193b and that between miR-193b and ATG7 were evaluated by chromatin immunoprecipitation and dual-luciferase reporter assays. Besides, neurons were treated with oxygen-glucose deprivation (OGD), followed by overexpression of GATA6, miR-193b, and ATG7 alone or in combination to assess neuronal autophagy and ferroptosis. At last, in vivo experiments were performed to explore the impacts of GATA6/miR-193b/ATG7 on neuronal autophagy and ferroptosis in a rat model of middle cerebral artery occlusion (MCAO)-stimulated cerebral I/R injury. It was found that GATA6 and miR-193b were poorly expressed in cerebral I/R injury. GATA6 transcriptionally activated miR-193b to downregulate ATG7. Additionally, GATA6-mediated miR-193b activation suppressed neuronal autophagy and ferroptosis in OGD-treated neurons by inhibiting ATG7. Furthermore, GATA6/miR-193b relieved cerebral I/R injury by restraining neuronal autophagy and ferroptosis via downregulation of ATG7 in vivo. In summary, GATA6 might prevent neuronal autophagy and ferroptosis to alleviate cerebral I/R injury via the miR-193b/ATG7 axis.
Collapse
Affiliation(s)
- Weijian Fan
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201300, P. R. China
- Department of Vascular Surgery, Huashan Hospital of Fudan University, No.12, Mid-Wulumuqi Road, Shanghai, 200040, P.R. China
| | - Jianjie Rong
- Department of Vascular Surgery, Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou215000, Nanjing, P.R. China
| | - Weihao Shi
- Department of Vascular Surgery, Huashan Hospital of Fudan University, No.12, Mid-Wulumuqi Road, Shanghai, 200040, P.R. China
| | - Wei Liu
- Department of Neurology, Suzhou TCM Hospital, Nanjing University of Chinese Medicine, Suzhou215000, Nanjing, P.R. China
| | - Jie Wang
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201300, P. R. China
| | - Jinyun Tan
- Department of Vascular Surgery, Huashan Hospital of Fudan University, No.12, Mid-Wulumuqi Road, Shanghai, 200040, P.R. China
| | - Bo Yu
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201300, P. R. China.
- Department of Vascular Surgery, Huashan Hospital of Fudan University, No.12, Mid-Wulumuqi Road, Shanghai, 200040, P.R. China.
| | - Jindong Tong
- Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201300, P. R. China.
| |
Collapse
|
48
|
Li YH, Zhang S, Tang L, Feng J, Jia J, Chen Y, Liu L, Zhou J. The Role of LincRNA-EPS/Sirt1/Autophagy Pathway in the Neuroprotection Process by Hydrogen against OGD/R-Induced Hippocampal HT22 Cells Injury. J Pers Med 2023; 13:631. [PMID: 37109017 PMCID: PMC10143835 DOI: 10.3390/jpm13040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Cerebral ischemia/reperfusion (CI/R) injury causes high disability and mortality. Hydrogen (H2) enhances tolerance to an announced ischemic event; however, the therapeutic targets for the effective treatment of CI/R injury remain uncertain. Long non-coding RNA lincRNA-erythroid prosurvival (EPS) (lincRNA-EPS) regulate various biological processes, but their involvement in the effects of H2 and their associated underlying mechanisms still needs clarification. Herein, we examine the function of the lincRNA-EPS/Sirt1/autophagy pathway in the neuroprotection of H2 against CI/R injury. HT22 cells and an oxygen-glucose deprivation/reoxygenation (OGD/R) model were used to mimic CI/R injury in vitro. H2, 3-MA (an autophagy inhibitor), and RAPA (an autophagy agonist) were then administered, respectively. Autophagy, neuro-proinflammation, and apoptosis were evaluated by Western blot, enzyme-linked immunosorbent assay, immunofluorescence staining, real-time PCR, and flow cytometry. The results demonstrated that H2 attenuated HT22 cell injury, which would be confirmed by the improved cell survival rate and decreased levels of lactate dehydrogenase. Furthermore, H2 remarkably improved cell injury after OGD/R insult via decreasing pro-inflammatory factors, as well as suppressing apoptosis. Intriguingly, the protection of H2 against neuronal OGD/R injury was abolished by rapamycin. Importantly, the ability of H2 to promote lincRNA-EPS and Sirt1 expression and inhibit autophagy were abrogated by the siRNA-lincRNA-EPS. Taken together, the findings proved that neuronal cell injury caused by OGD/R is efficiently prevented by H2 via modulating lincRNA-EPS/Sirt1/autophagy-dependent pathway. It was hinted that lincRNA-EPS might be a potential target for the H2 treatment of CI/R injury.
Collapse
Affiliation(s)
- Ya-Hong Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shun Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646600, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
49
|
Transcutaneous Electrical Acupoint Stimulation Pretreatment Alleviates Cerebral Ischemia-Reperfusion Injury in Rats by Modulating Microglia Polarization and Neuroinflammation Through Nrf2/HO-1 Signaling Pathway. Neurochem Res 2023; 48:862-873. [PMID: 36357746 DOI: 10.1007/s11064-022-03797-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/15/2022] [Indexed: 11/12/2022]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) may lead to severe disability even death, but the strategies for prevention and treatment are still limited. Transcutaneous electrical acupoint stimulation (TEAS) has been reported to have a significant neuroprotection against CIRI, but the underlying mechanisms remain obscure. In this study, we established a focal cerebral ischemia-reperfusion model in male Sprague-Dawley rats. TEAS pretreatment was applied to Baihui (GV20), Sanyinjiao (SP6) and Zusanli (ST36) acupoints for 5 consecutive days before CIRI. After 24 h reperfusion, the brain damage was assessed using Zea-Longa score, brain water content (BWC) and infarct volume. Meanwhile, the number of activated microglia and the TNF-α were detected by immunofluorescence and ELISA respectively. Moreover, Western Blot and RT-qPCR were conducted to detect the proteins and mRNA expressions of Nrf2, HO-1, iNOS and Arg-1. We found that TEAS pretreatment significantly reduced Longa score, BWC, infarct volume and the number of activated microglia. Besides, TEAS pretreatment increased Nrf2 and HO-1 levels, while lowered the expression of TNF-α. Subsequently, we also discovered that the microglia M1 phenotype maker iNOS decreased and the M2 maker Arg-1 increased after TEAS pretreatment. However, these effects of TEAS pretreatment were markedly eliminated by brusatol. These findings clearly suggested that TEAS pretreatment exerted neuroprotection against CIRI, which might be related to modulating microglia polarization and neuroinflammation via Nrf2/HO-1 pathway.
Collapse
|
50
|
Shehjar F, Maktabi B, Rahman ZA, Bahader GA, James AW, Naqvi A, Mahajan R, Shah ZA. Stroke: Molecular mechanisms and therapies: Update on recent developments. Neurochem Int 2023; 162:105458. [PMID: 36460240 PMCID: PMC9839659 DOI: 10.1016/j.neuint.2022.105458] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Stroke, a neurological disease, is one of the leading causes of death worldwide, resulting in long-term disability in most survivors. Annual stroke costs in the United States alone were estimated at $46 billion recently. Stroke pathophysiology is complex, involving multiple causal factors, among which atherosclerosis, thrombus, and embolus are prevalent. The molecular mechanisms involved in the pathophysiology are essential to understanding targeted drug development. Some common mechanisms are excitotoxicity and calcium overload, oxidative stress, and neuroinflammation. In addition, various modifiable and non-modifiable risk factors increase the chances of stroke manifolds. Once a patient encounters a stroke, complete restoration of motor ability and cognitive skills is often rare. Therefore, shaping therapeutic strategies is paramount for finding a viable therapeutic agent. Apart from tPA, an FDA-approved therapy that is applied in most stroke cases, many other therapeutic strategies have been met with limited success. Stroke therapies often involve a combination of multiple strategies to restore the patient's normal function. Certain drugs like Gamma-aminobutyric receptor agonists (GABA), Glutamate Receptor inhibitors, Sodium, and Calcium channel blockers, and fibrinogen-depleting agents have shown promise in stroke treatment. Recently, a drug, DM199, a recombinant (synthetic) form of a naturally occurring protein called human tissue kallikrein-1 (KLK1), has shown great potential in treating stroke with fewer side effects. Furthermore, DM199 has been found to overcome the limitations presented when using tPA and/or mechanical thrombectomy. Cell-based therapies like Neural Stem Cells, Hematopoietic stem cells (HSCs), and Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) are also being explored as a treatment of choice for stroke. These therapeutic agents come with merits and demerits, but continuous research and efforts are being made to develop the best therapeutic strategies to minimize the damage post-stroke and restore complete neurological function in stroke patients.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Briana Maktabi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Zainab A Rahman
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Antonisamy William James
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Ahmed Naqvi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Reetika Mahajan
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA.
| |
Collapse
|