1
|
Aoki JA, Denorme F, Cody MJ, Perry DP, Rustad JL, Brown SM, Goldstein SA, Middleton EA, Yost CC, Harris ES, NHLBI Prevention and Early Treatment of Acute Lung Injury (PETAL) Network Investigators. Plasma surrogate markers of neutrophil extracellular traps correlate with disease severity in patients with moderate to severe acute respiratory distress syndrome. J Inflamm (Lond) 2025; 22:22. [PMID: 40514693 PMCID: PMC12164143 DOI: 10.1186/s12950-025-00448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND Although studies have evaluated the presence of cell-free DNA and neutrophil extracellular traps (NETs) in acute respiratory distress syndrome (ARDS), the kinetics of NET formation during the early ICU admission and whether plasma NET markers correlate with clinical outcomes in patients with moderate-to-severe hypoxemia remain unknown. We sought to determine whether serial plasma NET marker levels in study participants collected over 48 h post enrollment predict disease severity and mortality in non-COVID-19 ARDS patients. METHODS We obtained previously collected plasma samples (trial enrollment, 24 h, 48 h) from 200 randomly selected ARDS participants in the completed Reevaluation of Systemic Early Neuromuscular Blockade (ROSE) Trial, as well as from 20 healthy control donors. We determined plasma levels of surrogate biomarkers for NETs using a cell-free DNA fluorescence assay and a plasma myeloperoxidase (MPO)-DNA complex ELISA. We correlated these surrogate biomarker levels with clinical outcomes from the ROSE trial study participants. RESULTS ROSE plasma samples demonstrated significantly higher NET levels compared to healthy donor controls. Individual study participant NET levels did not change over the forty-eight hours after trial enrollment. Higher levels of both surrogate markers correlated with fewer ventilator-free days, but only cell free-DNA correlated with mortality and higher illness severity scores. CONCLUSION Surrogate markers for plasma NET levels measured in patients with moderate or severe ARDS correlate directly with adverse clinical outcomes and may serve as biomarkers for predicting severe disease. Further studies of surrogate biomarkers for NET formation in moderate-to-severe ARDS are warranted.
Collapse
Affiliation(s)
- Joni A Aoki
- University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah, 30 North Mario Capecchi Dr., 2nd Floor North, Salt Lake City, UT, 84112, USA
| | - Frederik Denorme
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark J Cody
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, Division of Neonatology, University of Utah, Salt Lake City, UT, USA
| | - David P Perry
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - John L Rustad
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Samuel M Brown
- University of Utah School of Medicine, Salt Lake City, UT, USA
- Intermountain Medical Center, Murray, UT, USA
| | - Stephanie A Goldstein
- Department of Pediatrics, Division of Neonatology, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah, 30 North Mario Capecchi Dr., 2nd Floor North, Salt Lake City, UT, 84112, USA
| | - Christian C Yost
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, Division of Neonatology, University of Utah, Salt Lake City, UT, USA
| | - Estelle S Harris
- University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Internal Medicine, University of Utah, 30 North Mario Capecchi Dr., 2nd Floor North, Salt Lake City, UT, 84112, USA.
| | | |
Collapse
|
2
|
Xie X, Pi M, Zhang H, Zhou L, Liu M, Zhu W, Jiao Y, Gu X, Ma Z. Neutrophil-derived exosomes promote sepsis-related multiple organ dysfunction through the induction of neutrophil extracellular trap formation. Int Immunopharmacol 2025; 159:114892. [PMID: 40403502 DOI: 10.1016/j.intimp.2025.114892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 04/19/2025] [Accepted: 05/14/2025] [Indexed: 05/24/2025]
Abstract
Our previous studies have demonstrated that neutrophils play a key role in septic organ injury partly through the excessive formation of neutrophil extracellular traps (NETs) and that exosomes participate in the regulation of NET formation during sepsis. Therefore, this study aimed to determine whether neutrophil-derived exosomes promote the formation of NETs and induce multiple organ dysfunction during sepsis. Initially, polymorphonuclear neutrophil (PMN)-derived exosomes following in vitro stimulation with PBS or LPS (1 μg/mL) for 6 h. In vivo, PMN-derived exosomes were intravenously administered to wild-type C57BL/6 mice. Then, histopathological injury and NET formation in multiple organs were evaluated. In vitro, PMN-derived exosomes were cocultured with PMNs freshly isolated from healthy volunteers, and subsequently, NET formation and activation of associated molecular pathways were detected. Administration of LPS-stimulated PMN-derived exosomes in mice significantly enhanced NET formation, resulting in multi-organ inflammation and tissue injury. In vitro coculture experiments also demonstrated that exosomes from LPS-stimulated PMNs promote ROS-dependent NET formation. Proteomic analysis revealed enrichment of matrix metalloproteinase 9 (MMP9) expression in exosomes from LPS-stimulated PMNs, and further mechanistic investigations showed that exosomal MMP9 induced NET formation through the p38 MAPK pathway. Clinical data analysis suggests a close association between sepsis severity/prognosis and plasma-derived exosomal MMP9 expression levels. PMN-derived exosomes facilitate the excessive formation of NETs in sepsis, leading to the subsequent development of multiple organ dysfunction. This discovery reveals a novel role for PMN-derived exosomes in the pathogenesis of sepsis-related multiple organ dysfunction and suggests their potential as prognostic indicators for this condition.
Collapse
Affiliation(s)
- Xin Xie
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mengying Pi
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Zhang
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Luyang Zhou
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mei Liu
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Zhu
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Jiao
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xiaoping Gu
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhengliang Ma
- Department of Anaesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
3
|
Hill E, Zhu Y, Brooks MB, Goggs R. Dogs with sepsis are more hypercoagulable and have higher fibrinolysis inhibitor activities than dogs with non-septic systemic inflammation. Front Vet Sci 2025; 12:1559994. [PMID: 40370829 PMCID: PMC12075940 DOI: 10.3389/fvets.2025.1559994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Hemostatic imbalance in dogs with sepsis is characterized by hypercoagulability and hypofibrinolysis. We aimed to determine whether these abnormalities are unique features of sepsis or are also present in dogs with non-septic critical illness. Secondary aims were to assess relationships between coagulation assay results and circulating markers of neutrophil extracellular traps (NETs), and to relate coagulation assay abnormalities with survival in dogs with sepsis. Methods This prospective single-center observational cohort study enrolled 55 client-owned dogs that satisfied at least 2 systemic inflammatory response syndrome (SIRS) criteria. Dogs with a bacterial infection were categorized as sepsis, those without evidence of infection were categorized as non-infectious systemic inflammation (nSIRS). Clotting times, fibrinogen and D-dimer concentrations, and activities of antithrombin (AT), antiplasmin (AP), thrombin activatable fibrinolysis inhibitor (TAFI), and total and active plasminogen activator inhibitor-1 (PAI-1) were measured. Thrombin generation and overall hemostasis potential assays were performed and concentrations of cell-free DNA (cfDNA) and H3.1 nucleosomes quantitated. Results Compared to dogs with nSIRS, dogs with sepsis had higher fibrinogen concentrations, greater endogenous thrombin potential, higher AP and TAFI activities and greater overall hemostasis and coagulation potential values. H3.1 nucleosome and cfDNA concentrations were strongly correlated and significantly associated with various coagulation variables. In dogs with sepsis, non-survivors had lower AT activity, and higher active PAI-1 and H3.1 nucleosome concentrations. Discussion Relative to non-septic critically ill dogs, dogs with sepsis are hyperfibrinogenemic, hypercoagulable and have higher AP and TAFI activities. Concentrations of H3.1 nucleosomes and active PAI-1 and AT activity might have prognostic value in dogs with sepsis.
Collapse
Affiliation(s)
- Emily Hill
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Yao Zhu
- Comparative Coagulation Laboratory, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Marjory B. Brooks
- Comparative Coagulation Laboratory, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Robert Goggs
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Comparative Coagulation Laboratory, Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Wei S, Dai Z, Wu L, Xiang Z, Yang X, Jiang L, Du Z. Lactate-induced macrophage HMGB1 lactylation promotes neutrophil extracellular trap formation in sepsis-associated acute kidney injury. Cell Biol Toxicol 2025; 41:78. [PMID: 40304798 PMCID: PMC12043764 DOI: 10.1007/s10565-025-10026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/13/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Neutrophils play a key role in sepsis-associated acute kidney injury (SAKI), a common and life-threatening complication of organ failure. High mobility group box 1 (HMGB1) modulates inflammatory responses and the formation of neutrophil extracellular traps (NETs). The present work aimed to explore whether HMGB1 lactylation promotes NET formation and exacerbates SAKI. METHODS Venous blood samples were collected from healthy volunteers and SAKI patients. A SAKI mouse model was established using the cecal ligation and puncture method. A coculture system of macrophage-derived exosomes and neutrophils was established. Macrophage-derived exosomes were isolated and identified. ELISAs, immunofluorescence staining, coimmunoprecipitation, and Western blotting were utilized to determine protein levels. RESULTS Elevated blood lactate levels were associated with increased HMGB1 levels in patients with SAKI. In mouse models, lactate increased HMGB1 expression, promoted NET formation, and exacerbated SAKI. Lactate stimulated M1 macrophages to secrete exosomes, leading to the accumulation and release of HMGB1 in the cytoplasm. Additionally, lactate promoted HMGB1 lactylation in macrophages, triggering the release of mitochondrial DNA from neutrophils and activating the cyclic GMP‒AMP synthase/stimulator of interferon genes pathway. CONCLUSION This study revealed that lactate-induced HMGB1 lactylation in macrophages plays a role in promoting NET formation in SAKI through the cGAS/STING pathway. These findings suggest that HMGB1 could be a potential target for therapeutic intervention in SAKI.
Collapse
Affiliation(s)
- Siwei Wei
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Zijuan Dai
- Department of Anesthesiology, The Fourth Hospital of Changsha (Affiliated Changsha Hospital of Hunan Normal University), Changsha City, Hunan Province, China
| | - Lei Wu
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Zhen Xiang
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Xiaoxiao Yang
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Liubing Jiang
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China
| | - Zhen Du
- Department of Anesthesiology, The Affiliated Children's Hospital Of Xiangya School of Medicine, Central South University (Hunan Children's Hospital), No. 86, Ziyuan Road, Yuhua District, Changsha City, 410007, Hunan Province, China.
| |
Collapse
|
5
|
Yue J, Mo L, Zeng G, Ma P, Zhang X, Peng Y, Zhang X, Zhou Y, Jiang Y, Huang N, Cheng Y. Inhibition of neutrophil extracellular traps alleviates blood-brain barrier disruption and cognitive dysfunction via Wnt3/β-catenin/TCF4 signaling in sepsis-associated encephalopathy. J Neuroinflammation 2025; 22:87. [PMID: 40102948 PMCID: PMC11917101 DOI: 10.1186/s12974-025-03395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Neutrophils and neutrophil extracellular traps (NETs) have been identified as crucial contributors in several neuroinflammatory models, such as stroke and traumatic brain injury, but their role in sepsis-associated encephalopathy (SAE) has not been thoroughly investigated. METHODS In this study, we established an SAE model using cecal ligation puncture (CLP) surgery to examine neutrophil infiltration and NETs formation. A protein arginine deiminase 4 (PAD4) inhibitor, GSK484, was employed to suppress NETs release. To assess changes in hippocampal gene expression induced by GSK484 treatment in CLP mice, we utilized RNA sequencing (RNA-Seq) combined with bioinformatics analysis. Additionally, the Elisa, cognitive function test, western bolt and immunofluorescence staining were used to measured hippocampal inflammatory cytokine, cognitive function, and the protein levels of tight junctions (TJs) and adherens junctions (AJs) in SAE mice. We also established a Transwell™ co-culture system using bEnd.3 cells and bone marrow-derived neutrophils to examine the effects of GSK484 on endothelial cell function. This comprehensive approach allowed us to evaluate the impact of NETs inhibition on neuroinflammation, cognitive function, and the underlying molecular mechanisms in the CLP-induced SAE model. RESULTS Our findings revealed that neutrophils were significantly overactivated, releasing abundant NETs in the hippocampus of CLP-induced SAE mice. Inhibition of NET formation using GSK484 led to reduced neuroinflammatory responses, improved blood-brain barrier (BBB) integrity, and enhanced survival rates and cognitive function in SAE mice. RNA-Seq and bioinformatics analyses identified the Wnt signaling pathway as the most significant pathway affected. Subsequent experiments demonstrated that NETs inhibition alleviated BBB damage primarily by increasing the expression of Occludin, a TJs protein, and promoting the formation of the VCL/β-catenin/VE-cadherin complex at AJs, mediated by the Wnt3/β-catenin/TCF4 signaling pathway. CONCLUSIONS Our results suggest that inhibition of NETs may protect BBB permeability and cognitive function through the Wnt3/β-catenin/TCF4 signaling pathway in the context of CLP-induced SAE, which provides a promising strategy for SAE therapy.
Collapse
Affiliation(s)
- Jianhe Yue
- Joint Project of Pinnacle Disciplinary Group, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guotao Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhang Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Zhou
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongxiang Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Ye J, Qin Y, Liu H, Xiong H, Zhang H, Shen H, Zeng F, Shi C, Zhou Z. Inhibiting Neutrophil Extracellular Trap Formation through Iron Regulation for Enhanced Cancer Immunotherapy. ACS NANO 2025; 19:9167-9181. [PMID: 40011227 DOI: 10.1021/acsnano.4c18555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Iron metabolism of neutrophils plays a vital role in neutrophil extracellular trap (NET) formation, which presents as one of the major hurdles to the immune response in the tumor microenvironment. Here, we developed a peptide-drug conjugate (PDC)-based transformable iron nanochelator (TIN) equipped with the ability to regulate the iron metabolism of neutrophils, endowing inhibition of NET formation and the ensuing immunosuppression functions. The TIN could expose the iron-binding motifs through neutrophil elastase-mediated morphological transformation from nanoparticles to β-sheet nanofibers, which further evolve into stable α-helix nanofibers after chelation with iron(II) ions. This process enables a highly specific regulation of iron(II) ions of neutrophils, which turns into an efficient way of inhibiting NET formation and improving the immune response. Furthermore, the TIN showed an improved therapeutic effect in combination with protein arginine deiminase 4 inhibitors and synergistically boosted the anti-PD-L1 treatment. This study designates an iron-regulation strategy to inhibit NET formation, which provides an alternative approach to immune modulation from the perspective of targeting the iron metabolism of neutrophils in cancer immunotherapy.
Collapse
Affiliation(s)
- Jinmin Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hui Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Heng Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huaxiang Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Fantian Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Xia Y, Wang Y, Xiong Q, He J, Wang H, Islam M, Zhou X, Kim A, Zhang H, Huang H, Tsung A. Neutrophil extracellular traps promote MASH fibrosis by metabolic reprogramming of HSC. Hepatology 2025; 81:947-961. [PMID: 38266270 PMCID: PMC11881075 DOI: 10.1097/hep.0000000000000762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatohepatitis (MASH) fibrosis is a reversible stage of liver disease accompanied by inflammatory cell infiltration. Neutrophils extrude a meshwork of chromatin fibers to establish neutrophil extracellular traps (NETs), which play important roles in inflammatory response regulation. Our previous work demonstrated that NETs promote HCC in MASH. However, it is still unknown if NETs play a role in the molecular mechanisms of liver fibrosis. APPROACH AND RESULTS Following 12 weeks of Western diet/carbon tetrachloride, MASH fibrosis was identified in C57BL/6 mice with increased NET formation. However, NET depletion using DNase I treatment or mice knocked out for peptidyl arginine deaminase type IV significantly attenuated the development of MASH fibrosis. NETs were demonstrated to induce HSCs activation, proliferation, and migration through augmented mitochondrial and aerobic glycolysis to provide additional bioenergetic and biosynthetic supplies. Metabolomic analysis revealed markedly an altered metabolic profile upon NET stimulation of HSCs that were dependent on arachidonic acid metabolism. Mechanistically, NET stimulation of toll-like receptor 3 induced cyclooxygenase-2 activation and prostaglandin E2 production with subsequent HSC activation and liver fibrosis. Inhibiting cyclooxygenase-2 with celecoxib reduced fibrosis in our MASH model. CONCLUSIONS Our findings implicate NETs playing a critical role in the development of MASH hepatic fibrosis by inducing metabolic reprogramming of HSCs through the toll-like receptor 3/cyclooxygenase-2/cyclooxygenase-2 pathway. Therefore, NET inhibition may represent an attractive treatment target for MASH liver fibrosis.
Collapse
Affiliation(s)
- Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yu Wang
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Xiong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiayi He
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mozaffarul Islam
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xinyu Zhou
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Alex Kim
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
8
|
Wilske F, Eriksson O, Amini RM, Estrada S, Janols H, Khalil A, Larsson A, Lipcsey M, Mangsbo S, Sigfridsson J, Sjölin J, Skorup P, Wall A, Wilson V, Castegren M, Antoni G. Repeated positron emission tomography tracing neutrophil elastase in a porcine intensive-care sepsis model. Intensive Care Med Exp 2025; 13:14. [PMID: 39904820 PMCID: PMC11794750 DOI: 10.1186/s40635-025-00721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Neutrophil granulocytes are important parts of the defence against bacterial infections. Their action is a two-edged sword, the mediators killing the intruding bacteria are at the same time causing tissue damage. Neutrophil activation is part of the dysregulated immune response to infection defining sepsis and neutrophil elastase is one of the powerful proteases causing both effects and damage. Inhibition of neutrophil elastase has been tried in sepsis and ARDS, so far with inconclusive results. METHODS We used positron emission tomography (PET) combined with computed tomography (CT) and the selective and specific neutrophil elastase inhibitor PET-tracer [11C]GW457427 ([11C]NES), in an intensive care unit porcine Escherichia coli sepsis model with the primary aim to visualise the biodistribution of neutrophil elastase in the initial acute phase of the septic reaction. Repeated PET-CT investigations were performed before and after induction of sepsis. RESULTS At baseline [11C]NES uptake was found in the bone marrow, spleen and liver. The uptake in the bone marrow was markedly increased two hours into the sepsis, whereas in spleen and liver the uptake was not as markedly changed compared to baseline. At 4 h after the sepsis induction [11C]NES in the bone marrow decreased while the uptake increased in the spleen, liver and lungs. CONCLUSION The neutrophil elastase PET-tracer [11C]NES is a novel and unique instrument to study the acute innate neutrophil immune response in sepsis and associated vital organ failure. We here present images and quantitative data of the neutrophil elastase distribution the first hours of acute experimental sepsis. Surprisingly, a pronounced increase of neutrophil elastase was found in the bone marrow 2 h into the sepsis reaction followed at 4 h by increase in the liver, spleen and lungs and a concomitant reduction of the tracer uptake in bone marrow.
Collapse
Affiliation(s)
- Frida Wilske
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden.
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sergio Estrada
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Helena Janols
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Amina Khalil
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Miklós Lipcsey
- Department of Surgical Sciences, Anaesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sara Mangsbo
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Jonathan Sigfridsson
- Department of Surgical Sciences, Molecular Imaging and Medical Physics, Uppsala University, Uppsala, Sweden
| | - Jan Sjölin
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Paul Skorup
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Anders Wall
- Department of Surgical Sciences, Molecular Imaging and Medical Physics, Uppsala University, Uppsala, Sweden
| | - Viola Wilson
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Markus Castegren
- Department of Medical Sciences, Infectious Diseases, Uppsala University, Uppsala, Sweden
- CLINTEC, Karolinska Institutet, Stockholm, Sweden
- Centre for Clinical Research Sörmland, Uppsala University, Uppsala, Sweden
| | - Gunnar Antoni
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Retter A, Singer M, Annane D. "The NET effect": Neutrophil extracellular traps-a potential key component of the dysregulated host immune response in sepsis. Crit Care 2025; 29:59. [PMID: 39905519 PMCID: PMC11796136 DOI: 10.1186/s13054-025-05283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Neutrophils release neutrophil extracellular traps (NETs) as part of a healthy host immune response. NETs physically trap and kill pathogens as well as activating and facilitating crosstalk between immune cells and complement. Excessive or inadequately resolved NETs are implicated in the underlying pathophysiology of sepsis and other inflammatory diseases, including amplification of the inflammatory response and inducing thrombotic complications. Here, we review the growing evidence implicating neutrophils and NETs as central players in the dysregulated host immune response. We discuss potential strategies for modifying NETs to improve patient outcomes and the need for careful patient selection.
Collapse
Affiliation(s)
- Andrew Retter
- Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- School of Immunology and Microbial Sciences, King's College, London, UK.
- Volition, London, UK.
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Djillali Annane
- Department of Intensive Care, Raymond Poincaré Hospital, APHP University Versailles Saint Quentin-University Paris Saclay, INSERM, Garches, France
- IHU PROMETHEUS, Comprehensive Sepsis Center, Garches, France
- University Versailles Saint Quentin-University Paris Saclay, INSERM, Garches, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), Garches, France
| |
Collapse
|
10
|
Strich JR, Ramos-Benitez MJ, Warner S, Kendall H, Stein S, Platt AP, Ramelli SC, Curran SJ, Lach I, Allen K, Babyak A, Perez-Valencia LJ, Minai M, Sun J, Vannella KM, Alves D, Herbert R, Chertow DS. Klebsiella pneumoniae induces dose-dependent shock, organ dysfunction, and coagulopathy in a nonhuman primate critical care model. mBio 2025; 16:e0194324. [PMID: 39576068 PMCID: PMC11708033 DOI: 10.1128/mbio.01943-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
Nonhuman primate models that closely emulate the disease course, pathogenesis, and supportive care provided to human patients in the modern intensive care unit with bacterial sepsis are urgently needed to study pathogenesis and assess novel therapies. We therefore developed a non-human primate model of septic shock that includes supportive care akin to a modern intensive care unit. In this study, we characterized pathogen kinetics and evaluated the physiologic, immunologic, and pathologic responses in this model of septic shock induced by the clinically relevant pathogen Klebsiella pneumoniae across a three-log dose range. We observed dose-dependent bacteremia and circulating levels of Klebsiella pneumoniae DNA and endotoxin. Tachycardia and hypotension occurred in all animals and the study endpoint occurred in 8 of 12 animals that were euthanized. The infused bacterial dose was significantly associated with the severity of renal insufficiency and coagulopathy. Neutrophil activation evidenced by increased CD11b expression, decreased CD62L expression, and increased circulating levels of myeloperoxidase, lactoferrin, and neutrophil extracellular traps; monocyte activation evidenced by increased circulating levels of interleukin-6, tumor necrosis factor-alpha, granulocyte-macrophage colony-stimulating factor, and monocyte chemotactic protein-1; and endothelial activation evidenced by increased circulating levels of syndecan-1 and angiopoietin-II were all consistent with human sepsis. Our model provides an opportunity to study pathogenesis and investigate novel therapeutics for the treatment of bacterial sepsis in the setting of modern supportive care.IMPORTANCEThere is currently a disconnect between the efficacy of sepsis therapies in pre-clinical animal models and human clinical trials. Therefore, developing nonhuman primate models that closely mimic human sepsis pathogenesis to study novel host-targeted therapeutics is a priority. In this study, we developed a model of septic shock with a clinically relevant bacteria (Klebsiella pneumoniae) that provides standard supportive care including mechanical ventilation, invasive hemodynamic monitoring, volume resuscitation, vasopressors, antibiotics, and steroids. In a dose-dependent manner, we observed that this model closely emulates the hemodynamic, end-organ dysfunction, and cellular and soluble responses associated with human sepsis. This validated model provides a unique opportunity to study the pathogenesis of acute septic shock and evaluate host-directed therapeutics in a large animal model that closely emulates the modern-day intensive care unit and supportive critical care.
Collapse
Affiliation(s)
- Jeffrey R. Strich
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- United States Public Health Service Commissioned Corps, Rockville, Maryland, USA
| | - Marcos J. Ramos-Benitez
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Basic Science Department, Microbiology, Ponce Health Sciences University, San Juan, Puerto Rico
| | - Seth Warner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Heather Kendall
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sydney Stein
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrew P. Platt
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sabrina C. Ramelli
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shelly J. Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Izabella Lach
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kiana Allen
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashley Babyak
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Luis J. Perez-Valencia
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahnaz Minai
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin M. Vannella
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Derron Alves
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard Herbert
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel S. Chertow
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
- Critical Care Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- United States Public Health Service Commissioned Corps, Rockville, Maryland, USA
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
11
|
Mathur R, Elsafy S, Press AT, Brück J, Hornef M, Martin L, Schürholz T, Marx G, Bartneck M, Kiessling F, Metselaar JM, Storm G, Lammers T, Sofias AM, Koczera P. Neutrophil Hitchhiking Enhances Liposomal Dexamethasone Therapy of Sepsis. ACS NANO 2024; 18:28866-28880. [PMID: 39393087 DOI: 10.1021/acsnano.4c09054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Sepsis is characterized by a dysregulated immune response and is very difficult to treat. In the cecal ligation and puncture (CLP) mouse model, we show that nanomedicines can effectively alleviate systemic and local septic events by targeting neutrophils. Specifically, by decorating the surface of clinical-stage dexamethasone liposomes with cyclic arginine-glycine-aspartic acid (cRGD) peptides, we promote their engagement with neutrophils in the systemic circulation, leading to their prominent accumulation at primary and secondary sepsis sites. cRGD-targeted dexamethasone liposomes potently reduce immature circulating neutrophils and neutrophil extracellular traps in intestinal sepsis induction sites and the liver. Additionally, they mitigate inflammatory cytokines systemically and locally while preserving systemic IL-10 levels, contributing to lower IFN-γ/IL-10 ratios as compared to control liposomes and free dexamethasone. Our strategy addresses sepsis at the cellular level, illustrating the use of neutrophils both as a therapeutic target and as a chariot for drug delivery.
Collapse
Affiliation(s)
- Ritvik Mathur
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Sara Elsafy
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena 07747, Germany
- Medical Faculty, Friedrich-Schiller-University, Jena 07747, Germany
| | - Julian Brück
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Lukas Martin
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Tobias Schürholz
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Matthias Bartneck
- Department of Medicine III, Medical Faculty, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Josbert Maarten Metselaar
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Gert Storm
- Department of Pharmaceutics, Faculty of Science, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Alexandros Marios Sofias
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
- Center for Integrated Oncology Aachen (CIOA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Patrick Koczera
- Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen 52074, Germany
- Department of Intensive and Intermediate Care Medicine, RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
12
|
Ma Y, Zhao Y, Zhang X. Factors affecting neutrophil functions during sepsis: human microbiome and epigenetics. J Leukoc Biol 2024; 116:672-688. [PMID: 38734968 DOI: 10.1093/jleuko/qiae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis is a severe disease that occurs when the body's immune system reacts excessively to infection. The body's response, which includes an intense antibacterial reaction, can damage its tissues and organs. Neutrophils are the major components of white blood cells in circulation, play a vital role in innate immunity while fighting against infections, and are considered a feature determining sepsis classification. There is a plethora of basic research detailing neutrophil functioning, among which, the study of neutrophil extracellular traps is providing novel insights into mechanisms and treatments of sepsis. This review explores their functions, dysfunctions, and influences in the context of sepsis. The interplay between neutrophils and the human microbiome and the impact of DNA methylation on neutrophil function in sepsis are crucial areas of study. The interaction between neutrophils and the human microbiome is complex, particularly in the context of sepsis, where dysbiosis may occur. We highlight the importance of deciphering neutrophils' functional alterations and their epigenetic features in sepsis because it is critical for defining sepsis endotypes and opening up the possibility for novel diagnostic methods and therapy. Specifically, epigenetic signatures are pivotal since they will provide a novel implication for a sepsis diagnostic method when used in combination with the cell-free DNA. Research is exploring how specific patterns of DNA methylation in neutrophils, detectable in cell-free DNA, could serve as biomarkers for the early detection of sepsis.
Collapse
Affiliation(s)
- Yina Ma
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Yu Zhao
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| | - Xin Zhang
- Department of Urology Surgery, Beijing Chaoyang Hospital, Capital Medical University, Shijingshan District, Beijing 100043, China
| |
Collapse
|
13
|
Zhang D, Guo J, Shi C, Wang Y, Zhang Y, Zhang X, Gong Z. MPO-DNA Complexes and cf-DNA in Patients with Sepsis and Their Clinical Value. Biomedicines 2024; 12:2190. [PMID: 39457503 PMCID: PMC11505433 DOI: 10.3390/biomedicines12102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Neutrophils, as the first line of defense in the immune response, produce neutrophil extracellular traps (NETs) upon activation, which are significant in the pathogenesis and organ damage in sepsis. This study aims to explore the clinical value of myeloperoxidase-DNA (MPO-DNA) and cell-free DNA (cf-DNA) in sepsis patients. Methods: Clinical data were collected from 106 sepsis patients, 25 non-sepsis patients, and 51 healthy controls. Sequential Organ Failure Assessment (SOFA) scores were calculated, and levels of MPO-DNA) complexes and cf-DNA were measured using specific kits. Correlation analyses assessed relationships between indicators, while logistic regression identified independent risk factors. Receiver operating characteristic (ROC) curves calculated the area under the curve (AUC) to evaluate the diagnostic value of the biomarkers. Results: Sepsis patients exhibited significantly elevated levels of MPO-DNA and cf-DNA compared to non-sepsis patients and healthy controls. In sepsis patients, MPO-DNA and cf-DNA levels correlated with inflammation, coagulation, and organ damage indicators, as well as procalcitonin (PCT) levels and SOFA scores. Both C-reactive protein (CRP) and cf-DNA were identified as independent risk factors for sepsis, demonstrating moderate diagnostic value. ROC analysis showed that the combination of MPO-DNA and CRP (AUC: 0.837) enhances the AUC value of CRP (0.777). Conclusions: In summary, elevated serum levels of MPO-DNA and cf-DNA in sepsis patients correlate with SOFA scores and PCT levels, providing reference value for sepsis diagnosis in clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China; (D.Z.); (J.G.); (Y.W.); (Y.Z.); (X.Z.)
| |
Collapse
|
14
|
Wang H, Kim SJ, Lei Y, Wang S, Wang H, Huang H, Zhang H, Tsung A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther 2024; 9:235. [PMID: 39300084 PMCID: PMC11415080 DOI: 10.1038/s41392-024-01933-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/25/2024] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Neutrophil extracellular traps (NETs), crucial in immune defense mechanisms, are renowned for their propensity to expel decondensed chromatin embedded with inflammatory proteins. Our comprehension of NETs in pathogen clearance, immune regulation and disease pathogenesis, has grown significantly in recent years. NETs are not only pivotal in the context of infections but also exhibit significant involvement in sterile inflammation. Evidence suggests that excessive accumulation of NETs can result in vessel occlusion, tissue damage, and prolonged inflammatory responses, thereby contributing to the progression and exacerbation of various pathological states. Nevertheless, NETs exhibit dual functionalities in certain pathological contexts. While NETs may act as autoantigens, aggregated NET complexes can function as inflammatory mediators by degrading proinflammatory cytokines and chemokines. The delineation of molecules and signaling pathways governing NET formation aids in refining our appreciation of NETs' role in immune homeostasis, inflammation, autoimmune diseases, metabolic dysregulation, and cancer. In this comprehensive review, we delve into the multifaceted roles of NETs in both homeostasis and disease, whilst discussing their potential as therapeutic targets. Our aim is to enhance the understanding of the intricate functions of NETs across the spectrum from physiology to pathology.
Collapse
Affiliation(s)
- Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Susan J Kim
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhui Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hai Huang
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
15
|
Urbanowicz T, Olasińska-Wiśniewska A, Wojtasińska E, Filipiak KJ, Tomaszewska M, Sikora J, Krama M, Radek Z, Grodecki K, Krasińska-Płachta A, Krasińska B, Krasiński Z, Tykarski A, Jemielity M, Rupa-Matysek J. Neutrophil Extracellular Trap Formation in Advanced Heart Failure Patients-Preliminary Report. Int J Mol Sci 2024; 25:9633. [PMID: 39273580 PMCID: PMC11487443 DOI: 10.3390/ijms25179633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
In end-stage heart failure, which is characterized by persistent or progressive ventricular dysfunction despite optimal medical therapy, a left ventricular assist device (LVAD) can be beneficial. Congestive heart failure provokes inflammatory and prothrombotic activation. The aim of this study was to evaluate the serum concentration of citrullinated histone 3 (CH3) representing neutrophil extracellular trap (NET) formation in patients referred for LVAD implantation. There were 10 patients with a median age of 61 (57-65) years enrolled in a prospective single-center analysis who underwent LVAD implantation. The CH3 plasma concentration was measured preoperatively and on the 1st and 7th postoperative days, followed by control measurements on the median (Q1-3) 88th (49-143) day. The preoperative CH3 concentration strongly correlated with brain natriuretic peptide (r = 0.879, p < 0.001). Significant differences in CH3 serum concentration were observed between pre- and postoperative measurements, including an increase on the first postoperative day (p < 0.001), as well as a decrease on the seventh day (p = 0.016) and in follow-up (p < 0.001). CH3 concentration, as a marker of NET formation, decreases after LVAD implantation.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Ewelina Wojtasińska
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Krzysztof J Filipiak
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-107 Poznan, Poland
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 00-136 Warsaw, Poland
| | | | - Jędrzej Sikora
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Marta Krama
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Zofia Radek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Kajetan Grodecki
- 1st Cardiology Department, Warsaw University of Medical Sciences, 02-091 Warsaw, Poland
| | | | - Beata Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Science, 61-848 Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| | - Joanna Rupa-Matysek
- Department of Hematology and Bone Marrow Transplantation, Poznan University of Medical Sciences, 61-107 Poznan, Poland
| |
Collapse
|
16
|
Warner S, Teague HL, Ramos-Benitez MJ, Panicker S, Allen K, Gairhe S, Moyer T, Parachalil Gopalan B, Douagi I, Shet A, Kanthi Y, Suffredini AF, Chertow DS, Strich JR. R406 reduces lipopolysaccharide-induced neutrophil activation. Cell Immunol 2024; 403-404:104860. [PMID: 39084187 PMCID: PMC11387147 DOI: 10.1016/j.cellimm.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Modulating SYK has been demonstrated to have impacts on pathogenic neutrophil responses in COVID-19. During sepsis, neutrophils are vital in early bacterial clearance but also contribute to the dysregulated immune response and organ injury when hyperactivated. Here, we evaluated the impact of R406, the active metabolite of fostamatinib, on neutrophils stimulated by LPS. We demonstrate that R406 was able to effectively inhibit NETosis, degranulation, ROS generation, neutrophil adhesion, and the formation of CD16low neutrophils that have been linked to detrimental outcomes in severe sepsis. Further, the neutrophils remain metabolically active, capable of releasing cytokines, perform phagocytosis, and migrate in response to IL-8. Taken together, this data provides evidence of the potential efficacy of utilizing fostamatinib in bacterial sepsis.
Collapse
Affiliation(s)
- Seth Warner
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marcos J Ramos-Benitez
- Basic Science Department, Microbiology Division, School of Medicine, Ponce Health Sciences University, Ponce, PR, USA
| | - Sumith Panicker
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiana Allen
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tom Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bindu Parachalil Gopalan
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIH Center for Human Immunology, Inflammation, and Autoimmunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arun Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Dadam MN, Hien LT, Makram EM, Sieu LV, Morad A, Khalil N, Tran L, Makram AM, Huy NT. Role of cell-free DNA levels in the diagnosis and prognosis of sepsis and bacteremia: A systematic review and meta-analysis. PLoS One 2024; 19:e0305895. [PMID: 39208340 PMCID: PMC11361684 DOI: 10.1371/journal.pone.0305895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sepsis remains a major cause of mortality in intensive care units (ICUs). Prompt diagnosis and effective management are imperative for better outcomes. In this systematic review and meta-analysis, we explore the potential of circulating cell-free DNA (cfDNA), as a promising tool for early sepsis detection and prognosis assessment, aiming to address limitations associated with traditional diagnostic methods. METHODS Following PRISMA guidelines, we collected relevant literature from thirteen databases. Studies were included if they analyzed quantitative diagnostic or prognostic cfDNA levels in humans in case of sepsis. We collected data on basic study characteristics, baseline patient demographics (e.g. age and sex), and cfDNA levels across different stages of sepsis. Pooled SMD with 95%-CI was calculated, and Comprehensive Meta-Analysis (CMA) software facilitated meta-analysis. Receiver operating characteristic (ROC) curves were generated to assess cfDNA's combined sensitivity and specificity in diagnostics and prognostics. RESULTS We included a final of 44 studies, of which, only 32 with 2950 participants were included in the meta-analysis. cfDNA levels were higher in septic patients compared to healthy controls (SMD = 3.303; 95%-CI [2.461-4.145], p<0.01). Furthermore, cfDNA levels were higher in non-survivors than survivors (SMD = 1.554; 95%-CI [0.905-2.202], p<0.01). Prognostic studies demonstrated a pooled sensitivity and specificity of 0.78, while diagnostic studies showed a sensitivity of 0.81 and a specificity of 0.87. CONCLUSION These findings show that cfDNA levels are significantly higher in sepsis patients compared to control groups and non-survivors in comparison to survivors among both adult and pediatric populations.
Collapse
Affiliation(s)
- Mohammad Najm Dadam
- Department of Geriatrics, Helios Clinic Schwelm, Schwelm, Germany
- Online Research Club, Nagasaki, Japan
| | - Le Thanh Hien
- Online Research Club, Nagasaki, Japan
- Department of Obstetrics and Gynecology, Ho Chi Minh City Medicine and Pharmacy University, Ho Chi Minh City, Vietnam
| | - Engy M. Makram
- Online Research Club, Nagasaki, Japan
- College of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Lam Vinh Sieu
- Online Research Club, Nagasaki, Japan
- Faculty of Medicine, Moscow State University of Medicine and Dentistry Named After A.I. Yevdokimov, Moscow, Russia
| | - Ahmad Morad
- Online Research Club, Nagasaki, Japan
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nada Khalil
- Online Research Club, Nagasaki, Japan
- School of Medicine, New Giza University, Giza, Egypt
| | - Linh Tran
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Abdelrahman M. Makram
- Online Research Club, Nagasaki, Japan
- School of Public Health, Imperial College London, London, United Kingdom
| | - Nguyen Tien Huy
- Online Research Club, Nagasaki, Japan
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
18
|
Zhang Y, Wu D, Sun Q, Luo Z, Zhang Y, Wang B, Chen W. Atorvastatin combined with imipenem alleviates lung injury in sepsis by inhibiting neutrophil extracellular trap formation via the ERK/NOX2 signaling pathway. Free Radic Biol Med 2024; 220:179-191. [PMID: 38704053 DOI: 10.1016/j.freeradbiomed.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by the invasion of pathogenic microorganisms. Despite major advances in diagnosis and technology, morbidity and mortality remain high. The level of neutrophil extracellular traps (NETs) is closely associated with the progression and prognosis of sepsis, suggesting the regulation of NET formation as a new strategy in sepsis treatment. Owing to its pleiotropic effects, atorvastatin, a clinical lipid-lowering drug, affects various aspects of sepsis-related inflammation and immune responses. To align closely with clinical practice, we combined it with imipenem for the treatment of sepsis. In this study, we used a cecum ligation and puncture-induced lung injury mouse model and employed techniques including western blot, immunofluorescence, and enzyme-linked immunosorbent assay to measure the levels of NETs and other sepsis-related lung injury indicators. Our findings indicate that atorvastatin effectively inhibited the formation of NETs. When combined with imipenem, it significantly alleviated lung injury, reduced systemic inflammation, and improved the 7-day survival rate of septic mice. Additionally, we explored the inhibitory mechanism of atorvastatin on NET formation in vitro, revealing its potential action through the ERK/NOX2 pathway. Therefore, atorvastatin is a potential immunomodulatory agent that may offer new treatment strategies for patients with sepsis in clinical settings.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Di Wu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Qishun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Zhen Luo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Yuhao Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| | - Bowei Wang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Wenting Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, The Key Laboratory of Precision Anesthesia & Perioperative Organ Protection, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
19
|
Xiao Y, Ding T, Fang H, Lin J, Chen L, Ma D, Zhang T, Cui W, Ma J. Innovative Bio-based Hydrogel Microspheres Micro-Cage for Neutrophil Extracellular Traps Scavenging in Diabetic Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401195. [PMID: 38582501 DOI: 10.1002/advs.202401195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/09/2024] [Indexed: 04/08/2024]
Abstract
Neutrophil extracellular traps (NETs) seriously impede diabetic wound healing. The disruption or scavenging of NETs using deoxyribonuclease (DNase) or cationic nanoparticles has been limited by liberating trapped bacteria, short half-life, or potential cytotoxicity. In this study, a positive correlation between the NETs level in diabetic wound exudation and the severity of wound inflammation in diabetic patients is established. Novel NETs scavenging bio-based hydrogel microspheres 'micro-cage', termed mPDA-PEI@GelMA, is engineered by integrating methylacrylyl gelatin (GelMA) hydrogel microspheres with cationic polyethyleneimine (PEI)-functionalized mesoporous polydopamine (mPDA). This unique 'micro-cage' construct is designed to non-contact scavenge of NETs between nanoparticles and the diabetic wound surface, minimizing biological toxicity and ensuring high biosafety. NETs are introduced into 'micro-cage' along with wound exudation, and cationic mPDA-PEI immobilizes them inside the 'micro-cage' through a strong binding affinity to the cfDNA web structure. The findings demonstrate that mPDA-PEI@GelMA effectively mitigates pro-inflammatory responses associated with diabetic wounds by scavenging NETs both in vivo and in vitro. This work introduces a novel nanoparticle non-contact NETs scavenging strategy to enhance diabetic wound healing processes, with potential benefits in clinical applications.
Collapse
Affiliation(s)
- Yongqiang Xiao
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Tao Ding
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - He Fang
- Department of Burn Surgery, The First Affiliated Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Jiawei Lin
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Lili Chen
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, P. R. China
| |
Collapse
|
20
|
Kim TS, Moutsopoulos NM. Neutrophils and neutrophil extracellular traps in oral health and disease. Exp Mol Med 2024; 56:1055-1065. [PMID: 38689085 PMCID: PMC11148164 DOI: 10.1038/s12276-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/02/2024] Open
Abstract
Neutrophils perform essential functions in antimicrobial defense and tissue maintenance at mucosal barriers. However, a dysregulated neutrophil response and, in particular, the excessive release of neutrophil extracellular traps (NETs) are implicated in the pathology of various diseases. In this review, we provide an overview of the basic concepts related to neutrophil functions, including NET formation, and discuss the mechanisms associated with NET activation and function in the context of the prevalent oral disease periodontitis.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
21
|
Gilmour A, Hughes C, Giam YH, Hull RC, Pembridge T, Abo-Leyah H, Thompson AR, Condliffe AM, Shoemark A, Chalmers JD, Long MB. A serum calprotectin lateral flow test as an inflammatory and prognostic marker in acute lung infection: a prospective observational study. ERJ Open Res 2024; 10:00059-2024. [PMID: 38887680 PMCID: PMC11181086 DOI: 10.1183/23120541.00059-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 06/20/2024] Open
Abstract
A rapid, quantitative serum S100A8/A9 (calprotectin) lateral flow test in combination with clinical status predicted outcomes in people hospitalised with COVID-19 and associated with a patient cluster driven by markers of neutrophil activation https://bit.ly/48e1BIv.
Collapse
Affiliation(s)
- Amy Gilmour
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- These authors contributed equally
| | - Chloe Hughes
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- These authors contributed equally
| | - Yan Hui Giam
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Rebecca C. Hull
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
- University of Sheffield, Sheffield, UK
| | - Thomas Pembridge
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | - Hani Abo-Leyah
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | | | | | - Amelia Shoemark
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| | | | - Merete B. Long
- Molecular and Clinical Medicine, University of Dundee, Dundee, UK
| |
Collapse
|
22
|
Alexa AL, Sargarovschi S, Ionescu D. Neutrophils and Anesthetic Drugs: Implications in Onco-Anesthesia. Int J Mol Sci 2024; 25:4033. [PMID: 38612841 PMCID: PMC11012681 DOI: 10.3390/ijms25074033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Apart from being a significant line of defense in the host defense system, neutrophils have many immunological functions. Although there are not many publications that accurately present the functions of neutrophils in relation to oncological pathology, their activity and implications have been studied a lot recently. This review aims to extensively describe neutrophils functions'; their clinical implications, especially in tumor pathology; the value of clinical markers related to neutrophils; and the implications of neutrophils in onco-anesthesia. This review also aims to describe current evidence on the influence of anesthetic drugs on neutrophils' functions and their potential influence on perioperative outcomes.
Collapse
Affiliation(s)
- Alexandru Leonard Alexa
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
- Onco-Anaesthesia Research Group, ESAIC, 1000 Brussels, Belgium
| | - Sergiu Sargarovschi
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
| | - Daniela Ionescu
- Department of Anesthesia and Intensive Care I, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.S.); (D.I.)
- Association for Research in Anesthesia and Intensive Care (ACATI), 400162 Cluj-Napoca, Romania
- Onco-Anaesthesia Research Group, ESAIC, 1000 Brussels, Belgium
- Outcome Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
23
|
Bertolotto M, Verzola D, Contini P, de Totero D, Tirandi A, Ramoni D, Ministrini S, Giacobbe DR, Bonaventura A, Vecchié A, Castellani L, Mirabella M, Arboscello E, Liberale L, Viazzi F, Bassetti M, Montecucco F, Carbone F. Osteopontin is associated with neutrophil extracellular trap formation in elderly patients with severe sepsis. Eur J Clin Invest 2024; 54:e14159. [PMID: 38264915 DOI: 10.1111/eci.14159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Affiliation(s)
- Maria Bertolotto
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Paola Contini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniela de Totero
- Molecular Pathology Unit IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Amedeo Tirandi
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Daniele Roberto Giacobbe
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Aldo Bonaventura
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | - Alessandra Vecchié
- Medicina Generale 1, Medical Center, Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy
| | | | | | | | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Francesca Viazzi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Clinic of Nephrology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
24
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
25
|
Yang Q, Langston JC, Prosniak R, Pettigrew S, Zhao H, Perez E, Edelmann H, Mansoor N, Merali C, Merali S, Marchetti N, Prabhakarpandian B, Kiani MF, Kilpatrick LE. Distinct functional neutrophil phenotypes in sepsis patients correlate with disease severity. Front Immunol 2024; 15:1341752. [PMID: 38524125 PMCID: PMC10957777 DOI: 10.3389/fimmu.2024.1341752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Sepsis is a clinical syndrome defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis is a highly heterogeneous syndrome with distinct phenotypes that impact immune function and response to infection. To develop targeted therapeutics, immunophenotyping is needed to identify distinct functional phenotypes of immune cells. In this study, we utilized our Organ-on-Chip assay to categorize sepsis patients into distinct phenotypes using patient data, neutrophil functional analysis, and proteomics. Methods Following informed consent, neutrophils and plasma were isolated from sepsis patients in the Temple University Hospital ICU (n=45) and healthy control donors (n=7). Human lung microvascular endothelial cells (HLMVEC) were cultured in the Organ-on-Chip and treated with buffer or cytomix ((TNF/IL-1β/IFNγ). Neutrophil adhesion and migration across HLMVEC in the Organ-on-Chip were used to categorize functional neutrophil phenotypes. Quantitative label-free global proteomics was performed on neutrophils to identify differentially expressed proteins. Plasma levels of sepsis biomarkers and neutrophil extracellular traps (NETs) were determined by ELISA. Results We identified three functional phenotypes in critically ill ICU sepsis patients based on ex vivo neutrophil adhesion and migration patterns. The phenotypes were classified as: Hyperimmune characterized by enhanced neutrophil adhesion and migration, Hypoimmune that was unresponsive to stimulation, and Hybrid with increased adhesion but blunted migration. These functional phenotypes were associated with distinct proteomic signatures and differentiated sepsis patients by important clinical parameters related to disease severity. The Hyperimmune group demonstrated higher oxygen requirements, increased mechanical ventilation, and longer ICU length of stay compared to the Hypoimmune and Hybrid groups. Patients with the Hyperimmune neutrophil phenotype had significantly increased circulating neutrophils and elevated plasma levels NETs. Conclusion Neutrophils and NETs play a critical role in vascular barrier dysfunction in sepsis and elevated NETs may be a key biomarker identifying the Hyperimmune group. Our results establish significant associations between specific neutrophil functional phenotypes and disease severity and identify important functional parameters in sepsis pathophysiology that may provide a new approach to classify sepsis patients for specific therapeutic interventions.
Collapse
Affiliation(s)
- Qingliang Yang
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Jordan C. Langston
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Roman Prosniak
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Samantha Pettigrew
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Huaqing Zhao
- Department of Biomedical Education and Data Science, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Edwin Perez
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hannah Edelmann
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Nadia Mansoor
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Carmen Merali
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Salim Merali
- School of Pharmacy, Temple University, Philadelphia, PA, United States
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | | | - Mohammad F. Kiani
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, United States
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Laurie E. Kilpatrick
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Ngo AT, Skidmore A, Oberg J, Yarovoi I, Sarkar A, Levine N, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Platelet factor 4 limits neutrophil extracellular trap- and cell-free DNA-induced thrombogenicity and endothelial injury. JCI Insight 2023; 8:e171054. [PMID: 37991024 PMCID: PMC10721321 DOI: 10.1172/jci.insight.171054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/02/2023] [Indexed: 11/23/2023] Open
Abstract
Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.
Collapse
Affiliation(s)
- Anh T.P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Abigail Skidmore
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jenna Oberg
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nate Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Institute of Medical Biology, Polish Academy of Science, Lodz, Poland
| | | | | | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Douglas B. Cines
- Department of Medicine, and
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Sun B, Lei M, Zhang J, Kang H, Liu H, Zhou F. Acute lung injury caused by sepsis: how does it happen? Front Med (Lausanne) 2023; 10:1289194. [PMID: 38076268 PMCID: PMC10702758 DOI: 10.3389/fmed.2023.1289194] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2024] Open
Abstract
Sepsis is a systemic inflammatory disease caused by severe infections that involves multiple systemic organs, among which the lung is the most susceptible, leaving patients highly vulnerable to acute lung injury (ALI). Refractory hypoxemia and respiratory distress are classic clinical symptoms of ALI caused by sepsis, which has a mortality rate of 40%. Despite the extensive research on the mechanisms of ALI caused by sepsis, the exact pathological process is not fully understood. This article reviews the research advances in the pathogenesis of ALI caused by sepsis by focusing on the treatment regimens adopted in clinical practice for the corresponding molecular mechanisms. This review can not only contribute to theories on the pathogenesis of ALI caused by sepsis, but also recommend new treatment strategies for related injuries.
Collapse
Affiliation(s)
- Baisheng Sun
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Mingxing Lei
- Department of Orthopedic Surgery, Hainan Hospital of Chinese PLA General Hospital, Beijing, China
- Department of Orthopedic Surgery, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China
| | - Jiaqi Zhang
- Medical School of Chinese PLA, Beijing, China
| | - Hongjun Kang
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hui Liu
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Feihu Zhou
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Medical Engineering Laboratory of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Charoensappakit A, Sae-Khow K, Rattanaliam P, Vutthikraivit N, Pecheenbuvan M, Udomkarnjananun S, Leelahavanichkul A. Cell-free DNA as diagnostic and prognostic biomarkers for adult sepsis: a systematic review and meta-analysis. Sci Rep 2023; 13:19624. [PMID: 37949942 PMCID: PMC10638380 DOI: 10.1038/s41598-023-46663-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Although cell-free DNA (cfDNA) is an emerging sepsis biomarker, the use of cfDNA, especially as diagnostic and prognostic indicators, has surprisingly not been systemically analyzed. Data of adult patients with sepsis that conducted cfDNA measurement within 24 h of the admission was collected from PubMed, ScienceDirect, Scopus, and Cochrane Library until October 2022. The Quality in Prognosis Studies (QUIPS) and Quality Assessment in Diagnostic Studies-2 (QUADAS-2) tools were used to reduce the risk of biased assessment. The mean difference (MD) of cfDNA concentration and the standardized mean difference (SMD) between populations was calculated using Review Manager (RevMan) version 5.4.1 package software. Pooled analysis from 18 included studies demonstrated increased serum cfDNA levels in sepsis when compared with healthy control (SMD = 1.02; 95% confidence interval (CI) 0.46-1.57) or non-sepsis patients in the intensive care unit (ICU) (SMD = 1.03; 95% CI 0.65-1.40), respectively. Meanwhile, a slight decrease in the statistical value was observed when compared with non-sepsis ICU patients with SIRS (SMD = 0.74; 95% 0.41-1.06). The lower cfDNA levels were also observed in sepsis survivors compared to the non-survivors (SMD at 1.43; 95%CI 0.69-2.17) with the pooled area under the receiver operating characteristic curve (AUC) of 0.76 (95% CI 0.64-0.87) for the mortality prediction. Levels of cfDNA showed a pooled sensitivity of 0.81 (95% CI 0.75-0.86) and specificity of 0.72 (95% CI 0.65-0.78) with pooled diagnostic odd ratio (DOR) at 25.03 (95% CI 5.48-114.43) for the identification of sepsis in critically ill conditions. The cfDNA levels were significantly higher in patients with sepsis and being a helpful indicator for the critically ill conditions of sepsis. Nevertheless, results of the test must be interpreted carefully with the context of all clinical situations.
Collapse
Affiliation(s)
- Awirut Charoensappakit
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicines, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kritsanawan Sae-Khow
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicines, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pongpera Rattanaliam
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuntanuj Vutthikraivit
- Division of Critical Care Medicine, Department of Internal Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Monvasi Pecheenbuvan
- Division of Critical Care Medicine, Department of Internal Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicines, Chulalongkorn University, Bangkok, 10330, Thailand.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
29
|
Islam MM, Takeyama N. Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. Int J Mol Sci 2023; 24:15805. [PMID: 37958788 PMCID: PMC10649138 DOI: 10.3390/ijms242115805] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Neutrophils are the principal trouper of the innate immune system. Activated neutrophils undergo a noble cell death termed NETosis and release a mesh-like structure called neutrophil extracellular traps (NETs) as a part of their defensive strategy against microbial pathogen attack. This web-like architecture includes a DNA backbone embedded with antimicrobial proteins like myeloperoxidase (MPO), neutrophil elastase (NE), histones and deploys in the entrapment and clearance of encountered pathogens. Thus NETs play an inevitable beneficial role in the host's protection. However, recent accumulated evidence shows that dysregulated and enhanced NET formation has various pathological aspects including the promotion of sepsis, pulmonary, cardiovascular, hepatic, nephrological, thrombotic, autoimmune, pregnancy, and cancer diseases, and the list is increasing gradually. In this review, we summarize the NET-mediated pathophysiology of different diseases and focus on some updated potential therapeutic approaches against NETs.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chattogram 4202, Bangladesh
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, Aichi Medical University, Aichi 480-1195, Japan
| |
Collapse
|
30
|
Liu D, Xiao M, Zhou J, Wang P, Peng J, Mao W, Hu Y, Liu Y, Yin J, Ke L, Li W. PFKFB3 promotes sepsis-induced acute lung injury by enhancing NET formation by CXCR4 hi neutrophils. Int Immunopharmacol 2023; 123:110737. [PMID: 37543012 DOI: 10.1016/j.intimp.2023.110737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
CXCR4hi neutrophils, which are a subset of neutrophils with high CXCR4 expression, are important contributors to sepsis-induced acute lung injury (ALI). PFKFB3, a key glycolysis gene, plays an essential role in neutrophil inflammatory activation. However, the specific involvement of PFKFB3 in sepsis-induced ALI remains unclear. Here, we observed that PFKFB3 was upregulated in CXCR4hi neutrophils and facilitated sepsis-induced ALI. Mechanistically, we observed that PFKFB3 promoted sepsis-induced ALI by enhancing neutrophil extracellular trap (NET) formation by CXCR4hi neutrophils. Further study indicated that PFKFB3 promoted NET formation by upregulating glycolytic metabolism in CXCR4hi neutrophils. In summary, our study uncovered a new mechanism by which CXCR4hi neutrophils trigger sepsis-induced ALI by promoting NET formation, which is supported by PFKFB3-mediated glycolytic metabolism.
Collapse
Affiliation(s)
- Dadong Liu
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Xiao
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Zhou
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Peng Wang
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingwen Peng
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Wenjian Mao
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuepeng Hu
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yuxiu Liu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiangtao Yin
- Department of Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Digestive Disease Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Lu Ke
- Center of Severe Acute Pancreatitis (CSAP), Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
31
|
Li X, Xiao S, Filipczak N, Yalamarty SSK, Shang H, Zhang J, Zheng Q. Role and Therapeutic Targeting Strategies of Neutrophil Extracellular Traps in Inflammation. Int J Nanomedicine 2023; 18:5265-5287. [PMID: 37746050 PMCID: PMC10516212 DOI: 10.2147/ijn.s418259] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are large DNA reticular structures secreted by neutrophils and decorated with histones and antimicrobial proteins. As a key mechanism for neutrophils to resist microbial invasion, NETs play an important role in the killing of microorganisms (bacteria, fungi, and viruses). Although NETs are mostly known for mediating microbial killing, increasing evidence suggests that excessive NETs induced by stimulation of physical and chemical components, microorganisms, and pathological factors can exacerbate inflammation and organ damage. This review summarizes the induction and role of NETs in inflammation and focuses on the strategies of inhibiting NETosis and the mechanisms involved in pathogen evasion of NETs. Furthermore, herbal medicine inhibitors and nanodelivery strategies improve the efficiency of inhibition of excessive levels of NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, People’s Republic of China
| |
Collapse
|
32
|
Liu Y, Shu H, Wan P, Wang X, Xie H. Neutrophil extracellular traps predict postoperative pulmonary complications in paediatric patients undergoing parental liver transplantation. BMC Gastroenterol 2023; 23:237. [PMID: 37442949 DOI: 10.1186/s12876-023-02744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/25/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Parental liver transplantation (PLT) improves long-term survival rates in paediatric hepatic failure patients; however, the mechanism of PLT-induced postoperative pulmonary complications (PPCs) is unclear. METHODS A total of 133 paediatric patients undergoing PLT were included. Serum levels of NET components, including circulating free DNA (cfDNA), DNA-histone complex, and myeloperoxidase (MPO)-DNA complex, were detected. The occurrence of PPCs post-PLT, prolonged intensive care unit (ICU) stay and death within one year were recorded as the primary and secondary outcomes. RESULTS The overall rate of PPCs in the hospital was 47.4%. High levels of serum cfDNA, DNA-histone complexes and MPO-DNA complexes were associated with an increased risk of PPCs (for cfDNA, OR 2.24; for DNA-histone complex, OR 1.64; and for MPO-DNA, OR 1.94), prolonged ICU stay (OR 1.98, 4.26 and 3.69, respectively), and death within one year (OR 1.53, 2.65 and 1.85, respectively). The area under the curve of NET components for the prediction of PPCs was 0.843 for cfDNA, 0.813 for DNA-histone complexes, and 0.906 for MPO-DNA complexes. During the one-year follow-up, the death rate was higher in patients with PPCs than in patients without PPCs (14.3% vs. 2.9%, P = 0.001). CONCLUSIONS High serum levels of NET components are associated with an increased incidence of PPCs and death within one year in paediatric patients undergoing PLT. Serum levels of NET components serve as a biomarker for post-PLT PPCs and a prognostic indicator.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road Suzhou, Jiangsu, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Huigang Shu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodong Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, China.
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road Suzhou, Jiangsu, China.
| |
Collapse
|
33
|
Maneta E, Aivalioti E, Tual-Chalot S, Emini Veseli B, Gatsiou A, Stamatelopoulos K, Stellos K. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol 2023; 14:1144229. [PMID: 37081895 PMCID: PMC10110956 DOI: 10.3389/fimmu.2023.1144229] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
Sepsis is a life-threatening clinical syndrome characterized by multiorgan dysfunction caused by a dysregulated or over-reactive host response to infection. During sepsis, the coagulation cascade is triggered by activated cells of the innate immune system, such as neutrophils and monocytes, resulting in clot formation mainly in the microcirculation, a process known as immunothrombosis. Although this process aims to protect the host through inhibition of the pathogen’s dissemination and survival, endothelial dysfunction and microthrombotic complications can rapidly lead to multiple organ dysfunction. The development of treatments targeting endothelial innate immune responses and immunothrombosis could be of great significance for reducing morbidity and mortality in patients with sepsis. Medications modifying cell-specific immune responses or inhibiting platelet–endothelial interaction or platelet activation have been proposed. Herein, we discuss the underlying mechanisms of organ-specific endothelial dysfunction and immunothrombosis in sepsis and its complications, while highlighting the recent advances in the development of new therapeutic approaches aiming at improving the short- or long-term prognosis in sepsis.
Collapse
Affiliation(s)
- Eleni Maneta
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
- *Correspondence: Eleni Maneta, ; Konstantinos Stellos, ;
| | - Evmorfia Aivalioti
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Besa Emini Veseli
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
| | - Aikaterini Gatsiou
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
- *Correspondence: Eleni Maneta, ; Konstantinos Stellos, ;
| |
Collapse
|
34
|
Peng F, Xie J, Liu H, Zheng Y, Qian X, Zhou R, Zhong H, Zhang Y, Li M. Shifting focus from bacteria to host neutrophil extracellular traps of biodegradable pure Zn to combat implant centered infection. Bioact Mater 2023; 21:436-449. [PMID: 36185738 PMCID: PMC9483647 DOI: 10.1016/j.bioactmat.2022.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 10/28/2022] Open
Abstract
The widespread use of orthopedic implants to support or replace bones is increasingly threatened by the risk of incurable bacterial infections, impenetrable microbial biofilms, and irreversible antibiotic resistance. In the past, the development of anti-infective biomaterials focused solely on direct antibacterial properties while ignoring the host's immune response. Inspired by the clearance of infection by the innate neutrophil response and participation in anti-infectious immunity of Zn ions, we report an innovative neutrophil extracellular traps (NETs) strategy, induced by biodegradable pure Zn, which achieved therapeutic efficacy toward biomaterial-related infections. Our in vitro and in vivo data showed that pure Zn was favorable for NETs formation by promoting the release of DNA fibers and granule proteins in a reactive oxygen species (ROS)-dependent manner, thereby retraining and degrading bacteria with an efficiency of up to 99.5%. Transcriptome analysis revealed that cytoskeletal rearrangement and toll-like receptor (TLR) signaling pathway were also involved in Zn-induced NETs formation. Furthermore, the in vivo results of a Staphylococcus aureus (S. aureus)-infected rat model verified that pure Zn potentiated the bactericidal capability of neutrophils around implants, and promoted osseointegration in S. aureus-infected rat femurs. This antibacterial immunity concept lays a foundation for the development of other antibacterial biomaterials and holds great promise for treating orthopedic infections.
Collapse
Affiliation(s)
- Feng Peng
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Juning Xie
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Haiming Liu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xin Qian
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ruixiang Zhou
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Hua Zhong
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southerm Medical University, Guangzhou, 510009, China
| | - Yu Zhang
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| |
Collapse
|
35
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
36
|
Guo W, Gong Q, Zong X, Wu D, Li Y, Xiao H, Song J, Zhang S, Fu S, Feng Z, Zhuang L. GPR109A controls neutrophil extracellular traps formation and improve early sepsis by regulating ROS/PAD4/Cit-H3 signal axis. Exp Hematol Oncol 2023; 12:15. [PMID: 36721229 PMCID: PMC9887879 DOI: 10.1186/s40164-023-00376-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 01/21/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) is the key means for neutrophils to resist bacterial invasion. Sepsis is a systemic inflammatory response syndrome caused by infection. METHODS In our study, qRT-PCR was used to detect the gene expression in neutrophils, Western blot was used to detect the protein expression in mouse tissues and neutrophils, flow cytometry was used to detect the purity of neutrophils in the whole blood and immunofluorescence was used to detect the NETs formation. RESULTS In this study, we analyzed the NETs formation in the blood of patients with sepsis. The results showed that a large number of NETs appeared. And the expression of GPR109A in neutrophils of patients with sepsis was significantly up regulated. Then we collected neutrophils from WT mice and GPR109A-/- mice and found that GPR109A knockout could significantly inhibit the early NETs formation of neutrophils. The results also showed that knockout of GPR109A or inhibition of the NETs formation could increase the inflammatory response of liver, spleen, lung and kidney in mice, thus affecting the disease process of sepsis. Then we observed the death of mice in 16 days. The results showed that inhibiting the NETs formation could significantly affect the early mortality of mice, while knocking out GPR109A could directly affect the mortality of the whole period. CONCLUSIONS This study confirmed the regulatory effect of GPR109A on early NETs formation for the first time, and provided a new target for the treatment of sepsis.
Collapse
Affiliation(s)
- Wenjin Guo
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Qian Gong
- grid.13402.340000 0004 1759 700XCollege of Animal Sciences, Zhejiang University, Hangzhou, 310030 China
| | - Xiaofeng Zong
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Dianjun Wu
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Yuhang Li
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Huijie Xiao
- grid.415954.80000 0004 1771 3349Department of Gastrointestinal and Colorectal Surgery, China-Japan Union, Hospital of Jilin University, Changchun, 130033 China
| | - Jie Song
- grid.414252.40000 0004 1761 8894Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,grid.414252.40000 0004 1761 8894Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China ,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Sheng Zhang
- grid.414252.40000 0004 1761 8894Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,grid.414252.40000 0004 1761 8894Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China ,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Shoupeng Fu
- grid.64924.3d0000 0004 1760 5735College of Veterinary Medicine, Jilin University, Changchun, 130062 China
| | - Zhichun Feng
- grid.414252.40000 0004 1761 8894Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,grid.414252.40000 0004 1761 8894Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China ,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| | - Lu Zhuang
- grid.414252.40000 0004 1761 8894Senior Department of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,grid.414252.40000 0004 1761 8894Institute of Pediatrics, The Seventh Medical Center of PLA General Hospital, Beijing, China ,National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing, China ,Beijing Key Laboratory of Pediatric Organ Failure, Beijing, China
| |
Collapse
|
37
|
Ngo ATP, Sarkar A, Yarovoi I, Levine ND, Bochenek V, Zhao G, Rauova L, Kowalska MA, Eckart K, Mangalmurti NS, Rux A, Cines DB, Poncz M, Gollomp K. Neutrophil extracellular trap stabilization by platelet factor 4 reduces thrombogenicity and endothelial cell injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.522931. [PMID: 36711969 PMCID: PMC9881987 DOI: 10.1101/2023.01.09.522931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neutrophil extracellular traps (NETs) are abundant in sepsis, and proposed NET-directed therapies in sepsis prevent their formation or accelerate degradation. Yet NETs are important for microbial entrapment, as NET digestion liberates pathogens and NET degradation products (NDPs) that deleteriously promote thrombosis and endothelial cell injury. We proposed an alternative strategy of NET-stabilization with the chemokine, platelet factor 4 (PF4, CXCL4), which we have shown enhances NET-mediated microbial entrapment. We now show that NET compaction by PF4 reduces their thrombogenicity. In vitro, we quantified plasma thrombin and fibrin generation by intact or degraded NETs and cell-free (cf) DNA fragments, and found that digested NETs and short DNA fragments were more thrombogenic than intact NETs and high molecular weight genomic DNA, respectively. PF4 reduced the thrombogenicity of digested NETs and DNA by interfering, in part, with contact pathway activation. In endothelial cell culture studies, short DNA fragments promoted von Willebrand factor release and tissue factor expression via a toll-like receptor 9-dependent mechanism. PF4 blocked these effects. Cxcl4-/- mice infused with cfDNA exhibited higher plasma thrombin anti-thrombin (TAT) levels compared to wild-type controls. Following challenge with bacterial lipopolysaccharide, Cxcl4-/- mice had similar elevations in plasma TAT and cfDNA, effects prevented by PF4 infusion. Thus, NET-stabilization by PF4 prevents the release of short fragments of cfDNA, limiting the activation of the contact coagulation pathway and reducing endothelial injury. These results support our hypothesis that NET-stabilization reduces pathologic sequelae in sepsis, an observation of potential clinical benefit.
Collapse
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amrita Sarkar
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Irene Yarovoi
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nate D. Levine
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Veronica Bochenek
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guohua Zhao
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lubica Rauova
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Anna Kowalska
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kaitlyn Eckart
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nilam S. Mangalmurti
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ann Rux
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas B. Cines
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mortimer Poncz
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kandace Gollomp
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Fujihara J, Takinami Y, Kimura-Kataoka K, Kawai Y, Takeshita H. Cell-free DNA Release in the Plasma of Patients with Cardiac Disease is Associated with Cell Death Processes. Indian J Clin Biochem 2023; 38:67-72. [PMID: 36684502 PMCID: PMC9852365 DOI: 10.1007/s12291-022-01034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 01/25/2023]
Abstract
Cell-free DNA (cfDNA) is released into the plasma of patients with cardiac disease. Here, the source and mechanism of plasma cfDNA release in patients with myocardial infarction (MI) and other cardiac diseases (n = 59) were investigated. Plasma levels of various markers including M30 (apoptosis), M65 (apoptosis and necrosis), cyclophilin A (CyPA) (necrosis), and myeloperoxidase (MPO) (neutrophil activation) were assayed. The plasma cfDNA concentrations in MI and other cardiac diseases were significantly higher than that in the healthy control subjects. Significant differences were not observed among the cardiac disease patients (MI and other cardiac diseases) and healthy control subjects in M30, M65, and CyPA levels. In contrast,the MPO levels were significantly elevated in cardiac disease patients when compared to control groups, and MPO levels in MI patients were significantly higher than other cardiac diseases patients. These results suggest that cfDNA is mainly released by neutrophils via NETosis in addition to apoptosis except for epithelial apoptosis in patients with cardiac disease and the degree is greater in MI patients. The results from this study provide basic information for diagnosis marker of MI.
Collapse
Affiliation(s)
- Junko Fujihara
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, 693-8501 Izumo, Shimane, Japan
| | - Yoshikazu Takinami
- Department of Emergency Medicine, Fukui Kosei Hospital, 201 Shimorokujyo, 918-8537 Fukui, Fukui Japan
| | - Kaori Kimura-Kataoka
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, 693-8501 Izumo, Shimane, Japan
| | - Yasuyuki Kawai
- Department of Cardiology, Kanazawa Medical University, 1-1 Daigaku, 920-0293 Uchinada, Kanazawa, Ishikawa Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, 693-8501 Izumo, Shimane, Japan
| |
Collapse
|
39
|
Nyssen P, Franck T, Serteyn D, Mouithys-Mickalad A, Hoebeke M. Propofol metabolites and derivatives inhibit the oxidant activities of neutrophils and myeloperoxidase. Free Radic Biol Med 2022; 191:164-175. [PMID: 36064069 DOI: 10.1016/j.freeradbiomed.2022.08.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
In previous studies, propofol has shown immunomodulatory abilities on various in vitro models. As this anesthetic molecule is extensively used in intensive care units, its anti-inflammatory properties present a great interest for the treatment of inflammatory disorders like the systemic inflammatory response syndrome. In addition to its inhibition abilities on important neutrophils mechanisms (chemotaxis, reactive oxygen species (ROS) production, Neutrophil Extracellular Traps (NETs) formation, …), our group has shown that propofol is also a reversible inhibitor of the oxidant myeloperoxidase (MPO) activity. Propofol being subject to rapid metabolism, its derivatives could contribute to its anti-inflammatory action. First, propofol-β-glucuronide (PPFG), 2,6-diisopropyl-1,4-p-benzoquinone (PPFQ) and 3,5,3',5'-tetraisopropyl-(4,4')-diphenoquinone (PPFDQ) were compared on their superoxide (O2.-) scavenging properties and more importantly on their inhibitory action on the O2.- release by activated neutrophils using EPR spectroscopy and chemiluminescence assays. PPFQ and PPFDQ are potent superoxide scavengers and also inhibit the release of ROS by neutrophils. An Enzyme-Linked Immunosorbent Assay (ELISA) has also highlighted the ability of both molecules to significantly decrease the MPO degranulation process of neutrophils. Fluorescence enzymatic assays helped to investigate the action of the propofol derivatives on the peroxidase and chlorination activities of MPO. In addition, using SIEFED (Specific Immunological Extraction Followed by Enzyme Detection) assays and docking, we demonstrated the concentration-dependent inhibitory action of PPFQ and its ability to bind to the enzyme active site while PPFG presented a much weaker inhibitory action. Overall, the oxidation derivatives and metabolites PPFQ and PPFDQ can, at physiological concentrations, perpetuate the immunomodulatory action of propofol by acting on the oxidant response of PMN and MPO.
Collapse
Affiliation(s)
- Pauline Nyssen
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée Du 6 Août, 19, 4000 Liège (Sart-Tilman), Belgium.
| | - Thierry Franck
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Didier Serteyn
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium; Department of Clinical Sciences, Anesthesiology and Equine Surgery, Faculty of Veterinary Medicine, University of Liège, Building B41, Quartier Vallée 2, Avenue de Cureghem 5, 4000 Liège (Sart-Tilman), Belgium
| | - Ange Mouithys-Mickalad
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée Du 6 Août, 13, 4000 Liège (Sart-Tilman), Belgium
| | - Maryse Hoebeke
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée Du 6 Août, 19, 4000 Liège (Sart-Tilman), Belgium
| |
Collapse
|
40
|
Zinc-doped ferric oxyhydroxide nano-layer enhances the bactericidal activity and osseointegration of a magnesium alloy through augmenting the formation of neutrophil extracellular traps. Acta Biomater 2022; 152:575-592. [PMID: 36070834 DOI: 10.1016/j.actbio.2022.08.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
Implant-associated infections (IAI) and osseointegration disorders are the most common complications in orthopedics. Studies have shown that neutrophils surrounding implants play a vital role in regulating these complications. Although magnesium (Mg) and its alloys are considered promising biodegradable bone implants, their role in neutrophil-mediated antibacteria has not yet been examined. Considering the rapid corrosion of Mg, it is necessary to develop methods to inhibit its corrosion. To solve these issues, a zinc-doped ferric oxyhydroxide nano-layer modified plasma electrolytic oxidation (PEO)-coated Mg alloy (PEO-FeZn) was developed in this study, and its antibacterial, immune anti-infective, and osteogenic ability were systematically evaluated. The results showed that PEO-FeZn nano-layer enhanced the corrosion resistance, biocompatibility, bactericidal activity, and osteoblastic differentiation activity of the Mg alloy. Moreover, PEO-FeZn nano-layer inhibited immune evasion-related gene expression and contributed to the formation of neutrophil extracellular traps (NETs) by activating the extracellular release of DNA fibers and granule proteins, and thereby suppressing bacterial invasion and promoting osseointegration in vivo in Staphylococcus aureus (S. aureus)-infected rat femurs. Overall, the findings of this study could serve as a reference for the fabrication of highly biocompatible and corrosion resistant Mg alloys to address the challenges of IAI and osseointegration disorders. STATEMENT OF SIGNIFICANCE: The widely used metallic biomaterials usually come with the risk of IAI. As the first responder around the biomaterials, neutrophils could form NETs to defense against microorganism and promote tissue remodeling. Therefore, biomaterials addressing antibacterial and neutrophils-modulatory strategies are highly necessary in reducing IAI. To solve these issues, we grew PEO-FeZn nano-layers in situ on Mg alloy using a simple and green technique. The nano-layer not only enhanced the corrosion resistance and biocompatibility of Mg alloy, but also elevated the antibacterial and osteogenesis capability. Moreover, nano-layer contributed to NETs formation, thereby suppressing bacterial invasion and even promoting osseointegration in S.aureus-infected femurs. Accordingly, this functionalized multilayer coating with antibacterial immunity represents a novel therapeutic strategy for IAI and weak osseointegration.
Collapse
|
41
|
Nofi CP, Wang P, Aziz M. Chromatin-Associated Molecular Patterns (CAMPs) in sepsis. Cell Death Dis 2022; 13:700. [PMID: 35961978 PMCID: PMC9372964 DOI: 10.1038/s41419-022-05155-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA, telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in inflammation and sepsis.
Collapse
Affiliation(s)
- Colleen P. Nofi
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Ping Wang
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Monowar Aziz
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| |
Collapse
|
42
|
Song C, Li H, Mao Z, Peng L, Liu B, Lin F, Li Y, Dai M, Cui Y, Zhao Y, Han D, Chen L, Huang X, Pan P. Delayed neutrophil apoptosis may enhance NET formation in ARDS. Respir Res 2022; 23:155. [PMID: 35698192 PMCID: PMC9190136 DOI: 10.1186/s12931-022-02065-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a neutrophil-associated disease. Delayed neutrophil apoptosis and increased levels of neutrophil extracellular traps (NETs) have been described in ARDS. We aimed to investigate the relationship between these phenomena and their potential as inflammation drivers. We hypothesized that delayed neutrophil apoptosis might enhance NET formation in ARDS. METHOD Our research was carried out in three aspects: clinical research, animal experiments, and in vitro experiments. First, we compared the difference between neutrophil apoptosis and NET levels in healthy controls and patients with ARDS and analyzed the correlation between neutrophil apoptosis and NET levels in ARDS. Then, we conducted animal experiments to verify the effect of neutrophil apoptosis on NET formation in Lipopolysaccharide-induced acute lung injury (LPS-ALI) mice. Furthermore, this study explored the relationship between neutrophil apoptosis and NETs at the cellular level. Apoptosis was assessed using morphological analysis, flow cytometry, and western blotting. NET formation was determined using immunofluorescence, PicoGreen assay, SYTOX Green staining, and western blotting. RESULTS ARDS neutrophils lived longer because of delayed apoptosis, and the cyclin-dependent kinase inhibitor, AT7519, reversed this phenomenon both in ARDS neutrophils and neutrophils in bronchoalveolar lavage fluid (BALF) of LPS-ALI mice. Neutrophils in a medium containing pro-survival factors (LPS or GM-CSF) form more NETs, which can also be reversed by AT7519. Tissue damage can be reduced by promoting neutrophil apoptosis. CONCLUSIONS Neutrophils with extended lifespan in ARDS usually enhance NET formation, which aggravates inflammation. Enhancing neutrophil apoptosis in ARDS can reduce the formation of NETs, inhibit inflammation, and consequently alleviate ARDS.
Collapse
Affiliation(s)
- Chao Song
- Infection Control Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Haitao Li
- Cancer Hospital of Hunan Province, Changsha, 410006, Hunan, China
| | - Zhi Mao
- Shenzhen Third People's Hospital of Guangdong Province, Shenzhen, 518114, Guangdong, China
| | - Ling Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ben Liu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Fengyu Lin
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yi Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Minhui Dai
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuhao Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Duoduo Han
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lingli Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xun Huang
- Infection Control Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
43
|
Tamura K, Miyato H, Kanamaru R, Sadatomo A, Takahashi K, Ohzawa H, Koyanagi T, Saga Y, Takei Y, Fujiwara H, Lefor AK, Sata N, Kitayama J. Neutrophil extracellular traps (NETs) reduce the diffusion of doxorubicin which may attenuate its ability to induce apoptosis of ovarian cancer cells. Heliyon 2022; 8:e09730. [PMID: 35756123 PMCID: PMC9218137 DOI: 10.1016/j.heliyon.2022.e09730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose Although neutrophil extracellular traps (NETs) are present in various tumors, their roles in tumor biology have not been clarified yet. In this study, we examined how NETs affect the pharmacokinetics and effects of doxorubicin (DOX). Methods NETs were generated by neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA) or lipopolysaccharide (LPS). DOX was added to NETs and their distribution was observed under fluorescein microscopy, and the diffusion of DOX through 3 μM pores from lower to upper chambers was evaluated with a fluorescence-based assay. Ovarian cancer cells, KOC-2S and SKOV3, were embedded in collagen gel droplets and cultured in 3D way and their apoptosis was examined with flow cytometry. Results DOX was mostly co-localized with NETs. The transfer of DOX to upper chambers increased over time, which was significantly decreased by the presence of neutrophils stimulated with PMA or LPS in the lower chamber. DOX outside of the gel increased the rates of annexin V (+) apoptotic cells, which were significantly reduced by the addition of LPS-stimulated neutrophils in media both in KOC-2S and SKOV3. The reduced diffusion and apoptosis were mostly restored by the destruction of the NETs structure with 1000 u/ml DNAse I. Conclusion NETs efficiently trap and inhibit the diffusion of DOX which may attenuate its ability to induce apoptosis of ovarian cancer cells. Degradation of NETs with DNAse I may augment the response of ovarian cancer to DOX.
Doxorubicin is efficiently trapped by neutrophil extracellular traps (NETs). NETs suppress diffusion of doxorubicin through micro-pores and infiltration into resected tumor. NETs suppress doxorubicin-induced apoptosis of tumor cells in 3-D culture. DNAse may augment the effect of anti-cancer drugs by modulating pharmacokinetics.
Collapse
Affiliation(s)
- Kohei Tamura
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Hideyo Miyato
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Rihito Kanamaru
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Ai Sadatomo
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Kazuya Takahashi
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Hideyuki Ohzawa
- Department of Clinical Oncology, Jichi Medical University, Shimotsuke, Japan
| | - Takahiro Koyanagi
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Yasushi Saga
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Yuji Takei
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Japan
| | | | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Shimotsuke, Japan
- Center for Clinical Research, Jichi Medical University Hospital, Shimotsuke, Japan
- Corresponding author.
| |
Collapse
|
44
|
Lipofundin mediates major inhibition of intravenous propofol on phorbol myristate acetate and Escherichia coli-induced neutrophil extracellular traps. Mol Biol Rep 2022; 49:6517-6529. [DOI: 10.1007/s11033-022-07482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
45
|
Endothelial Dysfunction Induced by Extracellular Neutrophil Traps Plays Important Role in the Occurrence and Treatment of Extracellular Neutrophil Traps-Related Disease. Int J Mol Sci 2022; 23:ijms23105626. [PMID: 35628437 PMCID: PMC9147606 DOI: 10.3390/ijms23105626] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major focus of tissue damage, which is highly related to many inflammatory diseases. Therefore, this review summarizes the latest advances in the primary and secondary mechanisms between NETs and ED regarding inflammation as a mediator. Moreover, the detailed molecular mechanisms with emphasis on the disadvantages from NETs are elaborated: NETs can use its own enzymes, release particles as damage-associated molecular patterns (DAMPs) and activate the complement system to interact with endothelial cells (ECs), drive ECs damage and eventually aggravate inflammation. In view of the role of NETs-induced ED in different diseases, we also discussed possible molecular mechanisms and the treatments of NETs-related diseases.
Collapse
|
46
|
Mamtimin M, Pinarci A, Han C, Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Front Oncol 2022; 12:869706. [PMID: 35574410 PMCID: PMC9092261 DOI: 10.3389/fonc.2022.869706] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Extracellular DNA may serve as marker in liquid biopsies to determine individual diagnosis and prognosis in cancer patients. Cell death or active release from various cell types, including immune cells can result in the release of DNA into the extracellular milieu. Neutrophils are important components of the innate immune system, controlling pathogens through phagocytosis and/or the release of neutrophil extracellular traps (NETs). NETs also promote tumor progression and metastasis, by modulating angiogenesis, anti-tumor immunity, blood clotting and inflammation and providing a supportive niche for metastasizing cancer cells. Besides neutrophils, other immune cells such as eosinophils, dendritic cells, monocytes/macrophages, mast cells, basophils and lymphocytes can also form extracellular traps (ETs) during cancer progression, indicating possible multiple origins of extracellular DNA in cancer. In this review, we summarize the pathomechanisms of ET formation generated by different cell types, and analyze these processes in the context of cancer. We also critically discuss potential ET-inhibiting agents, which may open new therapeutic strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Akif Pinarci
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Joachim Anders
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
47
|
Kuo YM, Lin YC, Lee MJ, Chen JW, Hsu CC, Huang TY, Chen JH, Tzeng SJ, Chiu YL, Wang SR, Chia JS, Hsieh SC, Jung CJ. Biomarker of neutrophil extracellular traps is associated with deep-seated infections and predicts mortality and cardiovascular morbidity in commensal streptococcal bacteremia. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2022; 55:860-869. [PMID: 35577736 DOI: 10.1016/j.jmii.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/07/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) play important roles in sepsis and deep-seated infections, but whether NET formation correlates with clinical outcomes of patients with streptococcal bloodstream infections (BSIs) is unclear. METHODS We analyzed serum levels of complexes of myeloperoxidase and DNA (MPO-DNA) in patients with streptococcal-BSIs. In vitro assay of NET induction by serum from BSI patients was performed. RESULTS MPO-DNA values for the Streptococci-BSI group (n = 59) were significantly higher than those for healthy controls (p < 0.00001) and matched control groups (n = 59, p = 0.004). The rate of higher MPO-DNA levels (>1.87 μg/mL) were higher in abscess-prone streptococcal groups (streptococcus milleri group) (72.2% vs. 52.5%, p = 0.02). For patients with BSIs due to highly infective endocarditis (IE)-prone pathogens, the values of serum MPO-DNA were also higher in patients diagnosed of IE compared to their counterparts (p = 0.009). Notably, serum from patients with leukopenia could induce higher amounts of in vitro NET formation, despite having low MPO-DNA levels, suggesting that NET formation could be influenced by WBC counts. Therefore, we combined WBC counts with MPO-DNA to predict all-cause 30-day mortality in patients with commensal streptococcal-BSIs. The mortality risk was lowest among patients who had neither high MPO-DNA levels nor abnormal WBC counts (p = 0.058). Furthermore, this group of patients also had a favorable composite outcome consisting of major adverse cardiovascular events (MACE) and all-cause mortality (p = 0.026). CONCLUSION Together, these study data suggested that serum MPO-DNA can be a biomarker for predicting a composite outcome consisting of MACE and all-cause mortality in patients with commensal streptococcal-BSIs.
Collapse
Affiliation(s)
- Yu-Min Kuo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital(NTUH), Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, NTU, Taipei, Taiwan
| | - Yen-Chun Lin
- Division of Allergy, Immunology, and Rheumatology, NTUH Yunlin Branch, Yulin, Taiwan
| | - Ming-Jui Lee
- Department of Medical Education, NTUH, Taipei, Taiwan
| | - Jeng-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, NTU, Taipei, Taiwan; Department of Surgery, NTUH, Taipei, Taiwan
| | - Chih-Chieh Hsu
- Graduate Institute of Oral Biology, School of Dentistry, NTU, Taipei, Taiwan
| | - Ting-Yu Huang
- Graduate Institute of Microbiology, College of Medicine, NTU, Taipei, Taiwan
| | - Jen-Hao Chen
- Graduate Institute of Clinical Medicine, College of Medicine, NTU, Taipei, Taiwan; Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, NTU Cancer Center, Taipei, Taiwan
| | - Shiang-Jong Tzeng
- Department and Graduate Institute of Pharmacology, College of Medicine, NTU, Taipei, Taiwan
| | - Yen-Ling Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, NTU, Taipei, Taiwan; Graduate Program in Biomedical Informatics and Graduate Institute of Medicine, Yuan Ze University, Taoyuan, Taiwan; Department of Medical Research, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Shih-Rong Wang
- Department of Cardiovascular Medicine, Min-sheng General Hospital, Taoyan, Taiwan
| | - Jean-San Chia
- Graduate Institute of Clinical Medicine, College of Medicine, NTU, Taipei, Taiwan; Graduate Institute of Microbiology, College of Medicine, NTU, Taipei, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, NTU, Taipei, Taiwan
| | - Song-Chou Hsieh
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital(NTUH), Taipei, Taiwan
| | - Chiau-Jing Jung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
48
|
Shao Y, Li L, Liu L, Yang Y, Huang J, Ji D, Zhou Y, Chen Y, Zhu Z, Sun B. CD44/ERM/F-actin complex mediates targeted nuclear degranulation and excessive neutrophil extracellular trap formation during sepsis. J Cell Mol Med 2022; 26:2089-2103. [PMID: 35146909 PMCID: PMC8980940 DOI: 10.1111/jcmm.17231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Neutrophils release neutrophil extracellular traps (NETs) to capture and kill pathogens, but excessive NET release can damage the surrounding tissues. Myeloperoxidase (MPO) and neutrophil elastase (NE) are thought to be important in promoting histone depolymerization and DNA breakage in the nucleus. However, the detailed path by which MPO and NE enter the nucleus is unknown. In the present study, we observed that delayed fusion of azurophilic granules with the nuclear membrane 15–20 min after extracellular degranulation in activated neutrophils. In a subsequent experiment, we further demonstrated that this fusion leads to MPO entry into the nucleus and promotes nuclear histone depolymerization and DNA breakage, a process called ‘targeted nuclear degranulation’. This process can be effectively inhibited by dexamethasone and accompanied by the continuous low levels of MPO in the nucleus after PMA stimulation. Meanwhile, we found that ‘targeted nuclear degranulation’ is dependent on the CD44 translocation and subsequent redistribution of CD44 / ERM (Ezrin/Radixin/Moesin) / F‐actin complexes, which guides the movement of azurophilic granules towards the nucleus. Application of ERM phosphorylation inhibitors and importin activity inhibitors significantly reduced the complexes formation and redistribution. Taken together, these findings indicate for the first time that delayed ‘targeted nuclear degranulation’ after neutrophil activation is a key mechanism of NET formation. CD44/ERM/F‐actin complex mediates this process, which providing targets with promising prospects for the precise regulation of NET formation.
Collapse
Affiliation(s)
- Yiming Shao
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Linbin Li
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Lu Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yunxi Yang
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jiamin Huang
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Dongdong Ji
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Yuying Zhou
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Yi Chen
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Zhechen Zhu
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| |
Collapse
|
49
|
Nyssen P, Maho A, Malempre R, Matagne A, Mouithys-Mickalad A, Hoebeke M. Propofol inhibits the myeloperoxidase activity by acting as substrate through a redox process. Biochim Biophys Acta Gen Subj 2022; 1866:130100. [PMID: 35150774 DOI: 10.1016/j.bbagen.2022.130100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Propofol (2,6-diisopropylphenol) is frequently used as intravenous anesthetic agent, especially in its injectable form (Diprivan), to initiate and maintain sedative state during surgery or in intensive care units. Numerous studies have reported the antioxidant and anti-inflammatory effect of propofol. The oxidant enzyme myeloperoxidase (MPO), released from activated neutrophils, plays a key role in host defense. An increase of the circulating MPO concentration has been observed in patients admitted in intensive care unit and presenting a systemic inflammatory response related to septic shock or trauma. METHODS This study investigates the immunomodulatory action of propofol and Diprivan as inhibitor of the oxidant activity of MPO. The understanding of the redox action mechanism of propofol and Diprivan on the myeloperoxidase chlorination and peroxidase activities has been refined using the combination of fluorescence and absorption spectroscopies with docking and cyclic voltammetry. RESULTS Propofol acts as a reversible MPO inhibitor. The molecule interacts as a reducing substrate in the peroxidase cycle and promotes the accumulation of compound II. At acidic pH (5.5), propofol and Diprivan do not inhibit the chlorination activity, but their action increases at physiological pH (7.4). The main inhibitory action of Diprivan could be attributed to its HOCl scavenging property. GENERAL SIGNIFICANCE Propofol can act as a reversible MPO inhibitor at clinical concentrations. This property could, in addition to other previously proven anti-inflammatory actions, induce an immunomodulatory action, beneficial during clinical use, particularly in the treatment of systemic inflammation response syndrome.
Collapse
Affiliation(s)
- P Nyssen
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée du 6 Août, 19, Sart-Tilman, 4000 Liège, Belgium.
| | - A Maho
- Greenmat, Department of Chemistry, CESAM, University of Liège, Building B6c, Quartier Agora, Allée du 6 Août, 19, Sart-Tilman, 4000 Liège, Belgium
| | - R Malempre
- Laboratory of Enzymology and Protein folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6a, Quartier Agora, Allée du 6 Août, 19, Sart-Tilman, 4000 Liège, Belgium
| | - A Matagne
- Laboratory of Enzymology and Protein folding, Centre for Protein Engineering, InBioS, University of Liège, Building B6a, Quartier Agora, Allée du 6 Août, 19, Sart-Tilman, 4000 Liège, Belgium
| | - A Mouithys-Mickalad
- CORD, Department of Chemistry, CIRM, University of Liège, Building B6a, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, 4000 Liège, Belgium
| | - M Hoebeke
- Biomedical Spectroscopy Laboratory, Department of Physics, CESAM, University of Liège, Building B5a, Quartier Agora, Allée du 6 Août, 19, Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
50
|
Huang Y, Ji Q, Zhu Y, Fu S, Chen S, Chu L, Ren Y, Wang Y, Lei X, Gu J, Tai N, Liu D. Activated Platelets Autocrine 5-Hydroxytryptophan Aggravates Sepsis-Induced Acute Lung Injury by Promoting Neutrophils Extracellular Traps Formation. Front Cell Dev Biol 2022; 9:777989. [PMID: 35111753 PMCID: PMC8801939 DOI: 10.3389/fcell.2021.777989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Excessive neutrophil extracellular trap (NET) formation is an important contributor to sepsis-induced acute lung injury (ALI). Recent reports indicate that platelets can induce neutrophil extracellular trap formation. However, the specific mechanism remains unclear. Tph1 gene, which encodes the rate-limiting enzyme for peripheral 5-hydroxytryptophan (5-HT) synthesis, was knocked out in mice to simulate peripheral 5-HT deficiency. Cecal ligation and puncture (CLP) surgery was performed to induce sepsis. We found that peripheral 5-HT deficiency reduced NET formation in lung tissues, alleviated sepsis-induced lung inflammatory injury, and reduced the mortality rate of CLP mice. In addition, peripheral 5-HT deficiency was shown to reduce the accumulation of platelets and NETs in the lung of septic mice. We found that platelets from wild-type (WT), but not Tph1 knockout (Tph1−/−), mice promote lipopolysaccharide (LPS)-induced NET formation. Exogenous 5-HT intervention increased LPS-induced NET formation when Tph1−/− platelets were co-cultured with WT neutrophils. Therefore, our study uncovers a mechanism by which peripheral 5-HT aggravated sepsis-induced ALI by promoting NET formation in the lung of septic mice.
Collapse
Affiliation(s)
- Yumeng Huang
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Qian Ji
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Yanyan Zhu
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Shengqiao Fu
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Shuangwei Chen
- Department of General Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Liangmei Chu
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Yongfei Ren
- Department of General Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Yue Wang
- Department of General Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Xuan Lei
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Jia Gu
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Ningzheng Tai
- Department of Burn and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| | - Dadong Liu
- Department of Intensive Care Unit, Affiliated Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|