1
|
Lingampally A, Truchi M, Shi X, Zhou Y, Vasquez‐Pacheco E, Panagiotidis G, Hadzic S, Koepke J, Vazquez‐Armendariz AI, Herold S, Samakovlis C, Cabrera‐Fuentes HA, Chu X, Seeger W, Zhang J, El Agha E, Mari B, Bellusci S, Chen C. Unraveling Alveolar Fibroblast and Activated Myofibroblast Heterogeneity and Differentiation Trajectories During Lung Fibrosis Development and Resolution in Young and Old Mice. Aging Cell 2025; 24:e14503. [PMID: 39945330 PMCID: PMC12073919 DOI: 10.1111/acel.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 05/15/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-associated disease characterized by the irreversible accumulation of excessive extracellular matrix components by activated myofibroblasts (aMYFs). Following bleomycin administration in young mice, fibrosis formation associated with efficient resolution takes place limiting the clinical relevance of this model for IPF. In this study, we used aged mice in combination with bleomycin administration to trigger enhanced fibrosis formation and delayed resolution as a more relevant model for IPF. Alveolosphere assays were carried out to compare the alveolar resident mesenchymal niche activity for AT2 stem cells in young versus old mice. Lineage tracing of the Acta2+ aMYFs in old mice exposed to bleomycin followed by scRNAseq of the lineage-traced cells isolated during fibrosis formation and resolution was performed to delineate the heterogeneity of aMYFs during fibrosis formation and their fate during resolution. Integration of previously published similar scRNAseq results using young mice was carried out. Our results show that alveolar resident mesenchymal cells from old mice display decreased supporting activity for AT2 stem cells. Our findings suggest that the cellular and molecular mechanisms underlying the aMYFs formation and differentiation towards the Lipofibroblast phenotype are mostly conserved between young and old mice. In addition to persistent fibrotic signaling in aMYF from old mice during resolution, we also identified differences linked to interleukin signaling in old versus young alveolar fibroblast populations before and during bleomycin injury. Importantly, our work confirms the relevance of a subcluster of aMYFs in old mice that is potentially relevant for future management of IPF.
Collapse
Affiliation(s)
- Arun Lingampally
- Department of Respiratory and Critical Care MedicineQuzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouZhejiangChina
- Department of Medicine II, Internal Medicine, Pulmonary and Critical CareUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection ControlUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Cardio‐Pulmonary Institute (CPI)GiessenGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Marin Truchi
- UMR CNRS 7275 Inserm 1323, IPMC, FHU‐OncoAge, IHU, RespiERA, Sophia Antipolis, Université Côte d'AzurValbonneFrance
| | - Xianrong Shi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yuqing Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Esmeralda Vasquez‐Pacheco
- Department of Medicine II, Internal Medicine, Pulmonary and Critical CareUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Cardio‐Pulmonary Institute (CPI)GiessenGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Georgios‐Dimitrios Panagiotidis
- Department of Medicine II, Internal Medicine, Pulmonary and Critical CareUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Cardio‐Pulmonary Institute (CPI)GiessenGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Stefan Hadzic
- Department of Medicine II, Internal Medicine, Pulmonary and Critical CareUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Cardio‐Pulmonary Institute (CPI)GiessenGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Janine Koepke
- Department of Medicine II, Internal Medicine, Pulmonary and Critical CareUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Cardio‐Pulmonary Institute (CPI)GiessenGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Ana Ivonne Vazquez‐Armendariz
- Transdisciplinary Research Area Life and HealthOrganoid Biology, Life and Medical Sciences Institute, University of BonnBonnGermany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection ControlUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Cardio‐Pulmonary Institute (CPI)GiessenGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Christos Samakovlis
- Department of Medicine II, Internal Medicine, Pulmonary and Critical CareUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Cardio‐Pulmonary Institute (CPI)GiessenGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Hector A. Cabrera‐Fuentes
- Centro Interdisciplinario de Investigaciones Biológicas y Humanas (CIINBIOH)Universidad Autónoma Benito Juárez de OaxacaOaxacaMexico
| | - Xuran Chu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| | - Werner Seeger
- Department of Medicine II, Internal Medicine, Pulmonary and Critical CareUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection ControlUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Cardio‐Pulmonary Institute (CPI)GiessenGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Jin‐San Zhang
- Department of Respiratory and Critical Care MedicineQuzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouZhejiangChina
| | - Elie El Agha
- Department of Medicine II, Internal Medicine, Pulmonary and Critical CareUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection ControlUniversities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
- Cardio‐Pulmonary Institute (CPI)GiessenGermany
- Institute for Lung Health (ILH)GiessenGermany
| | - Bernard Mari
- UMR CNRS 7275 Inserm 1323, IPMC, FHU‐OncoAge, IHU, RespiERA, Sophia Antipolis, Université Côte d'AzurValbonneFrance
| | - Saverio Bellusci
- Department of Respiratory and Critical Care MedicineQuzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouZhejiangChina
- Laboratory of Extracellular Lung Matrix Remodelling, Department of Internal MedicineCardio‐Pulmonary Institute and Institute for Lung Health, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus‐Liebig University GiessenGiessenGermany
| | - Chengshui Chen
- Department of Respiratory and Critical Care MedicineQuzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouZhejiangChina
| |
Collapse
|
2
|
Zajac D, Jampolska M, Wojciechowski P. Molecular Hydrogen in the Treatment of Respiratory Diseases. Int J Mol Sci 2025; 26:4116. [PMID: 40362357 PMCID: PMC12072089 DOI: 10.3390/ijms26094116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Molecular hydrogen is gaining increasing attention as an antioxidant, anti-inflammatory, and antiapoptotic agent. Once considered an inert gas, it reveals current therapeutic potential among others in inflammatory diseases, cancer, and sports medicine, among others. The present review aims to provide a consistent summary of the findings of the last twenty years on the use of molecular hydrogen in major respiratory diseases, including allergies, asthma, COPD, pulmonary fibrosis, lung injury of various origins, as well as cancer and infections of the respiratory tract. In addition, the basic mechanisms through which molecular hydrogen exercises its biological activity on the respiratory system are described.
Collapse
Affiliation(s)
- Dominika Zajac
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland; (M.J.); (P.W.)
| | | | | |
Collapse
|
3
|
Velásquez Cabrera DM, De la Roca-Chiapas JM, Hernández-González MA, Reyes Pérez V, Villada C. Correlation Between COVID-19 Recovery, Executive Function Decline, and Emotional State. Psychol Res Behav Manag 2025; 18:1007-1019. [PMID: 40292029 PMCID: PMC12034288 DOI: 10.2147/prbm.s487382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Objective The aim of this study was to determine whether there is a relationship between the time since recovery from coronavirus disease 2019 (COVID-19) and alterations in executive functions. We also evaluate the emotional state of post-COVID-19 patients. Patients and Methods We assessed patients between 18 and 50 years old, who had a history of COVID-19 with mild, moderate, or severe illness. We used the Batería Neuropsicológica de Funciones Ejecutivas y Lóbulos Frontales-3 (BANFE-3), Mini-Mental State Examination (MMSE), and Mini-International Neuropsychiatric Interview (MINI), in addition to a semi-structured interview. Spearman's correlation coefficient was used, with a p value <0.05 indicating significance. Results We evaluated 67 patients with a mean age of 34.6±9.6 years, most of whom had ≥13 years of schooling (n=55, 82.1%). Among them, 52 (77.6%) reported persistent symptoms after resolution of the condition, with fatigue being the most frequent (n=20, 29.9%). Most participants had an adequate score on the MMSE (n=60, 89.6%). However, 19 (28.4%) showed alterations in the BANFE-3 total score, with mental flexibility as the most affected function (n=25, 37.3%). In participants from the first COVID-19 wave, a negative correlation was observed between the standardized orbitofrontal area scores and the time since recovery from the infection (r=-0.841, p=0.016), suggesting a pattern of deterioration over time, mainly in stimulus inhibition (r=0.880, p=0.021). Regarding emotional state, 45 subjects (67.2%) exhibited emotional alterations, with anxiety symptoms being the most frequent (n=33, 49.3%). Furthermore, individuals with depressive symptoms (n=32, 47.8%) were more likely to experience executive function impairment after COVID-19 (ExpB 0.302, 95% CI 0.098-0.933, p=0.038). Conclusion COVID-19 could lead to alterations in executive functions, probably resulting from progressive damage to orbitofrontal area functions, mainly in stimulus inhibition. However, the generalizability of these findings is limited, highlighting the need for further research with robust methodology. Furthermore, depression appears to be an indicator of cognitive impairment in individuals recovering from COVID-19. Therefore, cognitive rehabilitation and psychological support are essential for patients affected by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
| | | | | | | | - Carolina Villada
- Department of Psychology, University of Guanajuato, Guanajuato, Mexico
| |
Collapse
|
4
|
Ghaffarpour S, Ghazanfari T, Ardestani SK, Naghizadeh MM, Vaez Mahdavi MR, Salehi M, Majd AMM, Rashidi A, Chenary MR, Mostafazadeh A, Rezaei A, Khodadadi A, Iranparast S, Khazaei HA. Cytokine profiles dynamics in COVID-19 patients: a longitudinal analysis of disease severity and outcomes. Sci Rep 2025; 15:14209. [PMID: 40269030 PMCID: PMC12019550 DOI: 10.1038/s41598-025-98505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
The outcome of the immune response depends on the content and magnitude of inflammatory mediators, the right time to start, and the duration of inflammatory responses. Patients with coronavirus disease 2019 (COVID-19) represent diverse disease severity. Understanding differences in immune responses in individuals with different disease severity levels can help elucidate disease mechanisms. Here, we serially analyzed the cytokine profiles of 809 patients with mild to critical COVID-19. The cytokine profile revealed an overall increase in IL-1β, IL-1Ra, TNF-α, IL-6, IL-2, IL-8, and IL-18 and impaired production of IFN-α and -β. Only an early rise in IL-1Ra, IL-6, and IL-2 levels was linked to worse disease outcomes. On the other hand, long-term rises in IL-1β, IL-1Ra, TNF-α, IL-6, IL-2, IL-8, and IL-18 levels were linked to worse disease outcomes. Principal component analysis identified a component, including IL-1β, TNF-α, IFN-α, and IL-12, that was associated with disease severity. Spearman analysis revealed that the correlation of IL-1β and IFN-α was entirely different between mild and critical patients. Therefore, the ratio of IL-1β to IFN-α seemed to be a suitable criterion for distinguishing critical patients from mild ones. The higher levels of the IL-1β to IFN-α ratio correlated with improved outcomes. These data point to an imbalance of IL-1β/IFNα, contributing to hyperinflammation in COVID-19.
Collapse
Affiliation(s)
- Sara Ghaffarpour
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
- Department of Immunology, Shahed University, Tehran, Iran.
| | - Sussan Kaboudanian Ardestani
- Immunoregulation Research Center, Shahed University, Tehran, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | | | - Mohammadreza Salehi
- Department of Infectious Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Azadeh Rashidi
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | | | - Amrollah Mostafazadeh
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Iranparast
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Ali Khazaei
- Department of Immunology and Internal Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Park M, Hur M, Kim H, Lee CH, Lee JH, Kim HW, Nam M, Lee S. Novel Usefulness of M2BPGi for Predicting Severity and Clinical Outcomes in Hospitalized COVID-19 Patients. Diagnostics (Basel) 2025; 15:937. [PMID: 40218287 PMCID: PMC11989196 DOI: 10.3390/diagnostics15070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Mac-2 binding protein glycosylation isomer (M2BPGi) is a novel biomarker for liver fibrosis, and its prognostic role has never been explored in coronavirus disease 2019 (COVID-19). We compared the M2BPGi level simultaneously with age, severe/critical disease, the sequential organ failure assessment (SOFA) score, and the National Early Warning Score 2 (NEWS2) in a total of 53 hospitalized patients with COVID-19 (mild/moderate [n = 15] and severe/critical [n = 38]). Methods: M2BPGi levels were measured using the HISCL M2BPGi assay (Sysmex, Kobe, Japan) in an HISCL-5000 analyzer (Sysmex), and clinical outcomes were analyzed according to M2BPGi and the clinical variables, using the receiver operating characteristic (ROC) curve, Kaplan-Meier survival, and Cox proportional hazards regression analyses. Results: M2BPGi levels differed significantly according to disease severity, 30-day mortality, and 60-day mortality (p = 0.045, 0.011, and 0.002, respectively). In the ROC curve analysis, the M2BPGi, age, SOFA score, and NEWS2, except for severe/critical disease, significantly predicted clinical outcomes (all p < 0.01). In the survival analysis, the hazard ratios of M2BPGi added to each clinical variable were higher than that of each clinical variable alone, and M2BPGi was the only independent prognostic factor for the mortality. Conclusions: This study demonstrated that M2BPGi may be a useful biomarker for assessing disease severity and clinical outcomes in hospitalized COVID-19 patients. Combined with conventional clinical assessment, M2BPGi would provide objective and valuable information for prognosis prediction in these critically ill patients. Further studies are warranted to extend its utility in other clinical settings.
Collapse
Affiliation(s)
- Mikyoung Park
- Department of Laboratory Medicine, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Mina Hur
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Hanah Kim
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea;
| | - Chae Hoon Lee
- Department of Laboratory Medicine, Yeongnam University College of Medicine, Daegu 42415, Republic of Korea; (C.H.L.); (J.H.L.)
| | - Jong Ho Lee
- Department of Laboratory Medicine, Yeongnam University College of Medicine, Daegu 42415, Republic of Korea; (C.H.L.); (J.H.L.)
| | - Hyung Woo Kim
- Department of Laboratory Medicine, CHA Gumi Medical Center, CHA University, Gumi 39295, Republic of Korea;
| | - Minjeong Nam
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea;
| | - Seungho Lee
- Department of Preventive Medicine, College of Medicine, Dong-A University, Busan 49201, Republic of Korea;
| |
Collapse
|
6
|
Vogi V, Haschka D, Forer L, Schwendinger S, Petzer V, Coassin S, Tancevski I, Sonnweber T, Löffler-Ragg J, Puchhammer-Stöckl E, Graninger M, Wolf D, Kronenberg F, Zschocke J, Jukic E, Weiss G. Severe COVID-19 disease is associated with genetic factors affecting plasma ACE2 receptor and CRP concentrations. Sci Rep 2025; 15:4708. [PMID: 39922945 PMCID: PMC11807156 DOI: 10.1038/s41598-025-89306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/04/2025] [Indexed: 02/10/2025] Open
Abstract
A hyperinflammatory state with highly elevated concentrations of inflammatory biomarkers such as C-reactive protein (CRP) is a characteristic feature of severe coronavirus disease 2019 (COVID-19). To examine a potential role of common genetic factors that may influence COVID-19 outcomes, we investigated whether individuals with a polygenic predisposition for a pro-inflammatory response (in the form of Polygenic Scores) are more likely to develop severe COVID-19. The innovative approach of polygenic scores to investigate genetic factors in COVID-19 severity should provide a comprehensive approach beyond single-gene studies. In our cohort of 156 patients of European ancestry, two overlapping Polygenic Scores (PGS) predicting a genetic predisposition to basal CRP concentrations were significantly different between non-severe and severe COVID-19 cases and were associated with less severe COVID-19 outcomes. Furthermore, specific single nucleotide polymorphisms (SNPs) that contribute to either of the two Polygenic Scores predicting basal CRP levels are associated with different traits that represent risk factors for COVID-19 disease initiation (ACE2 receptor, viral replication) and progression (CRP). We suggest that genetically determined enforced CRP formation may contribute to strengthening of innate immune responses and better initial pathogen control thereby reducing the risk of subsequent hyperinflammation and adverse course of COVID-19.
Collapse
Affiliation(s)
- Verena Vogi
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - David Haschka
- Department of Internal Medicine II (Infectious Diseases, Immunology, Pneumology and Rheumatology), Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Simon Schwendinger
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Verena Petzer
- Department of Internal Medicine V (Hematology and Internistic Oncology), Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II (Infectious Diseases, Immunology, Pneumology and Rheumatology), Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II (Infectious Diseases, Immunology, Pneumology and Rheumatology), Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II (Infectious Diseases, Immunology, Pneumology and Rheumatology), Medical University Innsbruck, Innsbruck, 6020, Austria
| | | | - Marianne Graninger
- Department of Virology, Medical University Vienna, Vienna, 1090, Austria
| | - Dominik Wolf
- Department of Internal Medicine V (Hematology and Internistic Oncology), Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Emina Jukic
- Institute of Human Genetics, Medical University Innsbruck, Innsbruck, 6020, Austria.
| | - Günter Weiss
- Department of Internal Medicine II (Infectious Diseases, Immunology, Pneumology and Rheumatology), Medical University Innsbruck, Innsbruck, 6020, Austria.
| |
Collapse
|
7
|
Larcombe E, Alexander ME, Snellgrove D, Henriquez FL, Sloman KA. Current disease treatments for the ornamental pet fish trade and their associated problems. REVIEWS IN AQUACULTURE 2025; 17. [DOI: 10.1111/raq.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/21/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe trade in live ornamental fishes to be held as companion animals or displayed in public aquaria has an estimated global annual value of US$15–20 billion. Supply chains for ornamental pet fishes often involve many more parties than for fish farmed as food fishes, and at each stage, fishes are exposed to stressors including handling, confinement, crowding, mechanical disturbance, and poor water quality. If chronic, these stressors can compromise their immune system, making fishes more susceptible to pathogens. Mortality and morbidity from infectious disease can result in considerable welfare impacts and massive economic losses for the industry, and the range of infective agents seen in ornamental species is well documented. However, treating these diseases is not straightforward with practices varying greatly across the trade and with several approaches having unintended consequences, such as the emergence of resistant strains of pathogens. While disease treatments for a handful of fish species (e.g., koi, goldfish) have received focused research attention, for the home aquarium owner, there is an increasing reliance on products based on natural compounds which have received far less scientific attention. This review aims to highlight the gaps in our knowledge surrounding the range of disease treatments used across the ornamental pet fish trade, with a particular focus on freshwater tropical species destined for home aquaria. Consideration is given to the potential problems arising from these treatments, including microbial resistance and effects of treatments themselves on fish health and welfare.
Collapse
Affiliation(s)
- E. Larcombe
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - M. E. Alexander
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - D. Snellgrove
- Waltham Petcare Science Institute Waltham‐on‐the‐Wolds Leicestershire UK
| | - F. L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - K. A. Sloman
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| |
Collapse
|
8
|
Aksu MD, van der Ent T, Zhang Z, Riza AL, de Nooijer AH, Ricaño-Ponce I, Janssen N, Engel JJ, Streata I, Dijkstra H, Lemmers H, Grondman I, Koeken VACM, Antoniadou E, Antonakos N, van de Veerdonk FL, Li Y, Giamarellos-Bourboulis EJ, Netea MG, Ziogas A. Regulation of plasma soluble receptors of TNF and IL-1 in patients with COVID-19 differs from that observed in sepsis. J Infect 2024; 89:106300. [PMID: 39357572 PMCID: PMC11624491 DOI: 10.1016/j.jinf.2024.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES IL-1α/β and TNF are closely linked to the pathology of severe COVID-19 and sepsis. The soluble forms of their receptors, functioning as decoy receptors, exhibit inhibitory effects. However, little is known about their regulation in severe bacterial and viral infections, which we aimed to investigate in this study. METHODS The circulating soluble receptors of TNF (sTNFR1 and sTNFR2) and IL-1α/β (sIL-1R1, sIL-1R2) were evaluated in the plasma of patients with COVID-19, severe bacterial infections, and sepsis and compared with healthy controls. Additionally, IL1R1, IL1R2, TNFRSF1A, and TNFRSF1B expression was evaluated at the single cell level in PBMCs derived from COVID-19 or sepsis patients. RESULTS Plasma concentrations of sIL-1R1, sTNFR1, and sTNFR2 were significantly higher in COVID-19 patients compared to healthy subjects. Notably, sIL-1R1 levels were particularly elevated in ICU COVID-19 patients, and transcriptome analysis indicated heightened IL1R1 expression in PBMCs from severe COVID-19 patients. In severe bacterial infections, only sTNFR1 and sTNFR2 exhibited increased levels compared to healthy controls. Sepsis patients had decreased sIL-1R1 plasma concentrations but elevated sIL-1R2, sTNFR1, and sTNFR2 levels compared to healthy individuals, reflecting the heightened expression due to the increased numbers of monocytes present in sepsis. Finally, elevated concentrations of sIL-1R2, sTNFR1, and sTNFR2 were moderately associated with reduced 28-day survival in sepsis patients. CONCLUSION Our study reveals distinct regulation of plasma concentrations of soluble IL-1 receptors in COVID-19 and sepsis. Moreover, soluble TNF receptors 1 and 2 consistently rise in all conditions and show a positive correlation with disease severity in sepsis.
Collapse
Affiliation(s)
- Muhammed D Aksu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Tijmen van der Ent
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Zhenhua Zhang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Anca L Riza
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Romania; Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital Craiova, Romania
| | - Aline H de Nooijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Isis Ricaño-Ponce
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Nico Janssen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Job J Engel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Ioana Streata
- Human Genomics Laboratory, University of Medicine and Pharmacy of Craiova, Romania; Regional Centre of Medical Genetics Dolj, County Clinical Emergency Hospital Craiova, Romania
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, the Netherlands
| | - Eleni Antoniadou
- Intensive Care Unit, "G. Gennimatas" Hospital, Thessaloniki, Greece
| | - Nikolaos Antonakos
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Anfossi S, Darbaniyan F, Quinlan J, Calin S, Shimizu M, Chen M, Rausseo P, Winters M, Bogatenkova E, Do KA, Martinez I, Li Z, Antal L, Olariu TR, Wistuba I, Calin GA. MicroRNAs are enriched at COVID-19 genomic risk regions, and their blood levels correlate with the COVID-19 prognosis of cancer patients infected by SARS-CoV-2. Mol Cancer 2024; 23:235. [PMID: 39434078 PMCID: PMC11492698 DOI: 10.1186/s12943-024-02094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/18/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Cancer patients are more susceptible to an aggressive course of COVID-19. Developing biomarkers identifying cancer patients at high risk of COVID-19-related death could help determine who needs early clinical intervention. The miRNAs hosted in the genomic regions associated with the risk of aggressive COVID-19 could represent potential biomarkers for clinical outcomes. PATIENTS AND METHODS Plasma samples were collected at The University of Texas MD Anderson Cancer Center from cancer patients (N = 128) affected by COVID-19. Serum samples were collected from vaccinated healthy individuals (n = 23) at the Municipal Clinical Emergency Teaching Hospital in Timisoara, Romania. An in silico positional cloning approach was used to identify the presence of miRNAs at COVID-19 risk-associated genomic regions: CORSAIRs (COvid-19 RiSk AssocIated genomic Regions). The miRNA levels were measured by RT-qPCR. RESULTS We found that miRNAs were enriched in CORSAIR. Low plasma levels of hsa-miR-150-5p and hsa-miR-93-5p were associated with higher COVID-19-related death. The levels of hsa-miR-92b-3p were associated with SARS-CoV-2 test positivity. Peripheral blood mononuclear cells (PBMC) increased secretion of hsa-miR-150-5p, hsa-miR-93-5p, and hsa-miR-92b-3p after in vitro TLR7/8- and T cell receptor (TCR)-mediated activation. Increased levels of these three miRNAs were measured in the serum samples of healthy individuals between one and nine months after the second dose of the Pfizer-BioNTech COVID-19 vaccine. SARS-CoV-2 infection of human airway epithelial cells influenced the miRNA levels inside their secreted extracellular vesicles. CONCLUSIONS MiRNAs are enriched at CORSAIR. Plasma miRNA levels can represent a potential blood biomarker for predicting COVID-19-related death in cancer patients.
Collapse
Affiliation(s)
- Simone Anfossi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - Faezeh Darbaniyan
- Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Joseph Quinlan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Steliana Calin
- Department of Hemopathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Paola Rausseo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Michael Winters
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Cancer Institute, Morgantown, USA
| | - Elena Bogatenkova
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Ivan Martinez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Cancer Institute, Morgantown, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Loredana Antal
- Clinical Laboratory, Municipal Clinical Emergency Hospital, Timisoara, Romania
| | - Tudor Rares Olariu
- Clinical Laboratory, Municipal Clinical Emergency Hospital, Timisoara, Romania
- Department of Infectious Diseases, Center for Diagnosis and Study of Parasitic Diseases, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, USA.
- The Non-coding RNA Center, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
10
|
Yu Y, Lin K, Wu H, Hu M, Yang X, Wang J, Grillari J, Chen J. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:20. [PMID: 39358480 PMCID: PMC11447201 DOI: 10.1186/s13619-024-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Lin
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Haoyu Wu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingli Hu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejie Yang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jie Wang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, 1200, Vienna, Austria
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
11
|
Peixoto RF, de Sousa Palmeira PH, Csordas BG, Cavalcante-Silva LHA, de Andrade AG, de Medeiros IA, de Lourdes Assunção Araújo de Azevedo F, Veras RC, Janebro D, Do Amaral IPG, Keesen TSL. Predominance of CD137 + And TNF-α Expressing CD8 + Central Memory T Cells in Mild COVID-19 Recovered Patients Upon SARS-CoV-2 Re-Exposure. Immunol Invest 2024; 53:1092-1101. [PMID: 38994913 DOI: 10.1080/08820139.2024.2376003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
INTRODUCTION Memory CD8+ T cells are essential for long-term immune protection in viral infections, including COVID-19. METHODS This study examined the responses of CD8+ TEM, TEMRA, and TCM subsets from unvaccinated individuals who had recovered from mild and severe COVID-19 by flow cytometry. RESULTS AND DISCUSSION The peptides triggered a higher frequency of CD8+ TCM cells in the recovered mild group. CD8+ TCM and TEM cells showed heterogeneity in CD137 expression between evaluated groups. In addition, a predominance of CD137 expression in naïve CD8+ T cells, TCM, and TEM was observed in the mild recovered group when stimulated with peptides. Furthermore, CD8+ TCM and TEM cell subsets from mild recovered volunteers had higher TNF-α expression. In contrast, the expression partner of IFN-γ, IL-10, and IL-17 indicated an antiviral signature by CD8+ TEMRA cells. These findings underscore the distinct functional capabilities of each memory T cell subset in individuals who have recovered from COVID-19 upon re-exposure to SARS-CoV-2 antigens.
Collapse
Affiliation(s)
- Rephany Fonseca Peixoto
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Pedro Henrique de Sousa Palmeira
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Bárbara Guimarães Csordas
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Luiz Henrique Agra Cavalcante-Silva
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Arthur Gomes de Andrade
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | | | | | | | - Daniele Janebro
- Department of Pharmaceutical Sciences, Health Science Center, João Pessoa, Brazil
| | - Ian P G Do Amaral
- Biotechnology Graduation Program, Federal University of Paraiba, João Pessoa, Brazil
| | - Tatjana Souza Lima Keesen
- Immunology Laboratory of Infectious Diseases, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
12
|
Antar SA, Ashour NA, Hamouda AO, Noreddin AM, Al-Karmalawy AA. Recent advances in COVID-19-induced liver injury: causes, diagnosis, and management. Inflammopharmacology 2024:10.1007/s10787-024-01535-7. [PMID: 39126569 DOI: 10.1007/s10787-024-01535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/29/2024] [Indexed: 08/12/2024]
Abstract
Since the start of the pandemic, considerable advancements have been made in our understanding of the effects of SARS-CoV-2 infection and the associated COVID-19 on the hepatic system. There is a broad range of clinical symptoms for COVID-19. It affects multiple systems and has a dominant lung illness depending on complications. The progression of COVID-19 in people with pre-existing chronic liver disease (CLD) has also been studied in large multinational groups. Notably, SARS-CoV-2 infection is associated with a higher risk of hepatic decompensation and death in patients with cirrhosis. In this review, the source, composition, mechanisms, transmission characteristics, clinical characteristics, therapy, and prevention of SARS-CoV-2 were clarified and discussed, as well as the evolution and variations of the virus. This review briefly discusses the causes and effects of SARS-CoV-2 infection in patients with CLD. As part of COVID-19, In addition, we assess the potential of liver biochemistry as a diagnostic tool examine the data on direct viral infection of liver cells, and investigate potential pathways driving SARS-CoV-2-related liver damage. Finally, we explore how the pandemic has had a significant impact on patient behaviors and hepatology services, which may increase the prevalence and severity of liver disease in the future. The topics encompassed in this review encompass the intricate relationships between SARS-CoV-2, liver health, and broader health management strategies, providing valuable insights for both current clinical practice and future research directions.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Nada A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Amir O Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ayman M Noreddin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, 12566, Egypt
- Department of Internal Medicine, School of Medicine, University of California -Irvine, Irvine, USA
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, New Damietta, 34518, Egypt.
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6Th of October City, Giza, 12566, Egypt.
| |
Collapse
|
13
|
Anton DB, de Lima JC, Dahmer BR, Camini AM, Goettert MI, Timmers LFSM. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Inflammopharmacology 2024:10.1007/s10787-024-01525-9. [PMID: 39048773 DOI: 10.1007/s10787-024-01525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
In severe COVID-19 cases, an exacerbated inflammatory response triggers a cytokine storm that can worsen the prognosis. Compounds with both antiviral and anti-inflammatory activities show promise as candidates for COVID-19 therapy, as they potentially act against the SARS-CoV-2 infection regardless of the disease stage. One of the most attractive drug targets among coronaviruses is the main protease (MPro). This enzyme is crucial for cleaving polyproteins into non-structural proteins required for viral replication. The aim of this review was to identify SARS-CoV-2 MPro inhibitors with both antiviral and anti-inflammatory properties. The interactions of the compounds within the SARS-CoV-2 MPro binding site were analyzed through molecular docking when data from crystallographic structures were unavailable. 18 compounds were selected and classified into five different superclasses. Five of them exhibit high potency against MPro: GC-376, baicalein, naringenin, heparin, and carmofur, with IC50 values below 0.2 μM. The MPro inhibitors selected have the potential to alleviate lung edema and decrease cytokine release. These molecules mainly target three critical inflammatory pathways: NF-κB, JAK/STAT, and MAPK, all previously associated with COVID-19 pathogenesis. The structures of the compounds occupy the S1/S2 substrate binding subsite of the MPro. They interact with residues from the catalytic dyad (His41 and Cys145) and/or with the oxyanion hole (Gly143, Ser144, and Cys145), which are pivotal for substrate recognition. The MPro SARS-CoV-2 inhibitors with potential anti-inflammatory activities present here could be optimized for maximum efficacy and safety and be explored as potential treatment of both mild and severe COVID-19.
Collapse
Affiliation(s)
- Débora Bublitz Anton
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Jeferson Camargo de Lima
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Bruno Rampanelli Dahmer
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Ana Micaela Camini
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil
| | - Marcia Inês Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
| | - Luis Fernando Saraiva Macedo Timmers
- Biotechnology Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
- Medical Science Graduate Program, Universidade do Vale do Taquari (Univates), Lajeado, CEP 95914-014, Brazil.
| |
Collapse
|
14
|
Ayoub M, Faris C, Juranovic T, Aibani R, Koontz M, Chela H, Anwar N, Daglilar E. Thrombotic Long-Term Consequences of SARS-CoV-2 Infection in Patients with Compensated Cirrhosis: A Propensity Score-Matched Analysis of a U.S. Database. Diseases 2024; 12:161. [PMID: 39057132 PMCID: PMC11276382 DOI: 10.3390/diseases12070161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Cirrhosis causes an imbalance in the coagulation pathway and leads to a tendency for both bleeding and clotting. SARS-CoV-2 has been reported to be associated with a hypercoagulable state. This study examines SARS-CoV-2's impact on hemostasis in compensated patients with cirrhosis. METHODS We analyzed the US Collaborative Network, which comprises 63 HCOs in the U.S.A. Compensated cirrhosis patients were split into two groups: SARS-CoV-2-positive and -negative. Patients' baseline characteristics were used in a 1:1 propensity score-matched module to create comparable cohorts. We compared the risk of portal vein thrombosis (PVT), deep venous thrombosis (DVT), and pulmonary embolism (PE) at 6 months, and 1 and 3 years. RESULTS Of 330,521 patients, 27% tested positive and 73% remained negative. After PSM, both cohorts included 74,738 patients. Patients with SARS-CoV-2 had a higher rate of PVT compared to those without at 6 months (0.63% vs 0.5%, p < 0.05), 1 year (0.8% vs 0.6%, p < 0.05), and 3 years (1% vs. 0.7%, p < 0.05), a higher rate of DVT at 6 months (0.8% vs. 0.4%, p < 0.05), 1 year (1% vs. 0.5%, p < 0.05), and 3 years (1.4% vs. 0.8%, p < 0.05), and a higher rate of PE at 6 months (0.6% vs. 0.3%, p < 0.05), 1 year (0.7% vs. 0.4%, p < 0.05), and 3 years (1% vs. 0.6%, p < 0.05). CONCLUSIONS The presence of SARS-CoV-2 infection in patients with compensated cirrhosis was associated with a higher rate of PVT, DVT, and PE at 6 months, and 1 and 3 years.
Collapse
Affiliation(s)
- Mark Ayoub
- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; (T.J.); (R.A.)
| | - Carol Faris
- Department of Internal Medicine, Bayonne Medical Center, Bayonne, NJ 07002, USA
| | - Tajana Juranovic
- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; (T.J.); (R.A.)
| | - Rafi Aibani
- Department of Internal Medicine, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; (T.J.); (R.A.)
| | - Morgan Koontz
- Health Services & Outcomes Research, CAMC-WVU Academic Medical Center, Charleston, WV 25304, USA;
| | - Harleen Chela
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; (H.C.); (N.A.)
| | - Nadeem Anwar
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; (H.C.); (N.A.)
| | - Ebubekir Daglilar
- Division of Gastroenterology and Hepatology, Charleston Area Medical Center, West Virginia University, Charleston, WV 25304, USA; (H.C.); (N.A.)
| |
Collapse
|
15
|
Rahmani A, Soleymani A, Almukhtar M, Behzad Moghadam K, Vaziri Z, Hosein Tabar Kashi A, Adabi Firoozjah R, Jafari Tadi M, Zolfaghari Dehkharghani M, Valadi H, Moghadamnia AA, Gasser RB, Rostami A. Exosomes, and the potential for exosome-based interventions against COVID-19. Rev Med Virol 2024; 34:e2562. [PMID: 38924213 DOI: 10.1002/rmv.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Since late 2019, the world has been devastated by the coronavirus disease 2019 (COVID-19) induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with more than 760 million people affected and ∼seven million deaths reported. Although effective treatments for COVID-19 are currently limited, there has been a strong focus on developing new therapeutic approaches to address the morbidity and mortality linked to this disease. An approach that is currently being investigated is the use of exosome-based therapies. Exosomes are small, extracellular vesicles that play a role in many clinical diseases, including viral infections, infected cells release exosomes that can transmit viral components, such as miRNAs and proteins, and can also include receptors for viruses that facilitate viral entry into recipient cells. SARS-CoV-2 has the ability to impact the formation, secretion, and release of exosomes, thereby potentially facilitating or intensifying the transmission of the virus among cells, tissues and individuals. Therefore, designing synthetic exosomes that carry immunomodulatory cargo and antiviral compounds are proposed to be a promising strategy for the treatment of COVID-19 and other viral diseases. Moreover, exosomes generated from mesenchymal stem cells (MSC) might be employed as cell-free therapeutic agents, as MSC-derived exosomes can diminish the cytokine storm and reverse the suppression of host anti-viral defences associated with COVID-19, and boost the repair of lung damage linked to mitochondrial activity. The present article discusses the significance and roles of exosomes in COVID-19, and explores potential future applications of exosomes in combating this disease. Despite the challenges posed by COVID-19, exosome-based therapies could represent a promising avenue for improving patient outcomes and reducing the impact of this disease.
Collapse
Affiliation(s)
- Abolfazl Rahmani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Soleymani
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Kimia Behzad Moghadam
- Independent Researcher, Former University of California, San Francisco (UCSF), San Francisco, California, USA
| | - Zahra Vaziri
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Hosein Tabar Kashi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Reza Adabi Firoozjah
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehrdad Jafari Tadi
- Department of Cell and Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maryam Zolfaghari Dehkharghani
- Department of Healthcare Administration and Policy, School of Public Health, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada, USA
| | - Hadi Valadi
- Department of Rheumatology and Inflammation Research Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, Babol University of Medical Sciences, Babol, Iran
- Pharmaceutical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Robin B Gasser
- Department of Veterinary Biosciences, Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
16
|
Ebrahimi R, Nasri F, Kalantari T. Coagulation and Inflammation in COVID-19: Reciprocal Relationship between Inflammatory and Coagulation Markers. Ann Hematol 2024; 103:1819-1831. [PMID: 38349409 DOI: 10.1007/s00277-024-05630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/16/2024] [Indexed: 05/14/2024]
Abstract
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), formerly known as 2019-nCoV. Numerous cellular and biochemical issues arise after COVID-19 infection. The severe inflammation that is caused by a number of cytokines appears to be one of the key hallmarks of COVID-19. Additionally, people with severe COVID-19 have coagulopathy and fulminant thrombotic events. We briefly reviewed the COVID-19 disease at the beginning of this paper. The inflammation and coagulation markers and their alterations in COVID-19 illness are briefly discussed in the parts that follow. Next, we talked about NETosis, which is a crucial relationship between coagulation and inflammation. In the end, we mentioned the two-way relationship between inflammation and coagulation, as well as the factors involved in it. We suggest that inflammation and coagulation are integrated systems in COVID-19 that act on each other in such a way that not only inflammation can activate coagulation but also coagulation can activate inflammation.
Collapse
Affiliation(s)
- Rasoul Ebrahimi
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Nasri
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Kalantari
- Division of Laboratory Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Qian J, Zhang S, Wang F, Li J, Zhang J. What makes SARS-CoV-2 unique? Focusing on the spike protein. Cell Biol Int 2024; 48:404-430. [PMID: 38263600 DOI: 10.1002/cbin.12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) seriously threatens public health and safety. Genetic variants determine the expression of SARS-CoV-2 structural proteins, which are associated with enhanced transmissibility, enhanced virulence, and immune escape. Vaccination is encouraged as a public health intervention, and different types of vaccines are used worldwide. However, new variants continue to emerge, especially the Omicron complex, and the neutralizing antibody responses are diminished significantly. In this review, we outlined the uniqueness of SARS-CoV-2 from three perspectives. First, we described the detailed structure of the spike (S) protein, which is highly susceptible to mutations and contributes to the distinct infection cycle of the virus. Second, we systematically summarized the immunoglobulin G epitopes of SARS-CoV-2 and highlighted the central role of the nonconserved regions of the S protein in adaptive immune escape. Third, we provided an overview of the vaccines targeting the S protein and discussed the impact of the nonconserved regions on vaccine effectiveness. The characterization and identification of the structure and genomic organization of SARS-CoV-2 will help elucidate its mechanisms of viral mutation and infection and provide a basis for the selection of optimal treatments. The leaps in advancements regarding improved diagnosis, targeted vaccines and therapeutic remedies provide sound evidence showing that scientific understanding, research, and technology evolved at the pace of the pandemic.
Collapse
Affiliation(s)
- Jingbo Qian
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shichang Zhang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
18
|
Sokolski M, Reszka K, Adamik B, Kilis-Pstrusinska K, Lis W, Pomorski M, Sokolowski J, Doroszko A, Madziarska K, Jankowska EA, Protasiewicz M. Antiplatelet therapy prior to COVID-19 infection impacts on patients mortality: a propensity score-matched cohort study. Sci Rep 2024; 14:4832. [PMID: 38413716 PMCID: PMC10899234 DOI: 10.1038/s41598-024-55407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
One of the major pathomechanisms of COVID-19 is the interplay of hyperinflammation and disruptions in coagulation processes, involving thrombocytes. Antiplatelet therapy (AP) by anti-inflammatory effect and inhibition of platelet aggregation may affect these pathways. The aim of this study was to investigate if AP has an impact on the in-hospital course and medium-term outcomes in hospitalized COVID-19 patients. The study population (2170 COVID-19 patients: mean ± SD age 60 ± 19 years old, 50% male) was divided into a group of 274 patients receiving any AP prior to COVID-19 infection (AP group), and after propensity score matching, a group of 274 patients without previous AP (non-AP group). Patients from the AP group were less frequently hospitalized in the intensive care unit: 9% vs. 15%, 0.55 (0.33-0.94), developed less often shock: 9% vs. 15%, 0.56 (0.33-0.96), and required less aggressive forms of therapy. The AP group had more coronary revascularizations: 5% vs. 1%, 3.48 (2.19-5.55) and strokes/TIA: 5% vs. 1%, 3.63 (1.18-11.2). The bleeding rate was comparable: 7% vs. 7%, 1.06 (0.54-2.06). The patients from the AP group had lower 3-month mortality: 31% vs. 39%, 0.69 (0.51-0.93) and didn't differ significantly in 6-month mortality: 34% vs. 41%, 0.79 (0.60-1.04). When analyzing the subgroup with a history of myocardial infarction and/or coronary revascularization and/or previous stroke/transient ischemic attack and/or peripheral artery disease, AP had a beneficial effect on both 3-month: 37% vs. 56%, 0.58 (0.40-0.86) and 6-month mortality: 42% vs. 57%, 0.63 (0.44-0.92). Moreover, the favourable effect was highly noticeable in this subgroup where acetylsalicylic acid was continued during hospitalization with reduction of in-hospital: 19% vs. 43%, 0.31 (0.15-0.67), 3-month: 30% vs. 54%, 044 (0.26-0.75) and 6-month mortality: 33% vs. 54%, 0.49 (0.29-0.82) when confronted with the subgroup who had acetylsalicylic acid suspension during hospitalization. The AP may have a beneficial impact on hospital course and mortality in COVID-19 and shouldn't be discontinued, especially in high-risk patients.
Collapse
Affiliation(s)
- Mateusz Sokolski
- Institute of Heart Disease, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland.
- Institute of Heart Disease, University Hospital, Wroclaw, Poland.
| | - Konrad Reszka
- Institute of Heart Disease, University Hospital, Wroclaw, Poland
| | - Barbara Adamik
- Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Weronika Lis
- Institute of Heart Disease, University Hospital, Wroclaw, Poland
| | - Michał Pomorski
- Clinical Department of Gynecology and Obstetrics, Wroclaw Medical University, Wroclaw, Poland
| | - Janusz Sokolowski
- Clinical Department of Emergency Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Adrian Doroszko
- Clinical Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Madziarska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Anita Jankowska
- Institute of Heart Disease, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
- Institute of Heart Disease, University Hospital, Wroclaw, Poland
| | - Marcin Protasiewicz
- Institute of Heart Disease, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
- Institute of Heart Disease, University Hospital, Wroclaw, Poland
| |
Collapse
|
19
|
Lu J, Chen Y, Zhou K, Ling Y, Qin Q, Lu W, Qin L, Mou C, Zhang J, Zheng X, Qin K. Immune characteristics of kidney transplant recipients with acute respiratory distress syndrome induced by COVID-19 at single-cell resolution. Respir Res 2024; 25:34. [PMID: 38238762 PMCID: PMC10795319 DOI: 10.1186/s12931-024-02682-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND COVID-19-induced acute respiratory distress syndrome (ARDS) can result in tissue damage and multiple organ dysfunction, especially in kidney transplant recipients (KTRs) receiving immunosuppressive drugs. Presently, single-cell research on COVID-19-induced ARDS is considerably advanced, yet knowledge about ARDS in KTRs is still constrained. METHODS Single-cell RNA sequencing (scRNA-seq) analysis was performed to construct a comprehensive single-cell immune landscape of the peripheral blood mononuclear cells (PBMCs) of eight patients with COVID-19-induced ARDS, five KTRs with COVID-19-induced ARDS, and five healthy individuals. Subsequently, we conducted a comprehensive bioinformatics analysis, including cell clustering, enrichment analysis, trajectory analysis, gene regulatory network analysis, and cell-cell interaction analysis, to investigate the heterogeneity of the immune microenvironment in KTRs with ARDS. RESULT Our study revealed that KTRs exhibit significant heterogeneity with COVID-19-induced ARDS compared with those of other individuals, with significant reductions in T cells, as well as an abnormal proliferation of B cells and monocytes. In the context of dual influences from immunosuppression and viral infection, KTRs exhibited more specific plasma cells, along with significant enrichment of dysfunctional GZMB and XAF1 double-positive effector T cells and IFI27-positive monocytes. Additionally, robust communication existed among T cells and monocytes in cytokine signaling. These effects impede the process of immune reconstitution in KTR patients. CONCLUSION Our findings suggest that KTRs with COVID-19-induced ARDS show elevated antibody levels, impaired T cell differentiation, and dysregulation of innate immunity. In summary, this study provides a theoretical foundation for a comprehensive understanding of COVID-19-induced ARDS in KTRs.
Collapse
Affiliation(s)
- Junyu Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Yin Chen
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Kaihuan Zhou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yicong Ling
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Qianqian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Weisheng Lu
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Lian Qin
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Chenglin Mou
- Intensive Care Unit, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Jianfeng Zhang
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China
| | - Xiaowen Zheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission Key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Ke Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, Guangxi, China.
- Department of Anesthesiology, Guilin People's Hospital, Guilin, 541002, China.
| |
Collapse
|
20
|
Radwan E, Abdelaziz A, Mandour MAM, Meki ARMA, El-Kholy MM, Mohamed MN. MBOAT7 expression is associated with disease progression in COVID-19 patients. Mol Biol Rep 2024; 51:79. [PMID: 38183501 PMCID: PMC10771377 DOI: 10.1007/s11033-023-09009-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/09/2023] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND AIM The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 caused a pandemic of acute respiratory disease, named coronavirus disease 2019 (COVID-19). COVID-19 became one of the most challenging health emergencies, hence the necessity to find different prognostic factors for disease progression, and severity. Membrane bound O-acyltransferase domain containing 7 (MBOAT7) demonstrates anti-inflammatory effects through acting as a fine-tune regulator of the amount of cellular free arachidonic acid. We aimed in this study to evaluate MBOAT7 expression in COVID-19 patients and to correlate it with disease severity and outcomes. METHODS This case-control study included 56 patients with confirmed SARS-CoV-2 diagnosis and 28 control subjects. Patients were further classified into moderate (n = 28) and severe (n = 28) cases. MBOAT7, tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) mRNA levels were evaluated in peripheral blood mononuclear cells (PBMC) samples isolated from patients and control subjects by real time quantitative polymerase chain reaction (RT-qPCR). In addition, circulating MBOAT7 protein levels were assayed by enzyme-linked immunosorbent assay (ELISA). RESULTS Significant lower levels of circulating MBOAT7 mRNA and protein were observed in COVID-19 patients compared to control subjects with severe COVID-19 cases showing significant lower levels compared to moderate cases. Moreover, severe cases showed a significant upregulation of TNF-α and IL-1ß mRNA. MBOAT7 mRNA and protein levels were significantly correlated with inflammatory markers (TNF-α, IL-1ß, C-reactive protein (CRP), and ferritin), liver enzymes, severity, and oxygen saturation levels. CONCLUSION COVID-19 is associated with downregulation of MBAOT7, which correlates with disease severity.
Collapse
Affiliation(s)
- Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
- Department of Biochemistry, Sphinx University, New Assiut City, Assiut 10, Egypt.
| | - Ahmed Abdelaziz
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, 71515, Egypt
| | - Manal A M Mandour
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Abdel-Raheim M A Meki
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
- Department of Biochemistry, Sphinx University, New Assiut City, Assiut 10, Egypt
| | - Maha M El-Kholy
- Department of Chest diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwan N Mohamed
- Department of Chest diseases and Tuberculosis, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
21
|
Reeve J. De-stabilizing innate immunity in COVID-19: effects of its own positive feedback and erratic viraemia on the alternative pathway of complement. ROYAL SOCIETY OPEN SCIENCE 2024; 11:221597. [PMID: 38234438 PMCID: PMC10791537 DOI: 10.1098/rsos.221597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Complement provides powerful, fast responses in the human circulation to SARS-CoV-2 (COVID-19 virus) infection of the lower respiratory tract. COVID-19 effects were investigated in a revised human in silico Mass Action model of complement's alternative pathway (AP) responses. Bursts of newly circulating virions increased the fission of Complement protein C3 into C3a and C3b via stimulation of the lectin pathway or inhibited complement factor H. Viral reproduction sub-models incorporated smoothly exponential or step-wise exponential growth. Starting complement protein concentrations were drawn randomly from published normal male or female ranges and each infection model run for 10 days. C3 and factor B (FB) syntheses driven by Lectin Pathway stimulation led to declining plasma C3 and increasing FB concentrations. The C3-convertase concentration, a driver of viral elimination, could match viral growth over three orders of magnitude but near-complete exhaustion of circulating C3 was more prevalent with step-wise than with 'smooth' increases in viral stimulation. C3 exhaustion could be prolonged. Type 2 Diabetes and hypertension led to greatly increased peak C3-convertase concentrations, as did short-term variability of COVID-19 viraemia, pulmonary capillary clotting and secondary acidosis. Positive feedback in the AP greatly extends its response range at the expense of stability.
Collapse
Affiliation(s)
- Jonathan Reeve
- Senior Research Fellow, Nuffield Department of Orthopaedics, Rheumatological and Musculoskeletal Sciences, University of Oxford Botnar Research Centre, Windmill Road, Oxford OX3 7LD, UK
| |
Collapse
|
22
|
Nakayama R, Bunya N, Tagami T, Hayakawa M, Yamakawa K, Endo A, Ogura T, Hirayama A, Yasunaga H, Uemura S, Narimatsu E. Associated organs and system with COVID-19 death with information of organ support: a multicenter observational study. BMC Infect Dis 2023; 23:814. [PMID: 37986049 PMCID: PMC10662555 DOI: 10.1186/s12879-023-08817-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND The organ dysfunction that is associated with death in COVID-19 patients has not been determined in multicenter epidemiologic studies. In this study, we evaluated the major association with death, concomitant organ dysfunction, and proportion of multiple organ failure in deaths in patients with COVID-19, along with information on organ support. METHODS We performed an observational cohort study using the Japanese multicenter research of COVID-19 by assembling a real-world data (J-RECOVER) study database. This database consists of data on patients discharged between January 1 and September 31, 2020, with positive SARS-CoV-2 test results, regardless of intensive care unit admission status. These data were collected from the Diagnosis Procedure Combination and electronic medical records of 66 hospitals in Japan. The clinician identified and recorded the organ responsible for the death of COVID-19. RESULTS During the research period, 4,700 patients with COVID-19 were discharged from 66 hospitals participating in the J-RECOVER study; of which, 272 patients (5.8%) from 47 institutions who died were included in this study. Respiratory system dysfunction (87.1%) was the leading association with death, followed by cardiovascular (4.8%), central nervous (2.9%), gastrointestinal (2.6%), and renal (1.1%) dysfunction. Most patients (96.7%) who died of COVID-19 had respiratory system damage, and about half (48.9%) had multi-organ damage. Of the patients whose main association with death was respiratory dysfunction, 120 (50.6%) received mechanical ventilation. CONCLUSION This study showed that although respiratory dysfunction was the most common association with death in many cases, multi-organ dysfunction was associated with death due to COVID-19.
Collapse
Affiliation(s)
- Ryuichi Nakayama
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Naofumi Bunya
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan.
| | - Takashi Tagami
- Department of Emergency and Critical Care Medicine, Nippon Medical School Musashikosugi Hospital, Tokyo, Japan
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Mineji Hayakawa
- Department of Emergency Medicine, Hokkaido University Hospital, Hokkaido, Japan
| | - Kazuma Yamakawa
- Department of Emergency Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Akira Endo
- Trauma and Acute Critical Care Center, Tokyo Medical and Dental University Hospital, Tokyo, Japan
| | - Takayuki Ogura
- Department of Emergency Medicine and Critical Care Medicine, Tochigi Prefectural Emergency and Critical Care Centre, Imperial Foundation Saiseikai Utsunomiya Hospital, Tochigi, Japan
| | - Atsushi Hirayama
- Department of Social Medicine, Graduate School of Medicine, Public Health, Osaka University, Osaka, Japan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Shuji Uemura
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Eichi Narimatsu
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, 291, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| |
Collapse
|
23
|
Jain R, Mathew D. Mechanisms influencing the high prevalence of COVID-19 in diabetics: A systematic review. MEDICAL RESEARCH ARCHIVES 2023; 11:4540. [PMID: 38933091 PMCID: PMC11198970 DOI: 10.18103/mra.v11i10.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Diabetics have an increased risk of contracting COVID-19 infection and tend to have more severe symptoms. This systematic review explores the potential mechanisms influencing the high prevalence of COVID-19 infections in individuals with diabetes. It reviews the emerging evidence about the interactions between viral and diabetic pathways, particularly how diabetes physiology could contribute to higher viral reception, viral entry and pathogenicity, and the severity of disease symptoms. Finally, it examines the challenges we face in studying these mechanisms and offers new strategies that might assist our fight against current and future pandemics.
Collapse
Affiliation(s)
- Roshni Jain
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| | - Dennis Mathew
- Cell and Molecular Biology Program, University of Nevada, Reno, NV 89557
- Department of Biology, University of Nevada, Reno, NV 89557
| |
Collapse
|
24
|
Mazzocco YL, Bergero G, Del Rosso S, Eberhardt N, Sola C, Saka HA, Villada SM, Bocco JL, Aoki MP. Differential expression patterns of purinergic ectoenzymes and the antioxidative role of IL-6 in hospitalized COVID-19 patient recovery. Front Immunol 2023; 14:1227873. [PMID: 37818368 PMCID: PMC10560791 DOI: 10.3389/fimmu.2023.1227873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction We have acquired significant knowledge regarding the pathogenesis of severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2). However, the underlying mechanisms responsible for disease recovery still need to be fully understood. Methods To gain insights into critical immune markers involved in COVID-19 etiopathogenesis, we studied the evolution of the immune profile of peripheral blood samples from patients who had recovered from COVID-19 and compared them to subjects with severe acute respiratory illness but negative for SARS-CoV-2 detection (controls). In addition, linear and clustered correlations between different parameters were determined. Results The data obtained revealed a significant reduction in the frequency of inflammatory monocytes (CD14+CD16+) at hospital discharge vs. admission. Remarkably, nitric oxide (NO) production by the monocyte compartment was significantly reduced at discharge. Furthermore, interleukin (IL)-6 plasma levels were negatively correlated with the frequency of NO+CD14+CD16+ monocytes at hospital admission. However, at the time of hospital release, circulating IL-6 directly correlated with the NO production rate by monocytes. In line with these observations, we found that concomitant with NO diminution, the level of nitrotyrosine (NT) on CD8 T-cells significantly diminished at the time of hospital release. Considering that purinergic signaling constitutes another regulatory system, we analyzed the kinetics of CD39 and CD73 ectoenzyme expression in CD8 T-cells. We found that the frequency of CD39+CD8+ T-cells significantly diminished while the percentage of CD73+ cells increased at hospital discharge. In vitro, IL-6 stimulation of PBMCs from COVID-19 patients diminished the NT levels on CD8 T-cells. A clear differential expression pattern of CD39 and CD73 was observed in the NT+ vs. NT-CD8+ T-cell populations. Discussion The results suggest that early after infection, IL-6 controls the production of NO, which regulates the levels of NT on CD8 T-cells modifying their effector functions. Intriguingly, in this cytotoxic cell population, the expression of purinergic ectoenzymes is tightly associated with the presence of nitrated surface molecules. Overall, the data obtained contribute to a better understanding of pathogenic mechanisms associated with COVID-19 outcomes.
Collapse
Affiliation(s)
- Yanina Luciana Mazzocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Gastón Bergero
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sebastian Del Rosso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Natalia Eberhardt
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Claudia Sola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Héctor Alex Saka
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Sofía María Villada
- Servicio de Enfermedades Infecciosas, Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - José Luis Bocco
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| | - Maria Pilar Aoki
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina
| |
Collapse
|
25
|
Cheng Z, Cai Y, Zhang K, Zhang J, Gui H, Luo YS, Zhou J, DeVeale B. MAP3K19 regulatory variation in populations with African ancestry may increase COVID-19 severity. iScience 2023; 26:107555. [PMID: 37649700 PMCID: PMC10462844 DOI: 10.1016/j.isci.2023.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/20/2023] [Accepted: 08/03/2023] [Indexed: 09/01/2023] Open
Abstract
To identify ancestry-linked genetic risk variants associated with COVID-19 hospitalization, we performed an integrative analysis of two genome-wide association studies and resolved four single nucleotide polymorphisms more frequent in COVID-19-hospitalized patients with non-European ancestry. Among them, the COVID-19 risk SNP rs16831827 shows the largest difference in minor allele frequency (MAF) between populations with African and European ancestry and also shows higher MAF in hospitalized COVID-19 patients among cohorts of mixed ancestry (odds ratio [OR] = 1.20, 95% CI: 1.10-1.30) and entirely African ancestry (OR = 1.30, 95% CI: 1.02-1.67). rs16831827 is an expression quantitative trait locus of MAP3K19. MAP3K19 expression is induced during ciliogenesis and most abundant in ciliated tissues including lungs. Single-cell RNA sequencing analyses revealed that MAP3K19 is highly expressed in multiple ciliated cell types. As rs16831827∗T is associated with reduced MAP3K19 expression, it may increase the risk of severe COVID-19 by reducing MAP3K19 expression.
Collapse
Affiliation(s)
- Zhongshan Cheng
- Center for Applied Bioinformatics, St Jude Children’s Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA
| | - Yi Cai
- Guangdong Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, Shenzhen University Medical School, Shenzhen 518000, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou, Guiyang 550025, China
| | - Jingxuan Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hongsheng Gui
- Behavioral Health Services and Psychiatry Research, Henry Ford Health, Detroit, MI 48202, USA
| | - Yu-Si Luo
- Department of Emergency, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang 550004, China
| | - Jie Zhou
- Department of Microbiology, The University of Hong Kong, Hong Kong 999077, China
| | - Brian DeVeale
- The Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
26
|
Wan EYF, Zhang R, Mathur S, Yan VKC, Lai FTT, Chui CSL, Li X, Wong CKH, Chan EWY, Lau CS, Wong ICK. Post-acute sequelae of COVID-19 in older persons: multi-organ complications and mortality. J Travel Med 2023; 30:taad082. [PMID: 37310901 DOI: 10.1093/jtm/taad082] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/29/2023] [Accepted: 06/10/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Evidence on long-term associations between coronavirus disease 2019 (COVID-19) and risks of multi-organ complications and mortality in older population is limited. This study evaluates these associations. RESEARCH DESIGN AND METHODS The cohorts included patients aged ≥60 year diagnosed with COVID-19 infection (cases), between 16 March 2020 and 31 May 2021 from the UK Biobank; and between 01 April 2020 and 31 May 2022 from the electronic health records in Hong Kong. Each patient was randomly matched with individuals without COVID-19 infection based on year of birth and sex and were followed for up to 18 months until 31 August 2021 for UKB, and up to 28 months until 15 August 2022 for HK cohort. Patients with COVID-19 infection over 6 months after the date of last dose of vaccination and their corresponding controls were excluded from our study. Characteristics between cohorts were further adjusted with Inverse Probability Treatment Weighting. For evaluating long-term association of COVID-19 with multi-organ disease complications and mortality after 21-days of diagnosis, Cox regression was employed. RESULT 10,759 (UKB) and 165,259 (HK) older adults with COVID-19 infection with matched 291,077 (UKB) and 1,100,394 (HK) non-COVID-19-diagnosed older adults were recruited. Older adults with COVID-19 were associated with a significantly higher risk of cardiovascular outcomes [major cardiovascular disease (stroke, heart failure and coronary heart disease): hazard ratio(UKB): 1.4 (95% Confidence interval: 1.1,1.6), HK:1.2 (95% CI: 1.1,1.3)]; myocardial infarction: HR(UKB): 1.8 (95% CI: 1.3,2.4), HK:1.2 (95% CI: 1.0,1.4)]; respiratory outcomes [interstitial lung disease: HR(UKB: 3.4 (95% CI: 2.5,4.5), HK: 4.0 (95% CI: 1.3,12.8); chronic pulmonary disease: HR(UKB): 1.7 (95% CI: 1.3,2.2), HK:1.6 (95% CI: 1.3,2.1)]; neuropsychiatric outcomes [seizure: HR(UKB): 2.6 (95% CI: 1.7,4.1), HK: 1.6 (95% CI: 1.2,2.1)]; and renal outcomes [acute kidney disease: HR(UKB): 1.4 (95% CI: 1.1,1.6), HK:1.6 (95% CI: 1.3,2.1)]; and all-cause mortality [HR(UKB): 4.9 (95% CI: 4.4,5.4), HK:2.5 (95% CI: 2.5,2.6)]. CONCLUSION COVID-19 is associated with long-term risks of multi-organ complications in older adults (aged ≥ 60). Infected patients in this age-group may benefit from appropriate monitoring of signs/symptoms for developing these complications.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ran Zhang
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sukriti Mathur
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent Ka Chun Yan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Francisco Tsz Tsun Lai
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
| | - Celine Sze Ling Chui
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xue Li
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carlos King Ho Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Esther Wai Yin Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Department of Pharmacy, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518053, China
| | - Chak Sing Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong, China
- Aston Pharmacy School, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
27
|
Lv B, Huang S, Huang H, Niu N, Liu J. Endothelial Glycocalyx Injury in SARS-CoV-2 Infection: Molecular Mechanisms and Potential Targeted Therapy. Mediators Inflamm 2023; 2023:6685251. [PMID: 37674786 PMCID: PMC10480029 DOI: 10.1155/2023/6685251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/05/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
This review aims at summarizing state-of-the-art knowledge on glycocalyx and SARS-CoV-2. The endothelial glycocalyx is a dynamic grid overlying the surface of the endothelial cell (EC) lumen and consists of membrane-bound proteoglycans and glycoproteins. The role of glycocalyx has been determined in the regulation of EC permeability, adhesion, and coagulation. SARS-CoV-2 is an enveloped, single-stranded RNA virus belonging to β-coronavirus that causes the outbreak and the pandemic of COVID-19. Through the respiratory tract, SARS-CoV-2 enters blood circulation and interacts with ECs possessing angiotensin-converting enzyme 2 (ACE2). Intact glycolyx prevents SARS-CoV-2 invasion of ECs. When the glycocalyx is incomplete, virus spike protein of SARS-CoV-2 binds with ACE2 and enters ECs for replication. In addition, cytokine storm targets glycocalyx, leading to subsequent coagulation disorder. Therefore, it is intriguing to develop a novel treatment for SARS-CoV-2 infection through the maintenance of the integrity of glycocalyx. This review aims to summarize state-of-the-art knowledge of glycocalyx and its potential function in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bingxuan Lv
- The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Shengshi Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Hong Huang
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| | - Na Niu
- Department of Pediatrics, Shandong Provincial Hospital, Shandong First Medical University, 324 Jingwu Road, Jinan 250021, China
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan 250014, China
| |
Collapse
|
28
|
Oh T, Kim G, Baek SH, Woo Y, Koo BS, Hwang EH, Shim K, An YJ, Kim Y, Won J, Lee Y, Lim KS, Park JH, Hong JJ. Spatial transcriptome atlas reveals pulmonary microstructure-specific COVID-19 gene signatures in cynomolgus macaques. Commun Biol 2023; 6:879. [PMID: 37640792 PMCID: PMC10462721 DOI: 10.1038/s42003-023-05253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Characterizing the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the molecular level is necessary to understand viral pathogenesis and identify clinically relevant biomarkers. However, in humans, the pulmonary host response during disease onset remains poorly understood. Herein, we utilized a spatial transcriptome atlas to identify pulmonary microstructure-specific COVID-19 gene signatures during the acute phase of lung infection in cynomolgus macaques. The innate immune response to virus-induced cell death was primarily active in the alveolar regions involving activated macrophage infiltration. Inflamed vascular regions exhibited prominent upregulation of interferon and complement pathway genes that mediate antiviral activity and tissue damage response. Furthermore, known biomarker genes were significantly expressed in specific microstructures, and some of them were universally expressed across all microstructures. These findings underscore the importance of identifying key drivers of disease progression and clinically applicable biomarkers by focusing on pulmonary microstructures appearing during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Taehwan Oh
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Green Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - YoungMin Woo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Eun-Ha Hwang
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Kyuyoung Shim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - You Jung An
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Yujin Kim
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Jinyoung Won
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jung Joo Hong
- National Primate Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungcheongbuk, Republic of Korea.
- KRIBB School of Bioscience, Korea University of Science & Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
29
|
Haselwanter P, Bal C, Gompelmann D, Idzko M, Prosch H, Zauner C, Schneeweiss-Gleixner M. Sustained Treatment Response after Intravenous Cyclophosphamide in a Patient with Therapy-Resistant COVID-19 Acute Respiratory Distress Syndrome: A Case Report. J Clin Med 2023; 12:5506. [PMID: 37685571 PMCID: PMC10488024 DOI: 10.3390/jcm12175506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Treatment of acute respiratory distress syndrome (ARDS) represents a severe complication of coronavirus disease 2019 (COVID-19) infection and is often challenging in intensive care treatment. Potential positive effects of intravenous cyclophosphamide have been reported in interstitial lung diseases (ILDs). However, there are no data on the use of high-dose cyclophosphamide in therapy-resistant COVID-19 ARDS. We report the case of a 32-year-old male patient admitted to the intensive care unit (ICU) of the Medical University of Vienna due to severe COVID-19 ARDS who required venovenous extracorporeal membrane oxygenation (ECMO) with a total runtime of 85 days. Despite all these therapeutic efforts, he remained in a condition of therapy-resistant ARDS. Unfortunately, the patient was denied for lung transplantation. However, a significant improvement in his respiratory condition was achieved after the administration of an intravenous regimen of cyclophosphamide and prednisolone. After a period of consecutive stabilization, the patient was transferred to the normal ward after 125 days of intensive care treatment. There is a substantial lack of therapeutic options in therapy-resistant ARDS. Our case report suggests that cyclophosphamide may represent a new treatment strategy in therapy-resistant ARDS. Due to its severe adverse effect profile, cyclophosphamide should be used after careful evaluation of a patient's general condition.
Collapse
Affiliation(s)
- Patrick Haselwanter
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (C.Z.)
| | - Christina Bal
- Department of Medicine II, Division of Pulmonology, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (D.G.); (M.I.)
| | - Daniela Gompelmann
- Department of Medicine II, Division of Pulmonology, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (D.G.); (M.I.)
| | - Marco Idzko
- Department of Medicine II, Division of Pulmonology, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (D.G.); (M.I.)
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Paediatric Radiology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christian Zauner
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (C.Z.)
| | - Mathias Schneeweiss-Gleixner
- Department of Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, 1090 Vienna, Austria; (P.H.); (C.Z.)
| |
Collapse
|
30
|
Yang MY, Zheng MH, Meng XT, Ma LW, Liang HY, Fan HY. Role of toll-like receptors in the pathogenesis of COVID-19: Current and future perspectives. Scand J Immunol 2023; 98:e13275. [PMID: 38441378 DOI: 10.1111/sji.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 03/07/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.
Collapse
Affiliation(s)
- Ming-Yan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Mei-Hua Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Xiang-Ting Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Le-Wei Ma
- Ruikang Pharmaceutical Group Co. Ltd., Yantai, China
| | - Hai-Yue Liang
- Yantai Center for Food and Drug Control, Yantai, China
| | - Hua-Ying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
31
|
Vaman RS, Valamparampil MJ, Dalmita NJ, Reghukumar A, Anish TS. Immediate cause and the role of multimorbidity in deaths associated with COVID 19 among hospitalized patients in a low resource district in Kerala India: A record-based case-control analysis. J Family Med Prim Care 2023; 12:1593-1601. [PMID: 37767413 PMCID: PMC10521846 DOI: 10.4103/jfmpc.jfmpc_2061_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Multimorbidity is the coexistence of two or more chronic medical conditions in a person. The study aims to investigate the immediate cause of death and risk factors of mortality including multimorbidity among patients hospitalized with SARS CoV2 infection in Kasaragod district in Kerala, India. Methods A record-based case-control study was done using the hospital records and follow-up surveillance system of SARS-COV 2 patients admitted in the Kasaragod district. SARS-COV 2 patients who had expired during the study period from June to December 2020 and reported as COVID-19 deaths (N = 226) were the cases, and an equal number of hospital controls were the study participants. Results The mean (SD) age of the cases and controls were found to be 64.6 (14.2) years and 61.5 (13.4) years, respectively. Covid pneumonia alone was reported as the cause of death in more than half (52%) of the study participants. This was followed by cardiovascular events (8.5%) and acute kidney injury (6.5%). Among individual comorbidities among people who expired, diabetes mellitus (53%) was the most common, followed by hypertension (46%) and cardiovascular diseases (23%). More than 50% were found to have multimorbidity. Logistic regression showed chronic kidney disease (CKD) (Adjusted odds ratio (AOR) = 2.18 (1.24-3.83)) and malignancy (AOR = 3.05 (1.27-7.32)) to be significantly associated with mortality as individual determinants. Hypertension-diabetes mellitus [AOR = 1.68 (1.02-2.76), P = 0.043] and hypertension-CKD [AOR = 3.49 (1.01-12.01), P = 0.48] dyads were multimorbidities significantly associated with mortality. Conclusion Combinations of hypertension with diabetes mellitus and CKD were found to be significant determinants for mortality in hospitalized COVID-19 patients. Uniformity in death certification is required to understand the causes and contributors to death in COVID-19.
Collapse
Affiliation(s)
- Raman Swathy Vaman
- Scholar, ICMR School of Public Health, ICMR-National Institute of Epidemiology, Chennai, Tamil Nadu, India
| | | | | | - Aravind Reghukumar
- Department of Infectious Diseases, Government Medical College, Trivandrum, Kerala, India
| | - T. S. Anish
- Department of Community Medicine, Government Medical College, Trivandrum, Kerala, India
| |
Collapse
|
32
|
Huang H, Li X, Zha D, Lin H, Yang L, Wang Y, Xu L, Wang L, Lei T, Zhou Z, Xiao YF, Xin HB, Fu M, Qian Y. SARS-CoV-2 E protein-induced THP-1 pyroptosis is reversed by Ruscogenin. Biochem Cell Biol 2023; 101:303-312. [PMID: 36927169 DOI: 10.1139/bcb-2022-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging pathogenic coronavirus, has been reported to cause excessive inflammation and dysfunction in multiple cells and organs, but the underlying mechanisms remain largely unknown. Here we showed exogenous addition of SARS-CoV-2 envelop protein (E protein) potently induced cell death in cultured cell lines, including THP-1 monocytic leukemia cells, endothelial cells, and bronchial epithelial cells, in a time- and concentration-dependent manner. SARS-CoV-2 E protein caused pyroptosis-like cell death in THP-1 and led to GSDMD cleavage. In addition, SARS-CoV-2 E protein upregulated the expression of multiple pro-inflammatory cytokines that may be attributed to activation of NF-κB, JNK and p38 signal pathways. Notably, we identified a natural compound, Ruscogenin, effectively reversed E protein-induced THP-1 death via inhibition of NLRP3 activation and GSDMD cleavage. In conclusion, these findings suggested that Ruscogenin may have beneficial effects on preventing SARS-CoV-2 E protein-induced cell death and might be a promising treatment for the complications of COVID-19.
Collapse
Affiliation(s)
- Houda Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiuzhen Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Duoduo Zha
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hongru Lin
- Department of Scientific Research, Hainan General Hospital, Haikou, 570311, China
| | - Lingyi Yang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Yihan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Luyan Xu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Linsiqi Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Tianhua Lei
- Shock/Trauma Research Center, Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Zhou Zhou
- Shock/Trauma Research Center, Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Yun-Fei Xiao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Mingui Fu
- Shock/Trauma Research Center, Department of Biomedical Sciences, School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Yisong Qian
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| |
Collapse
|
33
|
Abbasian S, Razmi M, Bahramian H, Shanbehzadeh M, Kazemi-Arpanahi H. Diagnosis and Treatment of Coagulopathy Caused by the New Coronavirus: A Systematic Review and Meta-Analysis Protocol. Adv Biomed Res 2023; 12:147. [PMID: 37564459 PMCID: PMC10410409 DOI: 10.4103/abr.abr_403_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 08/12/2023] Open
Abstract
Background The new coronavirus is an agent of respiratory infections associated with thrombosis in vital organs. This study aimed to propose a better diagnosis and treatment of coagulation disorders caused by the new coronavirus (Covid-19). Materials and Methods Search in Cochrane central, Web of Science, PubMed, Scopus, and Ovid will be done. Also, according to the inclusion criteria, cross-sectional studies, cohort, clinical trial, and case-control will be included without gender and language restriction. Participants will also be Covid-19 patients with coagulation disorders. Any disagreement in the stages of screening, selection, and extraction of data between the two reviewers will be resolved by discussion, then if not resolved, the opinion of expert reviewers will be used. The risk of bias will be assessed using the NOS (Newcastle-Ottawa scale) tool for cross-sectional study, cohort and case-control, and the Cochrane checklist for clinical trials study. Metaanalysis of included studies that are similar based on the methodology will be done. Also, a fixed or random-effect model will be used for this it. Heterogeneity indices (I2), odds ratio (OR), risk ratio (RR), mean difference, and %95 confidence interval will also be calculated by Stata V.13.0 (Corporation, College Station TX). Results Treatment with anticoagulants will reduce the severity of thrombosis and lung disease in patients. D-dimer measurement will also be a diagnosis indicator of thrombosis. Conclusions Simultaneous study of coagulation disorders and thrombosis in patients and development of a Godliness based on it will play a treatment role in the follow-up of the coronavirus disease.
Collapse
Affiliation(s)
- Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
- Student Research Committee, Ilam University of Medical Sciences, Ilam, Iran
| | - Mahya Razmi
- Student Research Committee, Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadiseh Bahramian
- Student Research Committee, Faculty of Paramedical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Shanbehzadeh
- Department of Health Information Technology, School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Hadi Kazemi-Arpanahi
- Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran
- Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
34
|
Tran HD, Hung TT, Thuy Phuong TH, Tam LT, Tran HG, Le PH. Clinical Features and Treatment Outcomes of COVID-19 Admissions in the Can Tho City Hospital of Tuberculosis and Respiratory Diseases, Vietnam: A Hospital-Based Observational Study. Healthcare (Basel) 2023; 11:1632. [PMID: 37297772 PMCID: PMC10252595 DOI: 10.3390/healthcare11111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is among the top global health crises. As confirmed by the Vietnam Ministry of Health on 25th January 2023, Vietnam had a cumulative total of more than 11.52 million COVID-19 patients, including 10.61 million recoveries and 43,186 deaths. OBJECTIVES This study aimed to describe the clinical and subclinical characteristics, treatment progress, and outcomes of 310 cases of SARS-CoV-2 infection. METHODS A total of 310 patients with medical records of SARS-CoV-2 were admitted to Can Tho City Hospital of Tuberculosis and Lung Diseases, Can Tho city, Vietnam, between July 2021 and December 2021. Demographic and clinical data, including laboratory examinations, of all the patients were collected and analyzed. RESULTS The median duration of hospital stay was 16.4 ± 5.3 days. There were 243 (78.4%) patients with clinical symptoms of COVID-19 and 67 (21.6%) patients without clinical symptoms. The common symptoms included cough (71.6% of 310 patients), fever (35.4%), shortness of breath (22.6%), sore throat (21.4%), loss of smell/taste (15.6%), and diarrhea (14.4%). Regarding treatment outcomes, 92.3% of the patients were discharged from the hospital, 1.9% of the patients suffered a more severe illness and were transferred to a higher-level hospital, and 5.8% of the patients died. The RT-PCR results were negative in 55.2% of the patients, and 37.1% of the patients had positive RT-PCR results with Ct values of >30 on the discharge/transfer day. Multivariate logistic regression analyses showed that comorbidity and decreased blood pH were statistically significantly related to the treatment outcomes of the patients with COVID-19 (p < 0.05). CONCLUSIONS This study provides useful information (i.e., the clinical characteristics and treatment outcomes) on the COVID-19 pandemic in Vietnam during its biggest outbreak; the information may be used for reference and for making improvements in the handling of future health crises.
Collapse
Affiliation(s)
- Hung Do Tran
- Faculty of Nursing and Medical Technology, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 94000, Vietnam
| | - Tran Thanh Hung
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 94000, Vietnam; (T.T.H.); (H.G.T.)
| | - Tran Hoang Thuy Phuong
- Can Tho City Hospital of Tuberculosis and Respiratory Diseases, Binh Hoa A Quarter, Phuoc Thoi Ward, O Mon District, Can Tho City 94000, Vietnam;
| | - Le Thanh Tam
- Can Tho University of Medicine and Pharmacy Hospital, 179 Nguyen Van Cu Street, Can Tho City 94000, Vietnam;
| | - Hung Gia Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 94000, Vietnam; (T.T.H.); (H.G.T.)
| | - Phuoc Huu Le
- Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho City 94000, Vietnam
| |
Collapse
|
35
|
Minici R, Fontana F, Venturini M, Guzzardi G, Siciliano A, Piacentino F, Serra R, Coppola A, Guerriero P, Apollonio B, Santoro R, Team MGJRR, Brunese L, Laganà D. Transcatheter Arterial Embolization (TAE) in the Management of Bleeding in the COVID-19 Patient. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1062. [PMID: 37374266 PMCID: PMC10305036 DOI: 10.3390/medicina59061062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Increasing attention is being paid to the coagulation disorders associated with SARS-CoV-2 infection. Bleeding accounts for 3-6% of COVID-19 patient deaths, and is often a forgotten part of the disease. The bleeding risk is enhanced by several factors, including spontaneous heparin-induced thrombocytopenia, thrombocytopenia, the hyperfibrinolytic state, the consumption of coagulation factors, and thromboprophylaxis with anticoagulants. This study aims to assess the efficacy and safety of TAE in the management of bleeding in COVID-19 patients. Materials and Methods: This multicenter retrospective study analyzes data from COVID-19 patients subjected to transcatheter arterial embolization for the management of bleeding from February 2020 to January 2023. Results: Transcatheter arterial embolization was performed in 73 COVID-19 patients for acute non-neurovascular bleeding during the study interval (February 2020-January 2023). Coagulopathy was observed in forty-four (60.3%) patients. The primary cause of bleeding was spontaneous soft tissue hematoma (63%). A 100% technical success rate was recorded; six cases of rebleeding resulted in a 91.8% clinical success rate. No cases of non-target embolization were observed. Complications were recorded in 13 (17.8%) patients. The efficacy and safety endpoints did not differ significantly between the coagulopathy and non-coagulopathy groups. Conclusions: Transcatheter Arterial Embolization (TAE) is an effective, safe and potentially life-saving option for the management of acute non-neurovascular bleeding in COVID-19 patients. This approach is effective and safe even in the subgroup of COVID-19 patients with coagulopathy.
Collapse
Affiliation(s)
- Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.); (A.S.)
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Insubria University, 21100 Varese, Italy; (M.V.); (F.P.); (A.C.)
- School of Medicine and Surgery, Insubria University, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Insubria University, 21100 Varese, Italy; (M.V.); (F.P.); (A.C.)
- School of Medicine and Surgery, Insubria University, 21100 Varese, Italy
| | - Giuseppe Guzzardi
- Radiology Unit, Maggiore della Carità University Hospital, 28100 Novara, Italy;
| | - Agostino Siciliano
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.); (A.S.)
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Insubria University, 21100 Varese, Italy; (M.V.); (F.P.); (A.C.)
| | - Raffaele Serra
- Vascular Surgery Unit, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Dulbecco University Hospital, 88100 Catanzaro, Italy;
| | - Andrea Coppola
- Diagnostic and Interventional Radiology Unit, ASST Settelaghi, Insubria University, 21100 Varese, Italy; (M.V.); (F.P.); (A.C.)
| | - Pasquale Guerriero
- Radiology Unit, Santobono-Pausilipon Hospital, 80129 Naples, Italy;
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | | | - Rita Santoro
- Haemophilia and Thrombosis Center, Dulbecco University Hospital, 88100 Catanzaro, Italy;
| | - MGJR Research Team
- Magna Graecia Junior Radiologists Research Team, 88100 Catanzaro, Italy;
| | - Luca Brunese
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
- Scientific Committee of the Italian National Institute of Health (Istituto Superiore di Sanità, ISS), 00161 Rome, Italy
| | - Domenico Laganà
- Radiology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Dulbecco University Hospital, 88100 Catanzaro, Italy
| |
Collapse
|
36
|
Mastaneh Z, Mouseli A, Mohseni S, Dadipoor S. Predictors of hospital length of stay and mortality among COVID-19 inpatients during 2020-2021 in Hormozgan Province of Iran: A retrospective cohort study. Health Sci Rep 2023; 6:e1329. [PMID: 37324249 PMCID: PMC10265171 DOI: 10.1002/hsr2.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Background and Aims About one-fifth of patients with COVID-19 need to be hospitalized. Predicting factors affecting the hospital length of stay (LOS) can be effective in prioritizing patients, planning for services, and preventing the increase in LOS and death of patients. The present study aimed to identify the factors that predict LOS and mortality in COVID-19 patients in a retrospective cohort study. Methods A total of 27,859 patients were admitted to 22 hospitals from February 20, 2020 to June 21, 2021. The data collected from 12,454 patients were screened according to the inclusion and exclusion criteria. The data were captured from the MCMC (Medical Care Monitoring Center) database. The study tracked patients until their hospital discharge or death. Hospital LOS and mortality were assessed as the study outcomes. Results As the results revealed, 50.8% of patients were male and 49.2% were female. The mean hospital LOS of the discharged patients was 4.94. Yet, 9.1% of the patients (n = 1133) died. Among the predictors of mortality and long hospital LOS were the age above 60, admission to the ICU, coughs, respiratory distress, intubation, oxygen level less than 93%, cigarette and drug abuse, and a history of chronic diseases. Masculinity, gastrointestinal symptoms, and cancer were the effective variables in mortality, and positive CT was a factor significantly affecting the hospital LOS. Conclusion Paying special attention to high-risk patients and modifiable risk factors such as heart disease, liver disease, and other chronic diseases can diminish the complications and mortality rate of COVID-19. Providing training, especially for those who care for patients experiencing respiratory distress such as nurses and operating room personnel can improve the qualifications and skills of medical staff. Also, ensuring the availability of sufficient supply of medical equipment is strongly recommended.
Collapse
Affiliation(s)
- Zahra Mastaneh
- Department of Health Information Management and Technology, School of Allied Medical Sciences, Infectious and Tropical Diseases Research CenterHormozgan University of Medical SciencesBandar AbbasIran
| | - Ali Mouseli
- Department of Public Health, School of Health, Social Determinants in Health Promotion Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Shokrollah Mohseni
- Department of Public Health, School of Health, Social Determinants in Health Promotion Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| | - Sara Dadipoor
- Department of Public Health, School of Health, Social Determinants in Health Promotion Research Center, Hormozgan Health InstituteHormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
37
|
Shipovalov AV, Kudrov GA, Kartashov MY, Drachkova IA, Pyankov OV, Omigov VV, Taranov OS, Teplyakova TV. [Antiviral activity of basidial fungus Inonotus obliquus aqueous extract against SARS-CоV-2 virus (Coronaviridae: Betacoronavirus: Sarbecovirus) in vivo in BALB/c mice model]. Vopr Virusol 2023; 68:152-160. [PMID: 37264850 DOI: 10.36233/0507-4088-168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/12/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION The COVID-19 pandemic combined with seasonal epidemics of respiratory viral diseases requires targeted antiviral prophylaxis with restorative and immunostimulant drugs. The compounds of natural origin are low-toxic, but active against several viruses at the same time. One of the most famous compounds is Inonotus obliquus aqueous extract. The fruit body of basidial fungus I. obliquus is called Chaga mushroom. The aim of the work ‒ was to study the antiviral activity of I. obliquus aqueous extract against the SARS-CoV-2 virus in vivo. MATERIALS AND METHODS Antiviral activity of I. obliquus aqueous extract sample (#20-17) was analyzed against strain of SARS-CoV-2 Omicron ВА.5.2 virus. The experiments were carried out in BALB/c inbred mice. The SARS-CoV-2 viral load was measured using quantitative real-time PCR combined with reverse transcription. The severity of lung tissue damage was assessed by histological methods. RESULTS The peak values of the viral load in murine lung tissues were determined 72 hours after intranasal inoculation at dose of 2,85 lg TCID50. The quantitative real-time PCR testing has shown a significant decrease in the viral load compared to the control group by 4,65 lg copies/ml and 5,72 lg copies/ml in the lung tissue and nasal cavity samples, respectively. Histological methods revealed that the decrease in the number and frequency of observed pathomorphological changes in murine lung tissues depended on the introduction of the compound under study. CONCLUSION The results obtained indicate the possibility of using basidial fungus Inonotus obliquus aqueous extract as a preventive agent against circulating variants of SARS-CoV-2 virus.
Collapse
Affiliation(s)
- A V Shipovalov
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor
| | - G A Kudrov
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor
| | - M Y Kartashov
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor
| | - I A Drachkova
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor
| | - O V Pyankov
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor
| | - V V Omigov
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor
| | - O S Taranov
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor
| | - T V Teplyakova
- State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor
| |
Collapse
|
38
|
Abstract
COVID-19 is characterized by dysregulated thrombosis and coagulation that can increase mortality in patients. Platelets are fast responders to pathogen presence, alerting the surrounding immune cells and contributing to thrombosis and intravascular coagulation. The SARS-CoV-2 genome has been found in platelets from patients with COVID-19, and its coverage varies according to the method of detection, suggesting direct interaction of the virus with these cells. Antibodies against Spike and Nucleocapsid have confirmed this platelet-viral interaction. This review discusses the immune, prothrombotic, and procoagulant characteristics of platelets observed in patients with COVID-19. We outline the direct and indirect interaction of platelets with SARS-CoV-2, the contribution of the virus to programmed cell death pathway activation in platelets and the consequent extracellular vesicle release. We discuss platelet activation and immunothrombosis in patients with COVID-19, the effect of Spike on platelets, and possible activation of platelets by classical platelet activation triggers as well as contribution of platelets to complement activation. As COVID-19-mediated thrombosis and coagulation are still not well understood in vivo, we discuss available murine models and mouse adaptable strains.
Collapse
Affiliation(s)
- Anthony Sciaudone
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Heather Corkrey
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| | - Fiachra Humphries
- Innate Immunity (F.H.). University of Massachusetts Chan Medical School, Worcester, MA
| | - Milka Koupenova
- Department of Medicine, Divisions of Cardiovascular Medicine (A.S., H.C., M.K.), University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
39
|
Fu Y, Xue H, Wang T, Ding Y, Cui Y, Nie H. Fibrinolytic system and COVID-19: From an innovative view of epithelial ion transport. Biomed Pharmacother 2023; 163:114863. [PMID: 37172333 PMCID: PMC10169260 DOI: 10.1016/j.biopha.2023.114863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/14/2023] Open
Abstract
Lifeways of worldwide people have changed dramatically amid the coronavirus disease 2019 (COVID-19) pandemic, and public health is at stake currently. In the early stage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, fibrinolytic system is mostly inhibited, which is responsible for the development of hypofibrinolysis, promoting disseminated intravascular coagulation, hyaline membrane formation, and pulmonary edema. Whereas the common feature and risk factor at advanced stage is a large amount of fibrin degradation products, including D-dimer, the characteristic of hyperfibrinolysis. Plasmin can cleave both SARS-CoV-2 spike protein and γ subunit of epithelial sodium channel (ENaC), a critical element to edematous fluid clearance. In this review, we aim to sort out the role of fibrinolytic system in the pathogenesis of COVID-19, as well as provide the possible guidance in current treating methods. In addition, the abnormal regulation of ENaC in the occurrence of SARS-CoV-2 mediated hypofibrinolysis and hyperfibrinolysis are summarized, with the view of proposing an innovative view of epithelial ion transport in preventing the dysfunction of fibrinolytic system during the progress of COVID-19.
Collapse
Affiliation(s)
- Yunmei Fu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hao Xue
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang 110001, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
40
|
Torabizadeh C, Iloonkashkooli R, Haghshenas H, Fararouei M. Prevalence of Cardiovascular Complications in Coronavirus Disease 2019 adult Patients: A Systematic Review and Meta-Analysis. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:243-267. [PMID: 37791325 PMCID: PMC10542931 DOI: 10.30476/ijms.2022.93701.2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 10/05/2023]
Abstract
Background It has been found that the new coronavirus can affect various parts of the cardiovascular system. Cardiovascular complications caused by coronavirus disease 2019 (COVID-19) are often serious and can increase the mortality rate among infected patients. This study aimed to investigate the prevalence of cardiovascular complications in COVID-19 adult patients. Methods A systematic review and meta-analysis of observational studies published in English were conducted between December 2019 and February 2021. A complete search was performed in PubMed (PubMed Central and MEDLINE), Google Scholar, Cochrane Library, Science Direct, Ovid, Embase, Scopus, CINAHL, Web of Science, and WILEY, as well as BioRXiv, MedRXiv, and gray literature. A random effect model was used to examine the prevalence of cardiovascular complications among COVID-19 patients. The I2 test was used to measure heterogeneity across the included studies. Results A total of 74 studies involving 34,379 COVID-19 patients were included for meta-analysis. The mean age of the participants was 61.30±14.75 years. The overall pooled prevalence of cardiovascular complications was 23.45%. The most prevalent complications were acute myocardial injury (AMI) (19.38%, 95% CI=13.62-26.81, test for heterogeneity I2=97.5%, P<0.001), arrhythmia (11.16%, 95% CI=8.23-14.96, test for heterogeneity I2=91.5%, P<0.001), heart failure (HF) (7.56%, 95% CI=4.50-12.45, test for heterogeneity I2=96.3%, P<0.001), and cardiomyopathy (2.78%, 95% CI=0.34-9.68). The highest pooled prevalence of cardiac enzymes was lactate dehydrogenase (61.45%), troponin (23.10%), and creatine kinase-myocardial band or creatine kinase (14.52%). Conclusion The high prevalence of serious cardiovascular complications in COVID-19 patients (AMI, arrhythmia, and HF) necessitates increased awareness by healthcare administrators.
Collapse
Affiliation(s)
- Camellia Torabizadeh
- Community Based Psychiatric Care Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hajar Haghshenas
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Fararouei
- HIV/AIDs Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
41
|
Mansourabadi AH, Aghamajidi A, Dorfaki M, Keshavarz F, Shafeghat Z, Moazzeni A, Arab FL, Rajabian A, Roozbehani M, Falak R, Faraji F, Jafari R. B lymphocytes in COVID-19: a tale of harmony and discordance. Arch Virol 2023; 168:148. [PMID: 37119286 PMCID: PMC10147999 DOI: 10.1007/s00705-023-05773-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/29/2023] [Indexed: 05/01/2023]
Abstract
B lymphocytes play a vital role in the human defense against viral infections by producing specific antibodies. They are also critical for the prevention of infectious diseases by vaccination, and their activation influences the efficacy of the vaccination. Since the beginning of coronavirus disease 2019 (COVID-19), which became the main concern of the world health system, many efforts have been made to treat and prevent the disease. However, for the development of successful therapeutics and vaccines, it is necessary to understand the interplay between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, and the immune system. The innate immune system provides primary and nonspecific defense against the virus, but within several days after infection, a virus-specific immune response is provided first by antibody-producing B cells, which are converted after the resolution of disease to memory B cells, which provide long-term immunity. Although a failure in B cell activation or B cell dysfunction can cause a severe form of the disease and also lead to vaccination inefficiency, some individuals with B cell immunodeficiency have shown less production of the cytokine IL-6, resulting in a better disease outcome. In this review, we present the latest findings on the interaction between SARS-CoV-2 and B lymphocytes during COVID-19 infection.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dorfaki
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Keshavarz
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Shafeghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, School of Medicine, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Institue of Immunology and Infectious diseases, Hazrat-e Rasool General Hospital, Floor 3, Building no. 3, Niyayesh St, Sattar Khan St, 1445613131, Tehran, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd, P.O. Box: 1138, 57147, Urmia, Iran.
| |
Collapse
|
42
|
Sinha A, Vaggu RG, Swain R, Patnaik S. Repurposing of RAS-Pathway Mediated Drugs for Intestinal Inflammation Related Diseases for Treating SARS-CoV-2 Infection. Curr Microbiol 2023; 80:194. [PMID: 37106165 PMCID: PMC10136399 DOI: 10.1007/s00284-023-03304-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is an emerging zoonotic virus, which causes Coronavirus Disease 2019 (COVID-19). Entry of coronaviruses into the cell depends on binding of the viral spike (S) proteins to cellular receptors Angiotensin-converting enzyme 2 (ACE2). The virus-mediated reduction of ACE2/Ang1-7 causes flooding of inflammatory cytokines. A similar scenario of hyper immunologic reaction has been witnessed in the context of Intestinal Inflammatory Diseases (IIDs) with the deregulation of ACE2. This review summarizes several IIDs that lead to such susceptible conditions. It discusses suitable mechanisms of how ACE2, being a crucial regulator of the Renin-Angiotensin System (RAS) signaling pathway, can affect the physiology of intestine as well as lungs, the primary site of SARS-CoV-2 infection. ACE2, as a SARS-CoV-2 receptor, establishes a critical link between COVID-19 and IIDs. Intercessional studies targeting the RAS signaling pathway in patients may provide a novel strategy for addressing the COVID-19 crisis. Hence, the modulation of these key RAS pathway members can be beneficial in both instances. However, it's difficult to say how beneficial are the ACE inhibitors (ACEI)/ Angiotensin II type-1 receptor blockers (ARBs) during COVID-19. As a result, much more research is needed to better understand the relationship between the RAS and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Anupriya Sinha
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India
| | | | - Ramakrushna Swain
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, KIIT University, Campus-XI, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
43
|
Mohammed MA. Fighting cytokine storm and immunomodulatory deficiency: By using natural products therapy up to now. Front Pharmacol 2023; 14:1111329. [PMID: 37124230 PMCID: PMC10134036 DOI: 10.3389/fphar.2023.1111329] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
A novel coronavirus strain (COVID-19) caused severe illness and mortality worldwide from 31 December 2019 to 21 March 2023. As of this writing, 761,071,826 million cases have been diagnosed worldwide, with 6,879,677 million deaths accorded by WHO organization and has spread to 228 countries. The number of deaths is closely connected to the growth of innate immune cells in the lungs, mainly macrophages, which generate inflammatory cytokines (especially IL-6 and IL-1β) that induce "cytokine storm syndrome" (CSS), multi-organ failure, and death. We focus on promising natural products and their biologically active chemical constituents as potential phytopharmaceuticals that target virus-induced pro-inflammatory cytokines. Successful therapy for this condition is currently rare, and the introduction of an effective vaccine might take months. Blocking viral entrance and replication and regulating humoral and cellular immunity in the uninfected population are the most often employed treatment approaches for viral infections. Unfortunately, no presently FDA-approved medicine can prevent or reduce SARS-CoV-2 access and reproduction. Until now, the most important element in disease severity has been the host's immune response activation or suppression. Several medicines have been adapted for COVID-19 patients, including arbidol, favipiravir, ribavirin, lopinavir, ritonavir, hydroxychloroquine, chloroquine, dexamethasone, and anti-inflammatory pharmaceutical drugs, such as tocilizumab, glucocorticoids, anakinra (IL-1β cytokine inhibition), and siltuximab (IL-6 cytokine inhibition). However, these synthetic medications and therapies have several side effects, including heart failure, permanent retinal damage in the case of hydroxyl-chloroquine, and liver destruction in the case of remdesivir. This review summarizes four strategies for fighting cytokine storms and immunomodulatory deficiency induced by COVID-19 using natural product therapy as a potential therapeutic measure to control cytokine storms.
Collapse
Affiliation(s)
- Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
44
|
Helou M, Nasr J, El Osta N, Jabbour E, Husni R. Liver manifestations in COVID-19 patients: A review article. World J Clin Cases 2023; 11:2189-2200. [PMID: 37122526 PMCID: PMC10131011 DOI: 10.12998/wjcc.v11.i10.2189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) initially presented as a disease that affected the lungs. Then, studies revealed that it intricately affected disparate organs in the human body, with the liver being one of the most affected organs. This review aimed to assess the association between COVID-19 and liver function, shedding light on its clinical implication. However, its exact pathophysiology remains unclear, involving many factors, such as active viral replication in the liver cells, direct cytotoxic effects of the virus on the liver or adverse reactions to viral antigens. Liver symptoms are mild-to-moderate transaminase elevation. In some patients, with underlying liver disease, more serious outcomes are observed. Thus, liver function should be meticulously considered in patients with COVID-19.
Collapse
Affiliation(s)
- Mariana Helou
- Division of Emergency Medicine, Department of Internal Medicine, Lebanese American University Medical Center, Lebanese American University School of Medicine, Beirut 1102-2801, Lebanon
| | - Janane Nasr
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University, School of Medicine, Beirut 1102-2801, Lebanon
| | - Nour El Osta
- Division of Emergency, Department of Internal Medicine, Lebanese American University, School of Medicine, Beirut 1102-2801, Lebanon
| | - Elsy Jabbour
- Division of Emergency, Department of Internal Medicine, Lebanese American University, School of Medicine, Beirut 1102-2801, Lebanon
| | - Rola Husni
- Division of Infectious Diseases, Department of Internal Medicine, Lebanese American University, School of Medicine, Beirut 1102-2801, Lebanon
| |
Collapse
|
45
|
Montori M, Baroni GS, Santori P, Di Giampaolo C, Ponziani F, Abenavoli L, Scarpellini E. Liver Damage and COVID-19: At Least a “Two-Hit” Story in Systematic Review. Curr Issues Mol Biol 2023; 45:3035-3047. [PMID: 37185723 PMCID: PMC10136465 DOI: 10.3390/cimb45040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
COVID-19 pandemic waves have hit on our lives with pulmonary and, also, gastrointestinal symptoms. The latter also includes acute liver damage linked to direct SARS-CoV-2 action and/or drug-induced (DILI) in the frame of pre-existing chronic liver disease. We aimed to review literature data regarding liver damage during COVID-19. We conducted a systematic search on the main medical databases for original articles, reviews, meta-analyses, randomized clinical trials and case series using the following keywords and acronyms and their associations: liver disease, COVID-19, acute liver damage, drug-induced liver injury, antivirals. Acute liver damage due to SARS-CoV-2 infection is common among COVID-19 patients and is generally self-limiting. However, chronic hepatic diseases, such as metabolic-associated fatty liver disease (MAFLD), are associated with a less favorable prognosis, especially when alkaline phosphatases show a significant rise. Pathophysiology of COVID-19 liver damage is multifaceted and helps understand differences in liver derangement among patients. Thus, early recognition, monitoring and treatment of liver damage are crucial in these patients. In the frame of a not-ending pandemic sustained by SARS-CoV-2, it is crucial to recognize acute hepatic decompensation due to the virus and/or drugs used for COVID-19 treatment.
Collapse
Affiliation(s)
- Michele Montori
- Transplant and Hepatic Damage Unit, Polytechincs University of Marche, 60121 Ancona, Italy
| | | | - Pierangelo Santori
- Hepatology and Internal Medicine Unit, Madonna del Soccorso General Hospital, 00168 San Benedetto del Tronto, Italy
| | - Catia Di Giampaolo
- Hepatology and Internal Medicine Unit, Madonna del Soccorso General Hospital, 00168 San Benedetto del Tronto, Italy
| | - Francesca Ponziani
- Digestive Disease Center (C.E.M.A.D.), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Translational Medicine and Surgery Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy
| | - Emidio Scarpellini
- Hepatology and Internal Medicine Unit, Madonna del Soccorso General Hospital, 00168 San Benedetto del Tronto, Italy
- Translational Research Center for Gastrointestinal Disorders, Gasthuisberg University Hospital, KULeuven, 3000 Lueven, Belgium
| |
Collapse
|
46
|
Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, Liu J, Pan P, Luo Z, Zhang Q, Yang G, Wan P, Li Y, Wu J. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J Med Virol 2023; 95:e28751. [PMID: 37185833 DOI: 10.1002/jmv.28751] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Summan Sirajuddin
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muneeba Wali
- Department of Allied Health Sciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Jinbiao Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| |
Collapse
|
47
|
AlOmair O. Liver enzymes among COVID-19 patients in Al-Ahsa region of Saudi Arabia. BMJ Open Gastroenterol 2023; 10:bmjgast-2023-001121. [PMID: 37185176 PMCID: PMC10151239 DOI: 10.1136/bmjgast-2023-001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/01/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Hepatic damage is one of the common forms of extra pulmonary organ destructions among patients with COVID-19 infections. AIM To evaluate the prognosis of liver damage among COVID-19 patients based on their liver enzymes profile. METHODS A retrospective study was done to evaluate the records of the hospitably admitted patient due to COVID-19 infection.Retrieved data included clinical presentation and investigation either imaging or laboratory with special investing in liver function tests. RESULT We reviewed 442 patients who were diagnosed with COVID-19 infection.They were 64.5% of female patients and 35.5% of male patients. Their mean age was 54.5%, most of them were Saudi (76.7%) and the overall mortality reached up to (20.4%). CONCLUSION This large cohort of 442 patients has shown that liver damage may be an independent prognostic factor for morbidities and mortality among COVID-19 patients. It also showed the importance of liver function enzymes screening as a predictor for the outcome of those patients.
Collapse
Affiliation(s)
- Omar AlOmair
- Internal Medicine Department Gastroenterology division, King Faisal University, Al-Hasa, Saudi Arabia
| |
Collapse
|
48
|
Abstract
SARS-CoV-2 is the viral agent of COVID-19, a pandemic that surfaced in 2019. Although predominantly a respiratory ailment, patients with COVID-19 can have gastrointestinal (GI) and hepatobiliary manifestations. These manifestations are often mild and transient, but they can be severe and consequential. In the GI tract, ischemic enterocolitis is the most common and significant consequence of COVID-19. In the liver, the reported pathologic findings may often be related to consequences of severe systemic viral infection, but reports of hepatitis presumed to be due to SARS-CoV-2 suggest that direct viral infection of the liver may be a rare complication of COVID-19. In both the GI tract and liver, lingering symptoms of GI or hepatic injury after resolution of pulmonary infection may be part of the evolving spectrum of long COVID.
Collapse
Affiliation(s)
- Angela R Shih
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Joseph Misdraji
- Department of Pathology, Yale New Haven Hospital, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
49
|
Humphries MP, Bingham V, Abdullah Sidi F, Craig S, Lara B, El-Daly H, O'Doherty N, Maxwell P, Lewis C, McQuaid S, Lyness J, James J, Snead DRJ, Salto-Tellez M. Technical note on the exploration of COVID-19 in autopsy material. J Clin Pathol 2023; 76:418-423. [PMID: 36717223 DOI: 10.1136/jcp-2022-208525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 02/01/2023]
Abstract
Interrogation of immune response in autopsy material from patients with SARS-CoV-2 is potentially significant. We aim to describe a validated protocol for the exploration of the molecular physiopathology of SARS-CoV-2 pulmonary disease using multiplex immunofluorescence (mIF).The application of validated assays for the detection of SARS-CoV-2 in tissues, originally developed in our laboratory in the context of oncology, was used to map the topography and complexity of the adaptive immune response at protein and mRNA levels.SARS-CoV-2 is detectable in situ by protein or mRNA, with a sensitivity that could be in part related to disease stage. In formalin-fixed, paraffin-embedded pneumonia material, multiplex immunofluorescent panels are robust, reliable and quantifiable and can detect topographic variations in inflammation related to pathological processes.Clinical autopsies have relevance in understanding diseases of unknown/complex pathophysiology. In particular, autopsy materials are suitable for the detection of SARS-CoV-2 and for the topographic description of the complex tissue-based immune response using mIF.
Collapse
Affiliation(s)
- Matthew Phillip Humphries
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK.,National Pathology Imaging Cooperative, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Victoria Bingham
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK
| | - Fatima Abdullah Sidi
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK
| | - Stephanie Craig
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK
| | - Beatrize Lara
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Hesham El-Daly
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | - Perry Maxwell
- Northern Ireland Molecular Pathology Laboratory, Queen's University Belfast, Belfast, UK
| | - Claire Lewis
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Northern Ireland Biobank, Belfast, UK
| | - Stephen McQuaid
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Northern Ireland Biobank, Belfast, UK
| | - James Lyness
- Northern Ireland State Pathologist's Department, Belfast, UK
| | - Jacqueline James
- The Patrick G Johnston Centre for Cancer Research, Queen's University, Northern Ireland Biobank, Belfast, UK
| | - David R J Snead
- Pathology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Manuel Salto-Tellez
- Precision Medicine Center of Excellence, Queen's University Belfast, Belfast, UK .,Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| |
Collapse
|
50
|
Özdemir Ö, Arsoy HEM. Commentary on COVID-19-induced liver injury in various age and risk groups. World J Virol 2023; 12:44-52. [PMID: 36743662 PMCID: PMC9896590 DOI: 10.5501/wjv.v12.i1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Towards the end of 2019, a new type of coronavirus, severe acute respiratory syndrome, emerged in the city of Wuhan in China's Hubei Province. The first occurrence was described as a case of pneumonia. Coronavirus disease 2019 (COVID-19) can progress primarily with symptoms varying from a mild upper respiratory tract infection to severe pneumonia, acute respiratory distress syndrome, and death. Determining the mechanisms of action of this virus, which can affect all systems including gastrointestinal, is vital for predicting the progression of the disease and managing its treatment. It is important to demonstrate the mechanisms of action of COVID-19 in patients without a previously known chronic or systemic disease. Although there is still no specific treatment for the virus, various algorithms have been created. As a result of the applied algorithms, the response to the treatment was satisfactory in some patients, while unexpected side effects occurred in some patients. It helps to clarify whether the unwanted effects that occur are due to the effect of the disease or the side effects of the drugs used in the treatment. There is currently increasing interest in COVID-19 interaction with liver tissue. Therefore, we would like to discuss the details of liver injury/dysfunction in the current literature.
Collapse
Affiliation(s)
- Öner Özdemir
- Department of Pediatrics, Sakarya University, Medical Faculty, Sakarya 54100, Türkiye
| | | |
Collapse
|