1
|
Hushmandi K, Imani Fooladi AA, Reiter RJ, Farahani N, Liang L, Aref AR, Nabavi N, Alimohammadi M, Liu L, Sethi G. Next-generation immunotherapeutic approaches for blood cancers: Exploring the efficacy of CAR-T and cancer vaccines. Exp Hematol Oncol 2025; 14:75. [PMID: 40382583 DOI: 10.1186/s40164-025-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025] Open
Abstract
Recent advancements in immunotherapy, particularly Chimeric antigen receptor (CAR)-T cell therapy and cancer vaccines, have significantly transformed the treatment landscape for leukemia. CAR-T cell therapy, initially promising in hematologic cancers, faces notable obstacles in solid tumors due to the complex and immunosuppressive tumor microenvironment. Challenges include the heterogeneous immune profiles of tumors, variability in antigen expression, difficulties in therapeutic delivery, T cell exhaustion, and reduced cytotoxic activity at the tumor site. Additionally, the physical barriers within tumors and the immunological camouflage used by cancer cells further complicate treatment efficacy. To overcome these hurdles, ongoing research explores the synergistic potential of combining CAR-T cell therapy with cancer vaccines and other therapeutic strategies such as checkpoint inhibitors and cytokine therapy. This review describes the various immunotherapeutic approaches targeting leukemia, emphasizing the roles and interplay of cancer vaccines and CAR-T cell therapy. In addition, by discussing how these therapies individually and collectively contribute to tumor regression, this article aims to highlight innovative treatment paradigms that could enhance clinical outcomes for leukemia patients. This integrative approach promises to pave the way for more effective and durable treatment strategies in the oncology field. These combined immunotherapeutic strategies hold great promise for achieving more complete and lasting remissions in leukemia patients. Future research should prioritize optimizing treatment sequencing, personalizing therapeutic combinations based on individual patient and tumor characteristics, and developing novel strategies to enhance T cell persistence and function within the tumor microenvironment. Ultimately, these efforts will advance the development of more effective and less toxic immunotherapeutic interventions, offering new hope for patients battling this challenging disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | | | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
2
|
Lyu Z, Niu S, Fang Y, Chen Y, Li YR, Yang L. Addressing graft-versus-host disease in allogeneic cell-based immunotherapy for cancer. Exp Hematol Oncol 2025; 14:66. [PMID: 40317083 PMCID: PMC12046680 DOI: 10.1186/s40164-025-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/13/2025] [Indexed: 05/04/2025] Open
Abstract
Allogeneic cell-based immunotherapies, particularly CAR-T cell therapy, represent a significant advancement in cancer treatment, offering scalable and consistent alternatives to autologous therapies. However, their widespread use is limited by the risk of graft-versus-host disease (GvHD). This review provides a comprehensive overview of GvHD in the context of allogeneic cell-based cancer immunotherapy and evaluates current strategies to mitigate its effects. Key strategies include genetic engineering approaches such as T cell receptor (TCR) knockout (KO) and T cell receptor alpha constant (TRAC) CAR knock-in. Alternative immune cell types like natural killer (NK) cells and natural killer T (NKT) cells offer potential solutions due to their lower alloreactivity. Additionally, stem cell technology, utilizing induced pluripotent stem cells (iPSCs), enables standardized and scalable production of engineered CAR-T cells. Clinical trials evaluating these strategies, such as UCART19 and CTX110, demonstrate promising results in preventing GvHD while maintaining anti-tumor efficacy. The review also addresses manufacturing considerations for allogeneic cell products and the challenges in translating preclinical findings into clinical success. By addressing these challenges, allogeneic cell-based immunotherapy continues to advance, paving the way for more accessible, scalable, and effective cancer treatments.
Collapse
Affiliation(s)
- Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Siyue Niu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA, 90095, USA.
- Goodman-Luskin Microbiome Center, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Testa U, Castelli G, Pelosi E. Emerging Role of Chimeric Antigen Receptor-Natural Killer Cells for the Treatment of Hematologic Malignancies. Cancers (Basel) 2025; 17:1454. [PMID: 40361380 PMCID: PMC12071031 DOI: 10.3390/cancers17091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
The clinical use of T lymphocytes engineered with chimeric antigen receptors (CARs) has revolutionized the treatment of patients with refractory or relapsed hematological malignancies. CAR natural killer (CAR-NK) cells are NK cells engineered with CARs to specifically target cell antigens expressed on the membrane of tumor cells. CAR-NK cells could offer some advantages with respect to CAR-T cells, related to their specific and innate anti-tumor activity, availability as an "off the shelf" cellular therapy, reduced costs, and improved safety. Promising efficacy of CAR-Nk cell therapy was observed in clinical trials based on the treatment of some hematological malignancies. However, to date, the clinical experience of CAR-NK cell therapy has been preliminary, with the evaluation of only a limited number of patients. Furthermore, CAR-NK cell therapy has been limited by the short persistence of these cells and by the suboptimal cytotoxic activity of some CAR-NK preparations. Therefore, studies based on the enrollment of a number of patients is required to carefully assess and confirm the safety and the efficacy of CAR-NK cell therapy in hematological malignancies and to compare their efficacy with respect to allogeneic CAR-T cells.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, 00135 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
4
|
Ji S, Jin C, Cui X. Enhancing the physiological characteristics of chimeric antigen receptor natural killer cells by synthetic biology. Front Immunol 2025; 16:1592121. [PMID: 40313937 PMCID: PMC12043574 DOI: 10.3389/fimmu.2025.1592121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 05/03/2025] Open
Abstract
Chimeric antigen receptor natural Killer (CAR-NK) cells therapy represents a next-generation immunotherapeutic approach following CAR-T cells therapy, offering inherent "off-the-shelf" compatibility and mitigated off-tumor toxicity. Despite these advantages, clinical translation remains constrained by poor in vivo persistence and functional exhaustion in immunosuppressive tumor microenvironments (TME). This review examines recent advancements in synthetic biology aimed at enhancing the physiological characteristics of CAR-NK cells. By delineating the synergy between NK cells and synthetic biology toolkits, this work provides a roadmap for developing next-generation CAR-NK therapies capable of addressing solid tumor challenges while maintaining favorable safety profiles.
Collapse
Affiliation(s)
- Shuochao Ji
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Cheng Jin
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xinjiang Cui
- Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
5
|
Lin H, Zhang L, Ge T, An N, Yang Y, Zhang Y, Mu W. Engineering CD5-targeting CAR-NK cells from peripheral blood for the treatment of CD5-positive hematological malignancies. J Transl Med 2025; 23:409. [PMID: 40200253 PMCID: PMC11980226 DOI: 10.1186/s12967-025-06432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND The therapeutic application of chimeric antigen receptor (CAR) T cells in T-cell malignancies faces substantial limitations owing to fratricide and potential T cell aplasia, primarily attributed to the shared expression of target antigens, such as CD5, between normal and malignant T cells. Although natural killer (NK) cell-based immunotherapy is a promising alternative approach, its efficacy in treating hematologic malignancies remains to be fully elucidated. METHODS CD5-targeted CAR-modified primary NK cells, T cells and NK92 cell lines were generated and comprehensively evaluated for their anti-tumor efficacy through in vitro cytotoxicity assays and xenograft mouse models. Furthermore, preliminary investigation of the herpes simplex virus-1 thymidine kinase (HSV-TK) suicide switch system in CAR-NK cells were conducted using ganciclovir (GCV) as the activating agent. RESULTS CAR-NK cells exhibited significantly increased cytotoxic activity against CD5-positive cell lines and primary tumor cells, compared to NK, CAR-NK92, and CAR-T cells. Moreover, CAR-NK cells effectively decreased the leukemic burden and extended survival in murine model. Additionally, an off-switch utilizing the HSV-TK switch system successfully eradicated CAR-NK cells for safety considerations. CONCLUSIONS This study developed a controllable CD5 CAR-NK cells that exhibit high efficacy against T-cell malignancies, although further validation is necessary to assess their clinical potential.
Collapse
Affiliation(s)
- Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, P. R. China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Lingfeng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, P. R. China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Tong Ge
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, P. R. China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Ning An
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, P. R. China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Yongkun Yang
- Nanjing IASO Biotherapeutics Ltd, Nanjing, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, P. R. China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, P. R. China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
6
|
Zhang A, Yang X, Zhang Y, Yu X, Mu W, Wei J. Unlocking the Potential of CAR-NK Cell Therapy: Overcoming Barriers and Challenges in the Treatment of Myeloid Malignancies. Mol Cancer Ther 2025; 24:536-549. [PMID: 39834301 DOI: 10.1158/1535-7163.mct-24-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Myeloid malignancies include various types of cancers that arise from the abnormal development or proliferation of myeloid cells within the bone marrow. Chimeric antigen receptor (CAR) T cell treatments, which show great potential for B cell and plasma cell cancers, face major challenges when used for myeloid malignancies. CAR natural killer (NK) cell-based immunotherapy encounters several challenges in treating myeloid cancers, including (i) poor gene transfer efficiency and expansion platforms in vitro, (ii) limited proliferation and persistence in vivo, (iii) antigenic heterogeneity, and (iv) an immunosuppressive tumor microenvironment. Despite these hurdles, "off-the-shelf" CAR-NK treatments showed encouraging results, marked by enhanced proliferation, prolonged persistence, enhanced tumor infiltration, and improved adaptability. This review offers a summary of the biological traits and cellular sources of NK cells along with a discussion of contemporary CAR designs. Furthermore, it addresses the challenges observed in preclinical research and clinical trials related to CAR-NK cell therapy for myeloid cancers, suggesting enhancement strategies.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoxuan Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
7
|
He B, Chen H, Wu J, Qiu S, Mai Q, Zeng Q, Wang C, Deng S, Cai Z, Liu X, Xuan L, Li C, Zhou H, Liu Q, Xu N. Interleukin-21 engineering enhances CD19-specific CAR-NK cell activity against B-cell lymphoma via enriched metabolic pathways. Exp Hematol Oncol 2025; 14:51. [PMID: 40176196 PMCID: PMC11967061 DOI: 10.1186/s40164-025-00639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/10/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND NK cells engineered to express interleukin-15 (IL-15) and a CD19-targeted chimeric antigen receptor (CAR) have been used to treat patients with relapsed and/or refractory B cell malignances, demonstrating encouraging outcomes and favorable safety profile. However, the effect of IL-21 in CAR-NK cell therapy remains unknown. METHODS CD19-specific CAR with 4-1BB costimulatory domain and cytokine IL-21 or IL-15 was constructed and transduced into peripheral blood (PB)-derived NK cells to produce CD19-CAR-IL21 NK cells (CAR-21) or CD19-CAR-IL15 NK cells (CAR-15), respectively. The phenotypic profile, transcriptomic characteristics, functionality and anti-tumor activity of CAR-21 NK cells and CAR-15 NK cells were compared. RESULTS Compared with CAR-NK cells co-expressing IL-15, CAR-NK cells co-expressing IL-21 exhibited significantly increased IFN-γ, TNF-α and Granzyme B production, as well as degranulation, in response to CD19+ Raji lymphoma cells, resulting in enhanced cytotoxic activity upon repetitive tumor stimulation. Furthermore, IL-21 co-expression improved the in vivo persistence of CAR-NK cells and significantly suppressed tumor growth in a xenograft Raji lymphoma murine model, leading to prolonged survival of CD19+ tumor-bearing mice. RNA sequencing revealed that CAR-21 NK cells have a distinct transcriptomic signature characterized by enriched in cytokine, cytotoxicity, and metabolic related signaling, when compared with CAR-15 NK or CAR NK cells. CONCLUSIONS This study demonstrated that CD19-specific CAR-NK cells engineered to express IL-21 exhibit superior persistence and anti-tumor activity against CD19+ tumor compared to CAR-NK cells co-expressing IL-15, which might be a promising therapeutic strategy for treating patients with relapse or refractory B cell malignances.
Collapse
Affiliation(s)
- Bailin He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxu Wu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shiqiu Qiu
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiusui Mai
- Department of Blood and Transfusion, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qing Zeng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Zihong Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Mousavi S, Khazaee-Nasirabadi MH, Seyedmehdi MS, Bazi A, Mirzaee Khalilabadi R. Natural killer cells: a new promising source for developing chimeric antigen receptor anti-cancer cells in hematological malignancies. Leuk Lymphoma 2025; 66:594-616. [PMID: 39656564 DOI: 10.1080/10428194.2024.2438802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
In recent times, the application of CAR-T cell treatment has significantly progressed, showing auspicious treatment outcomes in hematologic malignancies. However, along with these advances, certain limitations and challenges hurdle the widespread utilization of this technology. Recently, CAR-NK cells have gained attention in cancer treatment, as this approach has an important advantage over CART therapy (i.e. no need for HLA matching) for targeting foreign cells. This review aims to explore the benefits of CAR NK cell therapy, and generation strategies, as well as the challenges and limitations hindering the application of CAR NK cells in experimental studies and trials on hematologic malignancies.
Collapse
Affiliation(s)
- Shahrzad Mousavi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Maryam Sadat Seyedmehdi
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Islamic Republic of Iran
| | - Ali Bazi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Tarannum M, Ding X, Barisa M, Hu S, Anderson J, Romee R, Zhang J. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 2025; 43:516-533. [PMID: 40229380 DOI: 10.1038/s41587-025-02629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sabrina Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Wang Y, Feng Z, Li L, Zhang L. Advances in the role of NK cells in MDS immune dysfunction and antitumor research. Front Immunol 2025; 16:1511616. [PMID: 40103828 PMCID: PMC11913816 DOI: 10.3389/fimmu.2025.1511616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
MDS is a heterogeneous group of myeloid neoplasms originating from hematopoietic stem cells, with a high risk of transformation into acute myeloid leukemia (AML). Natural Killer (NK) cells, crucial for their role in immune surveillance and efficient tumor cell lysis, experience functional impairments due to the complex microenvironment and cytokine dynamics in MDS. This article focuses on the mechanisms of NK cell dysfunction in MDS and the latest strategies to enhance NK cell activity to restore their anti-MDS efficacy, highlighting their key role and potential in MDS therapy.
Collapse
Affiliation(s)
- Yinglong Wang
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zuxi Feng
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Lijuan Li
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liansheng Zhang
- Lanzhou University Second Hospital, Lanzhou, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Bastin DJ, Kilgour MK, Shorr R, Sabri E, Delluc A, Ardolino M, McComb S, Lee SH, Allan D, Ramsay T, Visram A. Efficacy of chimeric antigen receptor engineered natural killer cells in the treatment of hematologic malignancies: a systematic review and meta-analysis of preclinical studies. Cytotherapy 2025; 27:350-364. [PMID: 39692673 DOI: 10.1016/j.jcyt.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) engineered NK cells (CAR-NK) are a novel approach to the immunotherapy of hematologic malignancies which seeks to overcome some of the challenges faced by CAR-T cells (CAR-T). With few published clinical studies, preclinical studies can identify strategies to accelerate clinical translation. We conducted a systematic review on the preclinical in vivo use of CAR-NK for the treatment of hematologic malignancies to assess these therapies in a holistic and unbiased manner. METHODS Our protocol was registered with PROSPERO (ID: CRD42023438375). We performed a search of OVID MEDLINE, OVID Embase, and Embase for animal studies employing human CAR-NK cells in the treatment of hematologic malignancies. Screening of studies for eligibility criteria was performed in duplicate. Our primary outcomes were survival and reduction in tumor volume. Data extraction from individual experiments was performed by one reviewer using DigitizeitTM software and verified by a second reviewer. Meta-analysis and subgroup analyses were performed using Comprehensive Meta-AnalysisTM software. Information for descriptive outcomes was extracted in duplicate by two independent reviewers. Risk of bias was assessed using the SYRCLE Risk of Bias Tool for Animal Studies. RESULTS A total of 34 papers met eligibility criteria. Overall, CD19 was the most common antigen targeted however there was substantial diversity in antigenic targets, source material for generating CAR-NK cells, and NK cell modifications. Mice treated with CAR-NK therapy survived significantly longer than untreated mice (median survival ratio of 1.18, 95% CI: 1.10-1.27, P < 0.001), and mice treated with nonengineered NK cells (median survival ratio 1.13, 95% CI: 1.03-1.23, P < 0.001). Similarly, treatment with CAR-NK significantly reduced the tumor burden when compared to untreated mice (ratio of mean tumor volume 0.23, 95% CI: 0.17-0.32, P < 0.001) or mice treated with nonengineered NK cells (ratio of mean tumor volume 0.37, 95% CI: 0.28-0.51, P < 0.001). Subgroup analysis showed that cotreatment with IL-15 reduced tumor volume but did not increase survival. In general, CAR-NK cell persistence was short but was increased by IL-15. CONCLUSIONS CAR-NK shows promise for the treatment of hematologic malignancies in preclinical models.
Collapse
Affiliation(s)
- Donald J Bastin
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marisa K Kilgour
- Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Risa Shorr
- Learning Services, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Elham Sabri
- Methods Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Aurélien Delluc
- Department of Medicine (Hematology), The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Michele Ardolino
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Scott McComb
- Human Health Therapeutics Research Center, National Research Council, Ottawa, Ontario, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - David Allan
- Department of Medicine (Hematology), The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Tim Ramsay
- Methods Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Alissa Visram
- Department of Medicine (Hematology), The Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
12
|
Wang Y, Casarin S, Daher M, Mohanty V, Dede M, Shanley M, Başar R, Rezvani K, Chen K. Agent-based modeling of cellular dynamics in adoptive cell therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638701. [PMID: 40027823 PMCID: PMC11870559 DOI: 10.1101/2025.02.17.638701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Adoptive cell therapies (ACT) leverage tumor-immune interactions to cure cancer. Despite promising phase I/II clinical trials of chimeric-antigen-receptor natural killer (CAR-NK) cell therapies, molecular mechanisms and cellular properties required to achieve clinical benefits in broad cancer spectra remain underexplored. While in vitro and in vivo experiments are required in this endeavor, they are typically expensive, laborious, and limited to targeted investigations. Here, we present ABMACT (Agent-Based Model for Adoptive Cell Therapy), an in silico approach employing agent-based models (ABM) to simulate the continuous course and dynamics of an evolving tumor-immune ecosystem, consisting of heterogeneous "virtual cells" created based on knowledge and omics data observed in experiments and patients. Applying ABMACT in multiple therapeutic context indicates that to achieve optimal ACT efficacy, it is key to enhance immune cellular proliferation, cytotoxicity, and serial killing capacity. With ABMACT, in silico trials can be performed systematically to inform ACT product development and predict optimal treatment strategies.
Collapse
|
13
|
Li YR, Fang Y, Niu S, Zhu Y, Chen Y, Lyu Z, Zhu E, Tian Y, Huang J, Rezek V, Kitchen S, Hsiai T, Zhou JJ, Wang P, Chai-Ho W, Park S, Seet CS, Oliai C, Yang L. Allogeneic CD33-directed CAR-NKT cells for the treatment of bone marrow-resident myeloid malignancies. Nat Commun 2025; 16:1248. [PMID: 39893165 PMCID: PMC11787387 DOI: 10.1038/s41467-025-56270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Chimeric antigen receptor (CAR)-engineered T cell therapy holds promise for treating myeloid malignancies, but challenges remain in bone marrow (BM) infiltration and targeting BM-resident malignant cells. Current autologous CAR-T therapies also face manufacturing and patient selection issues, underscoring the need for off-the-shelf products. In this study, we characterize primary patient samples and identify a unique therapeutic opportunity for CAR-engineered invariant natural killer T (CAR-NKT) cells. Using stem cell gene engineering and a clinically guided culture method, we generate allogeneic CD33-directed CAR-NKT cells with high yield, purity, and robustness. In preclinical mouse models, CAR-NKT cells exhibit strong BM homing and effectively target BM-resident malignant blast cells, including CD33-low/negative leukemia stem and progenitor cells. Furthermore, CAR-NKT cells synergize with hypomethylating agents, enhancing tumor-killing efficacy. These cells also show minimal off-tumor toxicity, reduced graft-versus-host disease and cytokine release syndrome risks, and resistance to allorejection, highlighting their substantial therapeutic potential for treating myeloid malignancies.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Siyue Niu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Jie Huang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Valerie Rezek
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Scott Kitchen
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tzung Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | - Pin Wang
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Wanxing Chai-Ho
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sunmin Park
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christopher S Seet
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Caspian Oliai
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- The Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Melo Garcia L, Gangadharan A, Banerjee P, Li Y, Zeng AGX, Rafei H, Lin P, Kumar B, Acharya S, Daher M, Muniz-Feliciano L, Deyter GM, Dominguez G, Park JM, Reyes Silva F, Nunez Cortes AK, Basar R, Uprety N, Shanley M, Kaplan M, Liu E, Shpall EJ, Rezvani K. Overcoming CD226-related immune evasion in acute myeloid leukemia with CD38 CAR-engineered NK cells. Cell Rep 2025; 44:115122. [PMID: 39754720 PMCID: PMC11838179 DOI: 10.1016/j.celrep.2024.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/26/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
CD226 plays a vital role in natural killer (NK) cell cytotoxicity, interacting with its ligands CD112 and CD155 to initiate immune synapse formation, primarily through leukocyte function-associated-1 (LFA-1). Our study examined the role of CD226 in NK cell surveillance of acute myeloid leukemia (AML). NK cells in patients with AML had lower expression of CD226. CRISPR-Cas9 deletion of CD226 led to reduced LFA-1 recruitment, poor synapse formation, and decreased NK cell anti-leukemic activity. Engineering NK cells to express a chimeric antigen receptor targeting the AML antigen CD38 (CAR38) could overcome the need for CD226 to establish strong immune synapses. LFA-1 blockade reduced CAR38 NK cell activity, and this depended on the CD38 expression levels of AML cells. This suggests parallel but potentially cooperative roles for LFA-1 and CAR38 in synapse formation. Our findings suggest that CAR38 NK cells could be an effective therapeutic strategy to overcome CD226-mediated immune evasion in AML.
Collapse
MESH Headings
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- T Lineage-Specific Activation Antigen 1
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Lymphocyte Function-Associated Antigen-1/metabolism
- Immune Evasion
- Cell Line, Tumor
- Immunological Synapses/immunology
- Female
Collapse
Affiliation(s)
- Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada; Hematology-Oncology Service, CHU de Québec - Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Achintyan Gangadharan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL 33616, USA
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andy G X Zeng
- Princess Margaret Cancer Center, University Healthy Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gary M Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Dominguez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeong Min Park
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Francia Reyes Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Ahmad S, Xing K, Rajakaruna H, Stewart WC, Beckwith KA, Nayak I, Kararoudi MN, Lee DA, Das J. A framework integrating multiscale in-silico modeling and experimental data predicts CD33CAR-NK cytotoxicity across target cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630941. [PMID: 39803543 PMCID: PMC11722217 DOI: 10.1101/2024.12.31.630941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Uncovering mechanisms and predicting tumor cell responses to CAR-NK cytotoxicity is essential for improving therapeutic efficacy. Currently, the complexity of these effector-target interactions and the donor-to-donor variations in NK cell receptor (NKR) repertoire require functional assays to be performed experimentally for each manufactured CAR-NK cell product and target combination. Here, we developed a computational mechanistic multiscale model which considers heterogenous expression of CARs, NKRs, adhesion receptors and their cognate ligands, signal transduction, and NK cell-target cell population kinetics. The model trained with quantitative flow cytometry and in vitro cytotoxicity data accurately predicts the short- and long-term cytotoxicity of CD33CAR-NK cells against leukemia cell lines across multiple CAR designs. Furthermore, using Pareto optimization we explored the effect of CAR proportion and NK cell signaling on the differential cytotoxicity of CD33CAR-NK cells to cancer and healthy cells. This model can be extended to predict CAR-NK cytotoxicity across many antigens and tumor targets.
Collapse
Affiliation(s)
- Saeed Ahmad
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Kun Xing
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH
| | - Harshana Rajakaruna
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | | | - Kyle A. Beckwith
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Dean A. Lee
- Center for Childhood Cancer Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| |
Collapse
|
16
|
Diorio C, Teachey DT, Grupp SA. Allogeneic chimeric antigen receptor cell therapies for cancer: progress made and remaining roadblocks. Nat Rev Clin Oncol 2025; 22:10-27. [PMID: 39548270 DOI: 10.1038/s41571-024-00959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Chimeric antigen receptor (CAR) T cells are revolutionizing cancer therapy, particularly for haematological malignancies, conferring durable and sometimes curative responses in patients with advanced-stage disease. The CAR T cell products currently approved for clinical use are all autologous and are often effective; however, in patients who are lymphopenic and/or heavily pretreated with chemotherapy, autologous T cells can be difficult to harvest in sufficient numbers or have functional impairments that might ultimately render them less efficacious. Moreover, autologous products take several weeks to produce, and each product can be used in only one patient. By contrast, allogeneic CAR T cells can be produced for many patients using T cells from a single healthy donor, can be optimized for safety and efficacy, can be instantly available for 'off-the-shelf' use and, therefore, might also be more cost-effective. Despite these potential advantages, the development of allogeneic CAR T cells has lagged behind that of autologous products, owing to the additional challenges such as avoiding graft-versus-host disease and host-mediated graft rejection. Over the past few years, the development of advanced genome-editing techniques has facilitated the generation of novel allogeneic CAR T cell products. Furthermore, CAR cell products derived from other cell types such as induced pluripotent stem cells and natural killer cells are being investigated for clinical use. In this Review, we discuss the potential of allogeneic CAR cell products to expand life-saving immunotherapy to a much broader population of patients in the coming years, the progress made to date and strategies to overcome remaining hurdles.
Collapse
Affiliation(s)
- Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephan A Grupp
- Division of Oncology and Center for Childhood Cancer Research, Department of Paediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Susan S. and Stephen P. Kelly Center for Cancer Immunotherapy, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Karamivandishi A, Hatami A, Eslami MM, Soleimani M, Izadi N. Chimeric antigen receptor natural killer cell therapy: A systematic review of preclinical studies for hematologic and solid malignancies. Hum Immunol 2025; 86:111207. [PMID: 39667204 DOI: 10.1016/j.humimm.2024.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Advancements in the field of CAR-T therapy have brought about a revolution in the treatment of numerous types of cancer in the past ten years. However, despite the remarkable success achieved thus far, certain barriers impede the widespread implementation of this therapy such as intricate manufacturing processes and treatment-associated toxicities. As an alternative, chimeric antigen receptor-engineered natural killer cell (CAR-NK) therapy presents a viable opportunity for a simpler and more cost-effective "off-the-shelf" treatment option, which is likely to result in fewer adverse reactions. A total of 71 studies were included in this review. Eligible studies were searched and reviewed from the databases of PubMed, Web of Science and Scopus. Based on data extracted from articles, we concluded that CAR-NK cell efficiency can vary considerably depending on factors such as tumor model, dosage, CAR generation and expansion method. Furthermore, investigating consequences of utilizing various constructs and generations of CAR-NK cells on their anti-tumor activity examined in this review.
Collapse
Affiliation(s)
- Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Hatami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Masoud Eslami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Neda Izadi
- Research Center for Social Determinants of Health,Research institute for metabolic and obesity disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Ma H, Yan Z, Gu R, Xu Y, Qiu S, Xing H, Tang K, Tian Z, Rao Q, Wang M, Wang J. Loop33 × 123 CAR-T targeting CD33 and CD123 against immune escape in acute myeloid leukemia. Cancer Immunol Immunother 2024; 74:20. [PMID: 39535595 PMCID: PMC11561222 DOI: 10.1007/s00262-024-03847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Immunotherapy, such as chimeric antigen receptor T (CAR-T) cells targeting CD33 or CD123, has been well developed over the past decade for the treatment of acute myeloid leukemia (AML). However, the inability to sustain tumor-free survival and the possibility of relapse due to antigen loss have raised concerns. A dual targeting of CD33 and CD123 is needed for better outcomes. METHODS Based on our previously constructed CD33 and CD123 monovalent CAR-T, Loop33 × 123 and Loop123 × 33 CAR-T were constructed with molecular cloning techniques. All CAR-T cells were generated by lentivirus transduction of T cells from healthy donors. Phenotype detection was evaluated on day 7 concerning activation, exhaustion, and subtype proportions. Coculture killing assays were conducted using various AML cell lines and primary AML cells. Degranulation and cytokine secretion levels were detected by flow cytometry. Cell-derived xenograft models were established using wild-type Molm 13 cell lines, or a mixture of Molm 13-KO33 and Molm 13-KO123 cells as an ideal model of immune escape. By monitoring body weight and survival of tumor-bearing mice, Loop33 × 123 and Loop123 × 33 CAR-T cells were further assessed for their efficacy in vivo. RESULTS In vitro study, our results demonstrated that Loop33 × 123 CAR-T cells could efficiently eliminate AML cell lines and primary AML cells with elevated degranulation and cytokine secretion levels. Compared with our previously constructed monovalent CD33 or CD123 CAR-T cells, Loop33 × 123 CAR-T cells showed superior advantages in an immune escape model. In vivo studies further confirmed that Loop33 × 123 CAR-T cells could effectively prolong the survival of mice without significant toxicity. However, Loop123 × 33 CAR-T cells failed to show the same effects. Furthermore, Loop33 × 123 CAR-T cells efficiently circumvented potential immune escape, a challenge where monovalent CAR-T cells failed. CONCLUSIONS Loop33 × 123 CAR-T targeting CD33 and CD123 could efficiently eliminate AML cells and prolong survival of tumor-bearing mice, while addressing the issue of immune escape.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Interleukin-3 Receptor alpha Subunit/immunology
- Interleukin-3 Receptor alpha Subunit/metabolism
- Sialic Acid Binding Ig-like Lectin 3/immunology
- Sialic Acid Binding Ig-like Lectin 3/metabolism
- Mice
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Tumor Escape/immunology
- Xenograft Model Antitumor Assays
- T-Lymphocytes/immunology
- Cell Line, Tumor
- Mice, Inbred NOD
- Mice, SCID
- Female
Collapse
Affiliation(s)
- Haotian Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Zhifeng Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Runxia Gu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Shaowei Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Qing Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301617, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301617, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Tianjin Key Laboratory of Cell Therapy for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301617, China.
| |
Collapse
|
19
|
Rambaldi B, Rizzuto G, Rambaldi A, Introna M. Genetically modified and unmodified cellular approaches to enhance graft versus leukemia effect, without increasing graft versus host disease: the use of allogeneic cytokine-induced killer cells. Front Immunol 2024; 15:1459175. [PMID: 39512351 PMCID: PMC11540647 DOI: 10.3389/fimmu.2024.1459175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/30/2024] [Indexed: 11/15/2024] Open
Abstract
Although allogeneic hematopoietic cell transplantation (HCT) represents a curative approach for many patients with hematological diseases, post-transplantation relapse occurs in 20-50% of cases, representing the primary cause of treatment failure and mortality. Alloreactive donor T cells are responsible for the graft versus leukemia (GvL) effect, which represents the key mechanism for the long-term curative effect of HCT. However, the downside is represented by graft versus host disease (GvHD), largely contributing to transplant-related mortality (TRM). Multiple factors play a role in regulating the delicate balance between GvL and GvHD, such as the optimization of the donor HLA and KIR match, the type of graft source, and the adaptive use of post-transplant cellular therapy. In addition to the standard donor lymphocyte infusion (DLI), several attempts were made to favor the GvL effect without increasing the GvHD risk. Selected DLI, NK DLI, activated DLI and more sophisticated genetically engineered cells can be employed. In this scenario, cytokine-induced killer (CIK) cells represent a suitable tool to boost GvL while minimizing GvHD. CIK cells are T lymphocytes activated in culture in the presence of monoclonal antibodies against CD3 (OKT3), interferon-gamma (IFN-g), and interleukin-2 (IL-2), characterized by the expression of markers typical of NK cells and T cells (CD3+, CD56+, with a prevalent CD8+ phenotype). CIK cells can mediate cytotoxicity through both MHC and non-MHC restricted recognition, which is the so-called "dual-functional capability" and display minimum alloreactivity. Allogeneic CIK cells showed a favorable rate of response, especially in the setting of minimal residual disease, with a rate of GvHD not exceeding 25%. Finally, the CIK cell platform can be adapted for chimeric antigen receptor (CAR) cell strategy, showing promising results in both preclinical and clinical settings. In this review, we describe the main immunological basis for the development of the GvL and the possible cellular therapy approaches used to boost it, with a particular focus on the use of CIK cells.
Collapse
Affiliation(s)
- Benedetta Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| | - Giuliana Rizzuto
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Molecular and Translational Medicine Doctoral Program (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Alessandro Rambaldi
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
| | - Martino Introna
- Dipartimento di Oncologia ed Ematologia, Ospedale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
20
|
Sun C, Li S, Ding J. Biomaterials-Boosted Immunotherapy for Osteosarcoma. Adv Healthc Mater 2024; 13:e2400864. [PMID: 38771618 DOI: 10.1002/adhm.202400864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumor that emanates from mesenchymal cells, commonly found in the epiphyseal end of long bones. The highly recurrent and metastatic nature of OS poses significant challenges to the efficacy of treatment and negatively affects patient prognosis. Currently, available clinical treatment strategies primarily focus on maximizing tumor resection and reducing localized symptoms rather than the complete eradication of malignant tumor cells to achieve ideal outcomes. The biomaterials-boosted immunotherapy for OS is characterized by high effectiveness and a favorable safety profile. This therapeutic approach manipulates the tumor microenvironments at the cellular and molecular levels to impede tumor progression. This review delves into the mechanisms underlying the treatment of OS, emphasizing biomaterials-enhanced tumor immunity. Moreover, it summarizes the immune cell phenotype and tumor microenvironment regulation, along with the ability of immune checkpoint blockade to activate the autoimmune system. Gaining a profound comprehension of biomaterials-boosted OS immunotherapy is imperative to explore more efficacious immunotherapy protocols and treatment options in this setting.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Shuqiang Li
- Department of Orthopedic Surgery, Orthopedic Center, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| |
Collapse
|
21
|
Chomczyk M, Gazzola L, Dash S, Firmanty P, George BS, Mohanty V, Abbas HA, Baran N. Impact of p53-associated acute myeloid leukemia hallmarks on metabolism and the immune environment. Front Pharmacol 2024; 15:1409210. [PMID: 39161899 PMCID: PMC11330794 DOI: 10.3389/fphar.2024.1409210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Acute myeloid leukemia (AML), an aggressive malignancy of hematopoietic stem cells, is characterized by the blockade of cell differentiation, uncontrolled proliferation, and cell expansion that impairs healthy hematopoiesis and results in pancytopenia and susceptibility to infections. Several genetic and chromosomal aberrations play a role in AML and influence patient outcomes. TP53 is a key tumor suppressor gene involved in a variety of cell features, such as cell-cycle regulation, genome stability, proliferation, differentiation, stem-cell homeostasis, apoptosis, metabolism, senescence, and the repair of DNA damage in response to cellular stress. In AML, TP53 alterations occur in 5%-12% of de novo AML cases. These mutations form an important molecular subgroup, and patients with these mutations have the worst prognosis and shortest overall survival among patients with AML, even when treated with aggressive chemotherapy and allogeneic stem cell transplant. The frequency of TP53-mutations increases in relapsed and recurrent AML and is associated with chemoresistance. Progress in AML genetics and biology has brought the novel therapies, however, the clinical benefit of these agents for patients whose disease is driven by TP53 mutations remains largely unexplored. This review focuses on the molecular characteristics of TP53-mutated disease; the impact of TP53 on selected hallmarks of leukemia, particularly metabolic rewiring and immune evasion, the clinical importance of TP53 mutations; and the current progress in the development of preclinical and clinical therapeutic strategies to treat TP53-mutated disease.
Collapse
Affiliation(s)
- Monika Chomczyk
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Luca Gazzola
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Shubhankar Dash
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Firmanty
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Binsah S. George
- Department of Hematology-oncology, The University of Texas Health Sciences, Houston, TX, United States
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
22
|
Sui C, Wu H, Li X, Wang Y, Wei J, Yu J, Wu X. Cancer immunotherapy and its facilitation by nanomedicine. Biomark Res 2024; 12:77. [PMID: 39097732 PMCID: PMC11297660 DOI: 10.1186/s40364-024-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Cancer immunotherapy has sparked a wave of cancer research, driven by recent successful proof-of-concept clinical trials. However, barriers are emerging during its rapid development, including broad adverse effects, a lack of reliable biomarkers, tumor relapses, and drug resistance. Integration of nanomedicine may ameliorate current cancer immunotherapy. Ultra-large surface-to-volume ratio, extremely small size, and easy modification surface of nanoparticles enable them to selectively detect cells and kill cancer cells in vivo. Exciting synergistic applications of the two approaches have emerged in treating various cancers at the intersection of cancer immunotherapy and cancer nanomedicine, indicating the potential that the combination of these two therapeutic modalities can lead to new paradigms in the treatment of cancer. This review discusses the status of current immunotherapy and explores the possible opportunities that the nanomedicine platform can make cancer immunotherapy more powerful and precise by synergizing the two approaches.
Collapse
Affiliation(s)
- Chao Sui
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA
| | - Heqing Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an Shaanxi, 710072, China
| | - Yuhang Wang
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqi Wei
- The First Affiliated Hospital of Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, 91010, USA.
| | - Xiaojin Wu
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
23
|
Zhong Y, Liu J. Emerging roles of CAR-NK cell therapies in tumor immunotherapy: current status and future directions. Cell Death Discov 2024; 10:318. [PMID: 38987565 PMCID: PMC11236993 DOI: 10.1038/s41420-024-02077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Cancer immunotherapy harnesses the body's immune system to combat malignancies, building upon an understanding of tumor immunosurveillance and immune evasion mechanisms. This therapeutic approach reactivates anti-tumor immune responses and can be categorized into active, passive, and combined immunization strategies. Active immunotherapy engages the immune system to recognize and attack tumor cells by leveraging host immunity with cytokine supplementation or vaccination. Conversely, passive immunotherapy employs exogenous agents, such as monoclonal antibodies (anti-CTLA4, anti-PD1, anti-PD-L1) or adoptive cell transfers (ACT) with genetically engineered chimeric antigen receptor (CAR) T or NK cells, to exert anti-tumor effects. Over the past decades, CAR-T cell therapies have gained significant traction in oncological treatment, offering hope through their targeted approach. However, the potential adverse effects associated with CAR-T cells, including cytokine release syndrome (CRS), off-tumor toxicity, and neurotoxicity, warrant careful consideration. Recently, CAR-NK cell therapy has emerged as a promising alternative in the landscape of tumor immunotherapy, distinguished by its innate advantages over CAR-T cell modalities. In this review, we will synthesize the latest research and clinical advancements in CAR-NK cell therapies. We will elucidate the therapeutic benefits of employing CAR-NK cells in oncology and critically examine the developmental bottlenecks impeding their broader application. Our discussion aims to provide a comprehensive overview of the current status and future potential of CAR-NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingfeng Liu
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| |
Collapse
|
24
|
Masetti R, Baccelli F, Leardini D, Locatelli F. Venetoclax: a new player in the treatment of children with high-risk myeloid malignancies? Blood Adv 2024; 8:3583-3595. [PMID: 38701350 PMCID: PMC11319833 DOI: 10.1182/bloodadvances.2023012041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
ABSTRACT Venetoclax selectively inhibits B-cell lymphoma 2 (BCL-2) and restores apoptotic signaling of hematologic malignant cells. Venetoclax, in combination with hypomethylating and low-dose cytotoxic agents, has revolutionized the management of older patients affected by acute myeloid leukemia (AML) and that of patients unfit to receive intensive chemotherapy. In a single phase 1 pediatric trial conducted on relapsed or refractory AML, the combination of venetoclax and intensive chemotherapy was shown to be safe and yielded promising response rates. In addition, several retrospective studies in children with AML reported that venetoclax, when combined with hypomethylating agents and cytotoxic drugs, seems to be a safe and efficacious bridge to transplant. The promising results on the use of venetoclax combinations in advanced myelodysplastic syndromes (MDS) and therapy-related MDS/AML have also been reported in small case series. This review summarizes the available current knowledge about venetoclax use in childhood high-risk myeloid neoplasms and discusses the possible integration of BCL-2 inhibition in the current treatment algorithm of these children. It also focuses on specific genetic subgroups potentially associated with response in preclinical and clinical studies.
Collapse
Affiliation(s)
- Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
25
|
Shrestha N, Dee MJ, Chaturvedi P, Leclerc GM, Mathyer M, Dufour C, Arthur L, Becker-Hapak M, Foster M, McClain E, Pena NV, Kage K, Zhu X, George V, Liu B, Egan J, Echeverri C, Wang M, You L, Kong L, Li L, Berrien-Elliott MM, Cooper ML, Fehniger TA, Rhode PR, Wong HC. A "Prime and Expand" strategy using the multifunctional fusion proteins to generate memory-like NK cells for cell therapy. Cancer Immunol Immunother 2024; 73:179. [PMID: 38960949 PMCID: PMC11222348 DOI: 10.1007/s00262-024-03765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Adoptive cellular therapy (ACT) using memory-like (ML) natural killer (NK) cells, generated through overnight ex vivo activation with IL-12, IL-15, and IL-18, has shown promise for treating hematologic malignancies. We recently reported that a multifunctional fusion molecule, HCW9201, comprising IL-12, IL-15, and IL-18 domains could replace individual cytokines for priming human ML NK cell programming ("Prime" step). However, this approach does not include ex vivo expansion, thereby limiting the ability to test different doses and schedules. Here, we report the design and generation of a multifunctional fusion molecule, HCW9206, consisting of human IL-7, IL-15, and IL-21 cytokines. We observed > 300-fold expansion for HCW9201-primed human NK cells cultured for 14 days with HCW9206 and HCW9101, an IgG1 antibody, recognizing the scaffold domain of HCW9206 ("Expand" step). This expansion was dependent on both HCW9206 cytokines and interactions of the IgG1 mAb with CD16 receptors on NK cells. The resulting "Prime and Expand" ML NK cells exhibited elevated metabolic capacity, stable epigenetic IFNG promoter demethylation, enhanced antitumor activity in vitro and in vivo, and superior persistence in NSG mice. Thus, the "Prime and Expand" strategy represents a simple feeder cell-free approach to streamline manufacturing of clinical-grade ML NK cells to support multidose and off-the-shelf ACT.
Collapse
Affiliation(s)
- Niraj Shrestha
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Michael J Dee
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | | | - Gilles M Leclerc
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | | | | | | | - Michelle Becker-Hapak
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mark Foster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Ethan McClain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | - Karen Kage
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Xiaoyun Zhu
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Varghese George
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Bai Liu
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Jack Egan
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | | | - Meng Wang
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Lijing You
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Lin Kong
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Liying Li
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Melissa M Berrien-Elliott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | | | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Peter R Rhode
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA
| | - Hing C Wong
- HCW Biologics Inc., 2929 N. Commerce Parkway, Miramar, FL, 33025, USA.
| |
Collapse
|
26
|
Restelli C, Ruella M, Paruzzo L, Tarella C, Pelicci PG, Colombo E. Recent Advances in Immune-Based Therapies for Acute Myeloid Leukemia. Blood Cancer Discov 2024; 5:234-248. [PMID: 38904305 PMCID: PMC11215380 DOI: 10.1158/2643-3230.bcd-23-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/16/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Despite advancements, acute myeloid leukemia (AML) remains unconquered by current therapies. Evidence of immune evasion during AML progression, such as HLA loss and T-cell exhaustion, suggests that antileukemic immune responses contribute to disease control and could be harnessed by immunotherapy. In this review, we discuss a spectrum of AML immunotherapy targets, encompassing cancer cell-intrinsic and surface antigens as well as targeting in the leukemic milieu, and how they can be tailored for personalized approaches. These targets are overviewed across major immunotherapy modalities applied to AML: immune checkpoint inhibitors, antibody-drug conjugates, therapeutic vaccines, bispecific/trispecific antibodies, and chimeric antigen receptor (CAR)-T and CAR-NK cells. Significance: Immune therapies in AML treatment show evolving promise. Ongoing research aims to customize approaches for varied patient profiles and clinical scenarios. This review covers immune surveillance mechanisms, therapy options like checkpoint inhibitors, antibodies, CAR-T/NK cells, and vaccines, as well as resistance mechanisms and microenvironment considerations.
Collapse
Affiliation(s)
- Cecilia Restelli
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| | - Marco Ruella
- Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
| | - Luca Paruzzo
- Center for Cellular Immunotherapies and Cellular Therapy and Transplant, University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
- Division of Hematology-Oncology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, PA, USA.
| | - Corrado Tarella
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Emanuela Colombo
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
27
|
Yang R, Yang Y, Liu R, Wang Y, Yang R, He A. Advances in CAR-NK cell therapy for hematological malignancies. Front Immunol 2024; 15:1414264. [PMID: 39007146 PMCID: PMC11239349 DOI: 10.3389/fimmu.2024.1414264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has revolutionized the treatment of hematological malignancies, demonstrably improving patient outcomes and prognosis. However, its application has introduced new challenges, such as safety concerns, off-target toxicities, and significant costs. Natural killer (NK) cells are crucial components of the innate immune system, capable of eliminating tumor cells without prior exposure to specific antigens or pre-activation. This inherent advantage complements the limitations of T cells, making CAR-NK cell therapy a promising avenue for hematological tumor immunotherapy. In recent years, preclinical and clinical studies have yielded preliminary evidence supporting the safety and efficacy of CAR-NK cell therapy in hematological malignancies, paving the way for future advancements in immunotherapy. This review aims to succinctly discuss the characteristics, significant therapeutic progress, and potential challenges associated with CAR-NK cell therapy.
Collapse
Affiliation(s)
- Rui Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yun Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, Shaanxi, China
| | - Rui Liu
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yiwen Wang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruoyu Yang
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Xi’an Key Laboratory of Hematological Diseases, Xi’an, Shaanxi, China
| |
Collapse
|
28
|
Zhou J, Chng WJ. Unveiling novel insights in acute myeloid leukemia through single-cell RNA sequencing. Front Oncol 2024; 14:1365330. [PMID: 38711849 PMCID: PMC11070491 DOI: 10.3389/fonc.2024.1365330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex and heterogeneous group of aggressive hematopoietic stem cell disease. The presence of diverse and functionally distinct populations of leukemia cells within the same patient's bone marrow or blood poses a significant challenge in diagnosing and treating AML. A substantial proportion of AML patients demonstrate resistance to induction chemotherapy and a grim prognosis upon relapse. The rapid advance in next generation sequencing technologies, such as single-cell RNA-sequencing (scRNA-seq), has revolutionized our understanding of AML pathogenesis by enabling high-resolution interrogation of the cellular heterogeneity in the AML ecosystem, and their transcriptional signatures at a single-cell level. New studies have successfully characterized the inextricably intertwined interactions among AML cells, immune cells and bone marrow microenvironment and their contributions to the AML development, therapeutic resistance and relapse. These findings have deepened and broadened our understanding the complexity and heterogeneity of AML, which are difficult to detect with bulk RNA-seq. This review encapsulates the burgeoning body of knowledge generated through scRNA-seq, providing the novel insights and discoveries it has unveiled in AML biology. Furthermore, we discuss the potential implications of scRNA-seq in therapeutic opportunities, focusing on immunotherapy. Finally, we highlight the current limitations and future direction of scRNA-seq in the field.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Singapore
| |
Collapse
|
29
|
Guijarro-Albaladejo B, Marrero-Cepeda C, Rodríguez-Arbolí E, Sierro-Martínez B, Pérez-Simón JA, García-Guerrero E. Chimeric antigen receptor (CAR) modified T Cells in acute myeloid leukemia: limitations and expectations. Front Cell Dev Biol 2024; 12:1376554. [PMID: 38694825 PMCID: PMC11061469 DOI: 10.3389/fcell.2024.1376554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a poor prognosis despite the advent of novel therapies. Consequently, a major need exists for new therapeutic options, particularly for patients with relapsed/refractory (R/R) AML. In recent years, it has been possible to individualize the treatment of a subgroup of patients, particularly with the emergence of multiple targeted therapies. Nonetheless, a considerable number of patients remain without therapeutic options, and overall prognosis remains poor because of a high rate of disease relapse. In this sense, cellular therapies, especially chimeric antigen receptor (CAR)-T cell therapy, have dramatically shifted the therapeutic options for other hematologic malignancies, such as diffuse large B cell lymphoma and acute lymphoblastic leukemia. In contrast, effectively treating AML with CAR-based immunotherapy poses major biological and clinical challenges, most of them derived from the unmet need to identify target antigens with expression restricted to the AML blast without compromising the viability of the normal hematopoietic stem cell counterpart. Although those limitations have hampered CAR-T cell therapy translation to the clinic, there are several clinical trials where target antigens, such as CD123, CLL-1 or CD33 are being used to treat AML patients showing promising results. Moreover, there are continuing efforts to enhance the specificity and efficacy of CAR-T cell therapy in AML. These endeavors encompass the exploration of novel avenues, including the development of dual CAR-T cells and next-generation CAR-T cells, as well as the utilization of gene editing tools to mitigate off-tumor toxicities. In this review, we will summarize the ongoing clinical studies and the early clinical results reported with CAR-T cells in AML, as well as highlight CAR-T cell limitations and the most recent approaches to overcome these barriers. We will also discuss how and when CAR-T cells should be used in the context of AML.
Collapse
Affiliation(s)
- Beatriz Guijarro-Albaladejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Cristina Marrero-Cepeda
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Eduardo Rodríguez-Arbolí
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - José Antonio Pérez-Simón
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
30
|
Page A, Chuvin N, Valladeau-Guilemond J, Depil S. Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol 2024; 21:315-331. [PMID: 38443448 PMCID: PMC10978891 DOI: 10.1038/s41423-024-01145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Natural killer (NK) cell-based immunotherapies are attracting increasing interest in the field of cancer treatment. Early clinical trials have shown promising outcomes, alongside satisfactory product efficacy and safety. Recent developments have greatly increased the therapeutic potential of NK cells by endowing them with enhanced recognition and cytotoxic capacities. This review focuses on surface receptor engineering in NK cell therapy and discusses its impact, challenges, and future directions.Most approaches are based on engineering with chimeric antigen receptors to allow NK cells to target specific tumor antigens independent of human leukocyte antigen restriction. This approach has increased the precision and potency of NK-mediated recognition and elimination of cancer cells. In addition, engineering NK cells with T-cell receptors also mediates the recognition of intracellular epitopes, which broadens the range of target peptides. Indirect tumor peptide recognition by NK cells has also been improved by optimizing immunoglobulin constant fragment receptor expression and signaling. Indeed, engineered NK cells have an improved ability to recognize and destroy target cells coated with specific antibodies, thereby increasing their antibody-dependent cellular cytotoxicity. The ability of NK cell receptor engineering to promote the expansion, persistence, and infiltration of transferred cells in the tumor microenvironment has also been explored. Receptor-based strategies for sustained NK cell functionality within the tumor environment have also been discussed, and these strategies providing perspectives to counteract tumor-induced immunosuppression.Overall, receptor engineering has led to significant advances in NK cell-based cancer immunotherapies. As technical challenges are addressed, these innovative treatments will likely reshape cancer immunotherapy.
Collapse
Affiliation(s)
- Audrey Page
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
| | | | - Jenny Valladeau-Guilemond
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
- ErVimmune, Lyon, France.
- Centre Léon Bérard, Lyon, France.
- Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
31
|
Karol SE, Gueguen G. Pediatric acute myeloid leukemia - novel approaches. Curr Opin Hematol 2024; 31:47-52. [PMID: 37982279 DOI: 10.1097/moh.0000000000000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
PURPOSE OF REVIEW Despite higher remission and survival rates than observed in adults, children with acute myeloid leukemia (AML) still suffer unacceptably high rates of treatment failure and late toxicities. Ongoing work aims to improve these long-term outcomes through improvements in the utilization of current therapies, the incorporation of novel chemotherapy agents, and improved use of current or novel cellular and immunotherapeutic approaches. In this review, we highlight recent advances and contextualize them within this evolving landscape. RECENT FINDINGS Novel agents such as the B-cell lymphoma 2 inhibitor venetoclax and the menin inhibitors have shown promising results with implications for large portions of the pediatric AML population. Older agents are being used in novel combinations (e.g. gemtuzumab ozogamicin) or are expanding into pediatrics after longer use in adults (e.g. Fms-like tyrosine kinase 3 inhibitors). Finally, immunotherapeutic approaches offer new options for patients with high-risk or relapsed disease. SUMMARY Recent findings have altered the landscape of pediatric AML therapy with exciting immediate and long-term implications. Ongoing studies may soon define this as standard as well. After many years in which few new therapies have become available for children with AML, recent and upcoming advances may soon dramatically alter the therapeutic landscape.
Collapse
Affiliation(s)
- Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gwenaelle Gueguen
- Center of Clinical Investigations, INSERM CIC1426, Robert-Debré University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
32
|
Li T, Niu M, Zhang W, Qin S, Zhou J, Yi M. CAR-NK cells for cancer immunotherapy: recent advances and future directions. Front Immunol 2024; 15:1361194. [PMID: 38404574 PMCID: PMC10884099 DOI: 10.3389/fimmu.2024.1361194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Natural Killer (NK) cells, intrinsic to the innate immune system, are pivotal in combating cancer due to their independent cytotoxic capabilities in antitumor immune response. Unlike predominant treatments that target T cell immunity, the limited success of T cell immunotherapy emphasizes the urgency for innovative approaches, with a spotlight on harnessing the potential of NK cells. Despite tumors adapting mechanisms to evade NK cell-induced cytotoxicity, there is optimism surrounding Chimeric Antigen Receptor (CAR) NK cells. This comprehensive review delves into the foundational features and recent breakthroughs in comprehending the dynamics of NK cells within the tumor microenvironment. It critically evaluates the potential applications and challenges associated with emerging CAR-NK cell therapeutic strategies, positioning them as promising tools in the evolving landscape of precision medicine. As research progresses, the unique attributes of CAR-NK cells offer a new avenue for therapeutic interventions, paving the way for a more effective and precise approach to cancer treatment.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Song J, Li W, Bai Y, Zhou P, Niu J, Niu X, Liu Y, Liu X, Drokow EK, Sun K, Zhou H. A blastic plasmacytoid dendritic cell neoplasm-like immunophenotype is negatively associated with CEBPA bZIP mutation and predicts unfavorable prognosis in acute myeloid leukemia. Ann Hematol 2024; 103:463-473. [PMID: 38183444 DOI: 10.1007/s00277-023-05594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/17/2023] [Indexed: 01/08/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive myeloid malignancy which characteristically expresses an atypical phenotype including CD123+, CD56+, and CD4+. We are aimed to investigate the clinical and prognostic characteristics of AML patients exhibiting BPDCN-like immunophenotype and provide additional insights for risk stratification of AML. A total of 241 newly diagnosed AML patients were enrolled in this retrospective study and categorized into BPDCN-like positive (n = 125)/negative (n = 116) groups, determined by the present with CD123+ along with either CD56+ or CD4+, or both. Subsequently, an analysis was conducted to examine the general clinical characteristics, genetic profiles, and prognosis of the two respective groups. Patients with BPDCN-like immunophenotype manifested higher frequencies of acute myelomonocytic leukemia and acute monoblastic leukemia. Surprisingly, the presence of the BPDCN-like immunophenotype exhibited an inverse relationship with CEBPA bZIP mutation. Notably, patients with BPDCN-like phenotype had both worse OS and EFS compared to those without BPDCN-like phenotype. In the CN-AML subgroups, the BPDCN-like phenotype was associated with worse EFS. Similarly, a statistically significant disparity was observed in both OS and EFS within the favorable-risk subgroup, while only OS was significant within the adverse-risk subgrouMoreover, patients possessing favorable-risk genetics without BPDCN-like phenotype had the longest survival, whereas those who had both adverse-risk genetics and BPDCN-like phenotype exhibited the worst survival. Our study indicated that BPDCN-like phenotype negatively associated with CEBPA bZIP mutation and revealed a significantly poor prognosis in AML. Moreover, the 2022 ELN classification, in combination with the BPDCN-like phenotype, may better distinguish between different risk groups.
Collapse
Affiliation(s)
- Juanjuan Song
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Tumor Hospital of Henan Province, Institute of Hematology of Henan Province, No.127 Dongming Road, Jinshui District, Zhengzhou, 450000, Henan, People's Republic of China
| | - Weiya Li
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Yanliang Bai
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Pan Zhou
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Junwei Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiaona Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Ying Liu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiaobo Liu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Emmanuel Kwateng Drokow
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China.
| | - Hu Zhou
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Tumor Hospital of Henan Province, Institute of Hematology of Henan Province, No.127 Dongming Road, Jinshui District, Zhengzhou, 450000, Henan, People's Republic of China.
| |
Collapse
|
34
|
Zhang B, Yang M, Zhang W, Liu N, Wang D, Jing L, Xu N, Yang N, Ren T. Chimeric antigen receptor-based natural killer cell immunotherapy in cancer: from bench to bedside. Cell Death Dis 2024; 15:50. [PMID: 38221520 PMCID: PMC10788349 DOI: 10.1038/s41419-024-06438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Immunotherapy has rapidly evolved in the past decades in the battle against cancer. Chimeric antigen receptor (CAR)-engineered T cells have demonstrated significant success in certain hematologic malignancies, although they still face certain limitations, including high costs and toxic effects. Natural killer cells (NK cells), as a vital component of the immune system, serve as the "first responders" in the context of cancer development. In this literature review, we provide an updated understanding of NK cell development, functions, and their applications in disease therapy. Furthermore, we explore the rationale for utilizing engineered NK cell therapies, such as CAR-NK cells, and discuss the differences between CAR-T and CAR-NK cells. We also provide insights into the key elements and strategies involved in CAR design for engineered NK cells. In addition, we highlight the challenges currently encountered and discuss the future directions in NK cell research and utilization, including pre-clinical investigations and ongoing clinical trials. Based on the outstanding antitumor potential of NK cells, it is highly likely that they will lead to groundbreaking advancements in cancer treatment in the future.
Collapse
Affiliation(s)
- Beibei Zhang
- Institute of Biomedical Research, Yunnan University, Kunming, 650500, China.
| | - Mengzhe Yang
- Graduate School of Capital Medical University, Beijing, 100069, China
| | - Weiming Zhang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, 530199, China
| | - Ning Liu
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, China
| | - Daogang Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Liangfang Jing
- Department of Neonatology, Women and Children's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530005, China
| | - Ning Xu
- Department of Clinical Medicine, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Na Yang
- Department of Ultrasound, The Second Affiliated Hospital of Kunming Medical University, Yunnan, 650101, China.
| | - Tao Ren
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
35
|
Cheung A, Chenoweth A. Targeted Immunotherapies for Cancers. Cancers (Basel) 2023; 16:11. [PMID: 38201439 PMCID: PMC10778418 DOI: 10.3390/cancers16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Advancements in immunotherapy have revolutionized cancer treatment in a broad variety of hematological and solid malignancies and rejuvenated the field of cancer immunology [...].
Collapse
Affiliation(s)
- Anthony Cheung
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Alicia Chenoweth
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
36
|
Peng J, He S, Yang X, Huang L, Wei J. Plasmacytoid dendritic cell expansion in myeloid neoplasms: A novel distinct subset of myeloid neoplasm? Crit Rev Oncol Hematol 2023; 192:104186. [PMID: 37863402 DOI: 10.1016/j.critrevonc.2023.104186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific dendritic cell type stemming from the myeloid lineage. Clinically and pathologically, neoplasms associated with pDCs are classified as blastic plasmacytoid dendritic cell neoplasm (BPDCN), mature plasmacytoid dendritic myeloid neoplasm (MPDMN) and pDC expansion in myeloid neoplasms (MNs). BPDCN was considered a rare and aggressive neoplasm in the 2016 World Health Organization (WHO) classification. MPDMN, known as mature pDC-derived neoplasm, is closely related to MNs and was first recognized in the latest 2022 WHO classification, proposing a new concept that acute myeloid leukemia cases could show clonally expanded pDCs (pDC-AML). With the advances in detection techniques, an increasing number of pDC expansion in MNs have been reported, but whether the pathogenesis is similar to that of MPDMN remains unclear. This review focuses on patient characteristics, diagnosis and treatment of pDC expansion in MNs to gain further insight into this novel and unique provisional subtype.
Collapse
Affiliation(s)
- Juan Peng
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Shaolong He
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei 430030, China; Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China; Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032 Taiyuan, Shanxi, China.
| |
Collapse
|
37
|
Hibler W, Merlino G, Yu Y. CAR NK Cell Therapy for the Treatment of Metastatic Melanoma: Potential & Prospects. Cells 2023; 12:2750. [PMID: 38067178 PMCID: PMC10706172 DOI: 10.3390/cells12232750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Melanoma is among the most lethal forms of cancer, accounting for 80% of deaths despite comprising just 5% of skin cancer cases. Treatment options remain limited due to the genetic and epigenetic mechanisms associated with melanoma heterogeneity that underlie the rapid development of secondary drug resistance. For this reason, the development of novel treatments remains paramount to the improvement of patient outcomes. Although the advent of chimeric antigen receptor-expressing T (CAR-T) cell immunotherapies has led to many clinical successes for hematological malignancies, these treatments are limited in their utility by their immune-induced side effects and a high risk of systemic toxicities. CAR natural killer (CAR-NK) cell immunotherapies are a particularly promising alternative to CAR-T cell immunotherapies, as they offer a more favorable safety profile and have the capacity for fine-tuned cytotoxic activity. In this review, the discussion of the prospects and potential of CAR-NK cell immunotherapies touches upon the clinical contexts of melanoma, the immunobiology of NK cells, the immunosuppressive barriers preventing endogenous immune cells from eliminating tumors, and the structure and design of chimeric antigen receptors, then finishes with a series of proposed design innovations that could improve the efficacy CAR-NK cell immunotherapies in future studies.
Collapse
Affiliation(s)
| | | | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Liu Y, Li Y, Zhang R, Yu Z, Jing Y. Venetoclax combined with hypomethylating agents and the CAG regimen in relapsed/refractory AML: a single-center clinical trial. Front Immunol 2023; 14:1269163. [PMID: 38054008 PMCID: PMC10694223 DOI: 10.3389/fimmu.2023.1269163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023] Open
Abstract
Objective This study aimed to evaluate the efficacy and safety of venetoclax in combination with hypomethylating agents and CAG (VEN-DCAG) regimens in patients with relapsed/refractory acute myeloid leukemia (R/R AML). Methods The treatment response was analyzed by retrospective methods in R/R AML patients treated with the VEN-DCAG regimen at our institution. This included, but was not limited to, CR/CRi (complete remission/complete remission with incomplete hematologic recovery) rate, measurable residual disease (MRD) negative rate, and overall survival (OS). Results 20 patients with R/R AML were recruited, with a median age of 40 years (10-70), 11 of whom were male (55%), and a median follow-up of 10.4 months (0.7-21.8). The overall response rate (ORR) after receiving 1 course of VEN-DCAG was 90% (18/20), with 17 (85%) CR/CRi (10 MRD-CR), 1 (5%) PR, and 2 (10%) NR. Subsequently, 12 patients (7 MRD-CR, 4 MRD+CR, 1 NR) were treated with the VEN-DCAG regimen, and 3 MRD+CR patients turned negative, and 13 patients finally achieved MRD-CR. Among them, 7 patients were in the relapse group, all achieving CR/CRi (6 MRD-CR), and 13 patients in the refractory group, with 10 CR/CRi (7 MRD-CR). The ORR for patients in the relapse and refractory groups was 100% (7/7) and 84.6% (11/13), respectively. Further, all patients experienced adverse events (AEs) of varying degrees of severity, with hematologic AEs primarily consisting of myelosuppression, while non-hematologic AEs were more common in the form of fever, gastrointestinal distress, and infections. 11 patients were followed up with bridging allogeneic hematopoietic stem cell transplantation (allo-HSCT) therapy. At the last follow-up, 11 patients (7 MRD-CR, 4 MRD+CR) who received allo-HSCT, 1 (MRD+CR) died, and 9 patients (6 MRD-CR, 1 PR, 2 NR) who did not receive allo-HSCT, 5 (2 MRD-CR, 1 PR, 2 NR) died as well. Conclusion The VEN-DCAG regimen may be an effective treatment option for R/R AML patients, with high ORR and MRD negative remission rates in both the relapsed and refractory groups. It is recommend that patients should be bridged to allo-HSCT as soon as possible after induction to CR by the VEN-DCAG regimen, which can lead to a significant long-term survival benefit. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2300075985.
Collapse
Affiliation(s)
| | | | | | | | - Yu Jing
- Medical School of Chinese PLA, Department of Hematology in the Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Haubner S, Mansilla-Soto J, Nataraj S, Kogel F, Chang Q, de Stanchina E, Lopez M, Ng MR, Fraser K, Subklewe M, Park JH, Wang X, Rivière I, Sadelain M. Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell 2023; 41:1871-1891.e6. [PMID: 37802054 PMCID: PMC11006543 DOI: 10.1016/j.ccell.2023.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/20/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
Acute myeloid leukemia (AML) poses a singular challenge for chimeric antigen receptor (CAR) therapy owing to its phenotypic heterogeneity and similarity to normal hematopoietic stem/progenitor cells (HSPCs). Here we expound a CAR strategy intended to efficiently target AML while minimizing HSPC toxicity. Quantification of target expression in relapsed/refractory patient samples and normal HSPCs reveals a therapeutic window for gated co-targeting of ADGRE2 and CLEC12A: We combine an attenuated ADGRE2-CAR with a CLEC12A-chimeric costimulatory receptor (ADCLEC.syn1) to preferentially engage ADGRE2posCLEC12Apos leukemic stem cells over ADGRE2lowCLEC12Aneg normal HSPCs. ADCLEC.syn1 prevents antigen escape in AML xenograft models, outperforms the ADGRE2-CAR alone and eradicates AML despite proximate myelopoiesis in humanized mice. Off-target HSPC toxicity is similar to that of a CD19-CAR and can be mitigated by reducing CAR T cell-derived interferon-γ. Overall, we demonstrate the ability of target density-adapted cooperative CAR targeting to selectively eliminate AML and potentially obviate the need for hematopoietic rescue.
Collapse
Affiliation(s)
- Sascha Haubner
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Nataraj
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Friederike Kogel
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Lopez
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mei Rosa Ng
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Kathryn Fraser
- Takeda Development Center Americas, Inc., Lexington, MA 02421, USA
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jae H Park
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiuyan Wang
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
40
|
Chen EC, Garcia JS. Immunotherapy for Acute Myeloid Leukemia: Current Trends, Challenges, and Strategies. Acta Haematol 2023; 147:198-218. [PMID: 37673048 DOI: 10.1159/000533990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND In the past decade, there have been significant breakthroughs in immunotherapies for B-cell lymphoid malignancies and multiple myeloma, but progress has been much less for acute myeloid leukemia (AML). Nevertheless, challenge begets innovation and several therapeutic strategies are under investigation. SUMMARY In this review, we review the state of the art in AML immunotherapy including CD33- and CD123-targeted agents, immune checkpoint inhibition, and adoptive cell therapy strategies. We also share conceptual frameworks for approaching the growing catalog of investigational AML immunotherapies and propose future directions for the field. KEY MESSAGES Immunotherapies for AML face significant challenges but novel strategies are in development.
Collapse
Affiliation(s)
- Evan C Chen
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jacqueline S Garcia
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Fang J, Lu Y, Zheng J, Jiang X, Shen H, Shang X, Lu Y, Fu P. Exploring the crosstalk between endothelial cells, immune cells, and immune checkpoints in the tumor microenvironment: new insights and therapeutic implications. Cell Death Dis 2023; 14:586. [PMID: 37666809 PMCID: PMC10477350 DOI: 10.1038/s41419-023-06119-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2023]
Abstract
The tumor microenvironment (TME) is a highly intricate milieu, comprising a multitude of components, including immune cells and stromal cells, that exert a profound influence on tumor initiation and progression. Within the TME, angiogenesis is predominantly orchestrated by endothelial cells (ECs), which foster the proliferation and metastasis of malignant cells. The interplay between tumor and immune cells with ECs is complex and can either bolster or hinder the immune system. Thus, a comprehensive understanding of the intricate crosstalk between ECs and immune cells is essential to advance the development of immunotherapeutic interventions. Despite recent progress, the underlying molecular mechanisms that govern the interplay between ECs and immune cells remain elusive. Nevertheless, the immunomodulatory function of ECs has emerged as a pivotal determinant of the immune response. In light of this, the study of the relationship between ECs and immune checkpoints has garnered considerable attention in the field of immunotherapy. By targeting specific molecular pathways and signaling molecules associated with ECs in the TME, novel immunotherapeutic strategies may be devised to enhance the efficacy of current treatments. In this vein, we sought to elucidate the relationship between ECs, immune cells, and immune checkpoints in the TME, with the ultimate goal of identifying novel therapeutic targets and charting new avenues for immunotherapy.
Collapse
Affiliation(s)
- Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, 313000, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Six Affiliated Hospital of Wenzhou Medical University, 323000, Lishui, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Haixing Shen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, 315300, Cixi, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, 318000, Taizhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, China.
| |
Collapse
|
42
|
Lang Y, Lyu Y, Tan Y, Hu Z. Progress in construction of mouse models to investigate the pathogenesis and immune therapy of human hematological malignancy. Front Immunol 2023; 14:1195194. [PMID: 37646021 PMCID: PMC10461088 DOI: 10.3389/fimmu.2023.1195194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023] Open
Abstract
Hematological malignancy is a disease arisen by complicate reasons that seriously endangers human health. The research on its pathogenesis and therapies depends on the usage of animal models. Conventional animal model cannot faithfully mirror some characteristics of human features due to the evolutionary divergence, whereas the mouse models hosting human hematological malignancy are more and more applied in basic as well as translational investigations in recent years. According to the construction methods, they can be divided into different types (e.g. cell-derived xenograft (CDX) and patient-derived xenograft model (PDX) model) that have diverse characteristics and application values. In addition, a variety of strategies have been developed to improve human hematological malignant cell engraftment and differentiation in vivo. Moreover, the humanized mouse model with both functional human immune system and autologous human hematological malignancy provides a unique tool for the evaluation of the efficacy of novel immunotherapeutic drugs/approaches. Herein, we first review the evolution of the mouse model of human hematological malignancy; Then, we analyze the characteristics of different types of models and summarize the ways to improve the models; Finally, the way and value of humanized mouse model of human immune system in the immunotherapy of human hematological malignancy are discussed.
Collapse
Affiliation(s)
- Yue Lang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
- Department of Dermatology, The First Hospital, Jilin University, Changchun, China
| | - Yanan Lyu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| | - Yehui Tan
- Department of Hematology, The First Hospital, Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
43
|
Zhang Y, Zhou W, Yang J, Yang J, Wang W. Chimeric antigen receptor engineered natural killer cells for cancer therapy. Exp Hematol Oncol 2023; 12:70. [PMID: 37563648 PMCID: PMC10413722 DOI: 10.1186/s40164-023-00431-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Natural killer (NK) cells, a unique component of the innate immune system, are inherent killers of stressed and transformed cells. Based on their potent capacity to kill cancer cells and good tolerance of healthy cells, NK cells have been successfully employed in adoptive cell therapy to treat cancer patients. In recent years, the clinical success of chimeric antigen receptor (CAR)-T cells has proven the vast potential of gene-manipulated immune cells as the main force to fight cancer. Following the lessons learned from mature gene-transfer technologies and advanced strategies in CAR-T therapy, NK cells have been rapidly explored as a promising candidate for CAR-based therapy. An exponentially growing number of studies have employed multiple sources of CAR-NK cells to target a wide range of cancer-related antigens, showing remarkable outcomes and encouraging safety profiles. Clinical trials of CAR-NK cells have also shown their impressive therapeutic efficacy in the treatment of hematological tumors, but CAR-NK cell therapy for solid tumors is still in the initial stages. In this review, we present the favorable profile of NK cells as a potential platform for CAR-based engineering and then summarize the outcomes and strategies of CAR-NK therapies in up-to-date preclinical and clinical investigations. Finally, we evaluate the challenges remaining in CAR-NK therapy and describe existing strategies that can assist us in devising future prospective solutions.
Collapse
Affiliation(s)
- Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiangping Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jinrong Yang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China
- Hematology Research Laboratory, Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
44
|
Zhang T, Tian W, Wei S, Lu X, An J, He S, Zhao J, Gao Z, Li L, Lian K, Zhou Q, Zhang H, Wang L, Su L, Kang H, Niu T, Zhao A, Pan J, Cai Q, Xu Z, Chen W, Jing H, Li P, Zhao W, Cao Y, Mi J, Chen T, Chen Y, Zou P, Lukacs-Kornek V, Kurts C, Li J, Liu X, Mei Q, Zhang Y, Wei J. Multidisciplinary recommendations for the management of CAR-T recipients in the post-COVID-19 pandemic era. Exp Hematol Oncol 2023; 12:66. [PMID: 37501090 PMCID: PMC10375673 DOI: 10.1186/s40164-023-00426-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) posed an unprecedented challenge on public health systems. Despite the measures put in place to contain it, COVID-19 is likely to continue experiencing sporadic outbreaks for some time, and individuals will remain susceptible to recurrent infections. Chimeric antigen receptor (CAR)-T recipients are characterized by durable B-cell aplasia, hypogammaglobulinemia and loss of T-cell diversity, which lead to an increased proportion of severe/critical cases and a high mortality rate after COVID-19 infection. Thus, treatment decisions have become much more complex and require greater caution when considering CAR T-cell immunotherapy. Hence, we reviewed the current understanding of COVID-19 and reported clinical experience in the management of COVID-19 and CAR-T therapy. After a panel discussion, we proposed a rational procedure pertaining to CAR-T recipients with the aim of maximizing the benefit of CAR-T therapy in the post COVID-19 pandemic era.
Collapse
Affiliation(s)
- Tingting Zhang
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Weiwei Tian
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Xinyi Lu
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jing An
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Shaolong He
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Jie Zhao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Zhilin Gao
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Li Li
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Ke Lian
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China
| | - Qiang Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Cardiovascular Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
| | - Liping Su
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Pan
- State Key Laboratory of Experimental Hematology, Boren Biotherapy Translational Laboratory, Boren Clinical Translational Center, Beijing GoBroad Boren Hospital, Beijing, 100070, China
| | - Qingqing Cai
- Sun Yat-Sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Zhenshu Xu
- Hematology Department, Fujian Medical University Union Hospital, Fujian Institute of Hematology, Fuzhou, 350001, Fujian, China
| | - Wenming Chen
- Department of Hematology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing, 100191, China
| | - Peng Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510535, Guangdong, China
| | - Wanhong Zhao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shanxi, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Jianqing Mi
- Shanghai Institute of Hematology, Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Chen
- Department and Institute of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuan Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Department of Geriatrics, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ping Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Jian Li
- Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, 53111, Bonn, Germany
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Department of Respiratory and Critical Care Medicine, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
| | - Qi Mei
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jia Wei
- Department of Hematology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, Shanxi, China.
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, Shanxi, China.
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
45
|
Bottino C, Vitale C, Dondero A, Castriconi R. B7-H3 in Pediatric Tumors: Far beyond Neuroblastoma. Cancers (Basel) 2023; 15:3279. [PMID: 37444389 DOI: 10.3390/cancers15133279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
B7-H3 is a 4Ig transmembrane protein that emerged as a tumor-associated antigen in neuroblastoma. It belongs to the B7 family, shows an immunoregulatory role toward NK and T cells, and, therefore, has been included in the growing family of immune checkpoints. Besides neuroblastoma, B7-H3 is expressed by many pediatric cancers including tumors of the central nervous system, sarcomas, and acute myeloid leukemia. In children, particularly those affected by solid tumors, the therapeutic protocols are aggressive and cause important life-threatening side effects. Moreover, despite the improved survival observed in the last decade, a relevant number of patients show therapy resistance and fatal relapses. Immunotherapy represents a new frontier in the cure of cancer patients and the targeting of tumor antigens or immune checkpoints blockade showed exciting results in adults. In this encouraging scenario, researchers and clinicians are exploring the possibility to use immunotherapeutics targeting B7-H3; these include mAbs and chimeric antigen receptor T-cells (CAR-T). These tools are rapidly evolving to improve the efficacy and decrease the unwanted side effects; drug-conjugated mAbs, bi-tri-specific mAbs or CAR-T, and, very recently, NK cell engagers (NKCE), tetra-specific molecules engaging a tumor-associated antigen and NK cells, have been generated. Preclinical data are promising, and clinical trials are ongoing. Hopefully, the B7-H3 targeting will provide important benefits to cancer patients.
Collapse
Affiliation(s)
- Cristina Bottino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Chiara Vitale
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Alessandra Dondero
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | - Roberta Castriconi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
46
|
Parodi M, Astigiano S, Carrega P, Pietra G, Vitale C, Damele L, Grottoli M, Guevara Lopez MDLL, Ferracini R, Bertolini G, Roato I, Vitale M, Orecchia P. Murine models to study human NK cells in human solid tumors. Front Immunol 2023; 14:1209237. [PMID: 37388731 PMCID: PMC10301748 DOI: 10.3389/fimmu.2023.1209237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Since the first studies, the mouse models have provided crucial support for the most important discoveries on NK cells, on their development, function, and circulation within normal and tumor tissues. Murine tumor models were initially set to study murine NK cells, then, ever more sophisticated human-in-mice models have been developed to investigate the behavior of human NK cells and minimize the interferences from the murine environment. This review presents an overview of the models that have been used along time to study NK cells, focusing on the most popular NOG and NSG models, which work as recipients for the preparation of human-in-mice tumor models, the study of transferred human NK cells, and the evaluation of various enhancers of human NK cell function, including cytokines and chimeric molecules. Finally, an overview of the next generation humanized mice is also provided along with a discussion on how traditional and innovative in-vivo and in-vitro approaches could be integrated to optimize effective pre-clinical studies.
Collapse
Affiliation(s)
- Monica Parodi
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simonetta Astigiano
- Animal Facility, IRCCS Ospedale Policlinico San Martino Genova, Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Gabriella Pietra
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Chiara Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Laura Damele
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Melania Grottoli
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | | | - Riccardo Ferracini
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Giulia Bertolini
- “Epigenomics and Biomarkers of Solid Tumors”, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Roato
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
| | - Massimo Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Orecchia
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
47
|
Meng F, Zhang S, Xie J, Zhou Y, Wu Q, Lu B, Zhou S, Zhao X, Li Y. Leveraging CD16 fusion receptors to remodel the immune response for enhancing anti-tumor immunotherapy in iPSC-derived NK cells. J Hematol Oncol 2023; 16:62. [PMID: 37316891 DOI: 10.1186/s13045-023-01455-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND The cytotoxicity of NK cells is largely dependent on IgG Fc receptor CD16a, which mediates antibody-dependent cell-mediated cytotoxicity (ADCC). The high-affinity and non-cleavable CD16 (hnCD16) is developed and demonstrated a multi-tumor killing potential. However, the hnCD16 receptor activates a single CD16 signal and provides limited tumor suppression. How to exploit the properties of hnCD16 and incorporate NK cell-specific activation domains is a promising development direction to further improve the anti-tumor activity of NK cells. METHODS To expand the applications of hnCD16-mediated ADCC for NK cell-based immunotherapy in cancer, we designed the hnCD16 Fusion Receptor (FR) constructs with the ectodomain of hnCD16 fused with NK cell-specific activating domains in the cytoplasm. FR constructs were transduced into CD16-negative NK cell line and human iPSC-derived NK (iNK) cells and effective FR constructs were screened. The up-regulation of immune activation- and cytokine-releasing-related pathways in FR-transduced NK cells was screened and validated by RNA sequencing and multiplex cytokines release assay, respectively. The tumor-killing efficiency was tested in vitro and in vivo via co-culture with tumor cell lines and xenograft mice-bearing human B-cell lymphoma, respectively. RESULTS We screened the most effective combination to kill B cell lymphoma, which was fused with the ectodomain of hnCD16a, NK-specific co-stimulators (2B4 and DAP10) and CD3ζ in cytoplasmic domains. The screened construct showed excellent cytotoxicity effects and sharp multiple cytokines releasing both in the NK cell line and iNK cells. The transcriptomic analysis and validation assays of hnCD16- and hnCD16FR-transduced NK cells showed that hnCD16FR transduction remodeled immune-related transcriptome in NK cells, where significant upregulation of genes related to cytotoxicity, high cytokines releasing, induced tumor cell apoptosis, and ADCC in comparison with hnCD16 transduction were highlighted. In vivo xenograft studies demonstrated that a single low-dose regimen of engineered hnCD16FR iPSC-derived NK cells co-administered with anti-CD20 mAb treatment mediated potent activity and significantly improved survival. CONCLUSION We developed a novel hnCD16FR construct that exhibits more potent cytotoxicity than reported hnCD16, which is a promising approach to treat malignancies with improved ADCC properties. We also offer a rationale for NK activation domains that remodel immune response to enhance CD16 signaling in NK cells.
Collapse
Affiliation(s)
- Fanyi Meng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China
| | - Siqi Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China
| | - Juan Xie
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China
| | - Yuan Zhou
- Department of Biomedical Informatics, MOE Key Lab of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qingling Wu
- Guangzhou Regenverse Therapeutics Co.,Ltd., Guangzhou, China
| | - Binyan Lu
- Guangzhou Regenverse Therapeutics Co.,Ltd., Guangzhou, China
| | - Shixin Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China.
| | - Xiangyu Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University, Beijing, China.
| |
Collapse
|
48
|
Christodoulou I, Solomou EE. A Panorama of Immune Fighters Armored with CARs in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:cancers15113054. [PMID: 37297016 DOI: 10.3390/cancers15113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a devastating disease. Intensive chemotherapy is the mainstay of treatment but results in debilitating toxicities. Moreover, many treated patients will eventually require hematopoietic stem cell transplantation (HSCT) for disease control, which is the only potentially curative but challenging option. Ultimately, a subset of patients will relapse or have refractory disease, posing a huge challenge to further therapeutic decisions. Targeted immunotherapies hold promise for relapsed/refractory (r/r) malignancies by directing the immune system against cancer. Chimeric antigen receptors (CARs) are important components of targeted immunotherapy. Indeed, CAR-T cells have achieved unprecedented success against r/r CD19+ malignancies. However, CAR-T cells have only achieved modest outcomes in clinical studies on r/r AML. Natural killer (NK) cells have innate anti-AML functionality and can be engineered with CARs to improve their antitumor response. CAR-NKs are associated with lower toxicities than CAR-T cells; however, their clinical efficacy against AML has not been extensively investigated. In this review, we cite the results from clinical studies of CAR-T cells in AML and describe their limitations and safety concerns. Moreover, we depict the clinical and preclinical landscape of CAR used in alternative immune cell platforms with a specific focus on CAR-NKs, providing insight into the future optimization of AML.
Collapse
Affiliation(s)
- Ilias Christodoulou
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| | - Elena E Solomou
- Department of Internal Medicine, University of Patras Medical School, 26500 Rion, Greece
| |
Collapse
|
49
|
Jin H, Zhang Y, Yu S, Du X, Xu N, Shao R, Lin D, Chen Y, Xiao J, Sun Z, Deng L, Liang X, Zhang H, Guo Z, Dai M, Shi P, Huang F, Fan Z, Yin Z, Xuan L, Lin R, Jiang X, Yu G, Liu Q. Venetoclax Combined with Azacitidine and Homoharringtonine in Relapsed/Refractory AML: A Multicenter, Phase 2 Trial. J Hematol Oncol 2023; 16:42. [PMID: 37120593 PMCID: PMC10149010 DOI: 10.1186/s13045-023-01437-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/08/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Relapsed or refractory acute myeloid leukemia (R/R AML) has a dismal prognosis. The aim of this study was to investigate the activity and tolerability of venetoclax combined with azacitidine plus homoharringtonine (VAH) regimen for R/R AML. METHODS This phase 2 trial was done at ten hospitals in China. Eligible patients were R/R AML (aged 18-65 years) with an Eastern Cooperative Oncology Group performance status of 0-2. Patients received venetoclax (100 mg on day 1, 200 mg on day 2, and 400 mg on days 3-14) and azacitidine (75 mg/m2 on days 1-7) and homoharringtonine (1 mg/m2 on days 1-7). The primary endpoint was composite complete remission rate [CRc, complete response (CR) plus complete response with incomplete blood count recovery (CRi)] after 2 cycles of treatment. The secondary endpoints include safety and survival. RESULTS Between May 27, 2020, and June 16, 2021, we enrolled 96 patients with R/R AML, including 37 primary refractory AML and 59 relapsed AML (16 relapsed after chemotherapy and 43 after allo-HSCT). The CRc rate was 70.8% (95% CI 60.8-79.2). In the patients with CRc, measurable residual disease (MRD)-negative was attained in 58.8% of CRc patients. Accordingly, overall response rate (ORR, CRc plus partial remission (PR)) was 78.1% (95% CI 68.6-85.4). At a median follow-up of 14.7 months (95% CI 6.6-22.8) for all patients, median overall survival (OS) was 22.1 months (95% CI 12.7-Not estimated), and event-free survival (EFS) was 14.3 months (95% CI 7.0-Not estimated). The 1-year OS was 61.5% (95% CI 51.0-70.4), and EFS was 51.0% (95% CI 40.7-60.5). The most common grade 3-4 adverse events were febrile neutropenia (37.4%), sepsis (11.4%), and pneumonia (21.9%). CONCLUSIONS VAH is a promising and well-tolerated regimen in R/R AML, with high CRc and encouraging survival. Further randomized studies are needed to be explored. Trial registration clinicaltrials.gov identifier: NCT04424147.
Collapse
Affiliation(s)
- Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sijian Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Du
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruoyang Shao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yanqiu Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hematology, Maoming People's Hospital, Maoming, China
| | - Jie Xiao
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiqiang Sun
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Lan Deng
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinquan Liang
- Department of Hematology, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Hongyu Zhang
- Department of Hematology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ziwen Guo
- Department of Hematology, Zhongshan City People's Hospital, Zhongshan, China
| | - Min Dai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuejie Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangzhou, China.
| |
Collapse
|
50
|
Huang R, Wen Q, Zhang X. CAR-NK cell therapy for hematological malignancies: recent updates from ASH 2022. J Hematol Oncol 2023; 16:35. [PMID: 37029381 PMCID: PMC10082521 DOI: 10.1186/s13045-023-01435-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023] Open
Abstract
Chimeric antigen receptor (CAR)-NK cell therapy has the advantages of a low incidence of side effects and a low cost. However, the clinical outcomes are not satisfactory due to limited antitumor effects and a limited proliferative capacity. Recently, progress in CAR-NK cell therapy has been made in NK cell engineering, target design and combination with other agents to treat relapsed or refractory hematological malignancies, especially acute myeloid leukemia and multiple myeloma. This correspondence summarizes the preclinical and clinical updates for universal CAR-NK cell therapy reported at the ASH 2022 annual meeting.
Collapse
Affiliation(s)
- Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital. State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|