1
|
Barnes SA, Thomazeau A, Finnie PSB, Heinrich MJ, Heynen AJ, Komiyama NH, Grant SGN, Menniti FS, Osterweil EK, Bear MF. Non-ionotropic signaling through the NMDA receptor GluN2B carboxy-terminal domain drives dendritic spine plasticity and reverses fragile X phenotypes. Cell Rep 2025; 44:115311. [PMID: 39983718 PMCID: PMC12006837 DOI: 10.1016/j.celrep.2025.115311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/03/2024] [Accepted: 01/23/2025] [Indexed: 02/23/2025] Open
Abstract
N-methyl-D-aspartate (NMDA)-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis. Using subtype-selective pharmacological and genetic tools, we find that structural plasticity is dependent on ligand binding to GluN2B-containing NMDA receptors (NMDARs) and signaling via the GluN2B carboxy-terminal domain (CTD). Disruption of non-ionotropic signaling by replacing the GluN2B CTD with the GluN2A CTD leads to an increase in spine density, dysregulated basal protein synthesis, exaggerated long-term depression mediated by G-protein-coupled metabotropic glutamate receptors (mGluR-LTD), and epileptiform activity reminiscent of phenotypes observed in the Fmr1 knockout (KO) model of fragile X syndrome. By crossing the Fmr1 KO mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for the treatment of fragile X and related causes of intellectual disability and autism.
Collapse
Affiliation(s)
- Stephanie A Barnes
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Aurore Thomazeau
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Peter S B Finnie
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maxwell J Heinrich
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arnold J Heynen
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Noburu H Komiyama
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; The Patrick Wild Centre, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Frank S Menniti
- MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA
| | - Emily K Osterweil
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; F.M. Kirby Center for Neurobiology, Translational Neuroscience Center, Department of Neurology, Harvard Medical School, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Barnes SA, Thomazeau A, Finnie PSB, Heinrich MJ, Heynen AJ, Komiyama NH, Grant SGN, Menniti FS, Osterweil EK, Bear MF. Non-ionotropic signaling through the NMDA receptor GluN2B carboxy terminal domain drives morphological plasticity of dendritic spines and reverses fragile X phenotypes in mouse hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628559. [PMID: 39764032 PMCID: PMC11703159 DOI: 10.1101/2024.12.15.628559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of de novo protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission. By using selective pharmacological and genetic tools, we find that structural plasticity is dependent on the ligand binding domain (LBD) of GluN2B-containing NMDA receptors and that metabotropic signaling occurs via the GluN2B carboxyterminal domain (CTD). Disruption of signaling by replacing the GluN2B CTD with the GluN2A CTD leads to increased spine density, dysregulated basal protein synthesis, and epileptiform activity in area CA3 reminiscent of phenotypes observed in the Fmr1 -/y model of fragile X syndrome. By crossing the Fmr1 -/y mice with animals in which the GluN2A CTD has been replaced with the GluN2B CTD, we observe a correction of these core fragile X phenotypes. These findings suggest that non-ionotropic NMDAR signaling through GluN2B may represent a novel therapeutic target for treatment of fragile X and related causes of intellectual disability and autism.
Collapse
|
3
|
Williams KE, Zou Y, Qiu B, Kono T, Guo C, Garcia D, Chen H, Graves T, Lai Z, Evans-Molina C, Ma YY, Liangpunsakul S, Yong W, Liang T. Sex-Specific Impact of Fkbp5 on Hippocampal Response to Acute Alcohol Injection: Involvement in Alterations of Metabolism-Related Pathways. Cells 2023; 13:89. [PMID: 38201293 PMCID: PMC10778370 DOI: 10.3390/cells13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
High levels of alcohol intake alter brain gene expression and can produce long-lasting effects. FK506-binding protein 51 (FKBP51) encoded by Fkbp5 is a physical and cellular stress response gene and has been associated with alcohol consumption and withdrawal severity. Fkbp5 has been previously linked to neurite outgrowth and hippocampal morphology, sex differences in stress response, and epigenetic modification. Presently, primary cultured Fkbp5 KO and WT mouse neurons were examined for neurite outgrowth and mitochondrial signal with and without alcohol. We found neurite specification differences between KO and WT; particularly, mesh-like morphology was observed after alcohol treatment and confirmed higher MitoTracker signal in cultured neurons of Fkbp5 KO compared to WT at both naive and alcohol-treated conditions. Brain regions that express FKBP51 protein were identified, and hippocampus was confirmed to possess a high level of expression. RNA-seq profiling was performed using the hippocampus of naïve or alcohol-injected (2 mg EtOH/Kg) male and female Fkbp5 KO and WT mice. Differentially expressed genes (DEGs) were identified between Fkbp5 KO and WT at baseline and following alcohol treatment, with female comparisons possessing a higher number of DEGs than male comparisons. Pathway analysis suggested that genes affecting calcium signaling, lipid metabolism, and axon guidance were differentially expressed at naïve condition between KO and WT. Alcohol treatment significantly affected pathways and enzymes involved in biosynthesis (Keto, serine, and glycine) and signaling (dopamine and insulin receptor), and neuroprotective role. Functions related to cell morphology, cell-to-cell signaling, lipid metabolism, injury response, and post-translational modification were significantly altered due to alcohol. In summary, Fkbp5 plays a critical role in the response to acute alcohol treatment by altering metabolism and signaling-related genes.
Collapse
Affiliation(s)
- Kent E. Williams
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Bin Qiu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Tatsuyoshi Kono
- Diabetes Research Center, Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.K.); (C.E.-M.)
| | - Changyong Guo
- Department Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.G.); (Y.-Y.M.)
| | - Dawn Garcia
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Hanying Chen
- Department Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tamara Graves
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (Y.Z.); (D.G.); (Z.L.)
| | - Carmella Evans-Molina
- Diabetes Research Center, Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (T.K.); (C.E.-M.)
| | - Yao-Ying Ma
- Department Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.G.); (Y.-Y.M.)
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Weidong Yong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tiebing Liang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN 46202, USA; (K.E.W.); (T.G.); (S.L.)
| |
Collapse
|
4
|
Maussion G, Rocha C, Abdian N, Yang D, Turk J, Carrillo Valenzuela D, Pimentel L, You Z, Morquette B, Nicouleau M, Deneault E, Higgins S, Chen CXQ, Reintsch WE, Ho S, Soubannier V, Lépine S, Modrusan Z, Lund J, Stephenson W, Schubert R, Durcan TM. Transcriptional Dysregulation and Impaired Neuronal Activity in FMR1 Knock-Out and Fragile X Patients' iPSC-Derived Models. Int J Mol Sci 2023; 24:14926. [PMID: 37834379 PMCID: PMC10573568 DOI: 10.3390/ijms241914926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Fragile X syndrome (FXS) is caused by a repression of the FMR1 gene that codes the Fragile X mental retardation protein (FMRP), an RNA binding protein involved in processes that are crucial for proper brain development. To better understand the consequences of the absence of FMRP, we analyzed gene expression profiles and activities of cortical neural progenitor cells (NPCs) and neurons obtained from FXS patients' induced pluripotent stem cells (IPSCs) and IPSC-derived cells from FMR1 knock-out engineered using CRISPR-CAS9 technology. Multielectrode array recordings revealed in FMR1 KO and FXS patient cells, decreased mean firing rates; activities blocked by tetrodotoxin application. Increased expression of presynaptic mRNA and transcription factors involved in the forebrain specification and decreased levels of mRNA coding AMPA and NMDA subunits were observed using RNA sequencing on FMR1 KO neurons and validated using quantitative PCR in both models. Intriguingly, 40% of the differentially expressed genes were commonly deregulated between NPCs and differentiating neurons with significant enrichments in FMRP targets and autism-related genes found amongst downregulated genes. Our findings suggest that the absence of FMRP affects transcriptional profiles since the NPC stage, and leads to impaired activity and neuronal differentiation over time, which illustrates the critical role of FMRP protein in neuronal development.
Collapse
Affiliation(s)
- Gilles Maussion
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Cecilia Rocha
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Narges Abdian
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Dimitri Yang
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Julien Turk
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Dulce Carrillo Valenzuela
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Luisa Pimentel
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Zhipeng You
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Barbara Morquette
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Michael Nicouleau
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Eric Deneault
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Samuel Higgins
- Roche Sequencing, Computational Science and Informatics, Roche Molecular Systems, Santa Clara, CA 95050, USA
| | - Carol X.-Q. Chen
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Wolfgang E. Reintsch
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Stanley Ho
- Research and Early Development, Roche Molecular Systems, Pleasanton, CA 94588, USA
| | - Vincent Soubannier
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| | - Sarah Lépine
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | | | | | - Rajib Schubert
- Research and Early Development, Roche Molecular Systems, Pleasanton, CA 94588, USA
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (G.M.); (C.R.)
| |
Collapse
|
5
|
Di Menna L, Orlando R, D'Errico G, Ginerete RP, Machaczka A, Bonaccorso CM, Arena A, Spatuzza M, Celli R, Alborghetti M, Ciocca E, Zuena AR, Scioli MR, Bruno V, Battaglia G, Nicoletti F, Catania MV. Blunted type-5 metabotropic glutamate receptor-mediated polyphosphoinositide hydrolysis in two mouse models of monogenic autism. Neuropharmacology 2023:109642. [PMID: 37392820 DOI: 10.1016/j.neuropharm.2023.109642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2023]
Abstract
The involvement of the mGlu5 receptors in the pathophysiology of several forms of monogenic autism has been supported by numerous studies following the seminal observation that mGlu5 receptor-dependent long-term depression was enhanced in the hippocampus of mice modeling the fragile-X syndrome (FXS). Surprisingly, there are no studies examining the canonical signal transduction pathway activated by mGlu5 receptors (i.e. polyphosphoinositide - PI - hydrolysis) in mouse models of autism. We have developed a method for in vivo assessment of PI hydrolysis based on systemic injection of lithium chloride followed by treatment with the selective mGlu5 receptor PAM, VU0360172, and measurement of endogenous inositolmonophosphate (InsP) in brain tissue. Here, we report that mGlu5 receptor-mediated PI hydrolysis was blunted in the cerebral cortex, hippocampus, and corpus striatum of Ube3am-/p+ mice modeling Angelman syndrome (AS), and in the cerebral cortex and hippocampus of fmr1 knockout mice modeling FXS. In vivo mGlu5 receptor-mediated stimulation of Akt on threonine 308 was also blunted in the hippocampus of FXS mice. These changes were associated with a significant increase in cortical and striatal Homer1 levels and striatal mGlu5 receptor and Gαq levels in AS mice, and with a reduction in cortical mGlu5 receptor and hippocampal Gαq levels, and an increase in cortical phospholipase-Cβ and hippocampal Homer1 levels in FXS mice. This is the first evidence that the canonical transduction pathway activated by mGlu5 receptors is down-regulated in brain regions of mice modeling monogenic autism.
Collapse
Affiliation(s)
| | - Rosamaria Orlando
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | | | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Science, Krakow, Poland
| | | | | | | | | | - Marika Alborghetti
- Department of Neuroscience, Mental Health, and Sensory Organs, Sapienza University, Italy
| | - Eleonora Ciocca
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | | | - Valeria Bruno
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Giuseppe Battaglia
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, Sapienza University, Roma, Italy
| | - Maria Vincenza Catania
- Institute for Biomedical Research and Innovation, The National Research Council (IRIB-CNR), Catania, Italy.
| |
Collapse
|
6
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
7
|
Kouchi Z, Kojima M. A Structural Network Analysis of Neuronal ArhGAP21/23 Interactors by Computational Modeling. ACS OMEGA 2023; 8:19249-19264. [PMID: 37305272 PMCID: PMC10249030 DOI: 10.1021/acsomega.2c08054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
RhoGTPase-activating proteins (RhoGAPs) play multiple roles in neuronal development; however, details of their substrate recognition system remain elusive. ArhGAP21 and ArhGAP23 are RhoGAPs that contain N-terminal PDZ and pleckstrin homology domains. In the present study, the RhoGAP domain of these ArhGAPs was computationally modeled by template-based methods and the AlphaFold2 software program, and their intrinsic RhoGTPase recognition mechanism was analyzed from the domain structures using the protein docking programs HADDOCK and HDOCK. ArhGAP21 was predicted to preferentially catalyze Cdc42, RhoA, RhoB, RhoC, and RhoG and to downregulate RhoD and Tc10 activities. Regarding ArhGAP23, RhoA and Cdc42 were deduced to be its substrates, whereas RhoD downregulation was predicted to be less efficient. The PDZ domains of ArhGAP21/23 possess the FTLRXXXVY sequence, and similar globular folding consists of antiparalleled β-sheets and two α-helices that are conserved with PDZ domains of MAST-family proteins. A peptide docking analysis revealed the specific interaction of the ArhGAP23 PDZ domain with the PTEN C-terminus. The pleckstrin homology domain structure of ArhGAP23 was also predicted, and the functional selectivity for the interactors regulated by the folding and disordered domains in ArhGAP21 and ArhGAP23 was examined by an in silico analysis. An interaction analysis of these RhoGAPs revealed the existence of mammalian ArhGAP21/23-specific type I and type III Arf- and RhoGTPase-regulated signaling. Multiple recognition systems of RhoGTPase substrates and selective Arf-dependent localization of ArhGAP21/23 may form the basis of the functional core signaling necessary for synaptic homeostasis and axon/dendritic transport regulated by RhoGAP localization and activities.
Collapse
Affiliation(s)
- Zen Kouchi
- Department
of Genetics, Institute for Developmental
Research, Aichi Developmental Disability Center, 713-8 Kamiya-cho, Kasugai-city 480-0392 Aichi, Japan
| | - Masaki Kojima
- Laboratory
of Bioinformatics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Japan
| |
Collapse
|
8
|
Sandhu A, Kumar A, Rawat K, Gautam V, Sharma A, Saha L. Modernising autism spectrum disorder model engineering and treatment via CRISPR-Cas9: A gene reprogramming approach. World J Clin Cases 2023; 11:3114-3127. [PMID: 37274051 PMCID: PMC10237133 DOI: 10.12998/wjcc.v11.i14.3114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
A neurological abnormality called autism spectrum disorder (ASD) affects how a person perceives and interacts with others, leading to social interaction and communication issues. Limited and recurring behavioural patterns are another feature of the illness. Multiple mutations throughout development are the source of the neurodevelopmental disorder autism. However, a well-established model and perfect treatment for this spectrum disease has not been discovered. The rising era of the clustered regularly interspaced palindromic repeats (CRISPR)-associated protein 9 (Cas9) system can streamline the complexity underlying the pathogenesis of ASD. The CRISPR-Cas9 system is a powerful genetic engineering tool used to edit the genome at the targeted site in a precise manner. The major hurdle in studying ASD is the lack of appropriate animal models presenting the complex symptoms of ASD. Therefore, CRISPR-Cas9 is being used worldwide to mimic the ASD-like pathology in various systems like in vitro cell lines, in vitro 3D organoid models and in vivo animal models. Apart from being used in establishing ASD models, CRISPR-Cas9 can also be used to treat the complexities of ASD. The aim of this review was to summarize and critically analyse the CRISPR-Cas9-mediated discoveries in the field of ASD.
Collapse
Affiliation(s)
- Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh 0172, Chandigarh, India
| |
Collapse
|
9
|
Balbi M, Bonanno G, Bonifacino T, Milanese M. The Physio-Pathological Role of Group I Metabotropic Glutamate Receptors Expressed by Microglia in Health and Disease with a Focus on Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:5240. [PMID: 36982315 PMCID: PMC10048889 DOI: 10.3390/ijms24065240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Microglia cells are the resident immune cells of the central nervous system. They act as the first-line immune guardians of nervous tissue and central drivers of neuroinflammation. Any homeostatic alteration that can compromise neuron and tissue integrity could activate microglia. Once activated, microglia exhibit highly diverse phenotypes and functions related to either beneficial or harmful consequences. Microglia activation is associated with the release of protective or deleterious cytokines, chemokines, and growth factors that can in turn determine defensive or pathological outcomes. This scenario is complicated by the pathology-related specific phenotypes that microglia can assume, thus leading to the so-called disease-associated microglia phenotypes. Microglia express several receptors that regulate the balance between pro- and anti-inflammatory features, sometimes exerting opposite actions on microglial functions according to specific conditions. In this context, group I metabotropic glutamate receptors (mGluRs) are molecular structures that may contribute to the modulation of the reactive phenotype of microglia cells, and this is worthy of exploration. Here, we summarize the role of group I mGluRs in shaping microglia cells' phenotype in specific physio-pathological conditions, including some neurodegenerative disorders. A significant section of the review is specifically focused on amyotrophic lateral sclerosis (ALS) since it represents an entirely unexplored topic of research in the field.
Collapse
Affiliation(s)
- Matilde Balbi
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Marco Milanese
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano 4, 16148 Genova, Italy (M.M.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
10
|
Matrisciano F, Locci V, Dong E, Nicoletti F, Guidotti A, Grayson DR. Altered Expression and In Vivo Activity of mGlu5 Variant a Receptors in the Striatum of BTBR Mice: Novel Insights Into the Pathophysiology of Adult Idiopathic Forms of Autism Spectrum Disorders. Curr Neuropharmacol 2022; 20:2354-2368. [PMID: 35139800 PMCID: PMC9890299 DOI: 10.2174/1567202619999220209112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND mGlu5 metabotropic glutamate receptors are considered as candidate drug targets in the treatment of "monogenic" forms of autism spectrum disorders (ASD), such as Fragile- X syndrome (FXS). However, despite promising preclinical data, clinical trials using mGlu5 receptor antagonists to treat FXS showed no beneficial effects. OBJECTIVE Here, we studied the expression and function of mGlu5 receptors in the striatum of adult BTBR mice, which model idiopathic forms of ASD, and behavioral phenotype. METHODS Behavioral tests were associated with biochemistry analysis including qPCR and western blot for mRNA and protein expression. In vivo analysis of polyphosphoinositides hydrolysis was performed to study the mGlu5-mediated intracellular signaling in the striatum of adult BTBR mice under basal conditions and after MTEP exposure. RESULTS Expression of mGlu5 receptors and mGlu5 receptor-mediated polyphosphoinositides hydrolysis were considerably high in the striatum of BTBR mice, sensitive to MTEP treatment. Changes in the expression of genes encoding for proteins involved in excitatory and inhibitory neurotransmission and synaptic plasticity, including Fmr1, Dlg4, Shank3, Brd4, bdnf-exon IX, Mef2c, and Arc, GriA2, Glun1, Nr2A, and Grm1, Grm2, GriA1, and Gad1 were also found. Behaviorally, BTBR mice showed high repetitive stereotypical behaviors, including self-grooming and deficits in social interactions. Acute or repeated injections with MTEP reversed the stereotyped behavior and the social interaction deficit. Similar effects were observed with the NMDA receptor blockers MK-801 or ketamine. CONCLUSION These findings support a pivotal role of mGlu5 receptor abnormal expression and function in idiopathic ASD adult forms and unveil novel potential targets for therapy.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Valentina Locci
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Erbo Dong
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dennis R. Grayson
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Center for Alcohol Research in Epigenetics Department of Psychiatry College of Medicine University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Purushotham SS, Reddy NMN, D'Souza MN, Choudhury NR, Ganguly A, Gopalakrishna N, Muddashetty R, Clement JP. A perspective on molecular signalling dysfunction, its clinical relevance and therapeutics in autism spectrum disorder. Exp Brain Res 2022; 240:2525-2567. [PMID: 36063192 DOI: 10.1007/s00221-022-06448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are neurodevelopmental disorders that have become a primary clinical and social concern, with a prevalence of 2-3% in the population. Neuronal function and behaviour undergo significant malleability during the critical period of development that is found to be impaired in ID/ASD. Human genome sequencing studies have revealed many genetic variations associated with ASD/ID that are further verified by many approaches, including many mouse and other models. These models have facilitated the identification of fundamental mechanisms underlying the pathogenesis of ASD/ID, and several studies have proposed converging molecular pathways in ASD/ID. However, linking the mechanisms of the pathogenic genes and their molecular characteristics that lead to ID/ASD has progressed slowly, hampering the development of potential therapeutic strategies. This review discusses the possibility of recognising the common molecular causes for most ASD/ID based on studies from the available models that may enable a better therapeutic strategy to treat ID/ASD. We also reviewed the potential biomarkers to detect ASD/ID at early stages that may aid in diagnosis and initiating medical treatment, the concerns with drug failure in clinical trials, and developing therapeutic strategies that can be applied beyond a particular mutation associated with ASD/ID.
Collapse
Affiliation(s)
- Sushmitha S Purushotham
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Neeharika M N Reddy
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Michelle Ninochka D'Souza
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Nilpawan Roy Choudhury
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Anusa Ganguly
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Niharika Gopalakrishna
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India
| | - Ravi Muddashetty
- Centre for Brain Research, Indian Institute of Science Campus, CV Raman Avenue, Bangalore, 560 012, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, 560064, India.
| |
Collapse
|
12
|
Tascini G, Dell'Isola GB, Mencaroni E, Di Cara G, Striano P, Verrotti A. Sleep Disorders in Rett Syndrome and Rett-Related Disorders: A Narrative Review. Front Neurol 2022; 13:817195. [PMID: 35299616 PMCID: PMC8923297 DOI: 10.3389/fneur.2022.817195] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Rett Syndrome (RTT) is a rare and severe X-linked developmental brain disorder that occurs primarily in females, with a ratio of 1:10.000. De novo mutations in the Methyl-CpG Binding protein 2 (MECP2) gene on the long arm of X chromosome are responsible for more than 95% cases of classical Rett. In the remaining cases (atypical Rett), other genes are involved such as the cyclin-dependent kinase-like 5 (CDKL5) and the forkhead box G1 (FOXG1). Duplications of the MECP2 locus cause MECP2 duplication syndrome (MDS) which concerns about 1% of male patients with intellectual disability. Sleep disorders are common in individuals with intellectual disability, while the prevalence in children is between 16 and 42%. Over 80% of individuals affected by RTT show sleep problems, with a higher prevalence in the first 7 years of life and some degree of variability in correlation to age and genotype. Abnormalities in circadian rhythm and loss of glutamate homeostasis play a key role in the development of these disorders. Sleep disorders, epilepsy, gastrointestinal problems characterize CDKL5 Deficiency Disorder (CDD). Sleep impairment is an area of overlap between RTT and MECP2 duplication syndrome along with epilepsy, regression and others. Sleep dysfunction and epilepsy are deeply linked. Sleep deprivation could be an aggravating factor of epilepsy and anti-comitial therapy could interfere in sleep structure. Epilepsy prevalence in atypical Rett syndrome with severe clinical phenotype is higher than in classical Rett syndrome. However, RTT present a significant lifetime risk of epilepsy too. Sleep disturbances impact on child's development and patients' families and the evidence for its management is still limited. The aim of this review is to analyze pathophysiology, clinical features, the impact on other comorbidities and the management of sleep disorders in Rett syndrome and Rett-related syndrome.
Collapse
Affiliation(s)
- Giorgia Tascini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | | | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
13
|
Lutz AK, Pérez Arévalo A, Ioannidis V, Stirmlinger N, Demestre M, Delorme R, Bourgeron T, Boeckers TM. SHANK2 Mutations Result in Dysregulation of the ERK1/2 Pathway in Human Induced Pluripotent Stem Cells-Derived Neurons and Shank2(-/-) Mice. Front Mol Neurosci 2021; 14:773571. [PMID: 34899182 PMCID: PMC8662699 DOI: 10.3389/fnmol.2021.773571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
SHANK2 (ProSAP1) is a postsynaptic scaffolding protein of excitatory synapses in the central nervous system and implicated in the development of autism spectrum disorders (ASD). Patients with mutations in SHANK2 show autism-like behaviors, developmental delay, and intellectual disability. We generated human induced pluripotent stem cells (hiPSC) from a patient carrying a heterozygous deletion of SHANK2 and from the unaffected parents. In patient hiPSCs and derived neurons SHANK2 mRNA and protein expression was reduced. During neuronal maturation, a reduction in growth cone size and a transient increase in neuronal soma size were observed. Neuronal proliferation was increased, and apoptosis was decreased in young and mature neurons. Additionally, mature patient hiPSC-derived neurons showed dysregulated excitatory signaling and a decrease of a broad range of signaling molecules of the ERK-MAP kinase pathway. These findings could be confirmed in brain samples from Shank2(−/−) mice, which also showed decreased mGluR5 and phospho-ERK1/2 expression. Our study broadens the current knowledge of SHANK2-related ASD. We highlight the importance of excitatory-inhibitory balance and mGluR5 dysregulation with disturbed downstream ERK1/2 signaling in ASD, which provides possible future therapeutic strategies for SHANK2-related ASD.
Collapse
Affiliation(s)
- Anne-Kathrin Lutz
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | | | | | - Maria Demestre
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Thomas Bourgeron
- Génétique Humaine et Fonctions Cognitives, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm Site, Ulm, Germany
| |
Collapse
|
14
|
Su LD, Wang N, Han J, Shen Y. Group 1 Metabotropic Glutamate Receptors in Neurological and Psychiatric Diseases: Mechanisms and Prospective. Neuroscientist 2021; 28:453-468. [PMID: 34088252 PMCID: PMC9449437 DOI: 10.1177/10738584211021018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) are G-protein coupled receptors
that are activated by glutamate in the central nervous system (CNS).
Basically, mGluRs contribute to fine-tuning of synaptic efficacy and
control the accuracy and sharpness of neurotransmission. Among eight
subtypes, mGluR1 and mGluR5 belong to group 1 (Gp1) family, and are
implicated in multiple CNS disorders, such as Alzheimer’s disease,
autism, Parkinson’s disease, and so on. In the present review, we
systematically discussed underlying mechanisms and prospective of Gp1
mGluRs in a group of neurological and psychiatric diseases, including
Alzheimer’s disease, Parkinson’s disease, autism spectrum disorder,
epilepsy, Huntington’s disease, intellectual disability, Down’s
syndrome, Rett syndrome, attention-deficit hyperactivity disorder,
addiction, anxiety, nociception, schizophrenia, and depression, in
order to provide more insights into the therapeutic potential of Gp1
mGluRs.
Collapse
Affiliation(s)
- Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Wang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Junhai Han
- School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Xu J, Marshall JJ, Kraniotis S, Nomura T, Zhu Y, Contractor A. Genetic disruption of Grm5 causes complex alterations in motor activity, anxiety and social behaviors. Behav Brain Res 2021; 411:113378. [PMID: 34029630 DOI: 10.1016/j.bbr.2021.113378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by impaired social interactions and restricted and repetitive behaviors. Although group 1 metabotropic glutamate receptors (mGluRs), and in particular mGluR5, have been extensively proposed as potential targets for intervention in autism and other neurodevelopmental disorders, there has not been a comprehensive analysis of the effect of mGluR5 loss on behaviors typically assessed in autism mouse models thought to be correlates of behavioral symptoms of human disorders. Here we present a behavioral characterization of mice with complete or partial loss of mGluR5 (homozygous or heterozygous null mutations in Grm5 gene). We tested several autism related behaviors including social interaction, repetitive grooming, digging and locomotor behaviors. We found that digging and marble burying behaviors were almost completely abolished in mGluR5 ko mice, although self-grooming was not altered. Social interaction was impaired in ko but not in heterozygote (het) mice. In tests of locomotor activity and anxiety related behaviors, mGluR5 ko mice exhibited hyperactivity and reduced anxiety in the open field test but unexpectedly, showed hypoactivity in the elevated zero-maze test. There was no impairment in motor learning in the accelerating rotarod in both ko and het mutant. Together these results provide support for the importance of mGluR5 in motor and social behaviors that are specifically affected in autism disorders.
Collapse
Affiliation(s)
- Jian Xu
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States.
| | - John J Marshall
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States
| | - Stephen Kraniotis
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States
| | - Toshihiro Nomura
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States
| | - Yongling Zhu
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, United States; Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, United States.
| |
Collapse
|
16
|
Nomura Y, Nomura J, Kamiguchi H, Nishikawa T, Takumi T. Transcriptome analysis of human neural cells derived from isogenic embryonic stem cells with 16p11.2 deletion. Neurosci Res 2021; 171:114-123. [PMID: 33785412 DOI: 10.1016/j.neures.2021.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
16p11.2 deletion is one of the most influential copy number variations (CNVs) associated with autism spectrum disorder (ASD). Previous studies have investigated the pathophysiology of 16p11.2 deletion both in vitro and in vivo, and have identified features such as NMDAR dysfunction, excitation-inhibition imbalance, transcriptional dysregulation, and impaired cortical development. However, little is known about the transcriptional profiles of human neural cells. Here, we constructed an isogenic human embryonic stem (hES) cell model with 16p11.2 deletion using a CRISPR/Cas9 system and performed transcriptome analyses of hES-derived 2-dimensional neural cells. We identified several characteristics which may correlate with the neuropathology of 16p11.2 deletion: predisposition to differentiate into neural lineages, enhanced neurogenesis, and dysregulation of G protein-coupled receptor signaling and RAF/MAPK pathway. We also found upregulation of fragile X mental retardation protein (FMRP) target genes including GRM5, which is implicated as a common trait between 16p11.2 deletion and fragile X syndrome. Extending our knowledge into other ASD models would help us to understand the molecular pathology of this disorder.
Collapse
Affiliation(s)
- Yoshiko Nomura
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences (Medicine), Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan
| | - Jun Nomura
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan
| | | | - Toru Nishikawa
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences (Medicine), Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan; Department of Pharmacology, School of Medicine, Pharmacological Research Center, Showa University, Shinagawa, Tokyo, 142-8555, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan; Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences (Medicine), Tokyo Medical and Dental University, Bunkyo, Tokyo, 113-8519, Japan; Department of Physiology and Cell Biology, Kobe University School of Medicine, Chuo, Kobe, 650-0017, Japan.
| |
Collapse
|
17
|
Cheffer A, Flitsch LJ, Krutenko T, Röderer P, Sokhranyaeva L, Iefremova V, Hajo M, Peitz M, Schwarz MK, Brüstle O. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 2020; 11:99. [PMID: 33308283 PMCID: PMC7733257 DOI: 10.1186/s13229-020-00383-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.
Collapse
Affiliation(s)
- Arquimedes Cheffer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Pascal Röderer
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Liubov Sokhranyaeva
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Vira Iefremova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany
| | - Martin Karl Schwarz
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
18
|
Gomathi M, Padmapriya S, Balachandar V. Drug Studies on Rett Syndrome: From Bench to Bedside. J Autism Dev Disord 2020; 50:2740-2764. [PMID: 32016693 DOI: 10.1007/s10803-020-04381-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drug studies on Rett syndrome (RTT) have drastically increased over the past few decades. This review aims to provide master data on bench-to-bedside drug studies involving RTT. A comprehensive literature review was performed by searching in PUBMED, MEDLINE and Google Scholar, international, national and regional clinical trial registries and pharmaceutical companies using the keywords "Rett syndrome treatment and/or drug or compound or molecule". Seventy drugs were investigated in non-clinical (N = 65 animal/cell line-based studies; N = 5 iPSC-based study) and clinical trials (N = 34) for ameliorating the symptoms of RTT. Though there is good progress in both clinical and non-clinical studies, none of these drugs entered phase III/IV for being launched as a therapeutic agent for RTT.
Collapse
Affiliation(s)
- Mohan Gomathi
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
19
|
Alagoz M, Kherad N. Advance genome editing technologies in the treatment of human diseases: CRISPR therapy (Review). Int J Mol Med 2020; 46:521-534. [PMID: 32467995 PMCID: PMC7307811 DOI: 10.3892/ijmm.2020.4609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genome editing techniques are considered to be one of the most challenging yet efficient tools for assisting therapeutic approaches. Several studies have focused on the development of novel methods to improve the efficiency of gene editing, as well as minimise their off-target effects. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein (Cas9) is a tool that has revolutionised genome editing technologies. New applications of CRISPR/Cas9 in a broad range of diseases have demonstrated its efficiency and have been used in ex vivo models of somatic and pluripotent stem cells, as well as in in vivo animal models, and may eventually be used to correct defective genes. The focus of the present review was the recent applications of CRISPR/Cas9 and its contribution to the treatment of challenging human diseases, such as various types of cancer, neurodegenerative diseases and a broad spectrum of other disorders. CRISPR technology is a novel method for disease treatment, enhancing the effectiveness of drugs and improving the development of personalised medicine.
Collapse
Affiliation(s)
- Meryem Alagoz
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| | - Nasim Kherad
- Molecular Biology and Genetics, Biruni Universitesi, Istanbul 34010, Turkey
| |
Collapse
|
20
|
Khoury ES, Sharma A, Ramireddy RR, Thomas AG, Alt J, Fowler A, Rais R, Tsukamoto T, Blue ME, Slusher B, Kannan S, Kannan RM. Dendrimer-conjugated glutaminase inhibitor selectively targets microglial glutaminase in a mouse model of Rett syndrome. Am J Cancer Res 2020; 10:5736-5748. [PMID: 32483415 PMCID: PMC7254984 DOI: 10.7150/thno.41714] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Elevated glutamate production and release from glial cells is a common feature of many CNS disorders. Inhibitors of glutaminase (GLS), the enzyme responsible for converting glutamine to glutamate have been developed to target glutamate overproduction. However, many GLS inhibitors have poor aqueous solubility, are unable to cross the blood brain barrier, or demonstrate significant toxicity when given systemically, precluding translation. Enhanced aqueous solubility and systemic therapy targeted to activated glia may address this challenge. Here we examine the impact of microglial-targeted GLS inhibition in a mouse model of Rett syndrome (RTT), a developmental disorder with no viable therapies, manifesting profound central nervous system effects, in which elevated glutamatergic tone, upregulation of microglial GLS, oxidative stress and neuroimmune dysregulation are key features. Methods: To enable this, we conjugated a potent glutaminase inhibitor, N-(5-{2-[2-(5-amino-[1,3,4]thiadiazol-2-yl)-ethylsulfanyl]-ethyl}-[1,3,4]thiadiazol-2-yl)-2-phenyl-acetamide (JHU29) to a generation 4 hydroxyl PAMAM dendrimer (D-JHU29). We then examined the effect of D-JHU29 in organotypic slice culture on glutamate release. We also examined GLS activity in microglial and non-microglial cells, and neurobehavioral phenotype after systemic administration of D-JHU29 in a mouse model of RTT. Results: We report successful conjugation of JHU29 to dendrimer resulting in enhanced water solubility compared to free JHU29. D-JHU29 reduced the excessive glutamate release observed in tissue culture slices in a clinically relevant Mecp2-knockout (KO) RTT mouse. Microglia isolated from Mecp2-KO mice demonstrated upregulation of GLS activity that normalized to wild-type levels following systemic treatment with D-JHU29. Neurobehavioral assessments in D-JHU29 treated Mecp2-KO mice revealed selective improvements in mobility. Conclusion: These findings demonstrate that glutaminase inhibitors conjugated to dendrimers are a viable mechanism to selectively inhibit microglial GLS to reduce glutamate production and improve mobility in a mouse model of RTT, with broader implications for selectively targeting this pathway in other neurodegenerative disorders.
Collapse
|
21
|
Stansley BJ, Fisher NM, Gogliotti RG, Lindsley CW, Conn PJ, Niswender CM. Contextual Fear Extinction Induces Hippocampal Metaplasticity Mediated by Metabotropic Glutamate Receptor 5. Cereb Cortex 2019; 28:4291-4304. [PMID: 29136107 DOI: 10.1093/cercor/bhx282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
Dysregulated fear memory can lead to a broad spectrum of anxiety disorders. The brain systems underlying fear memory are manifold, with the hippocampus being prominently involved by housing fear-related spatial memories as engrams, which are created and stored through neural changes such as synaptic plasticity. Although metabotropic glutamate (mGlu) receptors contribute significantly to both fear behavior and hippocampal synaptic plasticity, the relationship between these two phenomena has not been fully elucidated. Here, we report that contextual fear extinction induces a novel form of metaplasticity mediated by mGlu5 at the hippocampal SC-CA1 synapse. Further, blockade of mGlu5 prevents both contextual fear extinction and expression of this metaplasticity. This form of metaplasticity was absent in a mouse model of MECP2-duplication syndrome, corresponding to a complete deficit in extinction learning. These findings suggest that mGlu5-dependent metaplasticity within the hippocampus may play a critical role in extinction of contextual fear.
Collapse
Affiliation(s)
- Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Rocco G Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Smith ES, Smith DR, Eyring C, Braileanu M, Smith-Connor KS, Ei Tan Y, Fowler AY, Hoffman GE, Johnston MV, Kannan S, Blue ME. Altered trajectories of neurodevelopment and behavior in mouse models of Rett syndrome. Neurobiol Learn Mem 2019; 165:106962. [PMID: 30502397 PMCID: PMC8040058 DOI: 10.1016/j.nlm.2018.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 10/17/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022]
Abstract
Rett Syndrome (RTT) is a genetic disorder that is caused by mutations in the x-linked gene coding for methyl-CpG-biding-protein 2 (MECP2) and that mainly affects females. Male and female transgenic mouse models of RTT have been studied extensively, and we have learned a great deal regarding RTT neuropathology and how MeCP2 deficiency may be influencing brain function and maturation. In this manuscript we review what is known concerning structural and coinciding functional and behavioral deficits in RTT and in mouse models of MeCP2 deficiency. We also introduce our own corroborating data regarding behavioral phenotype and morphological alterations in volume of the cortex and striatum and the density of neurons, aberrations in experience-dependent plasticity within the barrel cortex and the impact of MeCP2 loss on glial structure. We conclude that regional structural changes in genetic models of RTT show great similarity to the alterations in brain structure of patients with RTT. These region-specific modifications often coincide with phenotype onset and contribute to larger issues of circuit connectivity, progression, and severity. Although the alterations seen in mouse models of RTT appear to be primarily due to cell-autonomous effects, there are also non-cell autonomous mechanisms including those caused by MeCP2-deficient glia that negatively impact healthy neuronal function. Collectively, this body of work has provided a solid foundation on which to continue to build our understanding of the role of MeCP2 on neuronal and glial structure and function, its greater impact on neural development, and potential new therapeutic avenues.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dani R Smith
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Charlotte Eyring
- The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Maria Braileanu
- Undergraduate Program in Neuroscience, The Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen S Smith-Connor
- The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Yew Ei Tan
- Perdana University Graduate School of Medicine, Kuala Lumpur, Malaysia
| | - Amanda Y Fowler
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Gloria E Hoffman
- Department of Biology, Morgan State University, Baltimore, MD 21251, USA
| | - Michael V Johnston
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Mary E Blue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA.
| |
Collapse
|
23
|
Kadam SD, Sullivan BJ, Goyal A, Blue ME, Smith-Hicks C. Rett Syndrome and CDKL5 Deficiency Disorder: From Bench to Clinic. Int J Mol Sci 2019; 20:ijms20205098. [PMID: 31618813 PMCID: PMC6834180 DOI: 10.3390/ijms20205098] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
Rett syndrome (RTT) and CDKL5 deficiency disorder (CDD) are two rare X-linked developmental brain disorders with overlapping but distinct phenotypic features. This review examines the impact of loss of methyl-CpG-binding protein 2 (MeCP2) and cyclin-dependent kinase-like 5 (CDKL5) on clinical phenotype, deficits in synaptic- and circuit-homeostatic mechanisms, seizures, and sleep. In particular, we compare the overlapping and contrasting features between RTT and CDD in clinic and in preclinical studies. Finally, we discuss lessons learned from recent clinical trials while reviewing the findings from pre-clinical studies.
Collapse
Affiliation(s)
- Shilpa D Kadam
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Brennan J Sullivan
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Archita Goyal
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
| | - Mary E Blue
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Constance Smith-Hicks
- The Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
25
|
Stansley BJ, Conn PJ. Neuropharmacological Insight from Allosteric Modulation of mGlu Receptors. Trends Pharmacol Sci 2019; 40:240-252. [PMID: 30824180 PMCID: PMC6445545 DOI: 10.1016/j.tips.2019.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
The metabotropic glutamate (mGlu) receptors are a family of G-protein-coupled receptors (GPCRs) that regulate cell physiology throughout the nervous system. The potential of mGlu receptors as therapeutic targets has been bolstered by current research that has provided insight into the diverse modes of mGlu activation and signaling. In particular, the allosteric modulation of mGlu receptors represents a major area of focus in studies of basic pharmacology as well as drug development, largely due to the high subtype specificity achievable by targeting allosteric sites on mGlu receptors. These provide sophisticated regulation of neuronal excitability and synaptic transmission to influence behavioral output. Here, we review how these allosteric mechanisms have been leveraged preclinically to demonstrate the therapeutic potential of allosteric modulators for neurological and neuropsychiatric disorders, such as autism, cognitive impairment, Parkinson's disease (PD), stress, and schizophrenia.
Collapse
Affiliation(s)
- Branden J Stansley
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Alagoz M, Kherad N, Gavaz M, Yuksel A. New Genetic Approaches for Early Diagnosis and Treatment of Autism Spectrum Disorders. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2019. [DOI: 10.1007/s40489-019-00167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Treating Rett syndrome: from mouse models to human therapies. Mamm Genome 2019; 30:90-110. [PMID: 30820643 PMCID: PMC6606665 DOI: 10.1007/s00335-019-09793-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023]
Abstract
Rare diseases are very difficult to study mechanistically and to develop therapies for because of the scarcity of patients. Here, the rare neuro-metabolic disorder Rett syndrome (RTT) is discussed as a prototype for precision medicine, demonstrating how mouse models have led to an understanding of the development of symptoms. RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). Mecp2-mutant mice are being used in preclinical studies that target the MECP2 gene directly, or its downstream pathways. Importantly, this work may improve the health of RTT patients. Clinical presentation may vary widely among individuals based on their mutation, but also because of the degree of X chromosome inactivation and the presence of modifier genes. Because it is a complex disorder involving many organ systems, it is likely that recovery of RTT patients will involve a combination of treatments. Precision medicine is warranted to provide the best efficacy to individually treat RTT patients.
Collapse
|
28
|
Jacquemont S, Pacini L, Jønch AE, Cencelli G, Rozenberg I, He Y, D'Andrea L, Pedini G, Eldeeb M, Willemsen R, Gasparini F, Tassone F, Hagerman R, Gomez-Mancilla B, Bagni C. Protein synthesis levels are increased in a subset of individuals with fragile X syndrome. Hum Mol Genet 2019; 27:2039-2051. [PMID: 29590342 PMCID: PMC5985734 DOI: 10.1093/hmg/ddy099] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Fragile X syndrome (FXS) is a monogenic form of intellectual disability and autism spectrum disorder caused by the absence of the fragile X mental retardation protein (FMRP). In biological models for the disease, this leads to upregulated mRNA translation and as a consequence, deficits in synaptic architecture and plasticity. Preclinical studies revealed that pharmacological interventions restore those deficits, which are thought to mediate the FXS cognitive and behavioral symptoms. Here, we characterized the de novo rate of protein synthesis in patients with FXS and their relationship with clinical severity. We measured the rate of protein synthesis in fibroblasts derived from 32 individuals with FXS and from 17 controls as well as in fibroblasts and primary neurons of 27 Fmr1 KO mice and 20 controls. Here, we show that levels of protein synthesis are increased in fibroblasts of individuals with FXS and Fmr1 KO mice. However, this cellular phenotype displays a broad distribution and a proportion of fragile X individuals and Fmr1 KO mice do not show increased levels of protein synthesis, having measures in the normal range. Because the same Fmr1 KO animal measures in fibroblasts predict those in neurons we suggest the validity of this peripheral biomarker. Our study offers a potential explanation for the comprehensive drug development program undertaken thus far yielding negative results and suggests that a significant proportion, but not all individuals with FXS, may benefit from the reduction of excessive levels of protein synthesis.
Collapse
Affiliation(s)
- Sébastien Jacquemont
- Sainte-Justine University Hospital Research Centre, Montreal, QC H3T 1C5.,University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Aia E Jønch
- Department of Clinical Genetics, Odense University Hospital.,Human Genetics, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Giulia Cencelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Izabela Rozenberg
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Yunsheng He
- Biomarker Development, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Laura D'Andrea
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giorgia Pedini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Marwa Eldeeb
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, 1738, 3000DR Rotterdam, The Netherlands
| | - Fabrizio Gasparini
- Neuroscience Discovery, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Flora Tassone
- Department of Biochemistry and Molecular Medicine and Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA 95817, USA
| | - Randi Hagerman
- Department of Pediatric and Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Baltazar Gomez-Mancilla
- Neuroscience Translational Medicine, Novartis Institutes for Biomedical Research, Novartis Pharma AG, 4056 Basel, Switzerland.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 0G4, Canada
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.,Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
29
|
Ramos-Prats A, Kölldorfer J, Paolo E, Zeidler M, Schmid G, Ferraguti F. An Appraisal of the Influence of the Metabotropic Glutamate 5 (mGlu5) Receptor on Sociability and Anxiety. Front Mol Neurosci 2019; 12:30. [PMID: 30873001 PMCID: PMC6401637 DOI: 10.3389/fnmol.2019.00030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/24/2019] [Indexed: 02/04/2023] Open
Abstract
Amongst the many neurotransmitter systems causally linked to the expression of social behavior, glutamate appears to play a pivotal role. In particular, metabotropic glutamate 5 (mGlu5) receptors have received much attention as its altered function has been reported in several mouse models of autism spectrum disorders and mental retardation. Inhibition of the activity of mGlu5 receptors by means of genetic or pharmacological manipulations improved social deficits in some of these animal models. However, in normal wild-type (WT) mice, pharmacological blockade of mGlu5 receptors yielded inconsistent results. The aim of our study was to investigate the actual contribution of decreased or absent mGlu5 receptor function in sociability and anxiety-like behavior as well as to explore the impact of mGlu5 receptor ablation on the pattern of brain activation upon social exposure. Here we show that Grm5-/- mice display higher social preference indexes compared to age-matched WT mice in the three-chambered social task. However, this effect was accompanied by a decreased exploratory activity during the test and increased anxiety-like behavior. Contrary to mGlu5 receptor ablation, the mGlu5 receptor negative allosteric modulator 3-((2-methyl-1,4-thiazolyl)ethynyl)pyridine (MTEP) induced anxiolytic effects without affecting social preference in WT mice. By mapping c-Fos expression in 21 different brain regions known to be involved in social interaction, we detected a specific activation of the prefrontal cortex and dorsolateral septum in Grm5-/- mice following social interaction. C-Fos expression correlation-based network and graph theoretical analyses further suggested dysfunctional connectivity and disruption of the functional brain network generated during social interaction in Grm5-/- mice. The lack of mGlu5 receptors resulted in profound rearrangements of the functional impact of prefrontal and hippocampal regions in the social interaction network. In conclusion, this work reveals a complex contribution of mGlu5 receptors in sociability and anxiety and points to the importance of these receptors in regulating brain functional connectivity during social interaction.
Collapse
Affiliation(s)
- Arnau Ramos-Prats
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Kölldorfer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elena Paolo
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Maximilian Zeidler
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Schmid
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
30
|
Rosina E, Battan B, Siracusano M, Di Criscio L, Hollis F, Pacini L, Curatolo P, Bagni C. Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism. Transl Psychiatry 2019; 9:50. [PMID: 30705255 PMCID: PMC6355879 DOI: 10.1038/s41398-018-0335-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/04/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
The molecular signature underlying autism spectrum disorder remains largely unknown. This study identifies differential expression of mTOR and MAPK pathways in patients affected by mild and severe idiopathic autism. A total of 55 subjects were enrolled, of which 22 were typically developing individuals and 33 were patients aged between 3 and 11 years, with autism spectrum disorder. A detailed history, including physical examination, developmental evaluation, mental health history and autism diagnostic observation schedule were performed for each patient. Components of the mTOR and MAPK signalling pathways were analysed from peripheral blood at the protein level. Patients were then stratified according to their clinical phenotypes, and the molecular profiling was analysed in relation to the degree of autism severity. In this cohort of patients, we identified increased activity of mTOR and the MAPK pathways, key regulators of synaptogenesis and protein synthesis. Specifically, rpS6, p-eIF4E, TSC1 and p-MNK1 expression discriminated patients according to their clinical diagnosis, suggesting that components of protein synthesis signalling pathways might constitute a molecular signature of clinical severity in autism spectrum disorder.
Collapse
Affiliation(s)
- Eleonora Rosina
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Barbara Battan
- Department of Systems Medicine, Division of Child Neurology and Psychiatry, University Hospital of Tor Vergata, Rome, Italy
| | - Martina Siracusano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lorena Di Criscio
- Department of Systems Medicine, Division of Child Neurology and Psychiatry, University Hospital of Tor Vergata, Rome, Italy
| | - Fiona Hollis
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Laura Pacini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Curatolo
- Department of Systems Medicine, Division of Child Neurology and Psychiatry, University Hospital of Tor Vergata, Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
31
|
Balakrishnan S, Mironov SL. CA1 Neurons Acquire Rett Syndrome Phenotype After Brief Activation of Glutamatergic Receptors: Specific Role of mGluR1/5. Front Cell Neurosci 2018; 12:363. [PMID: 30386209 PMCID: PMC6199391 DOI: 10.3389/fncel.2018.00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 01/03/2023] Open
Abstract
Rett syndrome (RTT) is a neurological disorder caused by the mutation of the X-linked MECP2 gene. The neurophysiological hallmark of the RTT phenotype is the hyperexcitability of neurons made responsible for frequent epileptic attacks in the patients. Increased excitability in RTT might stem from impaired glutamate handling in RTT and its long-term consequences that has not been examined quantitatively. We recently reported (Balakrishnan and Mironov, 2018a,b) that the RTT hippocampus consistently demonstrates repetitive glutamate transients that parallel the burst firing in the CA1 neurons. We aimed to examine how brief stimulation of specific types of ionotropic and metabotropic glutamate receptors (GluR) can modulate the neuronal phenotype. We imaged glutamate with a fluorescence sensor (iGluSnFr) expressed in CA1 neurons in hippocampal organotypic slices from wild-type (WT) and Mecp2-/y mice (RTT). The neuronal and synaptic activities were assessed by patch-clamp and calcium imaging. In both WT and RTT slices, activation of AMPA, kainate, and NMDA receptors for 30 s first enhanced neuronal activity that induced a global release of glutamate. After transient augmentation of excitability and ambient glutamate, they subsided. After wash out of the agonists for 10 min, WT slices recovered and demonstrated repetitive glutamate transients, whose pattern resembled those observed in naïve RTT slices. Hyperpolarization-activated (HCN) decreased and voltage-sensitive calcium channel (VSCC) currents increased. The effects were long-lasting and bigger in WT. We examined the role of mGluR1/5 in more detail. The effects of the agonist (S)-3,5-dihydroxyphenylglycine (DHPG) were the same as AMPA and NMDA and occluded by mGluR1/5 antagonists. Further modifications were examined using a non-stationary noise analysis of postsynaptic currents. The mean single channel current and their number at postsynapse increased after DHPG. We identified new channels as calcium-permeable AMPARs (CP-AMPAR). We then examined back-propagating potentials (bAPs) as a measure of postsynaptic integration. After bAPs, spontaneous afterdischarges were observed that lasted for ∼2 min and were potentiated by DHPG. The effects were occluded by intracellular CP-AMPAR blocker and did not change after NMDAR blockade. We propose that brief elevations in ambient glutamate (through brief excitation with GluR agonists) specifically activate mGluR1/5. This modifies CP-AMPAR, HCN, and calcium conductances and makes neurons hyperexcitable. Induced changes can be further supported by repetitive glutamate transients established and serve to persistently maintain the aberrant neuronal RTT phenotype in the hippocampus.
Collapse
Affiliation(s)
- Saju Balakrishnan
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, DFG Research Center 103), Institute of Neuro and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Sergej L Mironov
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, DFG Research Center 103), Institute of Neuro and Sensory Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
32
|
Nanoparticle delivery of CRISPR into the brain rescues a mouse model of fragile X syndrome from exaggerated repetitive behaviours. Nat Biomed Eng 2018; 2:497-507. [PMID: 30948824 DOI: 10.1038/s41551-018-0252-8] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/16/2018] [Indexed: 01/03/2023]
Abstract
Technologies that can safely edit genes in the brains of adult animals may revolutionize the treatment of neurological diseases and the understanding of brain function. Here, we demonstrate that intracranial injection of CRISPR-Gold, a nonviral delivery vehicle for the CRISPR-Cas9 ribonucleoprotein, can edit genes in the brains of adult mice in multiple mouse models. CRISPR-Gold can deliver both Cas9 and Cpf1 ribonucleoproteins, and can edit all of the major cell types in the brain, including neurons, astrocytes and microglia, with undetectable levels of toxicity at the doses used. We also show that CRISPR-Gold designed to target the metabotropic glutamate receptor 5 (mGluR5) gene can efficiently reduce local mGluR5 levels in the striatum after an intracranial injection. The effect can also rescue mice from the exaggerated repetitive behaviours caused by fragile X syndrome, a common single-gene form of autism spectrum disorders. CRISPR-Gold may significantly accelerate the development of brain-targeted therapeutics and enable the rapid development of focal brain-knockout animal models.
Collapse
|
33
|
Translatome Regulation in Neuronal Injury and Axon Regrowth. eNeuro 2018; 5:eN-NWR-0276-17. [PMID: 29756027 PMCID: PMC5944006 DOI: 10.1523/eneuro.0276-17.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022] Open
Abstract
Transcriptional events leading to outgrowth of neuronal axons have been intensively studied, but the role of translational regulation in this process is not well understood. Here, we use translatome analyses by ribosome pull-down and protein synthesis characterization by metabolic isotopic labeling to study nerve injury and axon outgrowth proteomes in rodent dorsal root ganglia (DRGs) and sensory neurons. We identify over 1600 gene products that are primarily translationally regulated in DRG neurons after nerve injury, many of which contain a 5'UTR cytosine-enriched regulator of translation (CERT) motif, implicating the translation initiation factor Eif4e in the injury response. We further identified approximately 200 proteins that undergo robust de novo synthesis in the initial stages of axon growth. ApoE is one of the highly synthesized proteins in neurons, and its receptor binding inhibition or knockout affects axon outgrowth. These findings provide a resource for future analyses of the role of translational regulation in neuronal injury responses and axon extension.
Collapse
|
34
|
Nardecchia F, Orlando R, Iacovelli L, Colamartino M, Fiori E, Leuzzi V, Piccinin S, Nistico R, Puglisi-Allegra S, Di Menna L, Battaglia G, Nicoletti F, Pascucci T. Targeting mGlu5 Metabotropic Glutamate Receptors in the Treatment of Cognitive Dysfunction in a Mouse Model of Phenylketonuria. Front Neurosci 2018; 12:154. [PMID: 29615849 PMCID: PMC5864888 DOI: 10.3389/fnins.2018.00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/26/2018] [Indexed: 11/23/2022] Open
Abstract
We studied group-I metabotropic glutamate (mGlu) receptors in Pahenu2 (ENU2) mice, which mimic the genetics and neurobiology of human phenylketonuria (PKU), a metabolic disorder characterized, if untreated, by autism, and intellectual disability (ID). Male ENU2 mice showed increased mGlu5 receptor protein levels in the hippocampus and corpus striatum (but not in the prefrontal cortex) whereas the transcript of the mGlu5 receptor was unchanged. No changes in mGlu1 receptor mRNA and protein levels were found in any of the three brain regions of ENU2 mice. We extended the analysis to Homer proteins, which act as scaffolds by linking mGlu1 and mGlu5 receptors to effector proteins. Expression of the long isoforms of Homer was significantly reduced in the hippocampus of ENU2 mice, whereas levels of the short Homer isoform (Homer 1a) were unchanged. mGlu5 receptors were less associated to immunoprecipitated Homer in the hippocampus of ENU2 mice. The lack of mGlu5 receptor-mediated long-term depression (LTD) in wild-type mice (of BTBR strain) precluded the analysis of hippocampal synaptic plasticity in ENU2 mice. We therefore performed a behavioral analysis to examine whether pharmacological blockade of mGlu5 receptors could correct behavioral abnormalities in ENU2 mice. Using the same apparatus we sequentially assessed locomotor activity, object exploration, and spatial object recognition (spatial novelty test) after displacing some of the objects from their original position in the arena. Systemic treatment with the mGlu5 receptor antagonist, MPEP (20 mg/kg, i.p.), had a striking effect in the spatial novelty test by substantially increasing the time spent in exploring the displaced objects in ENU2 mice (but not in wild-type mice). These suggest a role for mGlu5 receptors in the pathophysiology of ID in PKU and suggest that, also in adult untreated animals, cognitive dysfunction may be improved by targeting these receptors with an appropriate therapy.
Collapse
Affiliation(s)
- Francesca Nardecchia
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy.,Department of Pediatrics and Child Neuropsychiatry, Sapienza Università di Roma, Rome, Italy
| | - Rosamaria Orlando
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy
| | - Luisa Iacovelli
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy
| | - Marco Colamartino
- Daniel Bovet Department of Psychology, Neurobiology Research Center, Sapienza Università di Roma, Rome, Italy
| | - Elena Fiori
- Daniel Bovet Department of Psychology, Neurobiology Research Center, Sapienza Università di Roma, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Pediatrics and Child Neuropsychiatry, Sapienza Università di Roma, Rome, Italy
| | - Sonia Piccinin
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy.,Department of Biology, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Robert Nistico
- Department of Biology, Università degli Studi di Roma Tor Vergata, Rome, Italy
| | - Stefano Puglisi-Allegra
- Daniel Bovet Department of Psychology, Neurobiology Research Center, Sapienza Università di Roma, Rome, Italy.,IRCCS Foundation Santa Lucia, Rome, Italy
| | | | | | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, Sapienza Università di Roma, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Tiziana Pascucci
- Daniel Bovet Department of Psychology, Neurobiology Research Center, Sapienza Università di Roma, Rome, Italy.,IRCCS Foundation Santa Lucia, Rome, Italy
| |
Collapse
|
35
|
Stoppel LJ, Kazdoba TM, Schaffler MD, Preza AR, Heynen A, Crawley JN, Bear MF. R-Baclofen Reverses Cognitive Deficits and Improves Social Interactions in Two Lines of 16p11.2 Deletion Mice. Neuropsychopharmacology 2018; 43:513-524. [PMID: 28984295 PMCID: PMC5770771 DOI: 10.1038/npp.2017.236] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/16/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Human chromosome 16p11.2 microdeletion is among the most common gene copy number variations (CNVs) known to confer risk for intellectual disability (ID) and autism spectrum disorder (ASD) and affects an estimated 3 in 10 000 people. Caused by a single copy deletion of ~27 genes, 16p11.2 microdeletion syndrome is characterized by ID, impaired language, communication and socialization skills, and ASD. Studies in animal models where a single copy of the syntenic 16p11.2 region has been deleted have revealed morphological, behavioral, and electrophysiological abnormalities. Previous studies suggested the possibility of some overlap in the mechanisms of pathophysiology in 16p11.2 microdeletion syndrome and fragile X syndrome. Improvements in fragile X phenotypes have been observed following chronic treatment with R-baclofen, a selective agonist of GABAB receptors. We were therefore motivated to investigate the effects of chronic oral R-baclofen administration in two independently generated mouse models of 16p11.2 microdeletion syndrome. In studies performed across two independent laboratories, we found that chronic activation of GABAB receptors improved performance on a series of cognitive and social tasks known to be impaired in two different 16p11.2 deletion mouse models. Our findings suggest that R-baclofen may have clinical utility for some of the core symptoms of human 16p11.2 microdeletion syndrome.
Collapse
Affiliation(s)
- Laura J Stoppel
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tatiana M Kazdoba
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Melanie D Schaffler
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Anthony R Preza
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arnold Heynen
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacqueline N Crawley
- MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Wilkerson JR, Albanesi JP, Huber KM. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: Implications in health and disease. Semin Cell Dev Biol 2017; 77:51-62. [PMID: 28969983 DOI: 10.1016/j.semcdb.2017.09.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 10/18/2022]
Abstract
The Arc gene is robustly transcribed in specific neural ensembles in response to experience-driven activity. Upon induction, Arc mRNA is transported to dendrites, where it can be rapidly and locally translated by activation of metabotropic glutamate receptors (mGluR1/5). mGluR-induced dendritic synthesis of Arc is implicated in weakening or elimination of excitatory synapses by triggering endocytosis of postsynaptic AMPARs in both hippocampal CA1 and cerebellar Purkinje neurons. Importantly, CA1 neurons with experience-induced Arc mRNA are susceptible, or primed for mGluR-induced long-term synaptic depression (mGluR-LTD). Here we review mechanisms and function of Arc in mGluR-LTD and synapse elimination and propose roles for these forms of plasticity in Arc-dependent formation of sparse neural representations of learned experience. We also discuss accumulating evidence linking dysregulation of Arc and mGluR-LTD in human cognitive disorders such as intellectual disability, autism and Alzheimer's disease.
Collapse
Affiliation(s)
- Julia R Wilkerson
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Joseph P Albanesi
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Kimberly M Huber
- Departments of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
37
|
Thomson SR, Seo SS, Barnes SA, Louros SR, Muscas M, Dando O, Kirby C, Wyllie DJA, Hardingham GE, Kind PC, Osterweil EK. Cell-Type-Specific Translation Profiling Reveals a Novel Strategy for Treating Fragile X Syndrome. Neuron 2017; 95:550-563.e5. [PMID: 28772121 PMCID: PMC5548955 DOI: 10.1016/j.neuron.2017.07.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/22/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022]
Abstract
Excessive mRNA translation downstream of group I metabotropic glutamate receptors (mGlu1/5) is a core pathophysiology of fragile X syndrome (FX); however, the differentially translating mRNAs that contribute to altered neural function are not known. We used translating ribosome affinity purification (TRAP) and RNA-seq to identify mistranslating mRNAs in CA1 pyramidal neurons of the FX mouse model (Fmr1−/y) hippocampus, which exhibit exaggerated mGlu1/5-induced long-term synaptic depression (LTD). In these neurons, we find that the Chrm4 transcript encoding muscarinic acetylcholine receptor 4 (M4) is excessively translated, and synthesis of M4 downstream of mGlu5 activation is mimicked and occluded. Surprisingly, enhancement rather than inhibition of M4 activity normalizes core phenotypes in the Fmr1−/y, including excessive protein synthesis, exaggerated mGluR-LTD, and audiogenic seizures. These results suggest that not all excessively translated mRNAs in the Fmr1−/y brain are detrimental, and some may be candidates for enhancement to correct pathological changes in the FX brain.
TRAP-seq reveals altered translation of >120 mRNAs in Fmr1−/y CA1 pyramidal neurons Muscarinic receptor M4 is excessively translated in Fmr1−/y hippocampus Enhancement, not inhibition, of M4 corrects core phenotypes in the Fmr1−/y mouse Not all excessively translating mRNAs are detrimental to Fmr1−/y brain function
Collapse
Affiliation(s)
- Sophie R Thomson
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Sang S Seo
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Stephanie A Barnes
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Susana R Louros
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Melania Muscas
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Owen Dando
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Caoimhe Kirby
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J A Wyllie
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; UK Dementia Research Institute, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Peter C Kind
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Emily K Osterweil
- Centre for Integrative Physiology/Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|