1
|
Plut S, Gavric A, Glavač D. Non-Coding RNAs as Potential Biomarkers for Colorectal Polyps and Cancer Detection. Int J Mol Sci 2025; 26:4106. [PMID: 40362348 PMCID: PMC12072050 DOI: 10.3390/ijms26094106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The precursor of CRC is a colorectal polyp, of which adenoma is the most common histological type. The initial step in CRC development is the gradual accumulation of a series of genetic and epigenetic alterations in the normal colonic epithelium. Genetic alterations play a major role in a subset of CRCs, but the pathophysiological contribution of epigenetic aberrations has recently attracted attention. Epigenetic marks occur early in cancer pathogenesis and are therefore important molecular hallmarks of cancer. This makes some epigenetic alterations clinically relevant for early detection not only of CRC but also of precancerous polyps. In this review we focus on three types of non-coding RNAs as epigenetic regulators: miRNA, lncRNA, and lncRNAs, highlighting their biomarker potential.
Collapse
Affiliation(s)
- Samo Plut
- Department of Gastroenterology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (S.P.); (A.G.)
- Ljubljana Digestive Endoscopy Research Group (LuDERG), Department of Gastroenterology, UMC Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleksandar Gavric
- Department of Gastroenterology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (S.P.); (A.G.)
- Ljubljana Digestive Endoscopy Research Group (LuDERG), Department of Gastroenterology, UMC Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| |
Collapse
|
2
|
Martínez-Castedo B, Camblor DG, Martín-Arana J, Carbonell-Asins JA, García-Micó B, Gambardella V, Huerta M, Roselló S, Roda D, Gimeno-Valiente F, Cervantes A, Tarazona N. Minimal residual disease in colorectal cancer. Tumor-informed versus tumor-agnostic approaches: unraveling the optimal strategy. Ann Oncol 2025; 36:263-276. [PMID: 39675560 DOI: 10.1016/j.annonc.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Circulating tumor DNA (ctDNA) analysis has emerged as a minimally invasive tool for detecting minimal residual disease (MRD) in colorectal cancer (CRC) patients. This enables dynamic risk stratification, earlier recurrence detection and optimized post-surgical treatment. Two primary methodologies have been developed for ctDNA-based MRD detection: tumor-informed strategies, which identify tumor-specific mutations through initial tissue sequencing to guide ctDNA monitoring, and tumor-agnostic approaches, which utilize predefined panels to detect common cancer-associated genomic or epigenomic alterations directly from plasma without prior tissue analysis. The debate over which is superior in terms of sensitivity, specificity, cost-effectiveness and clinical feasibility remains unsolved. DESIGN This review summarizes studies published up to November 2024, exploring the utility and performance of tumor-informed and tumor-agnostic approaches for ctDNA analysis in CRC. We evaluate the strengths and limitations of each methodology, focusing on sensitivity, specificity and clinical outcomes. RESULTS Both strategies demonstrate clinical utility in post-operative risk stratification and guiding adjuvant chemotherapy decisions in CRC patients. Tumor-informed approaches generally exhibit superior sensitivity and specificity for recurrence prediction, attributed to their personalized tumor profile designs. However, these methods are limited by the need for prior tissue sequencing and higher associated costs. In contrast, tumor-agnostic approaches offer broader applicability due to their reliance on plasma-only analysis, although with relatively lower sensitivity. Technological advancements, including fragmentomics and multi-omic integrations, are expanding the capabilities of ctDNA-based MRD detection, enhancing the performance of both approaches. CONCLUSIONS While tumor-informed strategies currently offer higher precision in MRD detection, tumor-agnostic approaches are gaining traction due to their convenience and improving performance metrics. The integration of novel technologies in ongoing clinical trials may redefine the optimal approach for MRD detection in CRC, paving the way for more personalized and adaptive patient management strategies.
Collapse
Affiliation(s)
- B Martínez-Castedo
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Carlos III Health Institute, Madrid, Spain
| | - D G Camblor
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - J Martín-Arana
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Carlos III Health Institute, Madrid, Spain
| | - J A Carbonell-Asins
- Biostatistics Unit, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - B García-Micó
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Carlos III Health Institute, Madrid, Spain
| | - V Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - M Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Carlos III Health Institute, Madrid, Spain
| | - S Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Carlos III Health Institute, Madrid, Spain
| | - D Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Carlos III Health Institute, Madrid, Spain
| | - F Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | - A Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Carlos III Health Institute, Madrid, Spain.
| | - N Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; CIBERONC, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
3
|
Jiang M, Zhang K, Meng J, Xu L, Liu Y, Wei R. Engineered exosomes in service of tumor immunotherapy: From optimizing tumor-derived exosomes to delivering CRISPR/Cas9 system. Int J Cancer 2025; 156:898-913. [PMID: 39474936 DOI: 10.1002/ijc.35241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 01/07/2025]
Abstract
Exosomes can be modified and designed for various therapeutic goals because of their unique physical and chemical characteristics. Researchers have identified tumor-derived exosomes (TEXs) as significant players in cancer by influencing tumor growth, immune response evasion, angiogeneis, and drug resistance. TEXs promote the production of specific proteins important for cancer progression. Due to their easy accessibility, TEXs are being modified through genetic, drug delivery, membrane, immune system, and chemical alterations to be repurposed as vehicles for delivering drugs to improve cancer treatment outcomes. In the complex in vivo environment, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system encounters challenges from degradation, neutralization, and immune responses, emphasizing the need for strategic distribution strategies for effective genome editing. Engineered exosomes present a promising avenue for delivering CRISPR/Cas9 in vivo. In this review, we will explore different techniques for enhancing TEXs using various engineering strategies. Additionally, we will discuss how these exosomes can be incorporated into advanced genetic engineering systems like CRISPR/Cas9 for possible therapeutic uses.
Collapse
Affiliation(s)
- Mingyang Jiang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ke Zhang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinfeng Meng
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Linhua Xu
- The First Clinical Medical College, Guangxi Medical University, Nanning
| | - Ying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Dong X, Lin Y, Li K, Liang G, Huang X, Pan J, Wang L, Zhang D, Liu T, Wang T, Yan X, Zhang L, Li X, Qu X, Jia D, Li Y, Zhang H. Consensus statement on extracellular vesicles in liquid biopsy for advancing laboratory medicine. Clin Chem Lab Med 2025; 63:465-482. [PMID: 38896030 DOI: 10.1515/cclm-2024-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Extracellular vesicles (EVs) represent a diverse class of nanoscale membrane vesicles actively released by cells. These EVs can be further subdivided into categories like exosomes and microvesicles, based on their origins, sizes, and physical attributes. Significantly, disease-derived EVs have been detected in virtually all types of body fluids, providing a comprehensive molecular profile of their cellular origins. As a result, EVs are emerging as a valuable addition to liquid biopsy techniques. In this collective statement, the authors share their current perspectives on EV-related research and product development, with a shared commitment to translating this newfound knowledge into clinical applications for cancer and other diseases, particularly as disease biomarkers. The consensus within this document revolves around the overarching recognition of the merits, unresolved questions, and existing challenges surrounding EVs. This consensus manuscript is a collaborative effort led by the Committee of Exosomes, Society of Tumor Markers, Chinese anti-Cancer Association, aimed at expediting the cultivation of robust scientific and clinically applicable breakthroughs and propelling the field forward with greater swiftness and efficacy.
Collapse
Affiliation(s)
- Xingli Dong
- 558113 Central Laboratory, Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen Clinical Research Center for hematologic disease, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Yusheng Lin
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Thoracic Surgery, 47885 The First Affiliated Hospital of Jinan University , Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Kai Li
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Gaofeng Liang
- 74623 School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology , Luoyang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang Province, Harbin, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Tong Wang
- 47885 MOE Key Laboratory of Tumor Molecular Biology, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Xiaomei Yan
- Department of Chemical Biology, 534787 MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, China
| | - Long Zhang
- 12377 MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University , Hangzhou, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, 558113 Shenzhen Key Laboratory, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Xiujuan Qu
- Department of Medical Oncology, 159407 The First Hospital of China Medical University , Shenyang, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
5
|
Glogovitis I, D’Ambrosi S, Antunes-Ferreira M, Chiogna M, Yahubyan G, Baev V, Wurdinger T, Koppers-Lalic D. Combinatorial Analysis of miRNAs and tRNA Fragments as Potential Biomarkers for Cancer Patients in Liquid Biopsies. Noncoding RNA 2025; 11:17. [PMID: 39997617 PMCID: PMC11858735 DOI: 10.3390/ncrna11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Liquid biopsy has gained significant attention as a non-invasive method for cancer detection and monitoring. IsomiRs and tRNA-derived fragments (tRFs) are small non-coding RNAs that arise from non-canonical microRNA (miRNAs) processing and the cleavage of tRNAs, respectively. These small non-coding RNAs have emerged as pro-mising cancer biomarkers, and their distinct expression patterns highlight the need for further exploration of their roles in cancer research. Methods: In this study, we investigated the differential expression profiles of miRNAs, isomiRs, and tRFs in plasma extracellular vesicles (EVs) from colorectal and prostate cancer patients compared to healthy controls. Subsequently, a combinatorial analysis using the CombiROC package was performed to identify a panel of biomarkers with optimal diagnostic accuracy. Results: Our results demonstrate that a combination of miRNAs, isomiRs, and tRFs can effectively di- stinguish cancer patients from healthy controls, achieving accuracy and an area under the curve (AUC) of approximately 80%. Conclusions: These findings highlight the potential of a combinatorial approach to small RNA analysis in liquid biopsies for improved cancer diagnosis and management.
Collapse
Affiliation(s)
- Ilias Glogovitis
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (G.Y.); (V.B.)
| | - Silvia D’Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
| | - Mafalda Antunes-Ferreira
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
| | - Monica Chiogna
- Department of Statistical Sciences “Paolo Fortunati”, University of Bologna, 40126 Bologna, Italy;
| | - Galina Yahubyan
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (G.Y.); (V.B.)
| | - Vesselin Baev
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (G.Y.); (V.B.)
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
| | - Danijela Koppers-Lalic
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Centers, 1081 HV Amsterdam, The Netherlands; (I.G.); (S.D.); (M.A.-F.)
- Leiden University Medical Center, Mathematical Institute, Leiden University, 2333 CA Leiden, The Netherlands
| |
Collapse
|
6
|
Gila F, Khoddam S, Jamali Z, Ghasemian M, Shakeri S, Dehghan Z, Fallahi J. Personalized medicine in colorectal cancer: a comprehensive study of precision diagnosis and treatment. Per Med 2025; 22:59-81. [PMID: 39924822 DOI: 10.1080/17410541.2025.2459050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Colorectal cancer is a common and fatal disease that affects many people globally. CRC is classified as the third most prevalent cancer among males and the second most frequent cancer among females worldwide. The purpose of this article is to examine how personalized medicine might be used to treat colorectal cancer. The classification of colorectal cancer based on molecular profiling, including the detection of significant gene mutations, genomic instability, and gene dysregulation, is the main topic of this discussion. Advanced technologies and biomarkers are among the detection methods that are explored, demonstrating their potential for early diagnosis and precise prognosis. In addition, the essay explores the world of treatment possibilities by providing light on FDA-approved personalized medicine solutions that provide individualized and precise interventions based on patient characteristics. This article assesses targeted treatments like cetuximab and nivolumab, looks at the therapeutic usefulness of biomarkers like microsatellite instability (MSI) and circulating tumor DNA (ctDNA), and investigates new approaches to combat resistance. Through this, our review provides a thorough overview of personalized medicine in the context of colorectal cancer, ultimately highlighting its potential to revolutionize the field and improve patient care.
Collapse
Affiliation(s)
- Fatemeh Gila
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Khoddam
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Jamali
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohmmad Ghasemian
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Shakeri
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Dehghan
- Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Ayeldeen G, Zaki AK, Amer E, Abdellatif Z, Shaker OG, Said M, Abdelhamid AM. NBAT1/miR-21 axis in progression of colorectal cancer and impact of PVT-1 polymorphism on miR-145 expression level and its clinical significance. Contemp Oncol (Pozn) 2025; 28:304-317. [PMID: 39935754 PMCID: PMC11809565 DOI: 10.5114/wo.2024.146961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/24/2024] [Indexed: 02/13/2025] Open
Abstract
Introduction Patients with colorectal cancer (CRC) have a higher chance of survival when the disease is detected and treated effectively at an early stage. Plasmacytoma variant translocation 1 (PVT-1), an oncogenic lncRNA, and neuroblastoma associated trans-cript 1 (NBAT1), a tumor suppressor lncRNA, have been linked to CRC progression, acting as competing endo-genous RNAs to the tumor suppressor miRNA-145 and oncomiRNA-21. The aim of the current study was to construct a competing endogenous RNA (ceRNA) associated with CRC. In addition, we aimed to investigate the impact of single nucleotide polymorphisms in the rs13255292 lncRNA PVT-1 on miR-145 expression levels and the lncRNA-NBAT1/miR-21 axis in the progression of CRC. Material and methods Bioinforma-tic analysis was performed to determine differentially expressed genes (DEGs), differentially expressed micro-RNAs (DEMs), and differentially expressed lncRNAs (DELs) in CRC. PVT-1 rs13255292 C/T was genotyped and serum PVT-1, NBAT-1, miRNA-145 and miRNA-21 were assessed by qPCR in 85 CRC patients, 80 AP, and 85 controls. Results The frequencies of the PVT-1 rs13255292 CT/TT genotype and T al-le-- le were significantly elevated in the CRC group compared to the controls. PVT-1 serum levels significantly increased due to the presence of the T allele in the studied groups, which was associated with downregulation of the miR-145 tumor suppressor. Also, the expression of NBAT-1 was significantly down-expressed, while that of oncomiR-21 was significantly elevated. Conclusions Bioinformatics analyses provides effective identification of potential lncRNAs linked with CRC. PVT-1/miR-145 and NBAT1/miR-21 are being investigated as potential non-invasive diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed K. Zaki
- Department of Clinical and Chemical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman Amer
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Egypt
| | - Zeinab Abdellatif
- Department of Endemic Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Said
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Egypt
| | - Amr M. Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Egypt
| |
Collapse
|
8
|
Uno H, Takeuchi H, Abe I, Yoshino T, Taguchi T, Hirakawa Y, Matsunaga T, Tanaka T. PCR- and wash-free detection of serum miRNA via signaling probe hybridization. Biotechnol Bioeng 2025; 122:159-166. [PMID: 39397338 DOI: 10.1002/bit.28859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Detection of microRNAs (miRNAs) in the serum is an effective liquid biopsy technique for cancer diagnosis. However, conventional diagnostic methods are time-consuming and complex. Therefore, in this study, we established a signaling probe-based DNA microarray system for miRNA detection. PCR, fluorescence labeling, and washing are not necessary for signaling probes. Four probes were designed using different miRNAs as diagnostic cancer markers. The developed system is useful for various miRNAs, regardless of their target lengths (18-26-mer) and GC content (36%-89%). Here, all the assays were performed within 40 min. Overall, our signaling probe-based DNA hybridization system facilitates the simple and rapid detection of serum miRNAs without the need for gene amplification, fluorescence labeling and washing.
Collapse
Affiliation(s)
- Haruka Uno
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiyori Takeuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ishin Abe
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Yuko Hirakawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Yokogawa Electric Corporation, Tokyo, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
9
|
Tripathi S, Sharma Y, Kumar D. Biological Cargo: Exosomes and their Role in Cancer Progression and Metastasis. Curr Top Med Chem 2025; 25:263-285. [PMID: 38984577 DOI: 10.2174/0115680266304636240626055711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 07/11/2024]
Abstract
Cancer cells are among the many types of cells that release exosomes, which are nanovesicles. Because of their many potential applications, exosomes have recently garnered much attention from cancer researchers. The bioactive substances that exosomes release as cargo have been the subject of several investigations. The substances in question may operate as biomarkers for diagnosis or affect apoptosis, the immune system, the development and spread of cancer, and other processes. Others have begun to look at exosomes in experimental therapeutic trials because they believe they may be useful in the treatment of cancer. This review started with a short description of exosome biogenesis and key features. Next, the potential of tumor-derived exosomes and oncosomes to influence the immune system throughout the development of cancer, as well as alter tumor microenvironments (TMEs) and pre-metastatic niche creation, was investigated. Finally, there was talk of exosomes' possible use in cancer treatment. Furthermore, there is emerging consensus about the potential application of exosomes to be biological reprogrammers of cancer cells, either as carriers of naturally occurring chemicals, including anticancer medications, or as carriers of anticancer vaccines for immunotherapy as well as boron neutron capture therapy (BNCT). We briefly review the key ideas and logic behind this intriguing therapy recommendation.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| |
Collapse
|
10
|
Huang C, Li J, Xie Z, Hu X, Huang Y. Relationship between exosomes and cancer: formation, diagnosis, and treatment. Int J Biol Sci 2025; 21:40-62. [PMID: 39744442 PMCID: PMC11667803 DOI: 10.7150/ijbs.95763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/02/2024] [Indexed: 01/11/2025] Open
Abstract
Exosomes are a member of extracellular vesicles. However, their biological characteristics differ from those of other vesicles, and recently, their powerful functions as information molecules, biomarkers, and carriers have been demonstrated. Malignancies are the leading cause of high morbidity and mortality worldwide. The cure rate of malignancies can be improved by improving early screening rates and therapy. Moreover, a close correlation between exosomes and malignancies has been observed. An in-depth study of exosomes can provide new methods for diagnosing and treating tumors. Therefore, this study aimed to review, sort, and summarize such achievements, and present ideas and opinions on the application of exosomes in tumor treatment.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiajin Li
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zichuan Xie
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiangjun Hu
- Sichuan university, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yan Huang
- Health Management Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, China
- Research Laboratory for Prediction and Evaluation of Chronic Diseases in the Elderly, National Clinical Research Center for Geriatric Diseases, China
- General Practice Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the pan-cancer role of exosomal miRNAs in metastasis across cancers. Comput Struct Biotechnol J 2024; 27:252-264. [PMID: 39866667 PMCID: PMC11763893 DOI: 10.1016/j.csbj.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Exosomal microRNAs (exomiRs) play a critical role in intercellular communication, especially in cancer, where they regulate key cellular processes like proliferation, angiogenesis, and metastasis, highlighting their significance as potential diagnostic and therapeutic targets. Here, we aimed to characterize the role of exomiRs, derived from seven cancer types (four cell lines and three tumors), in influencing the pre-metastatic niche (PMN). In each cancer type we extracted high confidence exomiRs (LogFC >= 2 in exosomes relative to control), their experimentally validated targets, and the enriched pathways among those targets. We then selected the top100 high-confidence targets based on their frequency of appearance in the enriched pathways. We observed significantly higher GC content in exomiRs relative to genomic background. Gene Ontology analysis revealed both general cancer processes, such as wound healing and epithelial cell proliferation, as well as cancer-specific processes, such as "angiogenesis" in the kidney and "ossification" in the lung. ExomiR targets were enriched for cancer-specific tumor suppressor genes and downregulated in PMN formed in lungs compared to normal. Motif analysis showed high inter-cancer similarity among motifs enriched in exomiRs. Our analysis recapitulated exomiRs associated with M2 macrophage differentiation and chemoresistance, such as miR-21 and miR-222-3p, regulating signaling pathways like PTEN/PI3/Akt, NF-kB, etc. Additionally, Cox regression analysis in TCGA indicated that exomiR targets are significantly associated with better overall survival of patients. Lastly, support vector machine model using exomiR targets gene expression classified responders and non-responders to therapy with an AUROC ranging from 0.72 to 0.96, higher than previously reported gene signatures.
Collapse
Affiliation(s)
- Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, Ankara 06800, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
12
|
Qi Y, Wu Y, Pang K, Cao Y, Li H, Qiao Y, Yuan D, Liu X, Li Z, Hu F, Yang W, Han C, Zhu Z. Profiling of circulating extracellular vesicle microRNAs reveals diagnostic potential and pathways in non-obstructive and obstructive azoospermia†. Biol Reprod 2024; 111:1297-1310. [PMID: 39216109 DOI: 10.1093/biolre/ioae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
The accurate diagnosis of non-obstructive azoospermia and obstructive azoospermia is crucial for selecting appropriate clinical treatments. This study aimed to investigate the pivotal role of microRNAs in circulating plasma extracellular vesicles in distinguishing between non-obstructive azoospermia and obstructive azoospermia, as well as uncovering the signaling pathways involved in azoospermia pathogenesis. In this study, differential expression of extracellular vesicle miR-513c-5p and miR-202-5p was observed between non-obstructive azoospermia and obstructive azoospermia patients, while the selenocompound metabolism pathway could be affected in azoospermia through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The predictive power of these microRNAs was evaluated using receiver characteristic operator-area under the curve analysis, demonstrating promising sensitivity, specificity, and area under the curve values. A binomial regression equation incorporating circulating plasma levels of extracellular vesicles miR-202-5p and miR-513c-5p along with follicle-stimulating hormone was calculated to provide a clinically applicable method for diagnosing non-obstructive azoospermia and obstructive azoospermia. This study presents a potentially non-invasive testing approach for distinguishing between non-obstructive azoospermia and obstructive azoospermia, offering a possibly valuable tool for clinical practice.
Collapse
Affiliation(s)
- Yujuan Qi
- Reproductive Medicine Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Yalun Wu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Yijuan Cao
- Reproductive Medicine Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Honglin Li
- Center for Reproductive Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yu Qiao
- Center for Reproductive Medicine, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, China
| | - Dejian Yuan
- Department of Medical Genetics, Liuzhou Municipal Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Xiangen Liu
- Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
- Department of Urology, Nantong Third People's Hospital, Nantong, China
| | - Zhenbei Li
- Reproductive Medicine Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Fangfang Hu
- Reproductive Medicine Center, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Wen Yang
- Reproductive Medicine Center, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, China
| | - Zuobin Zhu
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Ma Y, Zhang X, Liu C, Zhao Y. Extracellular vesicles in cancers: mechanisms, biomarkers, and therapeutic strategies. MedComm (Beijing) 2024; 5:e70009. [PMID: 39611045 PMCID: PMC11604295 DOI: 10.1002/mco2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024] Open
Abstract
Extracellular vesicles (EVs) composed of various biologically active constituents, such as proteins, nucleic acids, lipids, and metabolites, have emerged as a noteworthy mode of intercellular communication. There are several categories of EVs, including exosomes, microvesicles, and apoptotic bodies, which largely differ in their mechanisms of formation and secretion. The amount of evidence indicated that changes in the EV quantity and composition play a role in multiple aspects of cancer development, such as the transfer of oncogenic signals, angiogenesis, metabolism remodeling, and immunosuppressive effects. As EV isolation technology and characteristics recognition improve, EVs are becoming more commonly used in the early diagnosis and evaluation of treatment effectiveness for cancers. Actually, EVs have sparked clinical interest in their potential use as delivery vehicles or vaccines for innovative antitumor techniques. This review will focus on the function of biological molecules contained in EVs linked to cancer progression and their participation in the intricate interrelationship within the tumor microenvironment. Furthermore, the potential efficacy of an EV-based liquid biopsy and delivery cargo for treatment will be explored. Finally, we explicitly delineate the limitations of EV-based anticancer therapies and provide an overview of the clinical trials aimed at improving EV development.
Collapse
Affiliation(s)
- Yuxi Ma
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaohui Zhang
- Cancer CenterHubei Key Laboratory of Cell HomeostasisCollege of Life SciencesTaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Cuiwei Liu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yanxia Zhao
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation OncologyWuhanChina
- Cancer CenterInstitute of Radiation OncologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
14
|
Xing Y, Kang L, Chen L, Li Y, Lu D. Research progress of exosomes in pathogenesis and treatment of preeclampsia. J Obstet Gynaecol Res 2024; 50:2183-2194. [PMID: 39434205 DOI: 10.1111/jog.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
AIM Preeclampsia (PE) is a critical and severe disease in obstetrics, which seriously affects maternal and neonatal life safety and long-term prognosis. However, the etiology and pathogenesis of PE are complex, and no unified conclusion has been reached. The types and number of exosomes and their transport substances in PE patients changed. The study of exosomes in PE patients helps clarify the etiology, diagnosis, effective treatment, accurate monitoring, and prognosis. METHOD The published articles were reviewed. RESULTS Exosomes may affect endothelial and vascular production and function, participate in maternal-fetal immune regulation, and transport substances such as miRNAs, lncRNAs, and proteins involved in the development of PE. Detection of the contents of exosomes can help in the early diagnosis of PE, and can help to improve PE by inhibiting the action of exosomes or preventing their binding to target organs. CONCLUSION Exosomes may be involved in the development of PE, and exosomes can be used as markers for predicting the onset of PE and tracking the disease process and determining the prognosis, and exosomes have great potential in the treatment of PE.
Collapse
Affiliation(s)
- Yue Xing
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Luyao Kang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lu Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Youyou Li
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Čeri A, Somborac-Bačura A, Fabijanec M, Hulina-Tomašković A, Matusina M, Detel D, Verbanac D, Barišić K. Establishment of liquid biopsy procedure for the analysis of circulating cell free DNA, exosomes, RNA and proteins in colorectal cancer and adenoma patients. Sci Rep 2024; 14:26925. [PMID: 39506031 PMCID: PMC11541997 DOI: 10.1038/s41598-024-78497-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Liquid biopsy has an underexplored diagnostic potential in colorectal cancer (CRC). Sufficient quantity and quality of its elements (circulating cell-free DNA (ccfDNA), exosomes and exosomal RNA) are essential for accurate results. The present study aims to establish the optimal protocol for handling liquid biopsy samples. Samples were obtained by collecting peripheral blood from colorectal adenoma patients in CellSave tubes. Plasma was separated within six hours using differential centrifugation and aliquots stored at - 20/- 80 °C until further processing. Three methods for isolation of ccfDNA, and two combinations of kits for isolation of exosomes and exosomal RNA were tested. The quality and quantity of ccfDNA isolates were evaluated. Exosomes were characterised by determining size, concentration, and total and specific protein content. Expression of chosen microRNAs, miR-19a-3p and miR-92-3p, which have been implicated in CRC progression, were determined. The vacuum-column-based kit showed the highest quantities of isolated ccfDNA (P-value < 0.001). Kits for exosome isolation significantly differed in size (P-value = 0.016), concentration (P-value = 0.016) and protein content (P-value = 0.016). There was no significant difference in expressions of miR-19a-3p (P-value = 0.219) and miR-92a-3p (P-value = 0.094) between the two isolation kits. The new, adapted protocol described, enables simultaneous analysis of multiple elements when investigating potential biomarkers of CRC.
Collapse
Affiliation(s)
- Andrea Čeri
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia.
| | - Anita Somborac-Bačura
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Marija Fabijanec
- Centre for Applied Medical Biochemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Andrea Hulina-Tomašković
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Marko Matusina
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Dijana Detel
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, University of Rijeka Faculty of Medicine, Rijeka, 51000, Croatia
| | - Donatella Verbanac
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| | - Karmela Barišić
- Department of Medical Biochemistry and Haematology, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, 10000, Croatia
| |
Collapse
|
16
|
Chatterjee M, Gupta S, Nag S, Rehman I, Parashar D, Maitra A, Das K. Circulating Extracellular Vesicles: An Effective Biomarker for Cancer Progression. FRONT BIOSCI-LANDMRK 2024; 29:375. [PMID: 39614441 DOI: 10.31083/j.fbl2911375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Extracellular vesicles (EVs), the ubiquitous part of human biology, represent a small heterogenous, membrane-enclosed body that contains a diverse payload including genetic materials in the form of DNA, RNAs, small non-coding RNAs, etc. mostly mirroring their source of origin. Since, a vast majority of research has been conducted on how nucleic acids, proteins, lipids, and metabolites, associated with EVs can be effectively utilized to identify disease progression and therapeutic responses in cancer patients, EVs are increasingly being touted as valuable and reliable identifiers of cancer biomarkers in liquid biopsies. However, the lack of comprehensive clinical validation and effective standardization protocols severely limits its applications beyond the laboratories. The present review focuses on understanding the role of circulating EVs in different cancers and how they could potentially be treated as cancer biomarkers, typically due to the presence of bioactive molecules such as small non-coding RNAs, RNAs, DNA, proteins, etc., and their utilization for fine-tuning therapies. Here, we provide a brief general biology of EVs including their classification and subsequently discuss the source of circulatory EVs, the role of their associated payload as biomarkers, and how different cancers affect the level of circulatory EVs population.
Collapse
Affiliation(s)
- Madhura Chatterjee
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, 281406 Mathura, India
| | - Sayoni Nag
- Department of Biotechnology, Brainware University, 700125 Barasat, India
| | - Ishita Rehman
- Department of Biotechnology, The Neotia University, 743368 Parganas, India
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Arindam Maitra
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, 741251 Kalyani, India
| |
Collapse
|
17
|
Park JS, Choi JA, Hyun DH, Byeon C, Kwak SG, Park JS, Hong S. Revisiting the diagnostic performance of exosomes: harnessing the feasibility of combinatorial exosomal miRNA profiles for colorectal cancer diagnosis. Discov Oncol 2024; 15:605. [PMID: 39476213 PMCID: PMC11525371 DOI: 10.1007/s12672-024-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
The challenges associated with liquid biopsy of colorectal cancer (CRC) are closely linked to the substantial variations observed in gene expression profiles among patients. This variability complicates the selection of an ideal biomarker for accurate diagnosis. In this report, we propose that employing a combination of miRNAs offers a better change for enhancing the accuracy of CRC diagnosis compared to solely relying on single miRNAs. As an illustrative example, we measured 9 miRNAs from 45 patient samples (comprising 31 CRC cases and 14 healthy controls) via RT-qPCR. We then utilized two methods: (1) LASSO regression for marker ranking and (2) linear discriminant analysis (LDA) to identify the optimal weighted combination of multiple markers. Our data indicates that combination of triple markers, selected based on their ranking, exhibited the highest diagnostic performance, including a sensitivity of 93.6% (95% confidence interval, CI 79.3-98.9%), specificity of 100% (CI 78.5-100.0%), positive predictive value (PPV) of 100%, negative predictive value (NPV) of 87.5%, and an overall accuracy of 95.6%. In contrast, the diagnostic performance of each individual miRNA used in the triple marker combination ranged from 53.3 to 80.0% in accuracy. While we acknowledge the need for further extensive studies involving larger patient cohorts and the consideration of additional miRNA candidates, our research undeniably highlights the potential of combining multiple markers as a robust methodology for identifying biomarkers among heterogeneous patient profiles.
Collapse
Affiliation(s)
- Jin Sung Park
- Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jin Ah Choi
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Da Han Hyun
- Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chorok Byeon
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
| | - Sang Gyu Kwak
- Department of Medical Statistics, School of Medicine, Daegu Catholic University, Daegu, Republic of Korea
| | - Jun Seok Park
- Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Seonki Hong
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
18
|
Long Y, Dan Y, Jiang Y, Ma J, Zhou T, Fang L, Wang Z. Colorectal Cancer Cell-Derived Extracellular Vesicles Promote Angiogenesis Through JAK/STAT3/VEGFA Signaling. BIOLOGY 2024; 13:873. [PMID: 39596828 PMCID: PMC11591796 DOI: 10.3390/biology13110873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Angiogenesis plays a crucial role in the growth of colorectal cancer (CRC). Recent studies have identified extracellular vesicles (EVs) in the tumor microenvironment as important mediators of cell-to-cell communication. However, the specific role and mechanisms of CRC-derived EVs in regulating tumor angiogenesis remain to be further investigated. METHODS EVs were isolated from the conditioned medium of the CRC cells using ultracentrifugation. We investigated the effects of HT-29-derived EVs on tumor growth and angiogenesis in a subcutaneous HT-29 CRC tumor model in mice. Additionally, we evaluated the impact of HT-29-derived EVs on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, bioinformatics analysis was performed to identify relevant signaling pathways, and pathway inhibitors were used to block the activation of these pathways, aiming to elucidate their roles in angiogenesis. RESULTS We found that HT-29-derived EVs can promote tumor growth and angiogenesis in vivo, as well as significantly enhance the proliferation, migration, and tube formation of HUVECs. Bioinformatics analysis revealed that HT-29-derived EVs may regulate angiogenesis through the JAK/STAT3 signaling pathway. Specifically, we observed that CRC-derived EVs promoted the phosphorylation of STAT3 (p-STAT3) and the expression of VEGFA in the nucleus of HUVECs. Treatment with the STAT3 inhibitor Stattic reduced the nuclear expression of p-STAT3, which impaired its function as a transcription factor, thereby inhibiting VEGFA expression and the pro-angiogenic effects of CRC-derived EVs. CONCLUSIONS EVs derived from CRC cells promote CRC tumor angiogenesis by regulating VEGFA through the JAK/STAT3 pathway in endothelial cells.
Collapse
Affiliation(s)
- Yuqing Long
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuxi Dan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yao Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jing Ma
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Tao Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Liaoqiong Fang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, China
| | - Zhibiao Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China; (Y.L.); (Y.D.); (Y.J.); (J.M.); (T.Z.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- National Engineering Research Center of Ultrasound Medicine, Chongqing 401121, China
| |
Collapse
|
19
|
Ždralević M, Radović A, Raonić J, Popovic N, Klisic A, Vučković L. Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis. Int J Mol Sci 2024; 25:11060. [PMID: 39456841 PMCID: PMC11507567 DOI: 10.3390/ijms252011060] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) remains the second most common cause of cancer-related mortality worldwide, necessitating advancements in early detection and innovative treatment strategies. MicroRNAs (miRNAs), small non-coding RNAs involved in gene regulation, have emerged as crucial players in the pathogenesis of CRC. This review synthesizes the latest findings on miRNA deregulated in precancerous lesions and in CRC. By examining the deregulation patterns of miRNAs across different stages of CRC development, this review highlights their potential as diagnostic tools. We specifically analyse the roles and diagnostic relevance of four miRNAs-miR-15b, miR-21, miR-31, and miR-146a-that consistently exhibit altered expression in CRC. The current knowledge of their role in key oncogenic pathways, drug resistance, and clinical relevance is discussed. Despite challenges posed by the heterogeneity of the research findings on miRNA deregulation and their role in CRC, integrating miRNA diagnostics into current screening methods holds promise for enhancing personalized medicine approaches. This review emphasizes the transformative potential of miRNAs in CRC diagnosis, paving the way for improved patient outcomes and novel therapeutic paradigms.
Collapse
Affiliation(s)
- Maša Ždralević
- Institute for Advanced Studies, University of Montenegro, Cetinjska 2, 81000 Podgorica, Montenegro
| | - Andrijana Radović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Janja Raonić
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| |
Collapse
|
20
|
Agrawal P, Olgun G, Singh A, Gopalan V, Hannenhalli S. Characterizing the role of exosomal miRNAs in metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608894. [PMID: 39372783 PMCID: PMC11451750 DOI: 10.1101/2024.08.20.608894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Background Exosomal microRNAs (exomiRs), transported via exosomes, play a pivotal role in intercellular communication. In cancer, exomiRs influence tumor progression by regulating key cellular processes such as proliferation, angiogenesis, and metastasis. Their role in mediating communication between cancer cells and the tumor microenvironment highlights their significance as potential diagnostic and therapeutic targets. Methodology In this study, we aimed to characterize the role of exomiRs in influencing the pre-metastatic niche (PMN). Across 7 tumor types, including 4 cell lines and three tumors, we extracted high confidence exomiRs (Log FC >= 2 in exosomes relative to control) and their targets (experimentally identified and targeted by at least 2 exomiRs). Subsequently, we identified enriched pathways and selected the top 100 high-confidence exomiR targets based on the frequency of their appearance in the enriched pathways. These top 100 targets were consistently used throughout the analysis. Results Cancer cell line and tumor derived ExomiRs have significantly higher GC content relative to genomic background. Pathway enriched among the top exomiR targets included general cancer-associated processes such as "wound healing" and "regulation of epithelial cell proliferation", as well as cancer-specific processes, such as "regulation of angiogenesis in kidney" (KIRC), "ossification" in lung (LUAD), and "positive regulation of cytokine production" in pancreatic cancer (PAAD). Similarly, 'Pathways in cancer' and 'MicroRNAs in cancer' ranked among the top 10 enriched KEGG pathways in all cancer types. ExomiR targets were not only enriched for cancer-specific tumor suppressor genes (TSG) but are also downregulated in pre-metastatic niche formed in lungs compared to normal lung. Motif analysis shows high similarity among motifs identified from exomiRs across cancer types. Our analysis recapitulates exomiRs associated with M2 macrophage differentiation and chemoresistance such as miR-21 and miR-222-3p, regulating signaling pathways such as PTEN/PI3/Akt, NF-κB, etc. Cox regression indicated that exomiR targets are significantly associated with overall survival of patients in TCGA. Lastly, a Support Vector Machine (SVM) model using exomiR target gene expression classified responders and non-responders to neoadjuvant chemotherapy with an AUROC of 0.96 (in LUAD), higher than other previously reported gene signatures. Conclusion Our study characterizes the pivotal role of exomiRs in shaping the PMN in diverse cancers, underscoring their diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Medical Research, SRM Medical College Hospital & Research Centre, SRMIST, Kattankulathur, Chennai, Tamil Nadu, India
| | - Gulden Olgun
- Department of Computer Engineering, Hacettepe University, 06800, Ankara, Turkey
| | - Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
21
|
Chung J, Xiao S, Gao Y, Soung YH. Recent Technologies towards Diagnostic and Therapeutic Applications of Circulating Nucleic Acids in Colorectal Cancers. Int J Mol Sci 2024; 25:8703. [PMID: 39201393 PMCID: PMC11354501 DOI: 10.3390/ijms25168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Liquid biopsy has emerged as a promising noninvasive approach for colorectal cancer (CRC) management. This review focuses on technologies detecting circulating nucleic acids, specifically circulating tumor DNA (ctDNA) and circulating RNA (cfRNA), as CRC biomarkers. Recent advancements in molecular technologies have enabled sensitive and specific detection of tumor-derived genetic material in bodily fluids. These include quantitative real-time PCR, digital PCR, next-generation sequencing (NGS), and emerging nanotechnology-based methods. For ctDNA analysis, techniques such as BEAMing and droplet digital PCR offer high sensitivity in detecting rare mutant alleles, while NGS approaches provide comprehensive genomic profiling. cfRNA detection primarily utilizes qRT-PCR arrays, microarray platforms, and RNA sequencing for profiling circulating microRNAs and discovering novel RNA biomarkers. These technologies show potential in early CRC detection, treatment response monitoring, minimal residual disease assessment, and tumor evolution tracking. However, challenges remain in standardizing procedures, optimizing detection limits, and establishing clinical utility across disease stages. This review summarizes current circulating nucleic acid detection technologies, their CRC applications, and discusses future directions for clinical implementation.
Collapse
Affiliation(s)
| | | | | | - Young Hwa Soung
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (J.C.); (S.X.); (Y.G.)
| |
Collapse
|
22
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
23
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
24
|
Lenart M, Siemińska I, Szatanek R, Mordel A, Szczepanik A, Rubinkiewicz M, Siedlar M, Baj-Krzyworzeka M. Identification of miRNAs Present in Cell- and Plasma-Derived Extracellular Vesicles-Possible Biomarkers of Colorectal Cancer. Cancers (Basel) 2024; 16:2464. [PMID: 39001526 PMCID: PMC11240749 DOI: 10.3390/cancers16132464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Globally, an increasing prevalence of colorectal cancer (CRC) prompts a need for the development of new methods for early tumor detection. MicroRNAs (also referred to as miRNAs) are short non-coding RNA molecules that play a pivotal role in the regulation of gene expression. MiRNAs are effectively transferred to extracellular vesicle (EVs) membrane sacs commonly released by cells. Our study aimed to examine the expression of miRNAs in four CRC cell lines and EVs derived from them (tumor EVs) in comparison to the normal colon epithelium cell line and its EVs. EVs were isolated by ultracentrifugation from the culture supernatant of SW480, SW620, SW1116, HCT116 and normal CCD841CoN cell lines and characterized according to the MISEV2023 guidelines. MiRNAs were analyzed by small RNA sequencing and validated by quantitative PCR. The performed analysis revealed 22 common miRNAs highly expressed in CRC cell lines and effectively transferred to tumor EVs, including miR-9-5p, miR-182-5p, miR-196b-5p, miR-200b-5p, miR-200c-3p, miR-425-5p and miR-429, which are associated with development, proliferation, invasion and migration of colorectal cancer cells, as well as in vesicle maturation and transport-associated pathways. In parallel, normal cells expressed miRNAs, such as miR-369 and miR-143, which play a role in proinflammatory response and tumor suppression. The analysis of selected miRNAs in plasma-derived EVs and tumor samples from CRC patients showed the similarity of miRNA expression profile between the patients' samples and CRC cell lines. Moreover, miR-182-5p, miR-196-5p, miR-425-5p and miR-429 were detected in several EV samples isolated from patients' plasma. Our results suggest that miR-182-5p, miR-196b-5p and miR-429 are differentially expressed between EVs from CRC patients and healthy donors, which might have clinical implications.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| | - Izabela Siemińska
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
- Institute of Veterinary Sciences, University Center of Veterinary Medicine JU-AU, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| | - Anna Mordel
- Department of Clinical Immunology, University Children's Hospital of Cracow, 30-663 Krakow, Poland
| | - Antoni Szczepanik
- Third Department of Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | - Mateusz Rubinkiewicz
- Second Department of Surgery, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| |
Collapse
|
25
|
Dabral P, Bhasin N, Ranjan M, Makhlouf MM, Abd Elmageed ZY. Tumor-Derived Extracellular Vesicles as Liquid Biopsy for Diagnosis and Prognosis of Solid Tumors: Their Clinical Utility and Reliability as Tumor Biomarkers. Cancers (Basel) 2024; 16:2462. [PMID: 39001524 PMCID: PMC11240796 DOI: 10.3390/cancers16132462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Early cancer detection and accurate monitoring are crucial to ensure increased patient survival. Recent research has focused on developing non-invasive biomarkers to diagnose cancer early and monitor disease progression at low cost and risk. Extracellular vesicles (EVs), nanosized particles secreted into extracellular spaces by most cell types, are gaining immense popularity as novel biomarker candidates for liquid cancer biopsy, as they can transport bioactive cargo to distant sites and facilitate intercellular communications. A literature search was conducted to discuss the current approaches for EV isolation and the advances in using EV-associated proteins, miRNA, mRNA, DNA, and lipids as liquid biopsies. We discussed the advantages and challenges of using these vesicles in clinical applications. Moreover, recent advancements in machine learning as a novel tool for tumor marker discovery are also highlighted.
Collapse
Affiliation(s)
- Prerna Dabral
- Vitalant Research Institute, University of California San Francisco, San Francisco, CA 94105, USA;
| | - Nobel Bhasin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Manish Ranjan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Maysoon M. Makhlouf
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| | - Zakaria Y. Abd Elmageed
- Department of Biomedical Sciences, Discipline of Pharmacology, Edward Via College of Osteopathic Medicine (VCOM), 4408 Bon Aire Drive, Monroe, LA 71203, USA;
| |
Collapse
|
26
|
Aalami AH, Shahriari A, Mazaheri M, Aalami F, Sahebkar A. Advancing gastrointestinal cancer diagnostics: a systematic review and meta-analysis of circulating microRNA-1246 as a non-invasive biomarker. Biomarkers 2024; 29:233-243. [PMID: 38696280 DOI: 10.1080/1354750x.2024.2350714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Despite numerous reports on the alterations of microRNA-1246 (miR-1246) expression level in digestive system cancers, its role in gastrointestinal cancers (GICs) remains unclear. This meta-analysis aimed to assess the diagnostic potential of circulating miR-1246 in GICs. METHODS Meta-disc version 1.4 and Comprehensive Meta-Analysis (CMA) version 3.7 software were used to calculate pooled sensitivity, specificity, likelihood ratios, diagnostic odds ratio (DOR), area under the curve (AUC), Q*index and summary receiver-operating characteristic (SROC). Subgroup analyses were conducted for cancer type, sample type and geographical region. Publication bias was assessed using Begg's and Egger's tests. RESULTS A total of 14 articles involving 18 studies and 1526 participants (972 cases and 554 controls) were included. The diagnostic accuracy of miRNA-1246 in GICs was as follows: pooled sensitivity: 0.81 (95% CI: 0.79 - 0.83), specificity: 0.74 (95% CI: 0.71 - 0.77), PLR: 3.315 (95% CI: 2.33 - 4.72), NLR: 0.221 (95% CI: 0.153 - 0.319), DOR: 16.87 (95% CI: 9.45 - 30.09), AUC: 0.891, and Q*-index: 0.807. No publication bias was found based on Begg's (p = 0.172) and Egger's (p = 0.113) tests. CONCLUSION Circulating miR-1246 shows promise as a non-invasive biomarker for early detection of GICs.
Collapse
Affiliation(s)
- Amir Hossein Aalami
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- Division of Nephrology and Hypertension, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ali Shahriari
- Department of Internal Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Mazaheri
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Farnoosh Aalami
- Student Research Committee, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Xu J, Pan L, Wu D, Yao L, Jiang W, Min J, Xu S, Deng Z. Comparison of the diagnostic value of various microRNAs in blood for colorectal cancer: a systematic review and network meta-analysis. BMC Cancer 2024; 24:770. [PMID: 38926893 PMCID: PMC11209970 DOI: 10.1186/s12885-024-12528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Despite the existence of numerous studies investigating the diagnostic potential of blood microRNAs for colorectal cancer, the microRNAs under consideration vary widely, and comparative analysis of their diagnostic value is lacking. Consequently, this systematic review aims to identify the most effective microRNA blood tumor markers to enhance clinical decision-making in colorectal cancer screening. METHOD A comprehensive search of databases, including PubMed, Embase, Web of Science, Scopus, and Cochrane, was conducted to identify case‒control or cohort studies that examined the diagnostic value of peripheral blood microRNAs in colorectal cancer. Studies were included if they provided sensitivity and specificity data, were published in English and were available between January 1, 2000, and February 10, 2023. The Critical Appraisal Skills Programme (CASP) checklist was employed for quality assessment. A Bayesian network meta-analysis was performed to estimate combined risk ratios (RRs) and 95% confidence intervals (CIs), with results presented via rankograms. This study is registered with the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), 202,380,092. RESULTS From an initial pool of 2254 records, 79 met the inclusion criteria, encompassing a total of 90 microRNAs. The seven most frequently studied microRNAs (43 records) were selected for inclusion, all of which demonstrated moderate to high quality. miR-23, miR-92, and miR-21 exhibited the highest sensitivity and accuracy, outperforming traditional tumor markers CA19-9 and CEA in terms of RR values and 95% CI for both sensitivity and accuracy. With the exception of miR-17, no significant difference was observed between each microRNA and CA19-9 and CEA in terms of specificity. CONCLUSIONS Among the most extensively researched blood microRNAs, miR-23, miR-92, and miR-21 demonstrated superior diagnostic value for colorectal cancer due to their exceptional sensitivity and accuracy. This systematic review and network meta-analysis may serve as a valuable reference for the clinical selection of microRNAs as tumor biomarkers.
Collapse
Affiliation(s)
- Jianhao Xu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Lanfen Pan
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Dan Wu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Liqian Yao
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Wenqian Jiang
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Jiarui Min
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Song Xu
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
| | - Zhiyong Deng
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
- Immunopathology Innovation Team, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
| |
Collapse
|
28
|
Payervand N, Pakravan K, Razmara E, Vinu KK, Ghodsi S, Heshmati M, Babashah S. Exosomal circ_0084043 derived from colorectal cancer-associated fibroblasts promotes in vitro endothelial cell angiogenesis by regulating the miR-140-3p/HIF-1α/VEGF signaling axis. Heliyon 2024; 10:e31584. [PMID: 38828320 PMCID: PMC11140710 DOI: 10.1016/j.heliyon.2024.e31584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Background Circular RNAs (circRNAs) hold potential as diagnostic markers for colorectal cancer (CRC); however, their functional mechanisms remain incompletely elucidated. This work investigates the clinical implications of a unique set comprising six circRNAs derived from serum in CRC. Furthermore, we delve into the role of exosomal circ_0084043, originating from colorectal cancer-associated fibroblasts (CAFs), with a specific focus on its contribution to endothelial cell angiogenesis. Methods The study analyzed circRNA levels in serum samples obtained from both CRC and control groups using qRT-PCR. Additionally, exosomes originating from colorectal CAFs and normal fibroblasts (NFs) were purified and confirmed by electron microscopy and Western blotting techniques. The proangiogenic effects of CAF-derived exosomal circ_0084043 were assessed in endothelial cells through proliferation, migration, and in vitro capillary tube formation assays. Gain- and loss-of-function experiments were employed to clarify the role of the circ_0084043/miR-140-3p/HIF-1α axis in endothelial cell angiogenesis, utilizing luciferase reporter assay, Western blotting, and ELISA for mechanism elucidation. Results The candidate circRNAs (circ_0060745, circ_001569, circ_007142, circ_0084043, Circ_BANP, and CiRS-7) exhibited notably elevated expression in CRC patient sera compared to the levels observed in healthy individuals. Except for CiRS-7, all circRNAs showed elevated expression in CRC patients with positive lymph node metastasis and advanced tumor stages. Exosomes released by colorectal CAFs augmented endothelial cell proliferation, migration, and angiogenesis by upregulating VEGF expression and secretion. Circ_0084043 was highly detected in endothelial cells treated with CAF-derived exosomes. Silencing circ_0084043 reduced VEGFA expression and diminished CAF exosome-induced endothelial cell processes, indicating its pivotal role in angiogenesis. Circ_0084043 sponges miR-140-3p, regulating HIF-1α, and a reverse relationship was also identified between miR-140-3p and VEGFA in endothelial cells. Inhibiting miR-140-3p mitigated circ_0084043 knockdown effects in CAF exosome-treated endothelial cells. Co-transfection of si-circ_0084043 and a miR-140-3p inhibitor reversed the inhibited migration and angiogenesis caused by circ_0084043 knockdown in CAF exosome-treated endothelial cells. Inhibiting miR-140-3p rescued reduced VEGFA expression due to circ_0084043 knockdown in endothelial cells exposed to CAF-derived exosomes, indicating modulation of the circ_0084043/miR-140-3p/VEGF signaling in CAF-derived exosome-induced angiogenesis. Conclusions This study unveiled a distinctive signature of six serum-derived circular RNAs, indicating their potential as promising diagnostic biomarkers for CRC. Importantly, exosomal circ_0084043 originating from colorectal CAFs was identified as playing a crucial role in endothelial cell angiogenesis, exerting its influence through the modulation of the miR-140-3p/HIF-1α/VEGF signaling axis.
Collapse
Affiliation(s)
- Nafiseh Payervand
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kailash Kumar Vinu
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sara Ghodsi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoumeh Heshmati
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Shao W, Wang Y, Liu L, Ren Y, Wang J, Cui Y, Liu J, Zhang X, Zhang S, Liu S, Jiang E, Feng S, Pei X. Combining serum microRNAs and machine learning algorithms for diagnosing infectious fever after HSCT. Ann Hematol 2024; 103:2089-2102. [PMID: 38691145 DOI: 10.1007/s00277-024-05755-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Infection post-hematopoietic stem cell transplantation (HSCT) is one of the main causes of patient mortality. Fever is the most crucial clinical symptom indicating infection. However, current microbial detection methods are limited. Therefore, timely diagnosis of infectious fever and administration of antimicrobial drugs can effectively reduce patient mortality. In this study, serum samples were collected from 181 patients with HSCT with or without infection, as well as the clinical information. And more than 80 infectious-related microRNAs in the serum were selected according to the bulk RNA-seq result and detected in the 345 time-pointed serum samples by Q-PCR. Unsupervised clustering result indicates a close association between these microRNAs expression and infection occurrence. Compared to the uninfected cohort, more than 10 serum microRNAs were identified as the combined diagnostic markers in one formula constructed by the Random Forest (RF) algorithms, with a diagnostic accuracy more than 0.90. Furthermore, correlations of serum microRNAs to immune cells, inflammatory factors, pathgens, infection tissue, and prognosis were analyzed in the infection cohort. Overall, this study demonstrates that the combination of serum microRNAs detection and machine learning algorithms holds promising potential in diagnosing infectious fever after HSCT.
Collapse
Affiliation(s)
- Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yixuan Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Li Liu
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yiran Ren
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jieru Wang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yuqing Cui
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Xiaoyu Zhang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Sudong Zhang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuangjie Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, Hematopoietic Stem Cell Transplantation Center, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
30
|
Shi X, Zhao X, Xue J, Jia E. Extracellular vesicle biomarkers in circulation for colorectal cancer detection: a systematic review and meta-analysis. BMC Cancer 2024; 24:623. [PMID: 38778252 PMCID: PMC11110411 DOI: 10.1186/s12885-024-12312-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
We provided an overview which evaluated the diagnostic performance of circulation EV biomarkers for CRC from PubMed, Medline, and Web of Science until 21 August 2022.Weidentified 48 studies that involved 7727 participants and evaluated 162 plasma/serum individual EV biomarkers including 117 RNAs and 45 proteins, as well as 45 EV biomarker panels for CRC detection. 12 studies evaluated the diagnostic performance of EV biomarkers for early CRC. The summarized sensitivity, specificity, and AUC value of individual EV RNAs and EV RNA panels were 76%, 75%, 0.87 and 82%, 79% and 0.90, respectively. Meanwhile, those of individual EV proteins and EV protein panels were 85%, 84%, 0.92 and 87%, 83%, 0.92, respectively. These results indicated that EV biomarker panels revealed superior diagnostic performance than the corresponding individual biomarkers. In early CRC, EV biomarkers showed available diagnostic value with the sensitivity, specificity, and AUC value of 80%, 75%, and 0.89.In subgroup analyses, EV miRNAs and LncRNAs held similar diagnostic value with the sensitivity, specificity and AUC value of 75%, 78%, 0.90 and 79%, 72%, 0.83, which was highly consistent with the whole EV RNAs. Significantly, the diagnostic values of EV miRNAs in plasma were marginally higher than those based on serum. In detail, the sensitivity, specificity, and AUC values were 79%, 81%, and 0.92 in plasma, as well as 74%, 77%, and 0.88 in serum, respectively. Therefore, circulation EV biomarkers could be considered as a promising biomarker for the early detection of CRC.
Collapse
Affiliation(s)
- Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zhao
- Clinical Epidemiology & EBM Unit, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
31
|
Rahmati S, Moeinafshar A, Rezaei N. The multifaceted role of extracellular vesicles (EVs) in colorectal cancer: metastasis, immune suppression, therapy resistance, and autophagy crosstalk. J Transl Med 2024; 22:452. [PMID: 38741166 PMCID: PMC11092134 DOI: 10.1186/s12967-024-05267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by all cells and widely distributed in all biological fluids. EVs are implicated in diverse physiopathological processes by orchestrating cell-cell communication. Colorectal cancer (CRC) is one of the most common cancers worldwide, with metastasis being the leading cause of mortality in CRC patients. EVs contribute significantly to the advancement and spread of CRC by transferring their cargo, which includes lipids, proteins, RNAs, and DNAs, to neighboring or distant cells. Besides, they can serve as non-invasive diagnostic and prognostic biomarkers for early detection of CRC or be harnessed as effective carriers for delivering therapeutic agents. Autophagy is an essential cellular process that serves to remove damaged proteins and organelles by lysosomal degradation to maintain cellular homeostasis. Autophagy and EV release are coordinately activated in tumor cells and share common factors and regulatory mechanisms. Although the significance of autophagy and EVs in cancer is well established, the exact mechanism of their interplay in tumor development is obscure. This review focuses on examining the specific functions of EVs in various aspects of CRC, including progression, metastasis, immune regulation, and therapy resistance. Further, we overview emerging discoveries relevant to autophagy and EVs crosstalk in CRC.
Collapse
Affiliation(s)
- Soheil Rahmati
- Student Research Committee, Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aysan Moeinafshar
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Mondal D, Shinde S, Sinha V, Dixit V, Paul S, Gupta RK, Thakur S, Vishvakarma NK, Shukla D. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci 2024; 11:1385238. [PMID: 38770216 PMCID: PMC11103528 DOI: 10.3389/fmolb.2024.1385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Gastrointestinal (GI) cancers account for one-fourth of the global cancer incidence and are incriminated to cause one-third of cancer-related deaths. GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers, mostly diagnosed at advanced stages due to a lack of accurate markers for early stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy reduces patient compliance as it cannot be frequently used to screen patients. Therefore, minimally invasive approaches like liquid biopsy may be explored for screening and early identification of gastrointestinal cancers. Liquid biopsy involves the qualitative and quantitative determination of certain cancer-specific biomarkers in body fluids such as blood, serum, saliva, and urine to predict disease progression, therapeutic tolerance, toxicities, and recurrence by evaluating minimal residual disease and its correlation with other clinical features. In this review, we deliberate upon various tumor-specific cellular and molecular entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-derived biomolecules and cite recent advances pertaining to their use in predicting disease progression, therapy response, or risk of relapse. We also discuss the technical challenges associated with translating liquid biopsy into clinical settings for various clinical applications in gastrointestinal cancers.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vibha Sinha
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Sadguru Jagjit Singh Namdhari College, Garhwa, Jharkhand, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rakesh Kumar Gupta
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
33
|
Agnihotram R, Dhar R, Dhar D, Purushothaman K, Narasimhan AK, Devi A. Fusion of Exosomes and Nanotechnology: Cutting-Edge Cancer Theranostics. ACS APPLIED NANO MATERIALS 2024; 7:8489-8506. [DOI: 10.1021/acsanm.4c01033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Rohan Agnihotram
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Debolina Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Kaavya Purushothaman
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Ashwin Kumar Narasimhan
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India
| |
Collapse
|
34
|
Ramadan F, Saab R, Ghamloush F, Khoueiry R, Herceg Z, Gomez L, Badran B, Clezardin P, Hussein N, Cohen PA, Ghayad SE. Exosome-Mediated Paracrine Signaling Unveils miR-1246 as a Driver of Aggressiveness in Fusion-Negative Rhabdomyosarcoma. Cancers (Basel) 2024; 16:1652. [PMID: 38730605 PMCID: PMC11083369 DOI: 10.3390/cancers16091652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Rhabdomyosarcoma is a pediatric cancer associated with aggressiveness and a tendency to develop metastases. Fusion-negative rhabdomyosarcoma (FN-RMS) is the most commonly occurring subtype of RMS, where metastatic disease can hinder treatment success and decrease survival rates. RMS-derived exosomes were previously demonstrated to be enriched with miRNAs, including miR-1246, possibly contributing to disease aggressiveness. We aimed to decipher the functional impact of exosomal miR-1246 on recipient cells and its role in promoting aggressiveness. Treatment of normal fibroblasts with FN-RMS-derived exosomes resulted in a significant uptake of miR-1246 paired with an increase in cell proliferation, migration, and invasion. In turn, delivery of miR-1246-mimic lipoplexes promoted fibroblast proliferation, migration, and invasion in a similar manner. Conversely, when silencing miR-1246 in FN-RMS cells, the resulting derived exosomes demonstrated reversed effects on recipient cells' phenotype. Delivery of exosomal miR-1246 targets GSK3β and promotes β-catenin nuclear accumulation, suggesting a deregulation of the Wnt pathway, known to be important in tumor progression. Finally, a pilot clinical study highlighted, for the first time, the presence of high exosomal miR-1246 levels in RMS patients' sera. Altogether, our results demonstrate that exosomal miR-1246 has the potential to alter the tumor microenvironment of FN-RMS cells, suggesting its potential role in promoting oncogenesis.
Collapse
Affiliation(s)
- Farah Ramadan
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
- Department of Biology, Faculty of Science II, Lebanese University, Beirut 6573, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
| | - Raya Saab
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (R.S.); (F.G.)
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Farah Ghamloush
- Department of Pediatrics & Adolescent Medicine, American University of Beirut Medical Center, Beirut 1107, Lebanon; (R.S.); (F.G.)
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69366 Cedex 07 Lyon, France; (R.K.); (Z.H.)
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69366 Cedex 07 Lyon, France; (R.K.); (Z.H.)
| | - Ludovic Gomez
- Laboratoire CarMeN—IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, Univ-Lyon, 69500 Bron, France;
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
| | - Philippe Clezardin
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
| | - Nader Hussein
- Laboratory of Cancer Biology and Molecular Immunology, Department of Chemistry and Biochemistry, Faculty of Science I, Lebanese University, Hadath 1103, Lebanon; (B.B.); (N.H.)
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon 1, 69008 Lyon, France
| | - Pascale A. Cohen
- Université Lyon 1, Lyon, France; (F.R.); (P.C.)
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, 69372 Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut 6573, Lebanon
- C2VN, INSERM 1263, INRAE 1260, Aix-Marseille University, 13005 Marseille, France
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
35
|
Bakhsh T, Alhazmi S, Farsi A, Yusuf AS, Alharthi A, Qahl SH, Alghamdi MA, Alzahrani FA, Elgaddar OH, Ibrahim MA, Bahieldin A. Molecular detection of exosomal miRNAs of blood serum for prognosis of colorectal cancer. Sci Rep 2024; 14:8902. [PMID: 38632250 PMCID: PMC11024162 DOI: 10.1038/s41598-024-58536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer affecting people. The discovery of new, non-invasive, specific, and sensitive molecular biomarkers for CRC may assist in the diagnosis and support therapeutic decision making. Exosomal miRNAs have been demonstrated in carcinogenesis and CRC development, which makes these miRNAs strong biomarkers for CRC. Deep sequencing allows a robust high-throughput informatics investigation of the types and abundance of exosomal miRNAs. Thus, exosomal miRNAs can be efficiently examined as diagnostic biomarkers for disease screening. In the present study, a number of 660 mature miRNAs were detected in patients diagnosed with CRC at different stages. Of which, 29 miRNAs were differentially expressed in CRC patients compared with healthy controls. Twenty-nine miRNAs with high abundance levels were further selected for subsequent analysis. These miRNAs were either highly up-regulated (e.g., let-7a-5p, let-7c-5p, let-7f-5p, let-7d-3p, miR-423-5p, miR-3184-5p, and miR-584) or down-regulated (e.g., miR-30a-5p, miR-99-5p, miR-150-5p, miR-26-5p and miR-204-5p). These miRNAs influence critical genes in CRC, leading to either tumor growth or suppression. Most of the reported diagnostic exosomal miRNAs were shown to be circulating in blood serum. The latter is a novel miRNA that was found in exosomal profile of blood serum. Some of the predicted target genes of highly expressed miRNAs participate in several cancer pathways, including CRC pathway. These target genes include tumor suppressor genes, oncogenes and DNA repair genes. Main focus was given to multiple critical signaling cross-talking pathways including transforming growth factor β (TGFβ) signaling pathways that are directly linked to CRC. In conclusion, we recommend further analysis in order to experimentally confirm exact relationships between selected differentially expressed miRNAs and their predicted target genes and downstream functional consequences.
Collapse
Affiliation(s)
- Tahani Bakhsh
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jedaah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
- Central lab of biological Sciences, Faculty of Sciences, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
| | - Ali Farsi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abdulaziz S Yusuf
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Safa H Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ola H Elgaddar
- Department of Chemical Pathology, Alexandria University, Alexandria, Egypt
| | - Mohanad A Ibrahim
- Data Science Program, King Abdullah International Medical Research Center, 11481, Riyadh, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
36
|
Yakovlev V, Lapato DM, Rana P, Ghosh P, Frye R, Roberson-Nay R. Neuron enriched extracellular vesicles' MicroRNA expression profiles as a marker of early life alcohol consumption. Transl Psychiatry 2024; 14:176. [PMID: 38575599 PMCID: PMC10994930 DOI: 10.1038/s41398-024-02874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Alcohol consumption may impact and shape brain development through perturbed biological pathways and impaired molecular functions. We investigated the relationship between alcohol consumption rates and neuron-enriched extracellular vesicles' (EVs') microRNA (miRNA) expression to better understand the impact of alcohol use on early life brain biology. Neuron-enriched EVs' miRNA expression was measured from plasma samples collected from young people using a commercially available microarray platform while alcohol consumption was measured using the Alcohol Use Disorders Identification Test. Linear regression and network analyses were used to identify significantly differentially expressed miRNAs and to characterize the implicated biological pathways, respectively. Compared to alcohol naïve controls, young people reporting high alcohol consumption exhibited significantly higher expression of three neuron-enriched EVs' miRNAs including miR-30a-5p, miR-194-5p, and miR-339-3p, although only miR-30a-5p and miR-194-5p survived multiple test correction. The miRNA-miRNA interaction network inferred by a network inference algorithm did not detect any differentially expressed miRNAs with a high cutoff on edge scores. However, when the cutoff of the algorithm was reduced, five miRNAs were identified as interacting with miR-194-5p and miR-30a-5p. These seven miRNAs were associated with 25 biological functions; miR-194-5p was the most highly connected node and was highly correlated with the other miRNAs in this cluster. Our observed association between neuron-enriched EVs' miRNAs and alcohol consumption concurs with results from experimental animal models of alcohol use and suggests that high rates of alcohol consumption during the adolescent/young adult years may impact brain functioning and development by modulating miRNA expression.
Collapse
Affiliation(s)
- Vasily Yakovlev
- Department of Radiation Oncology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Dana M Lapato
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Pratip Rana
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Preetam Ghosh
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Rebekah Frye
- Neuroscience Program, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Roxann Roberson-Nay
- Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
37
|
Oh CK, Cho YS. Pathogenesis and biomarkers of colorectal cancer by epigenetic alteration. Intest Res 2024; 22:131-151. [PMID: 38295766 PMCID: PMC11079515 DOI: 10.5217/ir.2023.00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in cancer incidence and stands as the second leading cause of cancer-related deaths globally. CRC tumorigenesis results from a cumulative set of genetic and epigenetic alterations, disrupting cancer-regulatory processes like cell proliferation, metabolism, angiogenesis, cell death, invasion, and metastasis. Key epigenetic modifications observed in cancers encompass abnormal DNA methylation, atypical histone modifications, and irregularities in noncoding RNAs, such as microRNAs and long noncoding RNAs. The advancement in genomic technologies has positioned these genetic and epigenetic shifts as potential clinical biomarkers for CRC patients. This review concisely covers the fundamental principles of CRC-associated epigenetic changes, and examines in detail their emerging role as biomarkers for early detection, prognosis, and treatment response prediction.
Collapse
Affiliation(s)
- Chang Kyo Oh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
38
|
Feng Y, Jin C, Wang T, Chen Z, Ji D, Zhang Y, Zhang C, Zhang D, Peng W, Sun Y. The Uridylyl Transferase TUT7-Mediated Accumulation of Exosomal miR-1246 Reprograms TAMs to Support CRC Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304222. [PMID: 38342611 PMCID: PMC11022710 DOI: 10.1002/advs.202304222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/06/2023] [Indexed: 02/13/2024]
Abstract
Tumor-associated macrophages (TAMs) play a crucial role in promoting tumor growth and dissemination, motivating a search for key targets to interfere with the activation of TAMs or reprogram TAMs into the tumor-suppressive type. To gain insight into the mechanisms of macrophage polarization, a designed co-culture system is established, allowing for the education of macrophages in a manner that closely mimics the intricacies of TAMs in the tumor immune microenvironment (TIME). Through database mining, exosomal miR-1246 is identified and is then validated. Exosomal miR-1246-driven polarization of TAMs disrupts the infiltration and function of CD8+ T cells. Mechanically, the amassment of exosomal miR-1246 stems from TUT7-mediated degradation of small noncoding RNA, a process stabilized by SNRPB, but not the precursor of miR-1246. Moreover, an Exo-motif is present in the exosomal miR-1246 sequence, enabling it to bind with the exosomal sorting protein hnRNPA2B1. RNA-seq analysis reveals that exogenous miR-1246 modulates the polarization of TAMs at a post-transcriptional level, emphasizing the pivotal role of the NLRP3 in macrophage polarization. In conclusion, the findings underscore the importance of exosomal miR-1246 as a trigger of macrophage reprogramming and uncover a novel mechanism for its enhanced presence in the TIME.
Collapse
Affiliation(s)
- Yifei Feng
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Chi Jin
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Tuo Wang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Zhihao Chen
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Dongjian Ji
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Yue Zhang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Chuan Zhang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Dongsheng Zhang
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Wen Peng
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| | - Yueming Sun
- Department of General SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingJiangsu210029P. R. China
- The First School of Clinical MedicineNanjing Medical UniversityNanjing210029China
| |
Collapse
|
39
|
Das R, Mehta DK, Gupta N. Understanding the Potential of mRNA as Biomarker to Revolutionize Diagnosis of Colorectal Cancer. Drug Res (Stuttg) 2024; 74:102-112. [PMID: 38350633 DOI: 10.1055/a-2244-6572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
MicroRNA as potential biomarker for early diagnosis, differentiating various stages, interpreting the success of postoperative curative surgery and predicting early relapse of Colorectal cancer.In the realm of medical research, the quest to find effective biomarkers for various diseases has always been a top priority. Colorectal cancer (CRC), one of the leading causes of cancer-related deaths worldwide, is no exception. The emergence of microRNA (mRNA) as a potential biomarker for CRC has sparked immense interest among scientists and clinicians alike. mRNA, a molecule responsible for translating genetic information into functional proteins, presents a promising avenue for early detection and personalized treatment of this deadly disease. By analyzing the specific patterns and levels of mRNA expression in CRC cells, researchers have the ability to identify signatures that can aid in accurate diagnosis, predict patient prognosis, and even guide targeted therapies. This breakthrough in molecular biology not only enhances our understanding of CRC but also holds the potential to revolutionize the field of cancer diagnostics and treatment. In this article, we will delve deeper into the potential of mRNA as a biomarker for CRC, exploring its benefits and challenges in the field of cancer research.
Collapse
Affiliation(s)
- Rina Das
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Dinesh Kumar Mehta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| | - Nidhi Gupta
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, HR, India
| |
Collapse
|
40
|
Khoushab S, Aghmiuni MH, Esfandiari N, Sarvandani MRR, Rashidi M, Taheriazam A, Entezari M, Hashemi M. Unlocking the potential of exosomes in cancer research: A paradigm shift in diagnosis, treatment, and prevention. Pathol Res Pract 2024; 255:155214. [PMID: 38430814 DOI: 10.1016/j.prp.2024.155214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
Exosomes, which are tiny particles released by cells, have the ability to transport various molecules, including proteins, lipids, and genetic material containing non-coding RNAs (ncRNAs). They are associated with processes like cancer metastasis, immunity, and tissue repair. Clinical trials have shown exosomes to be effective in treating cancer, inflammation, and chronic diseases. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are common sources of exosome production. Exosomes have therapeutic potential due to their ability to deliver cargo, modulate the immune system, and promote tissue regeneration. Bioengineered exosomes could revolutionize disease treatment. However, more research is needed to understand exosomes in tumor growth and develop new therapies. This paper provides an overview of exosome research, focusing on cancer and exosome-based therapies including chemotherapy, radiotherapy, and vaccines. It explores exosomes as a drug delivery system for cancer therapy, highlighting their advantages. The article discusses using exosomes for various therapeutic agents, including drugs, antigens, and RNAs. It also examines challenges with engineered exosomes. Analyzing exosomes for clinical purposes faces limitations in sensitivity, specificity, and purification. On the other hand, Nanotechnology offers solutions to overcome these challenges and unlock exosome potential in healthcare. Overall, the article emphasizes the potential of exosomes for personalized and targeted cancer therapy, while acknowledging the need for further research.
Collapse
Affiliation(s)
- Saloomeh Khoushab
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mina Hobabi Aghmiuni
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esfandiari
- Department of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
41
|
Li Y, Sui S, Goel A. Extracellular vesicles associated microRNAs: Their biology and clinical significance as biomarkers in gastrointestinal cancers. Semin Cancer Biol 2024; 99:5-23. [PMID: 38341121 PMCID: PMC11774199 DOI: 10.1016/j.semcancer.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Gastrointestinal (GI) cancers, including colorectal, gastric, esophageal, pancreatic, and liver, are associated with high mortality and morbidity rates worldwide. One of the underlying reasons for the poor survival outcomes in patients with these malignancies is late disease detection, typically when the tumor has already advanced and potentially spread to distant organs. Increasing evidence indicates that earlier detection of these cancers is associated with improved survival outcomes and, in some cases, allows curative treatments. Consequently, there is a growing interest in the development of molecular biomarkers that offer promise for screening, diagnosis, treatment selection, response assessment, and predicting the prognosis of these cancers. Extracellular vesicles (EVs) are membranous vesicles released from cells containing a repertoire of biological molecules, including nucleic acids, proteins, lipids, and carbohydrates. MicroRNAs (miRNAs) are the most extensively studied non-coding RNAs, and the deregulation of miRNA levels is a feature of cancer cells. EVs miRNAs can serve as messengers for facilitating interactions between tumor cells and the cellular milieu, including immune cells, endothelial cells, and other tumor cells. Furthermore, recent years have witnessed considerable technological advances that have permitted in-depth sequence profiling of these small non-coding RNAs within EVs for their development as promising cancer biomarkers -particularly non-invasive, liquid biopsy markers in various cancers, including GI cancers. Herein, we summarize and discuss the roles of EV-associated miRNAs as they play a seminal role in GI cancer progression, as well as their promising translational and clinical potential as cancer biomarkers as we usher into the area of precision oncology.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Silei Sui
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA; Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, CA, USA.
| |
Collapse
|
42
|
Schneider N, Hermann PC, Eiseler T, Seufferlein T. Emerging Roles of Small Extracellular Vesicles in Gastrointestinal Cancer Research and Therapy. Cancers (Basel) 2024; 16:567. [PMID: 38339318 PMCID: PMC10854789 DOI: 10.3390/cancers16030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Discovered in the late eighties, sEVs are small extracellular nanovesicles (30-150 nm diameter) that gained increasing attention due to their profound roles in cancer, immunology, and therapeutic approaches. They were initially described as cellular waste bins; however, in recent years, sEVs have become known as important mediators of intercellular communication. They are secreted from cells in substantial amounts and exert their influence on recipient cells by signaling through cell surface receptors or transferring cargos, such as proteins, RNAs, miRNAs, or lipids. A key role of sEVs in cancer is immune modulation, as well as pro-invasive signaling and formation of pre-metastatic niches. sEVs are ideal biomarker platforms, and can be engineered as drug carriers or anti-cancer vaccines. Thus, sEVs further provide novel avenues for cancer diagnosis and treatment. This review will focus on the role of sEVs in GI-oncology and delineate their functions in cancer progression, diagnosis, and therapeutic use.
Collapse
Affiliation(s)
- Nora Schneider
- Department for Internal Medicine 1, University Clinic Ulm, 89081 Ulm, Germany; (P.C.H.); (T.S.)
| | | | - Tim Eiseler
- Correspondence: (N.S.); (T.E.); Tel.: +49-731-500-44678 (N.S.); +49-731-500-44523 (T.E.)
| | | |
Collapse
|
43
|
Najafi S, Majidpoor J, Mortezaee K. Liquid biopsy in colorectal cancer. Clin Chim Acta 2024; 553:117674. [PMID: 38007059 DOI: 10.1016/j.cca.2023.117674] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Liquid biopsy refers to a set of pathological samples retrieved from non-solid sources, such as blood, cerebrospinal fluid, urine, and saliva through non-invasive or minimally invasive approaches. In the recent decades, an increasing number of studies have focused on clinical applications and improving technological investigation of liquid biopsy biosources for diagnostic goals particularly in cancer. Materials extracted from these sources and used for medical evaluations include cells like circulating tumor cells (CTCs), tumor-educated platelets (TEPs), cell-free nucleic acids released by cells, such as circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), cell-free RNA (cfRNA), and exosomes. Playing significant roles in the pathogenesis of human malignancies, analysis of these sources can provide easier access to genetic and transcriptomic information of the cancer tissue even better than the conventional tissue biopsy. Notably, they can represent the inter- and intra-tumoral heterogeneity and accordingly, liquid biopsies demonstrate strengths for improving diagnosis in early detection and screening, monitoring and follow-up after therapies, and personalization of therapeutical strategies in various types of human malignancies. In this review, we aim to discuss the roles, functions, and analysis approaches of liquid biopsy sources and their clinical implications in human malignancies with a focus on colorectal cancer.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
44
|
Fais S, Logozzi M. The Diagnostic and Prognostic Value of Plasmatic Exosome Count in Cancer Patients and in Patients with Other Pathologies. Int J Mol Sci 2024; 25:1049. [PMID: 38256122 PMCID: PMC10816819 DOI: 10.3390/ijms25021049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The extent of both scientific articles and reviews on extracellular vesicles (EVs) has grown impressively over the last few decades [...].
Collapse
Affiliation(s)
- Stefano Fais
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- ExoLab Italia, Tecnopolo d’Abruzzo, 67100 L’Aquila, Italy
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
45
|
Santiago VF, Rosa-Fernandes L, Macedo-da-Silva J, Angeli CB, Mule SN, Marinho CRF, Torrecilhas AC, Marie SNK, Palmisano G. Isolation of Extracellular Vesicles Using Titanium Dioxide Microspheres. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:1-22. [PMID: 38409413 DOI: 10.1007/978-3-031-50624-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Extracellular vesicles (EVs) are bilayer membrane particles released from several cell types to the extracellular environment. EVs have a crucial role in cell-cell communication, involving different biological processes in health and diseases. Due to the potential of biomarkers for several diseases as diagnostic and therapeutic tools, it is relevant to understand the biology of the EVs and their content. One of the current challenges involving EVs is regarding the purification method, which is a critical step for EV's functional and characterization studies. Ultracentrifugation is the most used method for EV isolation, where the nanoparticles are separated in sequential centrifugation to isolate the EVs based on their size. However, for viscous biofluids such as plasma, there is a co-isolation of the most abundant proteins, which can impair the EV's protein identification due to the low abundance of these proteins and signal suppression by the most abundant plasma proteins. Emerging techniques have gained attention in recent years. Titanium dioxide (TiO2) is one of the most promising techniques due to its property for selective isolation based on the interaction with phospholipids in the EV membrane. Using a small amount of TiO2 beads and a low volume of plasma, it is possible to isolate EVs with reduced plasma protein co-isolation. This study describes a comprehensive workflow for the isolation and characterization of plasma extracellular vesicles (EVs) using mass spectrometry-based proteomics techniques. The aim of this chapter is describe the EV isolation using TiO2 beads enrichment and high-throughput mass spectrometry techniques to efficiently identify the protein composition of EVs in a fast and straightforward manner.
Collapse
Affiliation(s)
- Veronica Feijoli Santiago
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Janaina Macedo-da-Silva
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudia B Angeli
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas; Departamento de Ciências Farmacêuticas; Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários. Departamento de Ciências Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Suely N K Marie
- Laboratory of Molecular and Cellular Biology (LIM15), Department of Neurology, Fac-uldade de Medicina FMUSP, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia.
| |
Collapse
|
46
|
Ihlamur M, Kelleci K, Zengin Y, Allahverdiyev MA, Abamor EŞ. Applications of Exosome Vesicles in Different Cancer Types as Biomarkers. Curr Mol Med 2024; 24:281-297. [PMID: 36941811 DOI: 10.2174/1566524023666230320120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/11/2022] [Accepted: 01/09/2023] [Indexed: 03/23/2023]
Abstract
One of the biggest challenges in the fight against cancer is early detection. Early diagnosis is vital, but there are some barriers such as economic, cultural, and personal factors. Considering the disadvantages of radiological imaging techniques or serological analysis methods used in cancer diagnosis, such as being expensive, requiring expertise, and being time-consuming, there is a need to develop faster, more reliable, and cost-effective diagnostic methods for use in cancer diagnosis. Exosomes, which are responsible for intercellular communication with sizes ranging from 30-120 nm, are naturally produced biological nanoparticles. Thanks to the cargo contents they carry, they are a potential biomarker to be used in the diagnosis of cancer. Exosomes, defined as extracellular vesicles of endosomal origin, are effective in cancer growth, progression, metastasis, and drug resistance, and changes in microenvironmental conditions during tumor development change exosome secretion. Due to their high cellular activity, tumor cells produce much higher exosomes than healthy cells. Therefore, it is known that the number of exosomes in body fluids is significantly rich compared to other cells and can act as a stand-alone diagnostic biomarker. Cancer- derived exosomes have received great attention in recent years for the early detection of cancer and the evaluation of therapeutic response. In this article, the content, properties, and differences of exosomes detected in common types of cancer (lung, liver, pancreas, ovaries, breast, colorectal), which are the leading causes of cancer-related deaths, are reviewed. We also discuss the potential utility of exosome contents as a biomarker for early detection, which is known to be important in targeted cancer therapy.
Collapse
Affiliation(s)
- Murat Ihlamur
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Biruni University, Vocational School, Department of Electronics and Automation, Istanbul, Turkey
| | - Kübra Kelleci
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
- Beykoz University, Vocational School, Department of Medical Services and Techniques, Istanbul, Turkey
| | - Yağmur Zengin
- Bogazici University, Biomedical Engineering Institute, Department of Biomedical Engineering, Istanbul, Turkey
| | - M Adil Allahverdiyev
- Institute of the V. Akhundov National Scientific Research Medical Prophylactic, Baku, Azerbaijan Republic
| | - Emrah Şefik Abamor
- Yildiz Technical University, Faculty of Chemistry and Metallurgy, Department of Bioengineering, Istanbul, Turkey
| |
Collapse
|
47
|
Marassi V, Giordani S, Placci A, Punzo A, Caliceti C, Zattoni A, Reschiglian P, Roda B, Roda A. Emerging Microfluidic Tools for Simultaneous Exosomes and Cargo Biosensing in Liquid Biopsy: New Integrated Miniaturized FFF-Assisted Approach for Colon Cancer Diagnosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:9432. [PMID: 38067805 PMCID: PMC10708636 DOI: 10.3390/s23239432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The early-stage diagnosis of cancer is a crucial clinical need. The inadequacies of surgery tissue biopsy have prompted a transition to a less invasive profiling of molecular biomarkers from biofluids, known as liquid biopsy. Exosomes are phospholipid bilayer vesicles present in many biofluids with a biologically active cargo, being responsible for cell-to-cell communication in biological systems. An increase in their excretion and changes in their cargo are potential diagnostic biomarkers for an array of diseases, including cancer, and they constitute a promising analyte for liquid biopsy. The number of exosomes released, the morphological properties, the membrane composition, and their content are highly related to the physiological and pathological states. The main analytical challenge to establishing liquid biopsy in clinical practice is the development of biosensors able to detect intact exosomes concentration and simultaneously analyze specific membrane biomarkers and those contained in their cargo. Before analysis, exosomes also need to be isolated from biological fluids. Microfluidic systems can address several issues present in conventional methods (i.e., ultracentrifugation, size-exclusion chromatography, ultrafiltration, and immunoaffinity capture), which are time-consuming and require a relatively high amount of sample; in addition, they can be easily integrated with biosensing systems. A critical review of emerging microfluidic-based devices for integrated biosensing approaches and following the major analytical need for accurate diagnostics is presented here. The design of a new miniaturized biosensing system is also reported. A device based on hollow-fiber flow field-flow fractionation followed by luminescence-based immunoassay is applied to isolate intact exosomes and characterize their cargo as a proof of concept for colon cancer diagnosis.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Stefano Giordani
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Anna Placci
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
| | - Angela Punzo
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Cristiana Caliceti
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy—CIRI FRAME, University of Bologna, 40131 Bologna, Italy
- Interdepartmental Centre for Industrial Agrofood Research—CIRI Agrofood, University of Bologna, 47521 Cesena, Italy
| | - Andrea Zattoni
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
- byFlow srl, 40129 Bologna, Italy
| | - Aldo Roda
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy; (V.M.); (S.G.); (A.P.); (A.Z.); (P.R.)
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy; (A.P.); (C.C.)
| |
Collapse
|
48
|
Guarnerio S, Tempest R, Maani R, Hunt S, Cole LM, Le Maitre CL, Chapple K, Peake N. Cellular Responses to Extracellular Vesicles as Potential Markers of Colorectal Cancer Progression. Int J Mol Sci 2023; 24:16755. [PMID: 38069076 PMCID: PMC10706375 DOI: 10.3390/ijms242316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The development of novel screening tests aims to support early asymptomatic diagnosis and subtyping patients according to similar traits in the heterogeneous cancer cohort. Extracellular vesicles (EVs) are promising candidates for the detection of disease markers from bodily fluids, but limitations in the standardisation of isolation methods and the intrinsic EV heterogeneity obtained from liquid biopsies are currently obstacles to clinical adoption. Here, cellular responses to cancer EVs were initially explored as potential complementary biomarkers for stage separation using colorectal cancer (CRC) SW480 and SW620 cell line models. A pilot study on a small cohort of CRC patients and controls was then developed by performing a multivariate analysis of cellular responses to plasma-derived EVs. Several cell activities and markers involved in tumour microenvironment pathways were influenced by the treatment of cell line EVs in a stage-dependent manner. The multivariate analysis combining plasma EV markers and cellular responses to plasma EVs was able to separate patients according to disease stage. This preliminary study offers the potential of considering cellular responses to EVs in combination with EV biomarkers in the development of screening methods.
Collapse
Affiliation(s)
- Sonia Guarnerio
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Rawan Maani
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | - Stuart Hunt
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TN, UK;
| | - Laura M. Cole
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Keith Chapple
- Colorectal Surgical Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| |
Collapse
|
49
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
50
|
Lohajová Behulová R, Bugalová A, Bugala J, Struhárňanská E, Šafranek M, Juráš I. Circulating exosomal miRNAs as a promising diagnostic biomarker in cancer. Physiol Res 2023; 72:S193-S207. [PMID: 37888964 PMCID: PMC10669947 DOI: 10.33549/physiolres.935153] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer belongs to multifactorial diseases characterized by uncontrolled growth and proliferation of abnormal cells. Breast cancer, non-small cell lung cancer, and colorectal cancer are the most frequently diagnosed malignancies with a high mortality rate. These carcinomas typically contain multiple genetically distinct subpopulations of tumor cells leading to tumor heterogeneity, which promotes the aggressiveness of the disease. Early diagnosis is necessary to increase patient progression-free survival. Particularly, miRNAs present in exosomes derived from tumors represent potential biomarkers suitable for early cancer diagnosis. Identification of miRNAs by liquid biopsy enables a personalized approach with the subsequent better clinical management of patients. This review article highlights the potential of circulating exosomal miRNAs in early breast, non-small cell lung, and colorectal cancer diagnosis.
Collapse
Affiliation(s)
- R Lohajová Behulová
- Department of Clinical Genetics, St Elizabeth's Cancer Institute, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|