1
|
Shlomi-Loubaton S, Nitzan K, Rivkin-Natan M, Sabbah S, Toledano R, Franko M, Bentulila Z, David D, Frenkel D, Doron R. Chronic stress leads to earlier cognitive decline in an Alzheimer's mouse model: The role of neuroinflammation and TrkB. Brain Behav Immun 2025; 127:303-314. [PMID: 40096896 DOI: 10.1016/j.bbi.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/19/2025] Open
Abstract
While most Alzheimer's disease (AD) studies focus on the cognitive aspects of the disease, less focus is given to affective symptoms. In this study, we investigated the long-term consequences of exposure to chronic stress. 5xFAD AD model mice were exposed to unpredictable chronic mild stress, and cognitive and emotional aspects were examined at 3-time points (up to 4 months after exposure to stress). We found that exposure to chronic stress accelerates neuropathology outcomes in the 5xFAD mouse model in adulthood, accompanied by changes in the neurotrophic system. Specifically, we found that chronic stress accelerated the appearance of short-term spatial memory deficits in the 5xFAD mice and decreased tyrosine kinase B full receptor (TrkB.FL) expression levels. In vitro, we showed that corticosterone impairs the ability of microglia to uptake Aβ and reduces microglial activation. To conclude, our study may shed light on the mechanisms through which mild chronic stress might contribute to the onset and progression of Alzheimer's disease symptoms.
Collapse
Affiliation(s)
- Shir Shlomi-Loubaton
- Department of Neurobiology, School of Neurobiology Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Keren Nitzan
- Department of Education and Psychology, The Open University, Raanana 43107, Israel
| | - Maria Rivkin-Natan
- Department of Neurobiology, School of Neurobiology Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Salomé Sabbah
- Department of Neurobiology, School of Neurobiology Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roni Toledano
- Department of Education and Psychology, The Open University, Raanana 43107, Israel
| | - Motty Franko
- Department of Education and Psychology, The Open University, Raanana 43107, Israel
| | - Ziv Bentulila
- Department of Education and Psychology, The Open University, Raanana 43107, Israel
| | - Dekel David
- Department of Education and Psychology, The Open University, Raanana 43107, Israel
| | - Dan Frenkel
- Department of Neurobiology, School of Neurobiology Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ravid Doron
- Department of Education and Psychology, The Open University, Raanana 43107, Israel.
| |
Collapse
|
2
|
Chen H, Fang Z, Lin SL, Schachner M. L1CAM mimetic compound duloxetine improves cognitive impairment in 5xFAD mice and protects Aβ1-42-damaged HT22 cells. Eur J Pharmacol 2025; 997:177476. [PMID: 40057157 DOI: 10.1016/j.ejphar.2025.177476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/08/2025] [Accepted: 03/04/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Synapse loss and damage are underlying causes of Alzheimer's disease. Duloxetine has been identified as a mimetic of neural adhesion molecule L1CAM, a neuronal synapse component, suggesting duloxetine could be therapeutic for Alzheimer's disease. METHODS Cognitive function in 5xFAD mice was evaluated by open field, novel object recognition, and Morris water maze tests. Hippocampal and cortical Aβ1-40, Aβ1-42 and amyloid plaque deposition were quantified by ELISA and immunohistochemistry. RT-qPCR and western blotting quantified the effects of duloxetine treatment on L1CAM levels and PI3K/Akt/CREB signaling pathway activation. Apoptosis markers Bcl-2 and Bax were also measured by RT-qPCR and western blotting. HT22 cell survival was measured by CCK8 assay. RESULTS Duloxetine preserved learning and memory abilities, but had no effect on locomotor performance of 5xFAD mice. Duloxetine decreased Aβ1-42 expression levels, increased Aβ1-40 levels, reduced amyloid plaque formation, and activated the PI3K/Akt/CREB signaling pathway in both cortices and hippocampi of 5xFAD mice. Moreover, duloxetine increased the expression of L1CAM and Bcl-2, and inhibited the expression of Bax, as well as prevented Aβ1-42 cytotoxicity in wild-type, but not L1CAM-knockdown HT22 cells, suggesting a feed-forward mechanism for duloxetine-mediated neuroprotection, whereby duloxetine induces and activates L1CAM to exert neuroprotective effects. CONCLUSIONS Our findings demonstrate that duloxetine plays a neuroprotective role in 5xFAD mice and HT22 cells through activating L1CAM, likely by regulating the PI3K/Akt/CREB signaling pathway. These results suggest that duloxetine may be a potential reagent for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Hanyu Chen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zhou Fang
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Stanley Li Lin
- Shantou Key Laboratory of Precision Diagnosis and Treatment of Women's Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China; Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou, Guangdong, China.
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, China; Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers the State University of New Jersey, Piscataway, NJ, 08554, USA.
| |
Collapse
|
3
|
van Kruining D, Losen M, Dehairs J, Swinnen JV, Waelkens E, Honing M, Martinez-Martinez P. Early plasma ceramide and sphingomyelin levels reflect APOE genotype but not familial Alzheimer's disease gene mutations in female 5xFAD mice, with brain-region specific sphingolipid alterations. Neurobiol Dis 2025; 210:106923. [PMID: 40253012 DOI: 10.1016/j.nbd.2025.106923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/16/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025] Open
Abstract
Pathophysiological changes associated with Alzheimer's disease (AD) begin decades before dementia onset, with age and APOE ε4 genotype as major risk factors [1-4]. Primary risk factors for developing AD include aging and number of copies of the apolipoprotein E (APOE) ε4 allele. Altered sphingolipid metabolism is increasingly implicated in early AD. However, the relationship between early plasma and brain sphingolipid changes-particularly in the context of APOE genotype-remains poorly defined. In this study, we analyzed plasma and brain sphingolipid profiles in transgenic AD mice carrying human APOE3 or APOE4 variants, with or without familial AD mutations (E3FAD and E4FAD). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we assessed 110 sphingolipid species across four major classes (ceramides (Cers), hexosylceramides (HexCers), lactosylceramides (LacCers), and sphingomyelins (SMs)) at 2, 4, and 6 months in plasma and at 6 months in brain tissue in the cortex, hippocampus, striatum, and cerebellum. Our results demonstrate that early plasma sphingolipid alterations are largely driven by APOE genotype rather than AD pathology. Specifically, APOE4 carriers showed significant increases in SM species and reductions in Cer species compared to APOE3 carriers, independent of age or AD genotype. Brain lipid profiles showed minimal changes across genotypes after region correction. However, combined p-value analyses revealed APOE- and EFAD-dependent differences in the composition of primarily cortical sphingolipids. ROC analyses demonstrated high discriminative power of plasma sphingolipids for APOE, but not for AD genotype. These findings suggest that early plasma lipid profiles in female 5xFAD mice are more strongly influenced by APOE genotype than by overt AD pathology, potentially reflecting systemic pathways linked to APOE4-associated AD risk, while early disease-associated changes in the brain appear to be subtle and region-specific. These results underscore the importance of accounting for APOE genotype in early-stage AD lipidomic studies and in the interpretation of peripheral lipid biomarkers.
Collapse
Affiliation(s)
- Daan van Kruining
- School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Mario Losen
- School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Pharmacology, University of Oxford, Oxford, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven 3000, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven 3000, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, KU Leuven, Leuven 3000, Belgium
| | - Maarten Honing
- Maastricht Multimodal Molecular Imaging Institute (M4I), University of Maastricht, the Netherlands
| | - Pilar Martinez-Martinez
- School for Mental Health and Neuroscience, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, the Netherlands; Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Cai Y, Pinheiro-de-Sousa I, Slobodyanyuk M, Chen F, Huynh T, Kanyo J, Tang P, Fuentes LA, Braker A, Welch R, Huttner A, Tong L, Yuan P, Lam TT, Petsalaki E, Reimand J, Nairn AC, Grutzendler J. Myelin-axon interface vulnerability in Alzheimer's disease revealed by subcellular proteomics and imaging of human and mouse brain. Nat Neurosci 2025:10.1038/s41593-025-01973-8. [PMID: 40514588 DOI: 10.1038/s41593-025-01973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/04/2025] [Indexed: 06/16/2025]
Abstract
Myelin ensheathment is essential for rapid axonal conduction, metabolic support and neuronal plasticity. In Alzheimer's disease (AD), disruptions in myelin and axonal structures occur, although the underlying mechanisms remain unclear. We implemented proximity labeling subcellular proteomics of the myelin-axon interface in postmortem human brains from AD donors and 15-month-old male and female 5XFAD mice. We uncovered multiple dysregulated signaling pathways and ligand-receptor interactions, including those linked to amyloid-β processing, axonal outgrowth and lipid metabolism. Expansion microscopy confirmed the subcellular localization of top proteomic hits and revealed amyloid-β aggregation within the internodal periaxonal space and paranodal/juxtaparanodal channels. Although overall myelin coverage is preserved, we found reduced paranode density, aberrant myelination and altered paranode positioning around amyloid-plaque-associated dystrophic axons. These findings suggest that the myelin-axon interface is a critical site of protein aggregation and disrupted neuro-glial signaling in AD.
Collapse
Affiliation(s)
- Yifei Cai
- Department of Neurology, Yale University, New Haven, CT, USA.
| | | | - Mykhaylo Slobodyanyuk
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Fuyi Chen
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Tram Huynh
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale University, New Haven, CT, USA
| | - Peiyang Tang
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Lukas A Fuentes
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Amber Braker
- Yale College, Yale University, New Haven, CT, USA
| | - Rachel Welch
- Yale College, Yale University, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Lei Tong
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Peng Yuan
- Department of Neurology, Yale University, New Haven, CT, USA
- Department of Rehabilitation Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
| | - TuKiet T Lam
- Keck MS & Proteomics Resource, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Jüri Reimand
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
- Department of Pharmacology, Yale University, New Haven, CT, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Prakash P, Manchanda P, Paouri E, Bisht K, Sharma K, Rajpoot J, Wendt V, Hossain A, Wijewardhane PR, Randolph CE, Chen Y, Stanko S, Gasmi N, Gjojdeshi A, Card S, Fine J, Jethava KP, Clark MG, Dong B, Ma S, Crockett A, Thayer EA, Nicolas M, Davis R, Hardikar D, Allende D, Prayson RA, Zhang C, Davalos D, Chopra G. Amyloid-β induces lipid droplet-mediated microglial dysfunction via the enzyme DGAT2 in Alzheimer's disease. Immunity 2025; 58:1536-1552.e8. [PMID: 40393454 PMCID: PMC12168635 DOI: 10.1016/j.immuni.2025.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/30/2024] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
Microglial phagocytosis genes have been linked to increased risk for Alzheimer's disease (AD), but the mechanisms translating genetic association to cellular dysfunction remain unknown. Here, we showed that microglia formed lipid droplets (LDs) upon amyloid-β (Aβ) exposure and that LD loads increased with proximity to amyloid plaques in brains from individuals with AD and the 5xFAD mouse model. LD-laden microglia exhibited defects in Aβ phagocytosis, and unbiased lipidomic analyses identified a parallel decrease in free fatty acids (FFAs) and increase in triacylglycerols (TGs) as the key metabolic transition underlying LD formation. Diacylglycerol O-acyltransferase 2 (DGAT2)-a key enzyme that converts FFAs to TGs-promoted microglial LD formation and was increased in mouse 5xFAD and human AD brains. Pharmacologically targeting DGAT2 improved microglial uptake of Aβ and reduced plaque load and neuronal damage in 5xFAD mice. These findings identify a lipid-mediated mechanism underlying microglial dysfunction that could become a therapeutic target for AD.
Collapse
Affiliation(s)
- Priya Prakash
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Palak Manchanda
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Evi Paouri
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Kanchan Bisht
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kaushik Sharma
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jitika Rajpoot
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Victoria Wendt
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ahad Hossain
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | - Caitlin E Randolph
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Yihao Chen
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah Stanko
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nadia Gasmi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Anxhela Gjojdeshi
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Sophie Card
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jonathan Fine
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Krupal P Jethava
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew G Clark
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Bin Dong
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Seohee Ma
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Alexis Crockett
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Elizabeth A Thayer
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Marlo Nicolas
- Division of Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Ryann Davis
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dhruv Hardikar
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Daniela Allende
- Division of Pathology, Cleveland Clinic, Cleveland, OH 44106, USA
| | | | - Chi Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Zengeler KE, Hollis A, Deutsch TCJ, Samuels JD, Ennerfelt H, Moore KA, Steacy EJ, Sabapathy V, Sharma R, Patel MK, Lukens JR. Inflammasome signaling in astrocytes modulates hippocampal plasticity. Immunity 2025; 58:1519-1535.e11. [PMID: 40318630 PMCID: PMC12158643 DOI: 10.1016/j.immuni.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/13/2024] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
Emerging evidence indicates that a baseline level of controlled innate immune signaling is required to support proper brain function. However, little is known about the function of most innate immune pathways in homeostatic neurobiology. Here, we report a role for astrocyte-dependent inflammasome signaling in regulating hippocampal plasticity. Inflammasomes are multiprotein complexes that promote caspase-1-mediated interleukin (IL)-1 and IL-18 production in response to pathogens and tissue damage. We observed that inflammasome complex formation was regularly detected under homeostasis in hippocampal astrocytes and that its assembly is dynamically regulated in response to learning and regional activity. Conditional ablation of caspase-1 in astrocytes limited hyperexcitability in an acute seizure model and impacted hippocampal plasticity via modulation of synaptic protein density, neuronal activity, and perineuronal net coverage. Caspase-1 and IL-18 regulated hippocampal IL-33 production and related plasticity. These findings reveal a homeostatic function for astrocyte inflammasome activity in regulating hippocampal physiology in health and disease.
Collapse
Affiliation(s)
- Kristine E Zengeler
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ava Hollis
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Tyler C J Deutsch
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Joshua D Samuels
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Hannah Ennerfelt
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 24304, USA
| | - Katelyn A Moore
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric J Steacy
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Vikram Sabapathy
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA 22908, USA
| | - Rahul Sharma
- Division of Nephrology, Department of Medicine, Center for Immunity, Inflammation and Regenerative Medicine (CIIR), University of Virginia, Charlottesville, VA 22908, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - John R Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
7
|
Shin SJ, Park YH, Nam Y, Chung H, Kim S, Moon M. Localization and Pathological Implications of Lipopolysaccharide in the Brains of 5XFAD Mice. Mol Neurobiol 2025:10.1007/s12035-025-05107-w. [PMID: 40490661 DOI: 10.1007/s12035-025-05107-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 05/27/2025] [Indexed: 06/11/2025]
Abstract
Alzheimer's disease (AD) is an irreversible disease characterized by a complex pathophysiology. Recent evidence consistently identifies inflammation as one of the contributing factors, along with the pathological aggregation and accumulation of amyloid-β (Aβ) peptides and hyperphosphorylated tau protein. Inflammation is suggested to have specific causative agents, of which lipopolysaccharide (LPS) may be important in AD. Interestingly, elevated LPS levels are found in patients with AD, and these elevated levels cause cognitive dysfunction in AD patients. Moreover, LPS contributes to neuroinflammation and Aβ and tau pathology in AD. However, questions remain about LPS presence/distribution in AD brains and its relationship with AD pathology. This study investigated (1) the changes in LPS presence/distribution in wild-type (WT) and 5XFAD mice, (2) the pathological role of LPS on Aβ and tau aggregation, and (3) the effect of LPS on neuroinflammatory response in vitro and in vivo. LPS accumulations were significantly increased in the 5XFAD brains compared to WT brains. Particularly, LPS distribution is increasing in the 5XFAD brains in an AD progression-dependent manner. Furthermore, LPS significantly increased aggregation of Aβ and tau and deteriorated neuroinflammatory response in vitro and in vivo. Thus, our results suggest that LPS contributes to AD pathology and modulation of LPS levels could be an effective therapeutic strategy for AD.
Collapse
Affiliation(s)
- Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea
| | - Hyunju Chung
- Department of Core Research Laboratory, Medical Science Research Institute, Kyung Hee University Hospital at Gangdong, Seoul, 05278, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Sciencee, Konyang University, Daejeon, 35365, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-Ro, Seo-Gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Sciencee, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
8
|
Gomez AR, Byun HR, Wu S, Muhammad AKMG, Ikbariyeh J, Chen J, Muro A, Li L, Bernstein KE, Ainsworth R, Tourtellotte WG. Boosting angiotensin-converting enzyme (ACE) in microglia protects against Alzheimer's disease in 5xFAD mice. NATURE AGING 2025:10.1038/s43587-025-00879-1. [PMID: 40490625 DOI: 10.1038/s43587-025-00879-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 04/17/2025] [Indexed: 06/11/2025]
Abstract
Genome-wide association studies have identified many gene polymorphisms associated with an increased risk of developing late-onset Alzheimer's disease (LOAD). Many of these LOAD risk-associated alleles alter disease pathogenesis by influencing innate immune responses and lipid metabolism of microglia (MG). Here we show that boosting the expression of angiotensin-converting enzyme (ACE), a genome-wide association study LOAD risk-associated gene product, specifically in MG, reduces amyloid-β (Aβ) plaque load, preserves vulnerable neurons and excitatory synapses, and significantly reduces learning and memory abnormalities in the 5xFAD amyloid mouse model of AD. ACE-expressing MG surround plaques more frequently and they have increased Aβ phagocytosis, endolysosomal trafficking and spleen tyrosine kinase activation downstream of the major Aβ receptors, triggering receptor expressed on myeloid cells 2 (Trem2) and C-type lectin domain family 7 member A (Clec7a). These findings establish a role for ACE in enhancing microglial immune function and they identify a potential use for ACE-expressing MG as a cell-based therapy to augment endogenous microglial responses to Aβ in AD.
Collapse
Affiliation(s)
- Andrew R Gomez
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyae Ran Byun
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shaogen Wu
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - A K M Ghulam Muhammad
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jasmine Ikbariyeh
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jaelin Chen
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alek Muro
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lin Li
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard Ainsworth
- Kao Autoimmunity Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Warren G Tourtellotte
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Hu B, Shi Y, Xiong F, Chen YT, Zhu X, Carrillo E, Wen X, Drolet N, Rajpurohit CS, Xu X, Lee DF, Soto C, Zhong S, Jayaraman V, Zheng H, Li W. Rewired m6A of promoter antisense RNAs in Alzheimer's disease regulates neuronal genes in 3D nucleome. Nat Commun 2025; 16:5251. [PMID: 40480976 PMCID: PMC12144123 DOI: 10.1038/s41467-025-60378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 05/22/2025] [Indexed: 06/11/2025] Open
Abstract
N6-methyladenosine (m6A) is an abundant internal RNA modification that can impact gene expression at both post-transcriptional and transcriptional levels. However, the landscapes and functions of m6A in human brains and neurodegenerative diseases, including Alzheimer's disease (AD), are under-explored. Here, we examined RNA m6A methylome using total RNA-seq and meRIP-seq in middle frontal cortex of post-mortem brains from individuals with or without AD, which revealed m6A alteration on both mRNAs and various noncoding RNAs. Notably, many promoter-antisense RNAs (paRNAs) displayed cell-type-specific expression and changes in AD, including one produced adjacent to MAPT that encodes the Tau protein. MAPT-paRNA is highly expressed in neurons, and m6A positively controls its expression. In iPSC-derived human excitatory neurons, MAPT-paRNA does not impact the nearby MAPT mRNA, but instead promotes expression of hundreds of neuronal and synaptic genes, and is protective against excitotoxicity. Analysis of single nuclei RNA-DNA interactome in human brains supports that brain paRNAs interact with both cis- and trans-chromosomal target genes to impact their transcription. These data reveal landscapes and functions of noncoding RNAs and m6A in brain gene regulation and AD pathogenesis.
Collapse
Affiliation(s)
- Benxia Hu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yuqiang Shi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yi-Ting Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Elisa Carrillo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
| | - Nathan Drolet
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | | | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, USA
| | - Dung-Fang Lee
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Soto
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Sheng Zhong
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
10
|
Varma VR, An Y, Kac PR, Bilgel M, Moghekar A, Loeffler T, Amschl D, Daurer M, Prokesch M, Troncoso J, Blennow K, Zetterberg H, Ashton NJ, Ferrucci L, Resnick SM, Thambisetty M. Longitudinal progression of blood biomarkers reveals a key role of reactive astrocytosis in preclinical Alzheimer's disease. MED 2025:100724. [PMID: 40494355 DOI: 10.1016/j.medj.2025.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 05/05/2025] [Indexed: 06/18/2025]
Abstract
BACKGROUND Defining the progression of blood biomarkers in Alzheimer's disease (AD) is essential for targeting treatments in patients most likely to benefit from early intervention. We delineated the temporal ordering of blood biomarkers a decade prior to the onset of AD, explored associations with AD brain pathology, and examined the relationship between reactive astrocytosis in the brain and plasma in a transgenic mouse model. METHODS We analyzed plasma blood biomarkers using the Quanterix HD-X instrument in case-control and postmortem cohorts from the Baltimore Longitudinal Study on Aging (BLSA). We assessed plasma and cortical reactive astrocytosis, measured by glial fibrillary acidic protein (GFAP), in 5xFAD transgenic and wild-type mice. FINDINGS In AD-converters (N = 158, 377 samples), higher plasma GFAP levels are observed 10 years prior to the onset of cognitive impairment due to AD compared with individuals who remain cognitively unimpaired (N = 160, 379 samples). Plasma GFAP levels are highest in neuropathologically confirmed AD, intermediate in asymptomatic AD, and lowest in cognitively unimpaired and associated with severity of neuritic plaques and neurofibrillary tangles. GFAP-labeled immunoreactive astrocytes in the cortex of 3- and 7-month-old 5xFAD transgenic mice increased relative to wild-type mice and higher blood GFAP concentration was associated with more GFAP-expressing astrocytes. CONCLUSIONS Reactive astrocytosis, assessed by elevated GFAP levels, is an early event in the progression of blood biomarker changes in preclinical AD, may be an early marker of AD pathogenesis, and a promising therapeutic target. FUNDING Intramural Research Program, NIA.
Collapse
Affiliation(s)
- Vijay R Varma
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Przemek R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Murat Bilgel
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Tina Loeffler
- Scantox Neuro GmbH, Parkring 12, Grambach 8074, Austria
| | - David Amschl
- Scantox Neuro GmbH, Parkring 12, Grambach 8074, Austria
| | | | | | - Juan Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Banner Alzheimer's Institute and University of Arizona, Pheonix, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA.
| |
Collapse
|
11
|
Kokkali M, Karali K, Thanou E, Papadopoulou MA, Zota I, Tsimpolis A, Efstathopoulos P, Calogeropoulou T, Li KW, Sidiropoulou K, Gravanis A, Charalampopoulos I. Multimodal beneficial effects of BNN27, a nerve growth factor synthetic mimetic, in the 5xFAD mouse model of Alzheimer's disease. Mol Psychiatry 2025; 30:2265-2283. [PMID: 39587294 PMCID: PMC12092300 DOI: 10.1038/s41380-024-02833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Alzheimer's Disease (AD) is an incurable and debilitating progressive, neurodegenerative disorder which is the leading cause of dementia worldwide. Neuropathologically, AD is characterized by the accumulation of Aβ amyloid plaques in the microenvironment of brain cells and neurovascular walls, chronic neuroinflammation, resulting in neuronal and synaptic loss, myelin and axonal failure, as well as significant reduction in adult hippocampal neurogenesis. The hippocampal formation is particularly vulnerable to this degenerative process, due to early dysfunction of the cholinergic circuit. Neurotrophic factors consist major regulatory molecules and their decline in AD is considered as an important cause of disease onset and progression. Novel pharmacological approaches are targeting the downstream pathways controlled by neurotrophins, such as nerve growth factor (NGF) receptors, TrkA and p75NTR, which enhance hippocampal neurogenic capacity and neuroprotective mechanisms, and potentially counteract the neurotoxic effects of amyloid deposition. BNN27 is a non-toxic, newly developed 17-spiro-steroid analog, penetrating the blood-brain-barrier (BBB) and mimicking the neuroprotective effects of NGF, acting as selective activator of its receptors, both TrkA and p75NTR, thus promoting survival of various neuronal cell types. Our present research aims at determining whether and which aspects of the AD-related pathology, BNN27 is able to alleviate, exploring the cellular and molecular AD components and link these changes with improvements in the cognitive performance of an animal AD model, the 5xFAD mice. Our results clearly indicate that BNN27 administration significantly reduced amyloid-β load in whole brain of the animals, enhanced adult hippocampal neurogenesis, restored cholinergic function and synaptogenesis, reducing inflammatory activation and leading to significant restoration of cognitive functions. BNN27 may represent a new lead multimodal molecule with neuroprotective, neurogenic and anti-neuroinflammatory actions for developing druggable anti-Alzheimeric agents. Proteomics data are available via ProteomeXchange with the identifier PXD044699.
Collapse
Affiliation(s)
- Maria Kokkali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Kanelina Karali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Evangelia Thanou
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Maria Anna Papadopoulou
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioanna Zota
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Alexandros Tsimpolis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | | | | | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics & Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Kyriaki Sidiropoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Heraklion, 71003, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, 71003, Greece.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, 71003, Greece.
| |
Collapse
|
12
|
Samokhina E, Mangat A, Malladi CS, Gyengesi E, Morley JW, Buskila Y. Potassium homeostasis during disease progression of Alzheimer's disease. J Physiol 2025; 603:3405-3424. [PMID: 40366190 DOI: 10.1113/jp287903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder characterized by neuronal loss leading to dementia and ultimately death. Whilst the loss of neurons is central to this disease, it is becoming clear that glia, specifically astrocytes, contribute to the onset and progression of neurodegeneration. The role of astrocytes in maintaining ion homeostasis in the extracellular milieu is fundamental for multiple brain functions, including synaptic plasticity and neuronal excitability, which are compromised during AD and affect neuronal signalling. In this study, we measured the astrocytic K+ clearance rate in the hippocampus and somatosensory cortex of a mouse model for AD during disease progression. Our results establish that astrocytic [K+]o (extracellular K+ concentration) clearance in the hippocampus is reduced in symptomatic 5xFAD mice, and this decrease is region-specific, as no significant alterations were detected in the superficial layers of the somatosensory cortex. The decrease in the [K+]o clearance rate correlated with a significant reduction in the expression and conductivity of Kir4.1 channels and a decline in the number of primary connected astrocytes. Moreover, astrocytes in the hippocampus of symptomatic 5xFAD mice demonstrated increased reactivity which was accompanied by an increased excitability and altered spiking profile of nearby neurons. These findings indicate that the supportive function astrocytes typically provide to nearby neurons is diminished during disease progression, which affects the neuronal circuit signalling in this area and provides a potential explanation for the increased vulnerability of neurons in AD. KEY POINTS: Astrocytic potassium clearance from the extracellular milleu is fundamental for multiple brain functions. Alterations in the clearance rate can affect the excitability and overall viability of neurons. A symptomatic mouse model for Alzheimer's disease (5xFAD) exhibits a significant decline in astrocytic K+ clearance at the hippocampus, but not the somatosensory cortex. The decrease in the clearance rate correlated with a reduction in the expression and conductivity of astrocytic Kir4.1 channels and a decrease in the number of primary connected astrocytes, specifically at the stratum lacunosum moleculare layer of the CA1 region. Astrocytes in the hippocampus of symptomatic 5xFAD mice displayed increased reactivity. The excitability profile and firing patterns of neurons at the hippocampus were affected by alterations in K+ homeostasis, indicating that the supportive function astrocytes typically provide to nearby neurons is diminished during progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Armaan Mangat
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Chandra S Malladi
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Erika Gyengesi
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- The MARCS Institute, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
13
|
Di Yang, Wang C, Tao Q, Liu L, Jin M, Cai H, Zheng M, Gong M, Yu L, Du J, Luo Q, Shen J, Qin K, Chu D. Toxoplasma TgCtwh3 Δ rop16 Ⅰ/Ⅲ accelerates neuronal apoptosis and APP production in mouse with acute infection. IBRO Neurosci Rep 2025; 18:830-843. [PMID: 40519998 PMCID: PMC12166438 DOI: 10.1016/j.ibneur.2025.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 05/21/2025] [Accepted: 05/21/2025] [Indexed: 06/18/2025] Open
Abstract
Objective To explore the mechanism by which rop16 Ⅰ/Ⅲ -deficient/gra15 Ⅱ -dominant toxoplasma gondii Chinese 1 genotype Wh3 (TgCtwh3 Δrop16 Ⅰ/Ⅲ ) strain induced neuron apoptosis, APP and BACE1 production in vivo and vitro. Method BALB/c mice were infected by intraperitoneal injection with TgCtwh3 wild type (TgCtwh3 WT) and TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoites, respectively. One week after infection, the morphology and number of hippocampal neurons were examined by hematoxylin-eosin (H&E) and Nissl staining. Expression levels of apoptosis-related proteins, APP, BACE1 as well as inflammatory factors proteins and genes in the hippocampus were evaluated using western blotting and qRT-PCR. The hippocampal neuron cell line HT22 was infected with TgCtwh3 WT and TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoite, respectively, and the expression of target proteins was analyzed through immunofluorescence staining and western blotting. Furthermore, HT22 apoptosis was assessed using flow cytometry. Result BALB/c mice injected with TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoites presented abnormal appearance and posture changes as well as declined vitality. The hippocampus assay demonstrated that TgCtwh3 Δrop16 Ⅰ/Ⅲ toxoplasma caused neuron loss, neuron alignment disorder, neuronal nucleus abnormal deep-stained and neuron apoptosis. Furthermore, TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoites caused obvious production of APP, BACE1and expression increase of pro-inflammatory factors in hippocampal tissue compared to these in mice infected with TgCtwh3 WT tachyzoites. Contrarily, the expression of transforming growth factor beta 1 (TGF-β1), a pivotal anti-inflammatory cytokine was significantly decreased in TgCtwh3 Δrop16 Ⅰ/Ⅲ infected mice. Further study showed that TgCtwh3 Δrop16 Ⅰ/Ⅲ tachyzoites induced HT22 apoptosis through triggering ERS, meanwhile promoted HT22 to produce APP, BACE1 by activating NF-κB signaling pathway. Conclusion Our results indicated that the GRA15Ⅱ effector may play a crucial part in neuron apoptosis, pro-inflammatory factors secretion, and APP, BACE1 production. Inversely, ROP16Ⅰ/Ⅲ effector may play a potentially protective role in this process.
Collapse
Affiliation(s)
- Di Yang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University. Anhui Public Health Clinical Center, Hefei, China
| | - Cong Wang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Qing Tao
- Department of Laboratory Medicine, Affiliated Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Lei Liu
- Department of Blood Transfusion, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengmeng Jin
- Maternity and Child Health Hospital of Anhui Province, the Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Haiping Cai
- Spine center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meijuan Zheng
- Department of Laboratory Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengtao Gong
- Department of Laboratory Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingli Luo
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Kunpeng Qin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University. Anhui Public Health Clinical Center, Hefei, China
| | - Deyong Chu
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Latina V, De Introna M, Malerba F, Florio R, Balzamino BO, Di Natale G, Sciacca MFM, Pappalardo G, Micera A, Pignataro A, Calissano P, Amadoro G. Acute targeting of N-terminal tau protein has long-lasting beneficial effects in Tg2576 APP/Aβ mouse model by reducing cognitive impairment, cerebral Aβ-amyloidosis, synaptic remodeling and microgliosis later in life. Acta Neuropathol Commun 2025; 13:121. [PMID: 40442822 PMCID: PMC12123992 DOI: 10.1186/s40478-025-02022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/30/2025] [Indexed: 06/02/2025] Open
Abstract
Even though the number of patients suffering from Alzheimer's Disease (AD) is rapidly growing worldwide, only a few symptomatic treatments have been approved for clinical use, pointing out the urgent need for more effective disease-modifying therapies that actually alter the progression of this neurodegenerative disorder which is characterized by co-occurence of both Amyloid beta (Aβ) and tau neuropathologies. Preclinical and clinical evidence suggests that a link between Aβ and tau drives the entire continuum of AD pathobiology. 12A12 is a monoclonal antibody (mAb) which offers neuroprotection into two transgenic lines of AD, including Tg2576 that overexpresses Swedish mutation (KM670/671NL) of Amyloid Precursor Protein (APP, isoform 695) and 3xTg (APP Swedish, MAPT P301L, and PSEN1 M146V), by targeting the 20-22kDa N-terminal tau fragments (NH2htau). In particular, acute (over 14 days with 4 doses), intravenous injection of 12A12mAb leads to significant improvement of cognitive, biochemical and histopathological AD signs in symptomatic 6-month-old Tg2576, a well-established transgenic mouse model that mimics the human amyloidosis with an age-dependent Aβ accumulation/aggregation and plaque deposition. Here, we report that Tg2576 mice, immunized with 12A12mAb at 6 months of age and returned to their home cage for additional 3 months, exhibit preserved spatial memory despite the anticipated interruption of antibody administration (discontinuous treatment). This enduring beneficial effect on memory deficit (up to 90 days after the last injection) is accompanied by normalization in the synaptic imbalance and microgliosis along with decrease of the most toxic A11-positive prefibrillar oligomers and inverse increase in 4kDa monomeric form(s) of Aβ 1-42. These findings reveal that: (i) soluble, pathogenetic tau specie(s) located at the N-terminal domain of protein early synergizes with Aβ in driving the progression of AD neuropathology; (ii) transient immunoneutralization of the NH2htau following short-term treatment with 12A12mAb exerts preventive, long-lasting neuroprotective effects, at least in part by interfering at "pre-plaque" stage with the progressive deposition of insoluble, fibrillar Aβ via a shift of its aggregation pathway into its less harmful, unaggregated monomeric forms. Taken together, these findings represent a strong rationale for the advancement of 12A12mAb to clinical stage aiming at preventing the Aβ-dependent neurodegeneration by lowering the cerebral levels of NH2htau in humans suffering from chronic, slow-progressing AD.
Collapse
Affiliation(s)
- Valentina Latina
- Institute of Translational Pharmacology (IFT)-National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
| | - Margherita De Introna
- Centro Di Ricerca Europeo Sul Cervello (CERC), IRCCS Santa Lucia Foundation (FSL), Via Fosso del Fiorano 43-44, 00143, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Via Montpellier, 1, 00133, Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
- Institute of Nanotechnology Campus Ecotekne- National Research Council (CNR), Via Monteroni, 73100, Lecce, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184, Rome, Italy
| | - Giuseppe Di Natale
- Institute of Crystallography (IC)-National Research Council (CNR), Via Paolo Gaifami 18, 95126, Catania, Italy
| | | | - Giuseppe Pappalardo
- Institute of Crystallography (IC)-National Research Council (CNR), Via Paolo Gaifami 18, 95126, Catania, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184, Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT)-National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
- Centro Di Ricerca Europeo Sul Cervello (CERC), IRCCS Santa Lucia Foundation (FSL), Via Fosso del Fiorano 43-44, 00143, Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy.
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161, Rome, Italy.
| |
Collapse
|
15
|
Koh Y, Vázquez-Rosa E, Gao F, Li H, Chakraborty S, Tripathi SJ, Barker S, Bud Z, Bangalore A, Kandjoze UP, León-Alvarado RA, Sridharan PS, Cordova BA, Yu Y, Hyung J, Fang H, Singh S, Katabathula R, LaFramboise T, Kasturi L, Lutterbaugh J, Beard L, Cordova E, Cintrón-Pérez CJ, Franke K, Fragoso MF, Miller E, Indrakumar V, Noel KL, Dhar M, Ajroud K, Zamudio C, Lopes FBTP, Bambakidis E, Zhu X, Wilson B, Flanagan ME, Gefen T, Fujioka H, Fink SP, Desai AB, Dawson D, Williams NS, Kim YK, Ready JM, Paul BD, Shin MK, Markowitz SD, Pieper AA. Inhibiting 15-PGDH blocks blood-brain barrier deterioration and protects mice from Alzheimer's disease and traumatic brain injury. Proc Natl Acad Sci U S A 2025; 122:e2417224122. [PMID: 40397680 DOI: 10.1073/pnas.2417224122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 04/17/2025] [Indexed: 05/23/2025] Open
Abstract
Alzheimer's disease (AD) and traumatic brain injury (TBI) are currently untreatable neurodegenerative disorders afflicting millions of people worldwide. These conditions are pathologically related, and TBI is one of the greatest risk factors for AD. Although blood-brain barrier (BBB) disruption drives progression of both AD and TBI, strategies to preserve BBB integrity have been hindered by lack of actionable targets. Here, we identify 15-hydroxyprostaglandin dehydrogenase (15-PGDH), an enzyme that catabolizes eicosanoids and other anti-inflammatory mediators, as a therapeutic candidate that protects the BBB. We demonstrate that 15-PGDH is enriched in BBB-associated myeloid cells and becomes markedly elevated in human and mouse models of AD and TBI, as well as aging, another major risk factor for AD. Pathological increase in 15-PGDH correlates with pronounced oxidative stress, neuroinflammation, and neurodegeneration, alongside profound BBB structural degeneration characterized by astrocytic endfeet swelling and functional impairment. Pharmacologic inhibition or genetic reduction of 15-PGDH in AD and TBI models strikingly mitigates oxidative damage, suppresses neuroinflammation, and restores BBB integrity. Most notably, inhibiting 15-PGDH not only halts neurodegeneration but also preserves cognitive function at levels indistinguishable from healthy controls. Remarkably, these neuroprotective effects in AD are achieved without affecting amyloid pathology, underscoring a noncanonical mechanism for treating AD. In a murine microglia cell line exposed to amyloid beta oligomer, major protection was demonstrated by multiple anti-inflammatory substrates that 15-PGDH degrades. Thus, our findings position 15-PGDH inhibition as a broad-spectrum strategy to protect the BBB and thereby preserve brain health and cognition in AD and TBI.
Collapse
Affiliation(s)
- Yeojung Koh
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Pathology, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Edwin Vázquez-Rosa
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Pathology, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Farrah Gao
- Department of Genetics and Genome Sciences School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Hongyun Li
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Sarah Barker
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Pathology, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Zea Bud
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH 44106
| | - Anusha Bangalore
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Uapingena P Kandjoze
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Psychology, Neuroscience Program Earlham College, Richmond, IN 47374
| | - Rose A León-Alvarado
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Psychology, Neuroscience Program Earlham College, Richmond, IN 47374
| | - Preethy S Sridharan
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Brittany A Cordova
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Youngmin Yu
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606
| | - Jiwon Hyung
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Hua Fang
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Hathaway Brown School, Shaker Heights, OH 44122
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Salendra Singh
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195
| | | | - Thomas LaFramboise
- Department of Genetics and Genome Sciences School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Lakshmi Kasturi
- Department of Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - James Lutterbaugh
- Department of Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Lydia Beard
- Department of Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Erika Cordova
- Department of Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Coral J Cintrón-Pérez
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Kathryn Franke
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | | | - Emiko Miller
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Vidya Indrakumar
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Kamryn L Noel
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Matasha Dhar
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Kaouther Ajroud
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Pathology, Northwestern University, Chicago, IL 60611
| | - Carlos Zamudio
- Department of Pathology, Northwestern University, Chicago, IL 60611
| | - Filipa Blasco Tavares Pereira Lopes
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Evangeline Bambakidis
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Northwestern University Weinberg College of Arts and Sciences, Chicago, IL 60208
| | - Xiongwei Zhu
- Department of Pathology, School of Medicine Case Western Reserve University, Cleveland, OH 44106
| | - Brigid Wilson
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Department of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH 44106
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Pathology, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core Case, School of Medicine, Western Reserve University, Cleveland, OH 44016
| | - Stephen P Fink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Amar B Desai
- Department of Pathology, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Dawn Dawson
- Department of Pathology, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Young-Kwang Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD 21205
- The Solomon H. Snyder Department of Neuroscience, School of Medicine Johns Hopkins University, Baltimore, MD 21205
- Lieber Institute for Brain Development, Baltimore, MD 21205
| | - Min-Kyoo Shin
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sanford D Markowitz
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106
- Department of Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106
| | - Andrew A Pieper
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals, Cleveland Medical Center, Cleveland, OH 44106
- Geriatric Psychiatry, Geriatric Research Education and Clinical Center, Louis Stokes Veterans Affairs Medical Center, Cleveland, OH 44106
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Pathology, School of Medicine Case Western Reserve University, Cleveland, OH 44106
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
16
|
Sadleir KR, Gomez KP, Edwards AE, Patel AJ, Ley ML, Khatri AW, Guo J, Mahesh S, Watkins EA, Popovic J, Karunakaran DKP, Prokopenko D, Tanzi RE, Bustos B, Lubbe SJ, Demonbruen AR, McNally EM, Vassar R. Annexin A6 membrane repair protein protects against amyloid-induced dystrophic neurites and tau phosphorylation in Alzheimer's disease model mice. Acta Neuropathol 2025; 149:51. [PMID: 40411591 PMCID: PMC12103342 DOI: 10.1007/s00401-025-02888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025]
Abstract
In Alzheimer's disease, accumulation of amyloid-β (Aβ) peptide is thought to cause formation of neurofibrillary tangles composed of hyperphosphorylated tau protein, which correlates with neuronal loss and cognitive impairment, but the mechanism linking Aβ and tau pathologies is unknown. Dystrophic neurites, which surround Aβ plaques and accumulate phosphorylated tau and other proteins, may play a role in seeding and spreading of pathologic tau. Here, we investigate the novel hypothesis that improved membrane repair capacity decreases dystrophic neurite formation by protecting axons from Aβ-induced membrane damage. Using a ratiometric calcium sensor and a FRET-based calpain cleavage sensor, we demonstrate that dystrophic neurites in 5XFAD mice have elevated resting calcium levels and calpain activity because of putative membrane damage. Annexin A6, a plasma membrane repair in muscle and neurons, is present at plasma membrane of neurons and dystrophic neurites in murine and human brains. Overexpression of annexin A6 in brains of 5XFAD mice decreased size and quantity of dystrophic neurites and accumulation of phospho-tau181, an early biomarker of amyloid pathology. Phospho-tau231, another early amyloid biomarker, and phosphorylated of tau kinases, c-jun N-terminal kinase (JNK) and Calmodulin Kinase II (CaMKII) accumulate in dystrophic neurites in the brains of amyloid pathology mice and humans with AD, suggesting that dystrophic neurites are sites of active tau phosphorylation. Overexpression of dominant-negative annexin A6 in 5XFAD mice increased dystrophic neurites and phospho-tau181. Intracerebral injection of recombinant annexin A6 in 5XFAD and APP-NLGF knock-in mice resulted in localization of recombinant A6 to membranes of dystrophic neurites, suggesting therapeutic potential of recombinant annexin A6 for AD. In conclusion, dystrophic neurites have Aβ-induced membrane damage characterized by calcium elevation, calpain activation, and accumulation of tau kinases and phosphorylated tau. Overexpression of annexin A6 reduces dystrophic neurites and phospho-tau accumulation, suggesting that annexin A6-mediated membrane repair may represent a novel therapeutic approach for AD.
Collapse
Affiliation(s)
- Katherine R Sadleir
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Karen P Gomez
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Abigail E Edwards
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Armana J Patel
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Makenna L Ley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ammaarah W Khatri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joanna Guo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Shreya Mahesh
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elyse A Watkins
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jelena Popovic
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | | | - Dmitry Prokopenko
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bernabe Bustos
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Steven J Lubbe
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis R Demonbruen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Kraller M, Faßbender J, Jabali A, Kroeger J, Fink B, Popper B, Ungerer M, Christlmeier MA. Novel fully human high-affinity anti-TREM2 antibody shows efficacy in clinically relevant Alzheimer´s mouse model. Alzheimers Res Ther 2025; 17:114. [PMID: 40405265 PMCID: PMC12096560 DOI: 10.1186/s13195-025-01759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 05/07/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND New drugs to treat Alzheimer´s disease (AD) are urgently needed. Human triggering receptor expressed on myeloid cells 2 (hTREM2) is a validated drug target which is genetically associated with AD. Existing anti-hTREM2 antibodies were raised in animal immune systems, and subsequently humanized, which may incur immunological complications upon repeated preventive or therapeutic applications in vivo in AD patients. In addition, anti-hTREM2 antibodies should be optimized for both, efficacy and safety. METHODS A novel fully human monoclonal brain-targeting anti-hTREM2 antibody M07-TFN was created. Binding affinities, cell viabilities, and agonist potencies were investigated on rhTREM2 and in human microglia. Transcytosis assays modeled blood-brain barrier translocation (BBB). Behavior tests were carried out in 5 × familiar AD (5xFAD) mice of both genders, to test for brain function and cognition as well as hippocampus-dependent spatial memory using the Barnes maze. In addition, amyloid plaque formation was determined on brain sections at the end of the study. RESULTS M07-TFN showed higher binding affinities and stronger activation of hTREM2 signaling than all previously described anti-hTREM2 antibodies. p-Syk activation was increased 30-fold in hTREM2-overexpressing HEK293 cells and fourfold in human microglia cells compared to baseline. Human microglia viability significantly improved after stress testing. M07-TFN showed strong BBB translocation in a human BBB model, and exerted cross-reactivity to the mouse TREM2 stalk region, which allowed us to investigate M07-TFN directly in an AD mouse model. In 5xFAD mice, M07-TFN resulted in improved novel object location and better spatial orientation and memory, and significantly reduced plaque load. Additional safety investigations in mice showed no negative effects on blood cells or major organs. CONCLUSION Compared to existing humanized anti-hTREM2 antibodies that have been investigated in clinical trials, M07-TFN showed best-in-class affinities and agonist potencies. Being a fully human anti-hTREM2 antibody, M07-TFN holds the promise of reduced immunogenicity for use in human patients.
Collapse
Affiliation(s)
| | - Julia Faßbender
- Biomedical Center, Medical Faculty, Core Facility Animal Models, LMU Munich, 82151, Planegg-Martinsried, Germany
| | | | | | | | - Bastian Popper
- Biomedical Center, Medical Faculty, Core Facility Animal Models, LMU Munich, 82151, Planegg-Martinsried, Germany
| | | | | |
Collapse
|
18
|
Chen J, Zhu Z, Xu Y. Signs of Alzheimer's Disease: Tied to Aging. Int J Mol Sci 2025; 26:4974. [PMID: 40507786 PMCID: PMC12154111 DOI: 10.3390/ijms26114974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 06/16/2025] Open
Abstract
: Alzheimer's disease (AD) is a neurodegenerative disorder closely associated with aging, and its pathogenesis involves the interaction of multidimensional pathophysiologic processes. This review outlines the core mechanisms linking aging and AD. The amyloid cascade hypothesis emphasizes that abnormal deposition of amyloid-β (Aβ) triggers neuronal damage and synaptic dysfunction, which is exacerbated by aging-associated declines in protein clearance. Neuroinflammation, a synergistic pathogenetic factor in AD, is mediated by microglia activation, creating a vicious cycle with Aβ and tau pathology. The cholinergic hypothesis states that the degeneration of cholinergic neurons in the basal forebrain can lead to acetylcholine deficiency, which is directly associated with cognitive decline. Endothelial disorders promote neuroinflammation and metabolic waste accumulation through blood-brain barrier dysfunction and cerebral vascular abnormalities. In addition, glutamate-mediated excitotoxicity and mitochondrial dysfunction (e.g., oxidative stress and energy metabolism imbalance) further lead to neuronal death, and aging-associated declines in mitochondrial autophagy exacerbate such damage. This review also explores the application of animal models that mimic AD and aging in studying these mechanisms and summarizes therapeutic strategies targeting these pathways. Future studies need to integrate multi-targeted therapies and focus on the role of the aging microenvironment in regulating AD pathology in order to develop more effective early diagnosis and treatment options.
Collapse
Affiliation(s)
| | | | - Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun 130062, China; (J.C.); (Z.Z.)
| |
Collapse
|
19
|
Velazquez-Rivera E, Dey O, Kim NS, Cao W, Ye Q, Gao P, Thai A, Nguyen JK, Zhang H, Ting JT, Gopi M, Ren B, Holmes TC, Xu X. Specific targeting of brain endothelial cells using enhancer AAV vectors. Neuron 2025; 113:1562-1578.e6. [PMID: 40403707 DOI: 10.1016/j.neuron.2025.03.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 05/24/2025]
Abstract
Brain endothelial cells (BECs) in brain vasculature are critical structural and functional components of the blood brain barrier (BBB). Adeno-associated virus (AAV) capsids have previously been genetically engineered to confer specificity to endothelial cells, but these capsids show limited endothelial cell specificity that varies by delivery conditions. We developed a set of new BEC-enhancer AAV vectors that specifically target BECs based on the cis-regulatory elements identified from single-cell epigenetic datasets. Ex vivo and in vivo characterization of BEC-enhancer AAVs in wild-type, Ai9 reporter, and Alzheimer's disease model mouse brains show their utility for high transduction selectivity of the BECs with little off-target transduction in the liver. Our BEC-enhancer AAVs target the brain vasculature by systemic administration and can be minimally invasive in terms of the route of administration. They are useful new tools for delivering genetic payloads specifically to BECs for normal and diseased brain studies.
Collapse
Affiliation(s)
- Eric Velazquez-Rivera
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Oyshi Dey
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Nayoon S Kim
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Wenhao Cao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Qiao Ye
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Pan Gao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Andy Thai
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Jason K Nguyen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Hai Zhang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Jonathan T Ting
- Human Cell Types Program, Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - M Gopi
- Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Center for Neural Circuit Mapping (CNCM), University of California, Irvine, Irvine, CA 92697, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Center for Neural Circuit Mapping (CNCM), University of California, Irvine, Irvine, CA 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Department of Computer Science, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA; Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA; Center for Neural Circuit Mapping (CNCM), University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
20
|
Shen T, Tai W, Jiang D, Ma S, Zhong X, Zou Y, Zhang CL. GADD45G operates as a pathological sensor orchestrating reactive gliosis and neurodegeneration. Neuron 2025:S0896-6273(25)00345-9. [PMID: 40409253 DOI: 10.1016/j.neuron.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/28/2025] [Accepted: 04/29/2025] [Indexed: 05/25/2025]
Abstract
Reactive gliosis is a hallmark of neuropathology and offers a potential target for addressing numerous neurological diseases. Here, we show that growth arrest and DNA damage inducible gamma (GADD45G), a stress sensor in astrocytes, is a nodal orchestrator of reactive gliosis and neurodegeneration. GADD45G expression in astrocytes is sufficient to incite astrogliosis, microgliosis, synapse loss, compromised animal behavior, and the aggravation of Alzheimer's disease (AD). Conversely, silencing GADD45G specifically in astrocytes preserves synapses and rescues the histological and behavioral phenotypes of AD. Mechanistically, GADD45G controls the mitogen-activated protein kinase kinase kinase 4 (MAP3K4) and neuroimmune signaling pathways, including nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF3), leading to profound molecular changes and the secretion of various factors that regulate both cell-autonomous and cell-nonautonomous reactive gliosis and glia-neuron interactions. These results uncover GADD45G signaling as a promising therapeutic target for AD and potentially for numerous other neurological disorders.
Collapse
Affiliation(s)
- Tianjin Shen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenjiao Tai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dongfang Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Chen K, Morizawa YM, Nuriel T, Al-Dalahmah O, Xie Z, Yang G. Selective removal of astrocytic PERK protects against glymphatic impairment and decreases toxic aggregation of β-amyloid and tau. Neuron 2025:S0896-6273(25)00310-1. [PMID: 40403715 DOI: 10.1016/j.neuron.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/02/2025] [Accepted: 04/25/2025] [Indexed: 05/24/2025]
Abstract
Dysfunction of the glymphatic system, a brain-wide waste clearance network, is strongly linked to Alzheimer's disease (AD) and the accumulation of β-amyloid (Aβ) and tau proteins. Here, we identify an astrocytic signaling pathway that can be targeted to preserve glymphatic function and mitigate neurotoxic protein buildup. Analysis of astrocytes from both human AD brains and two transgenic mouse models (5XFAD and PS19) reveals robust activation of the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK)-α subunit of eukaryotic initiation factor 2 (eIF2α) branch of the unfolded protein response. Chronic PERK activation suppresses astrocytic protein synthesis and, through casein kinase 2 (CK2)-dependent mechanisms, disrupts the perivascular localization of aquaporin-4 (AQP4), a water channel essential for glymphatic flow. Importantly, astrocyte-specific PERK deletion or pharmacological inhibition restores AQP4 localization, enhances glymphatic clearance, reduces Aβ and tau pathology, and improves cognitive performance in mice. These findings highlight the critical role of the astrocytic PERK-CK2-AQP4 axis in glymphatic dysfunction and AD pathogenesis, positioning this pathway as a promising therapeutic target.
Collapse
Affiliation(s)
- Kai Chen
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yosuke M Morizawa
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tal Nuriel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Osama Al-Dalahmah
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
22
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
23
|
Fusaro L, Bangari DS, Pasterkamp RJ, Fernández-Ruiz J, Youssef SA, Sharma AK. Neurodegenerative Diseases: Pathogenesis and Preclinical Models for Translational Drug Discovery. Toxicol Pathol 2025:1926233251339105. [PMID: 40370030 DOI: 10.1177/01926233251339105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The fourth session of the 2024 European Society of Toxicologic Pathology (ESTP) Congress brought together lectures focused on the use of in vitro and in vivo models to investigate neurodegenerative diseases. Four presentations highlighted various aspects of neurodegenerative diseases including dementia, immune-mediated conditions, and neuromuscular disorders. The session began with an overview of animal models of dementia underscoring their critical role in understanding disease pathogenesis and supporting the development of effective therapeutic drugs. Subsequent presentations investigated immunological self-tolerance in autoimmune neurodegenerative diseases, such as multiple sclerosis and Guillain-Barré syndrome, and the application of in vitro models to study neuromuscular diseases such as amyotrophic lateral sclerosis. The final presentation examined cannabinoid-based therapeutic options for treating neurodegenerative diseases, highlighting their potential in neuroprotection and neurorepair. This session provided valuable insights into the latest research and advancements in neurodegenerative disease modeling and therapy, offering promising directions for improved modeling and therapeutic strategies.
Collapse
Affiliation(s)
- Laura Fusaro
- Denali Therapeutics, South San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ismeurt-Walmsley C, Giannoni P, Servant F, Mekki LN, Baranger K, Rivera S, Marin P, Lelouvier B, Claeysen S. The same but different: impact of animal facility sanitary status on a transgenic mouse model of Alzheimer's disease. mBio 2025; 16:e0400124. [PMID: 40243365 PMCID: PMC12077201 DOI: 10.1128/mbio.04001-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The gut-brain axis has emerged as a key player in the regulation of brain function and cognitive health. Gut microbiota dysbiosis has been observed in preclinical models of Alzheimer's disease and patients. Manipulating the composition of the gut microbiota enhances or delays neuropathology and cognitive deficits in mouse models. Accordingly, the health status of the animal facility may strongly influence these outcomes. In the present study, we longitudinally analyzed the fecal microbiota composition and amyloid pathology of 5XFAD mice housed in a specific opportunistic pathogen-free (SOPF) and a conventional facility. The composition of the microbiota of 5XFAD mice after aging in conventional facility showed marked differences compared to WT littermates that were not observed when the mice were bred in SOPF facility. The development of amyloid pathology was also enhanced by conventional housing. We then transplanted fecal microbiota (FMT) from both sources into wild-type (WT) mice and measured memory performance, assessed in the novel object recognition test, in transplanted animals. Mice transplanted with microbiota from conventionally bred 5XFAD mice showed impaired memory performance, whereas FMT from mice housed in SOPF facility did not induce memory deficits in transplanted mice. Finally, 18 weeks of housing SOPF-born animals in a conventional facility resulted in the reappearance of specific microbiota compositions in 5XFAD vs WT mice. In conclusion, these results show a strong impact of housing conditions on microbiota-associated phenotypes and question the relevance of breeding preclinical models in specific pathogen-free (SPF) facilities. IMPORTANCE Housing conditions affect the composition of the gut microbiota. Gut microbiota of 6-month-old conventionally bred Alzheimer's mice is dysbiotic. Gut dysbiosis is absent in Alzheimer's mice housed in highly sanitized facilities. Transfer of fecal microbiota from conventionally bred mice affects cognition. Microbiota of mice housed in highly sanitized facilities has no effect on cognition.
Collapse
Affiliation(s)
| | - Patrizia Giannoni
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| | | | - Linda-Nora Mekki
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| | - Kevin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, Provence-Alpes-Côte d'Azur, France
| | - Philippe Marin
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| | | | - Sylvie Claeysen
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, Occitanie, France
| |
Collapse
|
25
|
Marongiu R, Platholi J, Park L, Yu F, Sommer G, Woods C, Milner TA, Glass MJ. Promotion of neuroinflammation in select hippocampal regions in a mouse model of perimenopausal Alzheimer's disease. Front Mol Biosci 2025; 12:1597130. [PMID: 40438709 PMCID: PMC12116374 DOI: 10.3389/fmolb.2025.1597130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/22/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Alzheimer's disease, the most common form of dementia, is characterized by age-dependent amyloid beta (Ab) aggregation and accumulation, neuroinflammation, and cognitive deficits. Significantly, there are prominent sex differences in the risk, onset, progression, and severity of AD, as well as response to therapies, with disease burden disproportionately affecting women. Although menopause onset (i.e., perimenopause) may be a critical transition stage for AD susceptibility in women, the role of early ovarian decline in initial disease pathology, particularly key neuroinflammatory processes, is not well understood. Methods To study this, we developed a unique mouse model of perimenopausal AD by combining an accelerated ovarian failure (AOF) model of menopause induced by 4-vinylcyclohexene diepoxide (VCD) with the 5xFAD transgenic AD mouse model. To target early stages of disease progression, 5xFAD females were studied at a young age (∼4 months) and at the beginning stage of ovarian failure analogous to human perimenopause (termed "peri-AOF"), and compared to age-matched males. Assessment of neuropathology was performed by immunohistochemical labeling of Ab as well as markers of astrocyte and microglia activity in the hippocampus, a brain region involved in learning and memory that is deleteriously impacted during AD. Results Our results show that genotype, AOF, and sex contributed to AD-like pathology. Aggregation of Ab was heightened in female 5xFAD mice and further increased at peri-AOF, with hippocampal subregion specificity. Further, select increases in glial activation also paralleled Ab pathology in distinct hippocampal subregions. However, cognitive function was not affected by peri-AOF. Discussion These findings align with the hypothesis that perimenopause constitutes a period of susceptibility for AD pathogenesis in women.
Collapse
Affiliation(s)
- Roberta Marongiu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Neurological Surgery Department, Weill Cornell Medicine, New York, NY, United States
- Genetic Medicine Department, Weill Cornell Medicine, New York, NY, United States
| | - Jimcy Platholi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Anesthesiology Department, Weill Cornell Medicine, New York, NY, United States
| | - Laibak Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Garrett Sommer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
26
|
Pikus P, Turner RS, Rebeck GW. Mouse models of Anti-Aβ immunotherapies. Mol Neurodegener 2025; 20:57. [PMID: 40361247 PMCID: PMC12076828 DOI: 10.1186/s13024-025-00836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/05/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND The development of anti-amyloid-beta (Aβ) immunotherapies as the first disease modifying therapy for Alzheimer's Disease (AD) is a breakthrough of basic research and translational science. MAIN TEXT Genetically modified mouse models developed to study AD neuropathology and physiology were used for the discovery of Aβ immunotherapies and helped ultimately propel therapies to FDA approval. Nonetheless, the combination of modest efficacy and significant rates of an adverse side effect (amyloid related imaging abnormalities, ARIA), has prompted reverse translational research in these same mouse models to better understand the mechanism of the therapies. CONCLUSION This review considers the use of these mouse models in understanding the mechanisms of Aβ clearance, cerebral amyloid angiopathy (CAA), blood brain barrier breakdown, neuroinflammation, and neuronal dysfunction in response to Aβ immunotherapy.
Collapse
Affiliation(s)
- Philip Pikus
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
| | - R Scott Turner
- Department of Neurology, Georgetown University Medical Center, 3800 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd, NW, District of Columbia, Washington, 20007, USA.
| |
Collapse
|
27
|
Park YJ, Lu TC, Jackson T, Goodman LD, Ran L, Chen J, Liang CY, Harrison E, Ko C, Chen X, Wang B, Hsu AL, Ochoa E, Bieniek KF, Yamamoto S, Zhu Y, Zheng H, Qi Y, Bellen HJ, Li H. Distinct systemic impacts of Aβ42 and Tau revealed by whole-organism snRNA-seq. Neuron 2025:S0896-6273(25)00299-5. [PMID: 40381615 DOI: 10.1016/j.neuron.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
Both neuronal and peripheral tissues become disrupted in Alzheimer's disease (AD). However, a comprehensive understanding of how AD impacts different tissues across the whole organism is lacking. Using Drosophila, we generated an AD Fly Cell Atlas (AD-FCA) based on whole-organism single-nucleus transcriptomes of 219 cell types from flies expressing AD-associated proteins, either human amyloid-β 42 peptide (Aβ42) or Tau, in neurons. We found that Aβ42 primarily affects the nervous system, including sensory neurons, while Tau induces accelerated aging in peripheral tissues. We identified a neuronal cluster enriched in Aβ42 flies, which has high lactate dehydrogenase (LDH) expression. This LDH-high cluster is conserved in 5XFAD mouse and human AD datasets. We found a conserved defect in fat metabolism from both fly and mouse tauopathy models. The AD-FCA offers new insights into how Aβ42 or Tau systemically and differentially affects a whole organism and provides a valuable resource for understanding brain-body communication in neurodegeneration.
Collapse
Affiliation(s)
- Ye-Jin Park
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tyler Jackson
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lindsey Ran
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaye Chen
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chung-Yi Liang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Erin Harrison
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christina Ko
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ao-Lin Hsu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI 28109, USA
| | - Elizabeth Ochoa
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA; Department of Pathology & Laboratory Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Zhu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Bastos J, O'Brien C, Vara-Pérez M, Mampay M, van Olst L, Barry-Carroll L, Kancheva D, Leduc S, Lievens AL, Ali L, Vlasov V, Meysman L, Shakeri H, Roelandt R, Van Hove H, De Vlaminck K, Scheyltjens I, Yaqoob F, Lombroso SI, Breugelmans M, Faron G, Gomez-Nicola D, Gate D, Bennett FC, Movahedi K. Monocytes can efficiently replace all brain macrophages and fetal liver monocytes can generate bona fide SALL1 + microglia. Immunity 2025; 58:1269-1288.e12. [PMID: 40311613 PMCID: PMC12094688 DOI: 10.1016/j.immuni.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/29/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Microglia and border-associated macrophages (BAMs) are critical for brain health, and their dysfunction is associated to disease. Replacing brain macrophages holds substantial therapeutic promise but remains challenging. Here, we demonstrate that monocytes can efficiently replace all brain macrophages. Monocytes readily replaced embryonal BAMs upon their depletion and engrafted as monocyte-derived microglia (Mo-Microglia) upon more sustained niche availability. Mo-Microglia expanded comparably to their embryonic counterparts and showed similar longevity. However, monocytes were unable to replicate the distinct identity of embryonically derived BAMs and microglia. Using xenotransplantation, we found that human monocytes exhibited similar behavior, enabling identification of putative Mo-Microglia in Alzheimer's disease individuals. In mice and humans, monocyte ontogeny shaped their identity as brain macrophages. Importantly, mouse fetal liver monocytes exhibited a distinct epigenetic landscape and could develop a bona fide microglial identity. Our results illuminate brain macrophage development and highlight monocytes as an abundant progenitor source for brain macrophage replacement therapies.
Collapse
Affiliation(s)
- Jonathan Bastos
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carleigh O'Brien
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mónica Vara-Pérez
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Myrthe Mampay
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lynn van Olst
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Liam Barry-Carroll
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK; Nutrineuro, UMR 1286 INRAE, Bordeaux University, Bordeaux INP, Bordeaux, France
| | - Daliya Kancheva
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sophia Leduc
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ayla Line Lievens
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leen Ali
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vladislav Vlasov
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Laura Meysman
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hadis Shakeri
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ria Roelandt
- VIB Single Cell Core, VIB, Ghent/Leuven, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Hannah Van Hove
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karen De Vlaminck
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Scheyltjens
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fazeela Yaqoob
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonia I Lombroso
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Breugelmans
- Department of Obstetrics and Prenatal Medicine, UZ Brussel, VUB, Brussels, Belgium
| | - Gilles Faron
- Department of Obstetrics and Prenatal Medicine, UZ Brussel, VUB, Brussels, Belgium
| | - Diego Gomez-Nicola
- School of Biological Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - David Gate
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - F Chris Bennett
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kiavash Movahedi
- Brain and Systems Immunology Laboratory, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
29
|
Lee S, Lim CK, Kim J, Kim J, Jin HK, Bae JS, Jeon JW. Engagement of CD300c by a Novel Monoclonal Antibody Ameliorates Behavioral Deficits in a 5xFAD Mouse Model of Alzheimer's Disease. Biomedicines 2025; 13:1169. [PMID: 40426995 PMCID: PMC12109123 DOI: 10.3390/biomedicines13051169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Current treatment modalities for Alzheimer's disease (AD), which is characterized by the accumulation of amyloid β (Aβ), have limitations with regard to their efficacy and safety, posing significant challenges for advances in healthcare. However, recent studies indicated that AD can be treated using monocyte-derived macrophages (MDMs). Reportedly, the protein CD300c regulates monocyte differentiation, indicating that targeting CD300c could offer a treatment for AD. Methods: To confirm this, we developed CB201, a fully human anti-CD300c antibody, and demonstrated its strong and specific binding to CD300c using surface plasmon resonance and binding ELISAs. Results: Treatment of THP-1 and human peripheral blood mononuclear cells with CB201 led to increased levels of pro-inflammatory cytokines and the differentiation of macrophages to MDMs. Moreover, the CB201-differentiated macrophages expressed cytokines and chemokines in a pattern that alleviates AD symptoms. In a 5xFAD mouse model, CB201 treatment improved memory and behavior in both the early and late stages of AD and reduced cerebral Aβ plaque load. Conclusions: These results indicate that CB201 promotes the differentiation of macrophages to MDMs and modulates AD-related inflammatory responses, thereby ameliorating the pathological features of AD. These findings identify CD300c as a potential therapeutic target for AD and indicate that CB201 is a promising candidate for its treatment.
Collapse
Affiliation(s)
- Suin Lee
- CentricsBio, Inc., 3F, BK tower, 28, Beobwon-ro 11-gil, Songpa-gu, Seoul 05836, Republic of Korea
| | - Chang Ki Lim
- CentricsBio, Inc., 3F, BK tower, 28, Beobwon-ro 11-gil, Songpa-gu, Seoul 05836, Republic of Korea
| | - Jongyeob Kim
- CentricsBio, Inc., 3F, BK tower, 28, Beobwon-ro 11-gil, Songpa-gu, Seoul 05836, Republic of Korea
| | - Joon Kim
- CentricsBio, Inc., 3F, BK tower, 28, Beobwon-ro 11-gil, Songpa-gu, Seoul 05836, Republic of Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Jae-sung Bae
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 37224, Republic of Korea
| | - Jae-Won Jeon
- CentricsBio, Inc., 3F, BK tower, 28, Beobwon-ro 11-gil, Songpa-gu, Seoul 05836, Republic of Korea
| |
Collapse
|
30
|
Wang X, Zhang H, Wan Z, Li X, Ibáñez CF, Xie M. A single-cell transcriptomic atlas of all cell types in the brain of 5xFAD Alzheimer mice in response to dietary inulin supplementation. BMC Biol 2025; 23:124. [PMID: 40346662 PMCID: PMC12065180 DOI: 10.1186/s12915-025-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/30/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease that is a major threat to the aging population. Due to lack of effective therapy, preventive treatments are important strategies to limit AD onset and progression, of which dietary regimes have been implicated as a key factor. Diet with high fiber content is known to have beneficial effects on cognitive decline in AD. However, a global survey on microbiome and brain cell dynamics in response to high fiber intake at single-cell resolution in AD mouse models is still missing. RESULTS Here, we show that dietary inulin supplementation synergized with AD progression to specifically increase the abundance of Akkermansia muciniphila in gut microbiome of 5 × Familial AD (FAD) mice. By performing single-nucleus RNA sequencing on different regions of the whole brain with three independent biological replicates, we reveal region-specific changes in the proportion of neuron, astrocyte, and granule cell subpopulations upon inulin supplementation in 5xFAD mice. In addition, we find that astrocytes have more pronounced region-specific diversity than microglia. Intriguingly, such dietary change reduces amyloid-β plaque burden and alleviates microgliosis in the forebrain region, without affecting the spatial learning and memory. CONCLUSIONS These results provide a comprehensive overview on the transcriptomic changes in individual cells of the entire mouse brain in response to high fiber intake and a resourceful foundation for future mechanistic studies on the influence of diet and gut microbiome on the brain during neurodegeneration.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhou Wan
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuetong Li
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Carlos F Ibáñez
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Department of Neuroscience, Karolinska Institute, 17165, Stockholm, Sweden.
| | - Meng Xie
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China.
- Department of Medicine Huddinge, Karolinska Institute, 14183, Stockholm, Sweden.
| |
Collapse
|
31
|
Luo R, Kang Y, Ma H, Zhang Z, Hölscher C, Hao L, Zhang Z. A novel dual CCK/ GLP-1 receptor agonist ameliorates cognitive impairment in 5 × FAD mice by modulating mitophagy via the PINK1/Parkin pathway. Int Immunopharmacol 2025; 154:114612. [PMID: 40184808 DOI: 10.1016/j.intimp.2025.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
To date, no therapeutic drugs available on the market can effectively reverse the progression of Alzheimer's disease (AD). Although Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) and Cholecystokinin (CCK) RAs have shown some promise in AD research, little is known about the neuroprotective effects of a novel dual CCK/GLP-1 RA in AD. This study sought to examine the effects of the novel dual CCK/GLP-1 RA on cognitive performance in an AD mouse model and to explore the associated mechanisms. Our findings indicate that dual CCK/GLP-1 RA improved cognitive deficits, reduced amyloid-beta (Aβ) accumulation, and alleviated mitochondrial damage in 5 × FAD mice by inducing mitophagy. In an in vitro model of AD cells induced by Aβ, CCK/GLP-1 RA could exert neuroprotective effects by regulating PINK1/Parkin-mediated mitophagy. These data reveal for the first time that the new CCK/GLP-1 RA modulates mitophagy via PINK1/Parkin pathway and enhances cognitive function in the 5 × FAD animal model. Moreover, the performance of the CCK/GLP-1 RA in certain indicators was superior to that of GLP-1 analogue liraglutide, suggesting that it may represent a more promising therapeutic option for AD.
Collapse
Affiliation(s)
- Rihong Luo
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Yuhan Kang
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - He Ma
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, China
| | - Christian Hölscher
- Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan Province, China.
| | - Li Hao
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, China.
| | - Zijuan Zhang
- School of Medical Sciences, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan Province, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, Henan Province, China.
| |
Collapse
|
32
|
Xie L, Sheehy RN, Muneer A, Xiong Y, Wrobel JA, Zhang F, Park KS, Velez J, Liu J, Luo YJ, Asrican B, Dong P, Li YD, Damian C, Quintanilla L, Li Y, Xu C, Deshmukh M, Coleman LG, Ming GL, Song H, Wen Z, Jin J, Song J, Chen X. Development of a brain-penetrant G9a methylase inhibitor to target Alzheimer's disease-associated proteopathology. Nat Commun 2025; 16:4222. [PMID: 40328756 PMCID: PMC12056044 DOI: 10.1038/s41467-025-59128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Current Aβ-targeting therapeutics for Alzheimer's disease (AD) only slow cognitive decline due to poor understanding of AD pathogenesis. Here we describe a mechanism of AD pathogenesis in which the histone methyltransferase G9a noncanonically regulates translation of hippocampal proteins associated with AD pathology. Correspondingly, we developed a brain-penetrant inhibitor of G9a, MS1262, which restored both age-related learning & memory and noncognitive functions in multiple AD mouse models. Further, comparison of AD pathology-correlated mouse proteomes with those of AD patients found G9a regulates pathological pathways that promote Aβ and neurofibrillary tangles. This mouse-to-human overlap of G9a regulated AD-associated pathologic proteins supports at the molecular level the efficacy of targeting G9a translational mechanism for treating AD patients. Additionally, MS1262 treatment reversed the AD-characteristic expression or phosphorylation of multiple clinically validated biomarkers of AD that have the potential to be used for early-stage AD diagnosis and companion diagnosis of individualized drug effects.
Collapse
Affiliation(s)
- Ling Xie
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ryan N Sheehy
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adil Muneer
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yan Xiong
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Wrobel
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Kwang-Su Park
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Velez
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yan-Jia Luo
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brent Asrican
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ping Dong
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ya-Dong Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corina Damian
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Luis Quintanilla
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yongyi Li
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chongchong Xu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Xian Chen
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Baravkar SB, Lu Y, Zhao Q, Peng H, Zhou W, Hong S. Rationally Designed Pentapeptide Analogs of Aβ19-23 Fragment as Potent Inhibitors of Aβ42 Aggregation. Molecules 2025; 30:2071. [PMID: 40363876 PMCID: PMC12073614 DOI: 10.3390/molecules30092071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/22/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Amyloid beta (Aβ42 and Aβ40) aggregation, along with neurofibrillary tangles, is one of the major neurotoxic events responsible for the onset of Alzheimer's disease. Many potent peptide-based inhibitors mainly focusing on central hydrophobic core Aβ16-20 (KLVFF) have been reported in recent years. Herein, we report pentapeptides 1-4, based on the β-turn-inducing fragment Aβ19-23 (FFAED). The synthesis of peptides 1-4 was carried out using Fmoc/tBu-based solid-phase peptide synthesis technique, and it was found that pentapeptide 3 potently inhibit the aggregation propensity of Aβ42, when incubated with it at 37 °C for 48 h. The aggregation inhibition study was conducted using thioflavin T-based fluorescence assay and circular dichroism spectroscopy, and supported by transmission electron microscope imaging. The conformational change on the aggregation of Aβ42 and aggregation inhibition by peptides 1-4 was further evaluated using 1H-15N HSQC NMR spectroscopy. The results demonstrated that the most potent analog, peptide 3, effectively disrupts the aggregation process. This study is the first to demonstrate that an Aβ19-23 fragment mimic can disrupt the aggregation propensity of Aβ42.
Collapse
Affiliation(s)
- Sachin B. Baravkar
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA; (S.B.B.)
| | - Yan Lu
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA; (S.B.B.)
| | - Qi Zhao
- NMR Laboratory, Department of Chemistry, Tulane University, New Orleans, LA 70115, USA;
| | - Hongying Peng
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45221, USA
| | - Weilie Zhou
- Department of Physics & Adavanced Materials Research Institute (AMRI), University of New Orleans, New Orleans, LA 70148, USA
| | - Song Hong
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA; (S.B.B.)
- Department of Ophthalmology, School of Medicine, Louisiana State University Health, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Timofeeva AM, Aulova KS, Nevinsky GA. Modeling Alzheimer's Disease: A Review of Gene-Modified and Induced Animal Models, Complex Cell Culture Models, and Computational Modeling. Brain Sci 2025; 15:486. [PMID: 40426657 PMCID: PMC12109626 DOI: 10.3390/brainsci15050486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Alzheimer's disease, a complex neurodegenerative disease, is characterized by the pathological aggregation of insoluble amyloid β and hyperphosphorylated tau. Multiple models of this disease have been employed to investigate the etiology, pathogenesis, and multifactorial aspects of Alzheimer's disease and facilitate therapeutic development. Mammals, especially mice, are the most common models for studying the pathogenesis of this disease in vivo. To date, the scientific literature has documented more than 280 mouse models exhibiting diverse aspects of Alzheimer's disease pathogenesis. Other mammalian species, including rats, pigs, and primates, have also been utilized as models. Selected aspects of Alzheimer's disease have also been modeled in simpler model organisms, such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio. It is possible to model Alzheimer's disease not only by creating genetically modified animal lines but also by inducing symptoms of this neurodegenerative disease. This review discusses the main methods of creating induced models, with a particular focus on modeling Alzheimer's disease on cell cultures. Induced pluripotent stem cell (iPSC) technology has facilitated novel investigations into the mechanistic underpinnings of diverse diseases, including Alzheimer's. Progress in culturing brain tissue allows for more personalized studies on how drugs affect the brain. Recent years have witnessed substantial advancements in intricate cellular system development, including spheroids, three-dimensional scaffolds, and microfluidic cultures. Microfluidic technologies have emerged as cutting-edge tools for studying intercellular interactions, the tissue microenvironment, and the role of the blood-brain barrier (BBB). Modern biology is experiencing a significant paradigm shift towards utilizing big data and omics technologies. Computational modeling represents a powerful methodology for researching a wide array of human diseases, including Alzheimer's. Bioinformatic methodologies facilitate the analysis of extensive datasets generated via high-throughput experimentation. It is imperative to underscore the significance of integrating diverse modeling techniques in elucidating pathogenic mechanisms in their entirety.
Collapse
Affiliation(s)
- Anna M. Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | | | | |
Collapse
|
35
|
Ontawong A, Nehra G, Maloney BJ, Vaddhanaphuti CS, Bauer B, Hartz AMS. N-Acetylcysteine Attenuates Aβ-Mediated Oxidative Stress, Blood-Brain Barrier Leakage, and Renal Dysfunction in 5xFAD Mice. Int J Mol Sci 2025; 26:4352. [PMID: 40362589 PMCID: PMC12072517 DOI: 10.3390/ijms26094352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloid-beta (Aβ) pathology and is closely linked to oxidative stress, which contributes to blood-brain barrier leakage, renal dysfunction, and cognitive decline. We investigated the effects of N-acetyl cysteine (NAC), an FDA-approved antioxidant, on oxidative stress, brain Aβ levels, barrier leakage, renal function, and cognition in 5xFAD mice. Eight-week-old 5xFAD mice were fed a rodent diet supplemented with 600 mg/kgDiet NAC for 4 weeks; wild-type (WT) mice and control 5xFAD mice were fed a regular rodent diet. We detected elevated brain and renal 4-hydroxynonenal(4-HNE) levels, reduced creatinine clearance, and increased plasma S100β levels in untreated 5xFAD mice compared to WT controls. Untreated 5xFAD mice also had higher capillary leakage, reduced P-gp activity, and impaired cognition compared to WT. NAC treatment of 5xFAD mice reduced brain Aβ40 levels, normalized 4-HNE levels to control levels, improved creatinine clearance, decreased capillary leakage, and lowered S100β plasma levels. NAC improved cognitive performance in 5xFAD mice, as shown by Y-maze. Our findings indicate that Aβ-induced oxidative stress contributes to barrier dysfunction, renal impairment, and cognitive deficits in 5xFAD mice. Notably, NAC treatment mitigates these effects, suggesting its potential as an adjunct therapy for AD and other Aβ-related pathologies by reducing oxidative stress.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (A.O.); (G.N.); (B.J.M.); (B.B.)
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (A.O.); (G.N.); (B.J.M.); (B.B.)
| | - Bryan J. Maloney
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (A.O.); (G.N.); (B.J.M.); (B.B.)
| | - Chutima S. Vaddhanaphuti
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Björn Bauer
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (A.O.); (G.N.); (B.J.M.); (B.B.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (A.O.); (G.N.); (B.J.M.); (B.B.)
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
36
|
Terstege DJ, Ren Y, Ahn BY, Seo H, Adigun K, Alzheimer’s Disease Neuroimaging Initiative, Galea LAM, Sargin D, Epp JR. Impaired parvalbumin interneurons in the retrosplenial cortex as the cause of sex-dependent vulnerability in Alzheimer's disease. SCIENCE ADVANCES 2025; 11:eadt8976. [PMID: 40305608 PMCID: PMC12042879 DOI: 10.1126/sciadv.adt8976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/11/2025] [Indexed: 05/02/2025]
Abstract
Alzheimer's disease is a debilitating neurodegenerative disorder with no cure and few treatment options. In early stages of Alzheimer's disease, impaired metabolism and functional connectivity of the retrosplenial cortex strongly predict future cognitive impairments. Therefore, understanding Alzheimer's disease-related deficits in the retrosplenial cortex is critical for understanding the origins of cognitive impairment and identifying early treatment targets. Using the 5xFAD mouse model, we discovered early, sex-dependent alterations in parvalbumin-interneuron transcriptomic profiles. This corresponded with impaired parvalbumin-interneuron activity, which was sufficient to induce cognitive impairments and dysregulate retrosplenial functional connectivity. In fMRI scans from patients with mild cognitive impairment and Alzheimer's disease, we observed a similar sex-dependent dysregulation of retrosplenial cortex functional connectivity and, in postmortem tissue from subjects with Alzheimer's disease, a loss of parvalbumin interneurons. Reversal of cognitive deficits by stimulation of parvalbumin interneurons in the retrosplenial cortex suggests that this may serve as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Dylan J. Terstege
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yi Ren
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Bo Young Ahn
- Applied Spatial Omics Centre, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Heewon Seo
- Applied Spatial Omics Centre, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kabirat Adigun
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Liisa A. M. Galea
- Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Derya Sargin
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonathan R. Epp
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
37
|
Černotová D, Hrůzová K, Touš J, Janča R, Stuchlík A, Levčík D, Svoboda J. Early social deficits in TgF344-AD rats are accompanied by sex-specific parvalbumin-positive interneuron reduction and altered brain oscillations in the hippocampal CA2. Neurobiol Dis 2025; 208:106875. [PMID: 40097074 DOI: 10.1016/j.nbd.2025.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025] Open
Abstract
Social withdrawal and deficits in social cognition are hallmarks of Alzheimer's disease (AD). While early deficits in social behavior and memory have been documented in mouse AD models, they remain understudied in rat models. Early-stage AD is accompanied by dysfunction of parvalbumin-positive (PV+) interneurons, implicating their potential connection to early symptoms. In this study, we employed a 5-trial social memory task to investigate early deficits in social cognition in 6-month-old TgF344-AD male and female rats. We counted the number of PV+ interneurons and recorded local field potentials during social interactions in the hippocampal CA2 - a region critical for social information processing. Our results show decreased social interest and novelty preference in TgF344-AD male and female rats. However, reduced PV+ interneuron numbers were observed only in female rats and specific to the CA2 area. The electrophysiological recordings revealed reduced theta-gamma phase-amplitude coupling in the CA2 during direct social interactions. We conclude that deficits in social cognition accompany early-stage AD in TgF344-AD rats and are potentially linked to PV+ interneuron and brain oscillatory dysfunction in the CA2 region of the hippocampus.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 100 00, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 100 00, Czech Republic
| | - Jan Touš
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic; Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 160 00, Czech Republic
| | - Radek Janča
- Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 160 00, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic.
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 142 00, Czech Republic
| |
Collapse
|
38
|
Teboul L, Stewart ME. Parent-of-origin of alleles: an essential variable in in vivo experiments. Lab Anim (NY) 2025; 54:118-119. [PMID: 40175603 DOI: 10.1038/s41684-025-01546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Affiliation(s)
- Lydia Teboul
- The Mary Lyon Centre, MRC Harwell, Oxfordshire, UK.
| | | |
Collapse
|
39
|
Cui Y, Ma X, Wei J, Chen C, Shakir N, Guirram H, Dai Z, Anderson T, Ferguson D, Qiu S. MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits. Neural Regen Res 2025; 20:1431-1444. [PMID: 39075910 PMCID: PMC11624886 DOI: 10.4103/nrr.nrr-d-23-01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/02/2024] [Accepted: 04/20/2024] [Indexed: 07/31/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00026/figure1/v/2024-07-28T173839Z/r/image-tiff Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration, however, few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function. We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis. To investigate whether enhancing MET in adult cortex has synapse regenerating potential, we created a knockin mouse line, in which the human MET gene expression and signaling can be turned on in adult (10-12 months) cortical neurons through doxycycline-containing chow. We found that similar to the developing brain, turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons. These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses. Prolonged MET signaling resulted in an increased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-D-aspartate (AMPA/NMDA) receptor current ratio, indicative of enhanced synaptic function and connectivity. Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain. These findings may have implications for regenerative therapy in aging and neurodegeneration conditions.
Collapse
Affiliation(s)
- Yuehua Cui
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Jing Wei
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Chang Chen
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Neha Shakir
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Hitesch Guirram
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Zhiyu Dai
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Trent Anderson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Deveroux Ferguson
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| |
Collapse
|
40
|
Canet G, Zussy C, Vitalis M, Morin F, Chevallier N, Hunt H, Claeysen S, Blaquière M, Marchi N, Planel E, Meijer OC, Desrumaux C, Givalois L. Advancing Alzheimer's disease pharmacotherapy: efficacy of glucocorticoid modulation with dazucorilant (CORT113176) in preclinical mouse models. Br J Pharmacol 2025; 182:1930-1956. [PMID: 39891319 DOI: 10.1111/bph.17457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND AND PURPOSE Exposure to chronic stress and high levels of glucocorticoid hormones in adulthood has been associated with cognitive deficits and increased risk of Alzheimer's disease (AD). Dazucorilant has recently emerged as a selective glucocorticoid receptor (NR3C1) modulator, exhibiting efficacy in counteracting amyloid-β toxicity in an acute model of AD. We aim to assess the therapeutic potential of dazucorilant in reversing amyloid and tau pathologies through the inhibition of glucocorticoid receptor pathological activity, and providing additional evidence for its consideration in AD treatment. EXPERIMENTAL APPROACH The efficacy of dazucorilant was evaluated in two transgenic mouse models of amyloid pathology. The slowly progressing J20 and the aggressively pathological 5xFAD mice. Behavioural analysis was conducted to evaluate welfare, cognitive performances and anxiety levels. The activity of the glucocorticoid receptor system, neuroinflammation, amyloid burden and tau phosphorylation were examined in hippocampi. KEY RESULTS In both AD models, chronic treatment with dazucorilant improved working and long-term spatial memories along with the inhibition of glucocorticoid receptor-dependent pathogenic processes and the normalization of plasma glucocorticoid levels. Dazucorilant treatment also resulted in a reduction in tau hyperphosphorylation and amyloid production and aggregation. Additionally, dazucorilant seemed to mediate a specific re-localization of activated glial cells onto amyloid plaques in J20 mice, suggesting a restoration of physiological neuroinflammatory processes. CONCLUSION AND IMPLICATIONS Dazucorilant exhibited sustained disease-modifying effects in two AD models. Given that this compound has demonstrated safety and tolerability in human subjects, our results provide pre-clinical support for conducting clinical trials to evaluate its potential in AD.
Collapse
Affiliation(s)
- Geoffrey Canet
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Charleine Zussy
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Mathieu Vitalis
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
| | - Françoise Morin
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | | | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | | | | | - Nicola Marchi
- IGF, Univ Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Planel
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
| | - Onno C Meijer
- Einthoven Laboratory, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Desrumaux
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- LIPSTIC LabEx, Dijon, France
| | - Laurent Givalois
- MMDN, Univ Montpellier, EPHE-PSL, INSERM, Montpellier, France
- Faculty of Medicine, Department of Psychiatry and Neurosciences, CR-CHUQ, Laval University, Québec City, Quebec, Canada
- CNRS, Paris, France
| |
Collapse
|
41
|
Kimura K, Subramanian A, Yin Z, Khalilnezhad A, Wu Y, He D, Dixon KO, Chitta UK, Ding X, Adhikari N, Guzchenko I, Zhang X, Tang R, Pertel T, Myers SA, Aastha A, Nomura M, Eskandari-Sedighi G, Singh V, Liu L, Lambden C, Kleemann KL, Gupta N, Barry JL, Durao A, Cheng Y, Silveira S, Zhang H, Suhail A, Delorey T, Rozenblatt-Rosen O, Freeman GJ, Selkoe DJ, Weiner HL, Blurton-Jones M, Cruchaga C, Regev A, Suvà ML, Butovsky O, Kuchroo VK. Immune checkpoint TIM-3 regulates microglia and Alzheimer's disease. Nature 2025; 641:718-731. [PMID: 40205047 PMCID: PMC12079183 DOI: 10.1038/s41586-025-08852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Microglia are the resident immune cells in the brain and have pivotal roles in neurodevelopment and neuroinflammation1,2. This study investigates the function of the immune-checkpoint molecule TIM-3 (encoded by HAVCR2) in microglia. TIM-3 was recently identified as a genetic risk factor for late-onset Alzheimer's disease3, and it can induce T cell exhaustion4. However, its specific function in brain microglia remains unclear. We demonstrate in mouse models that TGFβ signalling induces TIM-3 expression in microglia. In turn, TIM-3 interacts with SMAD2 and TGFBR2 through its carboxy-terminal tail, which enhances TGFβ signalling by promoting TGFBR-mediated SMAD2 phosphorylation, and this process maintains microglial homeostasis. Genetic deletion of Havcr2 in microglia leads to increased phagocytic activity and a gene-expression profile consistent with the neurodegenerative microglial phenotype (MGnD), also referred to as disease-associated microglia (DAM). Furthermore, microglia-targeted deletion of Havcr2 ameliorates cognitive impairment and reduces amyloid-β pathology in 5×FAD mice (a transgenic model of Alzheimer's disease). Single-nucleus RNA sequencing revealed a subpopulation of MGnD microglia in Havcr2-deficient 5×FAD mice characterized by increased pro-phagocytic and anti-inflammatory gene expression alongside reduced pro-inflammatory gene expression. These transcriptomic changes were corroborated by single-cell RNA sequencing data across most microglial clusters in Havcr2-deficient 5×FAD mice. Our findings reveal that TIM-3 mediates microglia homeostasis through TGFβ signalling and highlight the therapeutic potential of targeting microglial TIM-3 in Alzheimer's disease.
Collapse
Affiliation(s)
- Kimitoshi Kimura
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayshwarya Subramanian
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhuoran Yin
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ahad Khalilnezhad
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yufan Wu
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danyang He
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karen O Dixon
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Udbhav Kasyap Chitta
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaokai Ding
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niraj Adhikari
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isabell Guzchenko
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaoming Zhang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ruihan Tang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Pertel
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel A Myers
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Aastha Aastha
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masashi Nomura
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ghazaleh Eskandari-Sedighi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | | | - Lei Liu
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Conner Lambden
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kilian L Kleemann
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Neha Gupta
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jen-Li Barry
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana Durao
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yiran Cheng
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sebastian Silveira
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Huiyuan Zhang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aamir Suhail
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Mario L Suvà
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Vijay K Kuchroo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
42
|
Messenger EJ, Baar SA, Bedford LM, Tsai AP, Lin PB, Ferguson CA, Xu G, Wallace A, Landreth GE, Lamb BT, Bissel SJ. PLCG2 modulates TREM2 expression and signaling in response to Alzheimer's disease pathology. Alzheimers Dement 2025; 21:e70231. [PMID: 40346446 PMCID: PMC12064341 DOI: 10.1002/alz.70231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Phospholipase C gamma 2 (PLCG2) is an intracellular effector of microglial cell surface receptors, including triggering receptor expressed on myeloid cells 2 (TREM2). Variants which alter PLCG2 activity impact Alzheimer's disease (AD) risk, but the effects of PLCG2 deficiency in AD remain unclear. METHODS 5xFAD mice were crossed with PLCG2- and TREM2-deficient mice to assess the role of PLCG2 in response to amyloid pathology. Human bulk RNA-sequencing data were used to validate findings in AD patients. RESULTS In 5xFAD mice, the absence of PLCG2 resulted in reduced TREM2 expression and impaired microglial associations with amyloid beta plaques. Transcriptomic analysis revealed perturbations in immune-related pathways shared between PLCG2 and TREM2 deficiencies, as well as distinct differences. Human transcriptomics revealed positive correlations between PLCG2 and TREM2 independent of pathological scores. DISCUSSION PLCG2 is a critical component of TREM2 signal transduction and may play an upstream role in TREM2 regulation. These findings clarify the mechanisms of risk and protective PLCG2 variants. HIGHLIGHTS The role of phospholipase C gamma 2 (PLCG2) deficiency in response to amyloid beta (Aβ) pathology was investigated in 5xFAD mice and with human cortical transcriptomics. PLCG2 deficiency significantly reduces triggering receptor expressed on myeloid cells 2 (TREM2) expression, while TREM2 deficiency increases PLCG2 expression. PLCG2 expression predicts TREM2 expression in human cortex independent of pathology. PLCG2 and TREM2 deficiencies similarly impair microglial responses to Aβ plaques, exacerbate neuronal pathology, and impair gene expression associated with immune responses. PLCG2 deficiency confers distinct transcriptional perturbations from TREM2 deficiency. PLCG2 may play an upstream role in the regulation of the TREM2-mediated immune response.
Collapse
Affiliation(s)
- Evan J. Messenger
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sydney A. Baar
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Logan M. Bedford
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Andy P. Tsai
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Peter Bor‐Chian Lin
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Chloe A. Ferguson
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Guixiang Xu
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Abigail Wallace
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gary E. Landreth
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Bruce T. Lamb
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| | - Stephanie J. Bissel
- Stark NeuroscienceIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
43
|
Tasnády KR, Jehoul R, de Ravé MG, Gijbels MJ, Brône B, Dewachter I, Melotte V, Boesmans W. Gastrointestinal Dysfunction and Low-Grade Inflammation Associate With Enteric Neuronal Amyloid-β in a Model for Amyloid Pathology. Neurogastroenterol Motil 2025; 37:e15016. [PMID: 40051115 PMCID: PMC11996054 DOI: 10.1111/nmo.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Patients suffering from Alzheimer's disease, a progressive neurodegenerative disorder involving cognitive decline and memory impairment, often present with gastrointestinal comorbidities. Accumulating data also indicate that alterations in the gut can modulate Alzheimer's disease pathology, highlighting the need to better understand the link between gastrointestinal abnormalities and neurodegeneration in the brain. METHODS To disentangle the pathophysiology of gastrointestinal dysfunction in Alzheimer's disease, we conducted a detailed pathological characterization of the gastrointestinal tract of 5xFAD mice by performing histological analyses, gene expression studies, immunofluorescence labeling and gut function assays. RESULTS We found that 5xFAD mice have elevated levels of intestinal amyloid precursor protein and accumulate amyloid-β in enteric neurons. Histopathology revealed that this is associated with mild intestinal inflammation and fibrosis and accompanied by increased expression of proinflammatory cytokines. While overall enteric nervous system composition and organization appeared unaffected, 5xFAD mice have faster gastrointestinal transit. CONCLUSION Our findings indicate that amyloid-β accumulation in enteric neurons is associated with low-grade intestinal inflammation and altered motility and suggest that peripheral pathology may cause gastrointestinal dysfunction in Alzheimer's disease patients.
Collapse
Affiliation(s)
- Kinga Réka Tasnády
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
- Department of Pathology, GROW‐Research Institute for Oncology and ReproductionMaastricht University Medical CentreMaastrichtthe Netherlands
| | - Reindert Jehoul
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
| | | | - Marion J. Gijbels
- Department of Pathology, NUTRIM Institute of Nutrition and Translational Research in MetabolismMaastricht University Medical CentreMaastrichtthe Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Infection and Immunity, Amsterdam Cardiovascular SciencesAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Bert Brône
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
| | - Ilse Dewachter
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
| | - Veerle Melotte
- Department of Pathology, GROW‐Research Institute for Oncology and ReproductionMaastricht University Medical CentreMaastrichtthe Netherlands
- Department of Clinical GeneticsErasmus University Medical CenterRotterdamthe Netherlands
| | - Werend Boesmans
- Biomedical Research Institute (BIOMED)Hasselt UniversityDiepenbeekBelgium
- Department of Pathology, GROW‐Research Institute for Oncology and ReproductionMaastricht University Medical CentreMaastrichtthe Netherlands
| |
Collapse
|
44
|
Li M, Wu X, Jiang L, Liu M, Yanju G, Li X, Tian F, Ye F, Wang J, Wang S, Qin C, Zhang L. Exploring the co-morbid relationship between Alzheimer's disease and lung cancer in the 5xFAD transgenic mouse model. Animal Model Exp Med 2025; 8:784-797. [PMID: 39930922 DOI: 10.1002/ame2.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/30/2024] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) and lung cancer are leading causes of mortality among the older population. Epidemiological evidence suggests an antagonistic relationship between them, whereby patients with AD exhibit a reduced risk of developing cancer and vice versa. However, the precise mechanism by which AD antagonizes lung cancer progression warrants further elucidation. METHODS To this end, we established a co-morbidity model using 5xFAD transgenic mice induced with the carcinogen urethane. We visualized and quantified surface lung tumor colonies, assessed pathological parameters associated with lung cancer and AD using histopathological analysis, and employed single-cell sequencing and molecular pathological analyses to explore the mechanisms by which AD confers resistance to lung cancer. RESULTS Our findings revealed a significant reduction in lung tumor incidence in the AD group compared with that in the wild-type (WT) group. The results indicated a close association between AD-induced inhibition of lung tumor progression and iron homeostasis imbalance and increased oxidative stress. Moreover, greater CD8+ T cytotoxic lymphocyte and effector natural killer cell infiltration in the lung tumor tissues of AD mice and enhanced CD8+ T cytotoxic lymphocyte-mediated killing of target cells may be the primary factors contributing to the inhibition of lung tumor growth in the presence of AD. CONCLUSION This study identified essential mechanisms through which AD suppresses lung tumorigenesis, thereby providing targets for potential therapeutic interventions in these diseases.
Collapse
Affiliation(s)
- Mingfeng Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xinghan Wu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Lin Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Min Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Gong Yanju
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xiaomeng Li
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fan Tian
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Fan Ye
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Jinlong Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Siyuan Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
- Changping National Laboratory (CPNL), Beijing, China
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Comparative Medicine Center, Institute of Laboratory Animal Sciences, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences (CAMS), Beijing, China
| |
Collapse
|
45
|
Wei Z, Pan X, Cui X, Zhang J, Dai X, Zeng Y, Chen X. PU.1 dictates β-amyloid-induced TREM2 expression upregulation in microglia in a transgenic model of Alzheimer's disease. Front Aging Neurosci 2025; 17:1537388. [PMID: 40376093 PMCID: PMC12078285 DOI: 10.3389/fnagi.2025.1537388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 04/11/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction Microglial dysfunction is characteristic of Alzheimer's disease (AD), with triggering receptor expressed on myeloid cells 2 (TREM2) and transcription factor PU.1 playing crucial roles. However, the relationship between TREM2 and PU.1 remains unclear. Methods We investigated TREM2 and PU.1 expression patterns in the 5×FAD mouse AD model. Experimental approaches included quantitative PCR, western blotting, immunofluorescence staining, chromatin immunoprecipitation, and luciferase reporter assays to examine the interaction between PU.1 and TREM2. The phagocytic function of microglial cells was evaluated using Aβ42 and Nile red fluorescent microsphere phagocytosis assays. Results TREM2 and PU.1 expression significantly correlated with brain β-amyloid (β) deposition. PU.1 directly interacted with the TREM2 promoter region, promoting its transcription and potently impacting microglial phagocytosis. PU.1 overexpression amplified TREM2 expression, while PU.1 knockdown reduced it. Discussion Our findings reveal a novel regulatory mechanism where PU.1 directly modulates TREM2 transcription in activated microglia during AD progression. These insights highlight the potential of TREM2 and PU.1 as therapeutic targets in AD treatment.
Collapse
Affiliation(s)
- Zhen Wei
- Department of Neurology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
- Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou, China
| | - Xiaoli Cui
- Department of Geriatric, The People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xiaoman Dai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Yuqi Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou, China
- Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| |
Collapse
|
46
|
Du H, Mizokami A, Ni J, Zhang S, Yamawaki Y, Sano T, Jimi E, Tanida I, Kanematsu T. Role of Testosterone Signaling in Microglia: A Potential Role for Sex-Related Differences in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413375. [PMID: 40125707 PMCID: PMC12097063 DOI: 10.1002/advs.202413375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is less prevalent in men than in women, although mechanisms remain unclear. Microglia degrade aggregated amyloid β (Aβ) through the lysosomal system, including autophagy. G protein-coupled receptor family C group 6 member A (GPRC6A), predominantly expressed in mouse microglial MG6 cells, is a primary mediator of testosterone signaling. This study examines testosterone's role in modulating Aβ-induced autophagy in microglia. Testosterone promotes Aβ-induced autophagy leading to Aβ clearance in MG6 cells by suppressing extracellular signal-regulated kinase (ERK) phosphorylation and subsequently inhibiting mammalian target of rapamycin (mTOR) activation, which is abrogated by shRNA knockdown of GPRC6A. In in vivo experiments with male 5xFAD AD model mice, Aβ clearance activity is associated with autophagy in microglia and is reduced by orchiectomy, but restored by testosterone supplementation. ERK phosphorylation in the brains of male AD model mice is upregulated by orchiectomy. Therefore, testosterone is involved in autophagy-mediated Aβ clearance in microglia. Aβ accumulation in human brain samples from patients with AD is significantly lower in men than in women, with less pronounced colocalization of Aβ with p62 aggregates, suggesting enhanced autophagic activity in men. In conclusion, testosterone enhances Aβ-induced autophagy in microglia, possibly contributing to lower susceptibility to AD in men.
Collapse
Affiliation(s)
- Haiyan Du
- Department of Cell Biology, Aging Science, and PharmacologyDivision of Oral Biological SciencesFaculty of Dental ScienceKyushu University3‐1‐1 Maidashi, Higashi‐kuFukuoka812‐8582Japan
| | - Akiko Mizokami
- OBT Research CenterFaculty of Dental ScienceKyushu University3‐1‐1 Maidashi, Higashi‐kuFukuoka812‐8582Japan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Simeng Zhang
- Key Laboratory of Molecular Medicine and BiotherapyDepartment of BiologySchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| | - Yosuke Yamawaki
- Department of Advanced PharmacologyDaiichi University of Pharmacy22‐1 Tamagawa‐cho, Minami‐kuFukuoka815‐8511Japan
| | - Tomomi Sano
- Department of Cell Biology, Aging Science, and PharmacologyDivision of Oral Biological SciencesFaculty of Dental ScienceKyushu University3‐1‐1 Maidashi, Higashi‐kuFukuoka812‐8582Japan
| | - Eijiro Jimi
- OBT Research CenterFaculty of Dental ScienceKyushu University3‐1‐1 Maidashi, Higashi‐kuFukuoka812‐8582Japan
- Laboratory of Molecular and Cellular BiochemistryDivision of Oral Biological SciencesKyushu University3‐1‐1 Maidashi, Higashi‐kuFukuoka812‐8582Japan
| | - Isei Tanida
- Department of Cellular and Molecular NeuropathologyJuntendo University Graduate School of MedicineTokyo113‐8421Japan
| | - Takashi Kanematsu
- Department of Cell Biology, Aging Science, and PharmacologyDivision of Oral Biological SciencesFaculty of Dental ScienceKyushu University3‐1‐1 Maidashi, Higashi‐kuFukuoka812‐8582Japan
| |
Collapse
|
47
|
Thanos JM, Campbell OC, Cowan MN, Bruch KR, Moore KA, Ennerfelt HE, Natale NR, Mangalmurti A, Kerur N, Lukens JR. STING deletion protects against amyloid β-induced Alzheimer's disease pathogenesis. Alzheimers Dement 2025; 21:e70305. [PMID: 40410932 PMCID: PMC12101966 DOI: 10.1002/alz.70305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/10/2025] [Accepted: 04/28/2025] [Indexed: 05/26/2025]
Abstract
INTRODUCTION While immune dysfunction has been increasingly linked to Alzheimer's disease (AD) progression, many major innate immune signaling molecules have yet to be explored in AD pathogenesis using genetic targeting approaches. METHODS To investigate a role for the key innate immune adaptor molecule, stimulator of interferon genes (STING), in AD, we deleted Sting1 in the 5xFAD mouse model of AD-related amyloidosis and evaluated the effects on pathology, neuroinflammation, gene expression, and cognition. RESULTS Genetic ablation of STING in 5xFAD mice led to improved control of amyloid beta (Aβ) plaques, alterations in microglial activation status, decreased levels of neuritic dystrophy, and protection against cognitive decline. Moreover, rescue of neurological disease in STING-deficient 5xFAD mice was characterized by reduced expression of type I interferon signaling genes in both microglia and excitatory neurons. DISCUSSION These findings reveal critical roles for STING in Aβ-driven neurological disease and suggest that STING-targeting therapeutics may offer promising strategies to treat AD. HIGHLIGHTS Stimulator of interferon genes (STING) deficiency in the 5xFAD mouse model of Alzheimer's disease-related amyloidosis results in decreased amyloid beta (Aβ) deposition and altered microglial activation status. Protection against amyloidosis in STING-deficient 5xFAD mice is associated with decreased expression of genes involved in type I IFN signaling, improved neuronal health, and reduced levels of oxidative stress. Loss of STING in 5xFAD mice leads to improved spatial learning and memory.
Collapse
Affiliation(s)
- Jessica M. Thanos
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
- Brain Immunology and Glia Graduate Training ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Olivia C. Campbell
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
| | - Maureen N. Cowan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
| | - Katherine R. Bruch
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Katelyn A. Moore
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
| | - Hannah E. Ennerfelt
- Department of Neurology and Neurological SciencesStanford UniversityPalo AltoCaliforniaUSA
| | - Nick R. Natale
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Aman Mangalmurti
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Nagaraj Kerur
- Department of Ophthalmology and Visual Sciencesthe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Ohio State Havener Eye Institutethe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Microbial Infection and Immunitythe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - John R. Lukens
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG)University of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
- Brain Immunology and Glia Graduate Training ProgramUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
48
|
Vanherle S, Janssen A, Gutiérrez de Ravé M, Janssen B, Lodder C, Botella Lucena P, Kessels S, Hardy J, Vandeput E, Wang Y, Stancu IC, Segal A, Kleinewietfeld M, Voets T, Brône B, Poovathingal S, Alpizar YA, Dewachter I. APOE deficiency inhibits amyloid-facilitated (A) tau pathology (T) and neurodegeneration (N), halting progressive ATN pathology in a preclinical model. Mol Psychiatry 2025:10.1038/s41380-025-03036-7. [PMID: 40307424 DOI: 10.1038/s41380-025-03036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 03/12/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
In AD, amyloid pathology (A) precedes progressive development of tau pathology (T) and neurodegeneration (N), with the latter (T/N) processes associated with symptom progression. Recent anti-amyloid beta (Aβ) clinical trials raise hope but indicate the need for multi-targeted therapies, to effectively halt clinical AD and ATN pathology progression. APOE-related putative protective mutations (including APOE3Christchurch, RELN-COLBOS) were recently identified in case reports with exceptionally high resilience to autosomal dominant AD. In these cases, Nature provided proof of concept for halting autosomal dominant AD and ATN progression in humans, despite a high amyloid load, and pointing to the APOE pathway as a potential target. This is further supported by the recent identification of APOE4 homozygosity as genetic AD. Here we studied the role of APOE in a preclinical model that robustly mimics amyloid-facilitated (A) tau pathology (T) and subsequent neurodegeneration (N), denoted as ATN model, generated by crossing 5xFAD (F +) and TauP301S (T +) mice. We show that APOE deficiency, markedly inhibited progression to tau pathology and tau-induced neurodegeneration in this ATN model, despite a high Aβ load, reminiscent of the high resilience ADAD case reports. Further study identified, despite increased Aβ load (W02 stained), a significant decrease in compacted, dense core plaques stained by ThioS in APOE deficient ATN mice. Furthermore, single-cell RNA sequencing (scRNA-seq) showed a crucial role of APOE in microglial conversion beyond homeostatic microglia to reactive and disease associated microglia (DAM) in this ATN preclinical model. Microglial elimination significantly decreased amyloid-driven tau pathology, in the presence of APOE, but not in APOE deficient mice. Together the data demonstrate that APOE deficiency inhibits amyloid-driven tau pathology and subsequent neurodegeneration, by pleiotropic effects including prevention of dense core plaque formation and halting conversion of homeostatic microglia. We here present a model recapitulating inhibition of amyloid-facilitated tau pathology by APOE deficiency despite high Aβ load, important for understanding the role of APOE, and APOE-dependent processes in ATN progression and its therapeutic exploitation in AD.
Collapse
Affiliation(s)
- Sarah Vanherle
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Art Janssen
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Manuel Gutiérrez de Ravé
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Bieke Janssen
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Chritica Lodder
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Pablo Botella Lucena
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Sofie Kessels
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Jana Hardy
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Eline Vandeput
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Yanyan Wang
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Ilie-Cosmin Stancu
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Bert Brône
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | | | - Yeranddy A Alpizar
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Ilse Dewachter
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
49
|
Wang Z, Ranasinghe JC, Wu W, Chan DCY, Gomm A, Tanzi RE, Zhang C, Zhang N, Allen GI, Huang S. Machine Learning Interpretation of Optical Spectroscopy Using Peak-Sensitive Logistic Regression. ACS NANO 2025; 19:15457-15473. [PMID: 40233205 DOI: 10.1021/acsnano.4c16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Optical spectroscopy, a noninvasive molecular sensing technique, offers valuable insights into material characterization, molecule identification, and biosample analysis. Despite the informativeness of high-dimensional optical spectra, their interpretation remains a challenge. Machine learning methods have gained prominence in spectral analyses, efficiently unveiling analyte compositions. However, these methods still face challenges in interpretability, particularly in generating clear feature importance maps that highlight the spectral features specific to each class of data. These limitations arise from feature noise, model complexity, and the lack of optimization for spectroscopy. In this work, we introduce a machine learning algorithm─logistic regression with peak-sensitive elastic-net regularization (PSE-LR)─tailored for spectral analysis. PSE-LR enables classification and interpretability by producing a peak-sensitive feature importance map, achieving an F1-score of 0.93 and a feature sensitivity of 1.0. Its performance is compared with other methods, including k-nearest neighbors (KNN), elastic-net logistic regression (E-LR), support vector machine (SVM), principal component analysis followed by linear discriminant analysis (PCA-LDA), XGBoost, and neural network (NN). Applying PSE-LR to Raman and photoluminescence (PL) spectra, we detected the receptor-binding domain (RBD) of SARS-CoV-2 spike protein in ultralow concentrations, identified neuroprotective solution (NPS) in brain samples, recognized WS2 monolayer and WSe2/WS2 heterobilayer, analyzed Alzheimer's disease (AD) brains, and suggested potential disease biomarkers. Our findings demonstrate PSE-LR's utility in detecting subtle spectral features and generating interpretable feature importance maps. It is beneficial for the spectral characterization of materials, molecules, and biosamples and applicable to other spectroscopic methods. This work also facilitates the development of nanodevices such as nanosensors and miniaturized spectrometers based on nanomaterials.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Jeewan C Ranasinghe
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Wenjing Wu
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Dennis C Y Chan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ashley Gomm
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Genevera I Allen
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Rice Advanced Materials Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
50
|
Paulson AL, Zhang L, Prichard AM, Singer AC. 40 Hz sensory stimulation enhances CA3-CA1 coordination and prospective coding during navigation in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2025; 122:e2419364122. [PMID: 40261930 PMCID: PMC12054803 DOI: 10.1073/pnas.2419364122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
40 Hz sensory stimulation ("flicker") has emerged as a new technique to potentially mitigate pathology and improve cognition in mouse models of Alzheimer's disease (AD) pathology. However, it remains unknown how 40 Hz flicker affects neural codes essential for memory. Accordingly, we investigate the effects of 40 Hz flicker on neural representations of experience in the hippocampus of the 5XFAD mouse model of AD by recording 1,000s of neurons during a goal-directed spatial navigation task. We find that an hour of daily exposure to 40 Hz audio-visual stimulation over 8 d leads to higher coordination between hippocampal subregions CA3 and CA1 during navigation. Consistent with CA3's role in generating sequential activity that represents future positions, 40 Hz flicker exposure increased prospective coding of future positions. In turn, prospective coding was more prominent during efficient navigation behavior. Our findings show how 40 Hz flicker enhances key hippocampal activity during behavior that is important for memory.
Collapse
Affiliation(s)
- Abigail L. Paulson
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA30332
| | - Lu Zhang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA30332
- National Institute of Mental Health, NIH, Bethesda, MD20892
| | - Ashley M. Prichard
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA30332
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Medical Center, Decatur, GA30033
| | - Annabelle C. Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA30332
| |
Collapse
|