1
|
Liang Y, Du M, Li X, Gao J, Li Q, Li H, Li J, Gao X, Cong H, Huang Y, Li X, Wang L, Cui J, Gan Y, Tu H. Upregulation of Lactobacillus spp. in gut microbiota as a novel mechanism for environmental eustress-induced anti-pancreatic cancer effects. Gut Microbes 2025; 17:2470372. [PMID: 39988618 PMCID: PMC11853549 DOI: 10.1080/19490976.2025.2470372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with limited effective treatment options. Emerging evidence links enriched environment (EE)-induced eustress to PDAC inhibition. However, the underlying mechanisms remain unclear. In this study, we explored the role of gut microbiota in PDAC-suppressive effects of EE. We demonstrated that depletion of gut microbiota with antibiotics abolished EE-induced tumor suppression, while fecal microbiota transplantation (FMT) from EE mice significantly inhibited tumor growth in both subcutaneous and orthotopic PDAC models housed in standard environment. 16S rRNA sequencing revealed that EE enhanced gut microbiota diversity and selectively enriched probiotic Lactobacillus, particularly L. reuteri. Treatment with L. reuteri significantly suppressed PDAC tumor growth and increased natural killer (NK) cell infiltration into the tumor microenvironment. Depletion of NK cells alleviated the anti-tumor effects of L. reuteri, underscoring the essential role of NK cell-mediated immunity in anti-tumor response. Clinical analysis of PDAC patients showed that higher fecal Lactobacillus abundance correlated with improved progression-free and overall survival, further supporting the therapeutic potential of L. reuteri in PDAC. Overall, this study identifies gut microbiota as a systemic regulator of PDAC under psychological stress. Supplementation of psychobiotic Lactobacillus may offer a novel therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yiyi Liang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Gao
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinran Li
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiujie Cui
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Daniel N, Farinella R, Belluomini F, Fajkic A, Rizzato C, Souček P, Campa D, Hughes DJ. The relationship of the microbiome, associated metabolites and the gut barrier with pancreatic cancer. Semin Cancer Biol 2025; 112:43-57. [PMID: 40154652 DOI: 10.1016/j.semcancer.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancers have high mortality and rising incidence rates which may be related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and obesity rates. Recent data also suggest a role for the gut microbiome in the development of pancreatic cancer. Here, we review the experimental and observational evidence for the roles of the oral, gut and intratumoural microbiomes, impaired gut barrier function and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to pancreatic disease with a focus on pancreatic ductal adenocarcinoma (PDAC) initiation and progression. We also highlight some emerging gut microbiome editing techniques currently being investigated in the context of pancreatic disease. Notably, while the gut microbiome is significantly altered in PDAC and its precursor diseases, its utility as a diagnostic and prognostic tool is hindered by a lack of reproducibility and the potential for reverse causality in case-control cohorts. Future research should emphasise longitudinal and mechanistic studies as well as integrating lifestyle exposure and multi-omics data to unravel complex host-microbiome interactions. This will allow for deeper aetiologic and mechanistic insights that can inform treatments and guide public health recommendations.
Collapse
Affiliation(s)
- Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | | | | | - Almir Fajkic
- Department of Pathophysiology Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Hesami Z, Sabzehali F, Khorsand B, Alipour S, Sadeghi A, Asri N, Pazienza V, Houri H. Microbiota as a state-of-the-art approach in precision medicine for pancreatic cancer management: A comprehensive systematic review. iScience 2025; 28:112314. [PMID: 40276756 PMCID: PMC12019022 DOI: 10.1016/j.isci.2025.112314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/22/2024] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Emerging evidence suggests that harnessing the microbiome holds promise for innovative diagnostic and therapeutic strategies in the management of pancreatic cancer (PC). This study aims to systematically summarize the microbial markers associated with PC and assess their potential application in clinical outcome. Forty-one studies were included to assess the associations between microbial markers and PC. Among these, 13 were developed prediction models related to the microbiome in which the highest diagnostic and prognostic model belong to blood and intratumor markers, respectively. Notably, findings that utilize microbiotas from various body sites were elucidated, demonstrating their importance as unique signatures in biomarker discovery for diverse clinical applications. This review provides unique perspectives on overcoming challenges in PC by highlighting potential microbial-related markers as non-invasive approaches. Further clinical studies should evaluate the utility and accuracy of key indicators in the microbiome as a personalized tool for managing PC.
Collapse
Affiliation(s)
- Zeinab Hesami
- Student Research Committee, Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fattaneh Sabzehali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Khorsand
- Department of Neurology, University of California, Irvine, Irvine, CA, USA
| | - Samira Alipour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Peduzzi G, Archibugi L, Farinella R, de Leon Pisani RP, Vodickova L, Vodicka P, Kraja B, Sainz J, Bars-Cortina D, Daniel N, Silvestri R, Uysal-Onganer P, Landi S, Dulińska-Litewka J, Comandatore A, Campa D, Hughes DJ, Rizzato C. The exposome and pancreatic cancer, lifestyle and environmental risk factors for PDAC. Semin Cancer Biol 2025; 113:100-129. [PMID: 40368260 DOI: 10.1016/j.semcancer.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/08/2025] [Accepted: 05/04/2025] [Indexed: 05/16/2025]
Abstract
Pancreatic cancer (PC), particularly pancreatic ductal adenocarcinoma (PDAC), is a significant global health issue with high mortality rates. PDAC, though only 3 % of cancer diagnoses, causes 7 % of cancer deaths due to its severity and asymptomatic early stages. Risk factors include lifestyle choices, environmental exposures, and genetic predispositions. Conditions like new-onset type 2 diabetes and chronic pancreatitis also contribute significantly. Modifiable risk factors include smoking, alcohol consumption, non-alcoholic fatty pancreatic disease (NAFPD), and obesity. Smoking and heavy alcohol consumption increase PC risk, while NAFPD and obesity, particularly central adiposity, contribute through chronic inflammation and insulin resistance. Refined sugar and sugar-sweetened beverages (SSBs) are also linked to increased PC risk, especially among younger individuals. Hormonal treatments and medications like statins, aspirin, and metformin have mixed results on PC risk, with some showing protective effects. The gut microbiome influences PC through the gut-pancreas axis, with disruptions leading to inflammation and carcinogenesis. Exposure to toxic substances, including heavy metals and chemicals, is associated with increased PC risk. Glycome changes, such as abnormal glycosylation patterns, are significant in PDAC development and offer potential for early diagnosis. Interactions between environmental and genetic factors are crucial in PDAC susceptibility. Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) linked to PDAC, but gene-environment interactions remain largely unexplored. Future research should focus on polygenic risk scores (PRS) and large-scale studies to better understand these interactions and their impact on PDAC risk.
Collapse
Affiliation(s)
| | - Livia Archibugi
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Ruggero Ponz de Leon Pisani
- Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ludmila Vodickova
- Biomedical Center Martin, Bioinformatic Center, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Slovakia; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Vodicka
- Biomedical Center Martin, Bioinformatic Center, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Slovakia; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Bledar Kraja
- University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid 28029, Spain; GENYO. Centre for Genomics and Oncological Research. Genomic Oncology department, Granada, Spain; Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| | - David Bars-Cortina
- Institut Català d'Oncologia (ICO) IDIBELL, Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, Barcelona, Spain; Institut Català d'Oncologia (ICO) IDIBELL, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Neil Daniel
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | | | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, London, UK
| | - Stefano Landi
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - David J Hughes
- Molecular Epidemiology of Cancer Group, UCD Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
5
|
Han Y, Cao B, Tang J, Wang J. A comprehensive multi-omics analysis uncovers the associations between gut microbiota and pancreatic cancer. Front Microbiol 2025; 16:1592549. [PMID: 40376462 PMCID: PMC12078283 DOI: 10.3389/fmicb.2025.1592549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025] Open
Abstract
Pancreatic cancer is one of the most lethal malignant neoplasms. Pancreatic cancer is related to gut microbiota, but the associations between its treatment and microbial abundance as well as genetic variations remain unclear. In this study, we collected fecal samples from 58 pancreatic cancer patients including 43 pancreatic ductal adenocarcinoma (PDAC) and 15 non-PDAC, and 40 healthy controls, and shotgun metagenomic sequencing and untargeted metabolome analysis were conducted. PDAC patients were divided into five groups according to treatment and tumor location, including treatment-naive (UT), chemotherapy (CT), surgery combined with chemotherapy (SCT), Head, and body/tail (Tail) groups. Multivariate association analysis revealed that both CT and SCT were associated with increased abundance of Lactobacillus gasseri and Streptococcus equinus. The microbial single nucleotide polymorphisms (SNPs) densities of Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus were positively associated with CT, while Lachnospiraceae bacterium 2_1_58FAA was positively associated with Head group. Compared with Tail group, the Head group showed positive associations with opportunistic pathogens, such as Escherichia coli, Shigella sonnei and Shigella flexneri. We assembled 424 medium-quality non-redundant metagenome-assembled genomes (nrMAGs) and 276 high-quality nrMAGs. In CT group, indole-3-acetic acid, capsaicin, sinigrin, chenodeoxycholic acid, and glycerol-3-phosphate were increased, and the accuracy of the model based on fecal metabolites reached 0.77 in distinguishing healthy controls and patients. This study identifies the associations between pancreatic cancer treatment and gut microbiota as well as its metabolites, reveals bacterial SNPs are related to tumor location, and extends our knowledge of gut microbiota and pancreatic cancer.
Collapse
Affiliation(s)
- Yang Han
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | - Biyang Cao
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jiayue Tang
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jing Wang
- The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Sammallahti H, Rezasoltani S, Pekkala S, Kokkola A, Asadzadeh Agdaei H, Azizmohhammad Looha M, Ghanbari R, Zamani F, Sadeghi A, Sarhadi VK, Tiirola M, Puolakkainen P, Knuutila S. Fecal profiling reveals a common microbial signature for pancreatic cancer in Finnish and Iranian cohorts. Gut Pathog 2025; 17:24. [PMID: 40241224 PMCID: PMC12001732 DOI: 10.1186/s13099-025-00698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) presents a significant challenge in oncology because of its late-stage diagnosis and limited treatment options. The inadequacy of current screening methods has prompted investigations into stool-based assays and microbial classifiers as potential early detection markers. The gut microbiota composition of PC patients may be influenced by population differences, thereby impacting the accuracy of disease prediction. However, comprehensive profiling of the PC gut microbiota and analysis of these cofactors remain limited. Therefore, we analyzed the stool microbiota of 33 Finnish and 50 Iranian PC patients along with 35 Finnish and 34 Iranian healthy controls using 16S rRNA gene sequencing. We assessed similarities and differences of PC gut microbiota in both populations while considering sociocultural impacts and generated a statistical model for disease prediction based on microbial classifiers. Our aim was to expand the current understanding of the PC gut microbiota, discuss the impact of population differences, and contribute to the development of early PC diagnosis through microbial biomarkers. RESULTS Compared with healthy controls, PC patients presented reduced microbial diversity, with discernible microbial profiles influenced by factors such as ethnicity, demographics, and lifestyle. PC was marked by significantly higher abundances of facultative pathogens including Enterobacteriaceae, Enterococcaceae, and Fusobacteriaceae, and significantly lower abundances of beneficial bacteria. In particular, bacteria belonging to the Clostridia class, such as butyrate-producing Lachnospiraceae, Butyricicoccaceae, and Ruminococcaceae, were depleted. A microbial classifier for the prediction of pancreatic ductal adenocarcinoma (PDAC) was developed in the Iranian cohort and evaluated in the Finnish cohort, where it yielded a respectable AUC of 0.88 (95% CI 0.78, 0.97). CONCLUSIONS This study highlights the potential of gut microbes as biomarkers for noninvasive PC screening and the development of targeted therapies, emphasizing the need for further research to validate these findings in diverse populations. A comprehensive understanding of the role of the gut microbiome in PC could significantly enhance early detection efforts and improve patient outcomes.
Collapse
Affiliation(s)
- Heidelinde Sammallahti
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sama Rezasoltani
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074, Aachen, Germany
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland
| | - Hamid Asadzadeh Agdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Mehdi Azizmohhammad Looha
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O. Box 1985717411, Tehran, Iran
| | - Reza Ghanbari
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland
| | - Marja Tiirola
- Department of Environmental and Biological Sciences, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
- BiopSense Oy, Eeronkatu 10, 40720, Jyväskylä, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Abdominal Center, University of Helsinki, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Sakari Knuutila
- Department of Pathology, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
7
|
Li J, Xu J, Guo X, Xu H, Huang C, Nie Y, Zhou Y. Odoribacter splanchnicus-A Next-Generation Probiotic Candidate. Microorganisms 2025; 13:815. [PMID: 40284651 PMCID: PMC12029356 DOI: 10.3390/microorganisms13040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
As an important intestinal microorganism, Odoribacter splanchnicus frequently appears in high-throughput sequencing analyses, although pure culture research on this microorganism is not as advanced. It is widely present in the mammalian gut and is closely associated with the health status of the host and the incidence of various diseases. In recent years, changes in the abundance of O. splanchnicus have been found to be positively or negatively correlated with health issues, such as obesity, metabolic syndrome, diabetes, and intestinal inflammation. It may exhibit a dual protective or promotional role in specific diseases. Thus, it may play an important role in regulating host metabolism, immune response, and intestinal homeostasis. Additional research has revealed that O. splanchnicus can synthesize various metabolites, especially short-chain fatty acids (SCFAs), which play a key role in promoting intestinal health, enhancing energy metabolism, improving insulin resistance, and regulating immune responses in the host. Therefore, O. splanchnicus is a strong candidate for "next-generation probiotics", and its potential probiotic function provides novel ideas for the development of functional foods and the prevention and treatment of metabolic and intestinal inflammatory diseases. These findings can help develop new biological treatment strategies and optimize health management plans.
Collapse
Affiliation(s)
- Jianhong Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; (J.L.); (J.X.); (X.G.); (H.X.); (C.H.)
- Department of Gastroenterology and Hepatology, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
8
|
Li P, Zhang H, Chen L, Gao X, Hu Y, Xu Q, Liu W, Chen W, Chen H, Yuan S, Wang M, Liu S, Dai M. Oral and fecal microbiota as accurate non-invasive tools for detection of pancreatic cancer in the Chinese population. Cancer Lett 2025; 612:217456. [PMID: 39800212 DOI: 10.1016/j.canlet.2025.217456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
Pancreatic cancer (PCA), a leading cause of cancer-related deaths, has limited non-invasive diagnostic methods. We aimed to identify oral and fecal microbiome biomarkers and construct diagnostic classifiers. Oral and fecal samples from 97 PCA patients and 90 healthy controls underwent 16S rRNA sequencing. Samples were randomly divided into training and validation cohorts in a 7:3 ratio. Random forest models were constructed using training cohort and validated internally and externally in Chinese, Japanese, and Spanish populations. Results revealed significant dysbiosis of the oral and fecal microbiota of PCA patients. Most of the differential taxa shared between oral and fecal samples showed similar changes. Relative abundances of Streptococcus in oral samples, and of Bifidobacterium, Klebsiella and Akkermansia in fecal samples, were enriched in PCA. The fecal Firmicutes to Bacteroidota ratio was higher in PCA patient samples. Oral and fecal microbiome classifiers based on the top 20 contributing genera were constructed, and internal validation showed that the area under the curve (AUC) values were 0.963 and 0.890, respectively. The fecal microbiome classifier performed well in the external Chinese population, with an AUC of 0.878, but poorly in the Japanese and Spanish populations. Furthermore, fecal microbiomes could predict metastasis status in PCA patients, with an AUC of 0.804. In conclusion, oral and fecal microbiota were dysbiotic in PCA patients. Fecal microbiome classifier provides a feasible, non-invasive, and cost-effective tool with high precision for PCA screening in China; oral microbiome classifier requires further validation in external populations sampled with the same simple and convenient methods.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Xingyu Gao
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Wenjing Liu
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Weijie Chen
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Haomin Chen
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shuai Yuan
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Mingfei Wang
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Cheelo College of Medicine, Shandong University, No.44 Wenhuaxi Road, Lixia District, Jinan, Shandong, 250012, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
9
|
Świdnicka-Siergiejko A, Daniluk J, Miniewska K, Daniluk U, Guzińska-Ustymowicz K, Pryczynicz A, Dąbrowska M, Rusak M, Ciborowski M, Dąbrowski A. Inflammatory Stimuli and Fecal Microbiota Transplantation Accelerate Pancreatic Carcinogenesis in Transgenic Mice, Accompanied by Changes in the Microbiota Composition. Cells 2025; 14:361. [PMID: 40072088 PMCID: PMC11898920 DOI: 10.3390/cells14050361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/15/2025] Open
Abstract
An association between gut microbiota and the development of pancreatic ductal adenocarcinoma (PDAC) has been previously described. To better understand the bacterial microbiota changes accompanying PDAC promotion and progression stimulated by inflammation and fecal microbiota transplantation (FMT), we investigated stool and pancreatic microbiota by 16s RNA-based metagenomic analysis in mice with inducible acinar transgenic expressions of KrasG12D, and age- and sex-matched control mice that were exposed to inflammatory stimuli and fecal microbiota obtained from mice with PDAC. Time- and inflammatory-dependent stool and pancreatic bacterial composition alterations and stool alpha microbiota diversity reduction were observed only in mice with a Kras mutation that developed advanced pancreatic changes. Stool Actinobacteriota abundance and pancreatic Actinobacteriota and Bifidobacterium abundances increased. In contrast, stool abundance of Firmicutes, Verrucomicrobiota, Spirochaetota, Desulfobacterota, Butyricicoccus, Roseburia, Lachnospiraceae A2, Lachnospiraceae unclassified, and Oscillospiraceae unclassified decreased, and pancreatic detection of Alloprevotella and Oscillospiraceae uncultured was not observed. Furthermore, FMT accelerated tumorigenesis, gradually decreased the stool alpha diversity, and changed the pancreatic and stool microbial composition in mice with a Kras mutation. Specifically, the abundance of Actinobacteriota, Bifidobacterium and Faecalibaculum increased, while the abundance of genera such as Lachnospiraceace A2 and ASF356, Desulfovibrionaceace uncultured, and Roseburia has decreased. In conclusion, pancreatic carcinogenesis in the presence of an oncogenic Kras mutation stimulated by chronic inflammation and FMT dynamically changes the stool and pancreas microbiota. In particular, a decrease in stool microbiota diversity and abundance of bacteria known to be involved in short-fatty acids production were observed. PDAC mouse model can be used for further research on microbiota-PDAC interactions and towards more personalized and effective cancer therapies.
Collapse
Affiliation(s)
- Agnieszka Świdnicka-Siergiejko
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.D.); (A.D.)
| | - Jarosław Daniluk
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.D.); (A.D.)
| | - Katarzyna Miniewska
- Department of Medical Biochemistry, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Urszula Daniluk
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition, Allergology and Pulmonology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | | | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, 15-276 Bialystok, Poland; (K.G.-U.); (A.P.)
| | - Milena Dąbrowska
- Department of Heamatological Diagnostics, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.R.)
| | - Małgorzata Rusak
- Department of Heamatological Diagnostics, Medical University of Bialystok, 15-276 Bialystok, Poland; (M.D.); (M.R.)
| | - Michał Ciborowski
- Metabolomics and Proteomics Laboratory, Department of Medical Biochemistry, Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Andrzej Dąbrowski
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, 15-276 Bialystok, Poland; (J.D.); (A.D.)
| |
Collapse
|
10
|
Tavano F, Napoli A, Gioffreda D, Palmieri O, Latiano T, Tardio M, di Mola FF, Grottola T, Büchler MW, Gentile M, Latiano A, Mazza T, Perri F. Could the Microbial Profiling of Normal Pancreatic Tissue from Healthy Organ Donors Contribute to Understanding the Intratumoral Microbiota Signature in Pancreatic Ductal Adenocarcinoma? Microorganisms 2025; 13:452. [PMID: 40005817 PMCID: PMC11858623 DOI: 10.3390/microorganisms13020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with intratumoral microbiota changes. However, defining the normal pancreatic microbial composition remains a challenge. Herein, we tested the hypothesis that the microbial profiling of normal pancreatic tissue from healthy organ donors (HC) could help in determining the signature of microbiota in PDAC. Matched pairs of tumor and normal tissues from PDAC patients (n = 32) and normal pancreatic tissues from HC (n = 17) were analyzed by 16S rRNA gene sequencing. Dissimilarities in all the beta metrics emerged in both normal samples and tumor samples, compared to HC (Bray-Curtis dissimilarity and Jaccard distance: p = 0.002; weighted UniFrac distances: p = 0.42 and p = 0.012, respectively; unweighted UniFrac distance: p = 0.009); a trend toward a lower Faith's phylogenetic distance was found at the tumor level vs. HC (p = 0.08). Within PDAC, a lower Faith's phylogenetic distance (p = 0.003) and a significant unweighted UniFrac distance (p = 0.024) were observed in tumor samples vs. normal samples. We noted the presence of a decreased abundance of bacteria with potential beneficial effects (Jeotgalicoccus) and anticancer activity (Acinetobacter_guillouiae) in PDAC vs. HC; bacteria involved in immune homeostasis and suppression of tumor progression (Streptococcus_salivarius, Sphingomonas) were reduced, and those implicated in tumor initiation and development (Methylobacterium-Methylorubrum, g_Delftia) were enhanced in tumor samples vs. normal samples. Metagenomic functions involved in fatty acid synthesis were reduced in normal samples compared to HC, while peptidoglycan biosynthesis IV and L-rhamnose degradation were more abundant in tumor samples vs. normal samples. Future prospective studies on larger populations, also including patients in advanced tumor stages and considering all potential existing confounding factors, as well as further functional investigations, are needed to prove the role of microbiota-mediated pathogenicity in PDAC.
Collapse
Affiliation(s)
- Francesca Tavano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Alessandro Napoli
- Bioinformatics Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Domenica Gioffreda
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Orazio Palmieri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tiziana Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Matteo Tardio
- Department of Surgery, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Fabio Francesco di Mola
- Unit of Surgical Oncology, Casa di Cura Pierangeli, 65124 Pescara, PE, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, CH, Italy
| | - Tommaso Grottola
- Unit of Surgical Oncology, Casa di Cura Pierangeli, 65124 Pescara, PE, Italy
- Department of Innovative Technologies in Clinical Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, CH, Italy
| | - Markus W. Büchler
- Botton-Champalimaud Pancreatic Cancer Center, Champalimaud Foundation, 1400-038 Lisbon, Portugal
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Marco Gentile
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Anna Latiano
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Tommaso Mazza
- Bioinformatics Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Francesco Perri
- Division of Gastroenterology and Endoscopy, Fondazione IRCCS “Casa Sollievo della Sofferenza” Hospital, Viale Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| |
Collapse
|
11
|
Chmielarczyk A, Golińska E, Tomusiak-Plebanek A, Żeber-Lubecka N, Kulecka M, Szczepanik A, Jedlińska K, Mech K, Szaciłowski K, Kuziak A, Pietrzyk A, Strus M. Microbial dynamics of acute pancreatitis: integrating culture, sequencing, and bile impact on bacterial populations and gaseous metabolites. Front Microbiol 2025; 16:1544124. [PMID: 40012789 PMCID: PMC11860950 DOI: 10.3389/fmicb.2025.1544124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025] Open
Abstract
Background Our study examined the composition of the intestinal microflora in a hospitalized patient with AP symptoms treated several months earlier for diverticulitis. The therapeutic intervention necessitated Hartmann's procedure, culminating in colostomy creation. Aims Employing a thorough microbiological analysis we attempted to demonstrate whether the microflora isolated from the peripancreatic fluid exhibited a stronger correlation with the contents of the stoma or with the rectal swab. Additionally, we sought to determine the association between later onset of AP and diverticulitis. Methods Following clinical materials from the patient in the initial phase of AP were collected: rectal swab, colostomy bag contents (in the publication referred to as stoma content/stool) and peripancreatic fluid. Microbiological analysis was performed, including classic culture methodology, NGS techniques, and genotyping methodologies. Furthermore, the effect of bile on the shift in the population of selected bacterial species was examined. Results The NGS technique confirmed greater consistency in bacteria percentage (phyla/family) between stoma content and peripancreatic fluid. In both samples, a clear dominance of the Proteobacteria phyla (over 75%) and the Enterobacteriaceae family was demonstrated. Moreover, NGS verified the presence of the Fusobacteriota phylum and Fusobacteriaceae family only in rectal swabs, which may indicate a link between this type of bacteria and the etiology of diverticulitis. We observed that Escherichia coli 33 isolated from stool exhibited active gaseous metabolite production (mainly hydrogen). Conclusions The abundant production of hydrogen may substantially impact enzymatic processes, inducing specific alterations in disulfide bonds and trypsin inactivation. Our investigation alludes to the conceivable active involvement of bile in effecting qualitative and quantitative modifications in the peripancreatic microbiota composition, establishing a correlation between released bile and bacterial generation of gaseous metabolites.
Collapse
Affiliation(s)
- Agnieszka Chmielarczyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Edyta Golińska
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Tomusiak-Plebanek
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Antoni Szczepanik
- Clinical Department of General Surgery and Oncology, Narutowicz City Speciality Hospital at Krakow, Krakow, Poland
| | - Katarzyna Jedlińska
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology of Krakow, Krakow, Poland
| | - Krzysztof Mech
- Academic Center for Materials and Nanotechnology, AGH University of Krakow, Krakow, Poland
| | - Konrad Szaciłowski
- Academic Center for Materials and Nanotechnology, AGH University of Krakow, Krakow, Poland
| | - Agata Kuziak
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Pietrzyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
12
|
Jankowski WM, Fichna J, Tarasiuk-Zawadzka A. A systematic review of the relationship between gut microbiota and prevalence of pancreatic diseases. Microb Pathog 2025; 199:107214. [PMID: 39653281 DOI: 10.1016/j.micpath.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/24/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Acute pancreatitis (AP) represents one of the most common gastrointestinal (GI) diseases; it can manifest in varying degrees of severity, sometimes leading to a life-threatening condition for the patient. Pancreatic ductal adenocarcinoma (PDAC), due to its high malignancy and uncertain prognosis, is widely regarded as one of the most fatal diseases. The increasing prevalence of AP and PDAC represents a major burden on public health and the healthcare system worldwide. The aim of this systematic review was to discuss the current state of knowledge regarding the relationship between the gut microbiota and the incidence, prognosis, diagnosis and treatment of AP and PDAC. To identify studies that analyzed the relationship between the gut microbiota and the occurrence/development of pancreatic diseases or PDAC, the online databases PubMed, Scopus and Google Scholar were searched between November 2023 and January 2024. Finally, 14 publications met the inclusion criteria (1. were conducted exclusively in humans and/or animals; 2. original, published in English in peer-reviewed journals after 2019; 3. described the relationship between gut microbiota and the occurrence of AP or PDAC). The collected studies indicated significant changes in the gut microbiota of patients with AP and PDAC. Moreover, they highlighted the presence of a relationship between the gut microbiota and the occurrence, course, treatment efficiency and prognosis of the disease in question. Further research is needed to understand precisely the relationship between the gut microbiota and the occurrence of pancreatic diseases and whether it may be a starting point for the development of modern forms of therapy based on the use of prebiotics and/or diet to restore the normal composition of the intestinal bacteria.
Collapse
Affiliation(s)
- Wojciech Michał Jankowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland
| | - Aleksandra Tarasiuk-Zawadzka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215, Lodz, Poland.
| |
Collapse
|
13
|
Fanijavadi S, Jensen LH. Dysbiosis-NK Cell Crosstalk in Pancreatic Cancer: Toward a Unified Biomarker Signature for Improved Clinical Outcomes. Int J Mol Sci 2025; 26:730. [PMID: 39859442 PMCID: PMC11765696 DOI: 10.3390/ijms26020730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects. Dysbiosis can affect NK cell function, leading to resistance and side effects. We propose that a combined biomarker approach, integrating microbiome composition and NK cell profiles, can help predict treatment resistance and side effects, enabling more personalized therapies. This review examines how dysbiosis contributes to NK cell dysfunction in PDAC and discusses strategies (e.g., antibiotics, probiotics, vaccines) to modulate the microbiome and enhance NK cell function. Targeting dysbiosis could modulate NK cell activity, improve the effectiveness of PDAC treatments, and reduce side effects. However, further research is needed to develop unified NK cell-microbiome interaction-based biomarkers for more precise and effective patient outcomes.
Collapse
Affiliation(s)
- Sara Fanijavadi
- Cancer Polyclinic, Levanger Hospital, 7601 Levanger, Trøndelag, Norway
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
| | - Lars Henrik Jensen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Department of Oncology, Institute of Regional Health Research, University of Southern Denmark, 7100 Vejle, Denmark
| |
Collapse
|
14
|
Li P, Zhang H, Gao X, Chen L, Chen H, Yuan S, Chen W, Dai M. Difference in fecal and oral microbiota between pancreatic cancer and benign/low-grade malignant tumor patients. BMC Microbiol 2024; 24:527. [PMID: 39695939 DOI: 10.1186/s12866-024-03687-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Significant gaps exist in understanding the gastrointestinal microbiota in patients with pancreatic cancer (PCA) versus benign or low-grade malignant pancreatic tumors (NPCA). This study aimed to analyze these microbiota characteristics and explore their potential use in distinguishing malignant pancreatic lesions. METHODS Between September 2020 and May 2024, fecal and oral samples were collected from 121 patients undergoing surgical resection or diagnostic biopsy of pancreatic lesions, including 75 patients with PCA and 46 patients with NPCA, and 16s rRNA sequencing was performed. Random forest models based using fecal and oral microbiota data were developed to diagnose PCA and NPCA, with performance assessed using the leave-one-out cross validation method. RESULTS The Shannon index and PCoA analysis revealed significant differences in oral microbiota composition between PCA and NPCA (p < 0.001 and p = 0.001, respectively). Fecal microbiome richness differed significantly (p = 0.02), though composition similarity was noted (p = 0.238). LEfSe identified 16 and 23 genera with significant differences in fecal and oral microbiomes, respectively. Random forest classifiers based on fecal and oral microbiota achieved areas under the curves (AUCs) of 89.4% and 96.3%, respectively, for distinguishing PCA and NPCA. In the mucinous tumor cohort, oral and fecal microbiome classifiers outperformed CA19-9, yielding AUCs of 83.0% and 85.2%, respectively. CONCLUSION Fecal and oral microbiota compositions were significantly different between PCA and NPCA patients. Random forest classifiers utilizing fecal and oral microbiota data effectively distinguish between benign or low-grade malignant and malignant pancreatic lesions.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xingyu Gao
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lixin Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haomin Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuai Yuan
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Weijie Chen
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Wang C, Zhang C, He S, Wang Q, Gao H. The microbiome alterations of supragingival plaque among adolescents using clear aligners: a metagenomic sequencing analysis. Prog Orthod 2024; 25:48. [PMID: 39676101 DOI: 10.1186/s40510-024-00547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND White spot lesions (WSLs) may develop in adolescents undergoing clear aligner (CA) therapy with poor oral hygiene. The specific effects of CAs on the microbial composition and functional characteristics of supragingival plaques remain unclear. The present study investigated the shift in the supragingival microbial community induced by CAs in adolescents through metagenomic technology. METHODS Fifteen adolescents (12-15 years old) with Invisalign appliances were recruited. Supragingival plaque specimens were obtained twice, before treatment (T1) and three months after treatment (T2). All the bacterial plaque specimens were analyzed for microbial communities and functions using metagenomic analyses. RESULTS A total of 2,840,242,722 reads disclosed 180 phyla, 3,975 genera, and 16,497 microbiome species. During the first three months, the microbial community was relatively stable. The genus level revealed a higher relative abundance of Capnocytophaga, Neisseria, and Arachnia in the T2 period. Furthermore, the functional analysis suggested that the relative abundances of folate biosynthesis, biotin metabolism and biofilm formation-vibrio cholerae were increased in the T2 period compared to the T1 period. Finally, virulence factor analysis demonstrated that the relative abundance of genes associated with type IV pili (VF0082) and polar flagella (VF0473) was higher in the T2 period than in the T1 period. CONCLUSION In adolescents undergoing CA therapy with poor plaque control, caries progresses quickly within three months and noticeable WSLs develop on the tooth surface. Although the microbial community remained relatively steady and CA therapy did not cause significant changes in the overall functional gene composition in the first three months, virulence factors, including type IV pili and flagella, were more abundant and actively contributed to microorganism adhesion and biofilm formation.
Collapse
Affiliation(s)
- Chunlin Wang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Shan He
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Qiuyu Wang
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Hai Gao
- Department of Periodontology and Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, S366 Jiangnan Boulevard, Haizhu District, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
16
|
Ciernikova S, Sevcikova A, Mego M. Targeting the gut and tumor microbiome in cancer treatment resistance. Am J Physiol Cell Physiol 2024; 327:C1433-C1450. [PMID: 39437444 DOI: 10.1152/ajpcell.00201.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Therapy resistance represents a significant challenge in oncology, occurring in various therapeutic approaches. Recently, animal models and an increasing set of clinical trials highlight the crucial impact of the gut and tumor microbiome on treatment response. The intestinal microbiome contributes to cancer initiation, progression, and formation of distant metastasis. In addition, tumor-associated microbiota is considered a critical player in influencing tumor microenvironments and regulating local immune processes. Intriguingly, numerous studies have successfully identified pathogens within the gut and tumor microbiome that might be linked to a poor response to different therapeutic modalities. The unfavorable microbial composition with the presence of specific microbes participates in cancer resistance and progression via several mechanisms, including upregulation of oncogenic pathways, macrophage polarization reprogramming, metabolism of chemotherapeutic compounds, autophagy pathway modulation, enhanced DNA damage repair, inactivation of a proapoptotic cascade, and bacterial secretion of extracellular vesicles, promoting the processes in the metastatic cascade. Targeted elimination of specific intratumoral bacteria appears to enhance treatment response. However, broad-spectrum antibiotic pretreatment is mostly connected to reduced efficacy due to gut dysbiosis and lower diversity. Mounting evidence supports the potential of microbiota modulation by probiotics and fecal microbiota transplantation to improve intestinal dysbiosis and increase microbial diversity, leading to enhanced treatment efficacy while mitigating adverse effects. In this context, further research concerning the identification of clinically relevant microbiome signatures followed by microbiota-targeted strategies presents a promising approach to overcoming immunotherapy and chemotherapy resistance in refractory patients, improving their outcomes.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aneta Sevcikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Mego
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
17
|
Zhu Y, Liang X, Zhi M, Li L, Zhang G, Chen C, Wang L, Wang P, Zhong N, Feng Q, Li Z. Succession of the multi-site microbiome along pancreatic ductal adenocarcinoma tumorigenesis. Front Immunol 2024; 15:1487242. [PMID: 39575247 PMCID: PMC11580624 DOI: 10.3389/fimmu.2024.1487242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024] Open
Abstract
Background To investigate microbial characteristics across multibody sites from chronic pancreatitis (CP), through pancreatic benign tumors, to pancreatic ductal adenocarcinoma (PDAC) at different stages. Methods 16S ribosomal RNA (rRNA) amplicon sequencing was conducted on saliva, duodenal fluid, and pancreatic tissue obtained via endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of patients with CP, pancreatic benign tumors, PDAC in stage I/II, III, and IV. The neutral community model (NCM) assessed the microbial assembly contribution and MaAslin2 identified the differential microbes. Results From CP to stage IV PDAC patients, there was a marked surge in influence of salivary and duodenal microbiota on constitution of pancreatic microbial communities. Our observations revealed a successive alteration in microbial species across various bodily sites during PDAC tumorigenesis. Notably, Porphyromonas gingivalis, Treponema denticola, Peptoanaerobacter stomatis, Propionibacterium acidifaciens, Porphyromonas endodontalis, Filifactor alocis, etc., sequentially increased along PDAC progression in pancreatic tissue, whereas bacteria commonly used as probiotics Bifidobacterium breve, Lactiplantibacillus plantarum, etc., declined. Furthermore, the sequentially escalating trends of Peptoanaerobacter stomatis and Propionibacterium acidifaciens during PDAC tumorigenesis were mirrored in duodenal fluid and saliva. Porphyromonas gingivalis, Porphyromonas endodontalis, and Filifactor alocis, which intensified from CP to stage IV PDAC in pancreatic tissue, were also found to be enriched in saliva of patients with short-term survival (STS) compared with those with long-term survival (LTS). Conclusions Salivary and duodenal microorganisms were prominent factors in shaping pancreatic microbial landscape in PDAC context. Further exploration of these microbial entities is imperative to unravel their specific roles in PDAC pathogenesis, potentially yielding insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Yiqing Zhu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiao Liang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mengfan Zhi
- Shandong Key Laboratory of Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Guoming Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Changxu Chen
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Limei Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ning Zhong
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qiang Feng
- Shandong Key Laboratory of Oral Tissue Regeneration, Department of Human Microbiome, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Robot Engineering Laboratory for Precise Diagnosis and Therapy of Gastrointestinal (GI) Tumor, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Wang X, Yang J, Ren B, Yang G, Liu X, Xiao R, Ren J, Zhou F, You L, Zhao Y. Comprehensive multi-omics profiling identifies novel molecular subtypes of pancreatic ductal adenocarcinoma. Genes Dis 2024; 11:101143. [PMID: 39253579 PMCID: PMC11382047 DOI: 10.1016/j.gendis.2023.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 09/10/2023] [Indexed: 09/11/2024] Open
Abstract
Pancreatic cancer, a highly fatal malignancy, is predicted to rank as the second leading cause of cancer-related death in the next decade. This highlights the urgent need for new insights into personalized diagnosis and treatment. Although molecular subtypes of pancreatic cancer were well established in genomics and transcriptomics, few known molecular classifications are translated to guide clinical strategies and require a paradigm shift. Notably, chronically developing and continuously improving high-throughput technologies and systems serve as an important driving force to further portray the molecular landscape of pancreatic cancer in terms of epigenomics, proteomics, metabonomics, and metagenomics. Therefore, a more comprehensive understanding of molecular classifications at multiple levels using an integrated multi-omics approach holds great promise to exploit more potential therapeutic options. In this review, we recapitulated the molecular spectrum from different omics levels, discussed various subtypes on multi-omics means to move one step forward towards bench-to-beside translation of pancreatic cancer with clinical impact, and proposed some methodological and scientific challenges in store.
Collapse
Affiliation(s)
- Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Jinshou Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, China
| |
Collapse
|
19
|
Li P, Zhang H, Dai M. Current status and prospect of gut and oral microbiome in pancreatic cancer: Clinical and translational perspectives. Cancer Lett 2024; 604:217274. [PMID: 39307411 DOI: 10.1016/j.canlet.2024.217274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic cancer is a highly lethal malignancy, and its diagnosis and treatment continue to pose significant challenges. Despite advancements in surgical and comprehensive treatment methods, the five-year survival rate remains below 12 %. With the rapid development of microbiome science, the gut and oral microbiota, which are readily accessible and can be sampled non-invasively, have emerged as a novel area of interest in pancreatic cancer research. Dysbiosis in these microbial communities can induce persistent inflammatory responses and affect the host's immune system, promoting cancer development and impacting the efficacy of treatments like chemotherapy and immunotherapy. This review provides an up-to-date overview of the roles of both gut and oral microbiota in the onset, progression, diagnosis, and treatment of pancreatic cancer. It analyzes the potential of utilizing these microbiomes as biomarkers and therapeutic targets from a clinical application perspective. Furthermore, it discusses future research directions aimed at harnessing these insights to advance the diagnosis and treatment strategies for pancreatic cancer. By focusing on the microbiome's role in clinical and translational medicine, this review offers insights into improving pancreatic cancer diagnosis and treatment outcomes.
Collapse
Affiliation(s)
- Pengyu Li
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hanyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
20
|
van Eijck CWF, Ju J, van 't Land FR, Verheij M, Li Y, Stubbs A, Doukas M, Lila K, Heij LR, Wiltberger G, Alonso L, Malats N, Groot Koerkamp B, Vietsch EE, van Eijck CHJ. The tumor immune microenvironment in resected treatment-naive pancreatic cancer patients with long-term survival. Pancreatology 2024; 24:1057-1065. [PMID: 39218754 DOI: 10.1016/j.pan.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Presently, only a fraction of patients undergo successful surgical resection, the most effective treatment. Enhancing treatment strategies necessitates a deep comprehension of the factors underlying extended survival after surgical resection in patients. METHODS This study aims to identify the important factors of PDAC patients' long-term survival with metatranscriptomics and multiplex immunofluorescence (IF) staining analyses. Specifically, differences in tumor immune microenvironment (TIME) were investigated between treatment-naïve PDAC short-term survivors (STS, overall survival <6 months) and long-term survivors (LTS, overall survival >5 years). RESULTS As a result, we detected 589 over-expressed genes, including HOXB9, CDA, and HOXB8, and 507 under-expressed genes, including AMY2B, SCARA5, and SLC2A2 in LTS. Most of the Reactome overbiological pathways enriched in our data were over-expressed in LTS, such as RHO GTPase Effectors and Cell Cycle Checkpoints. Eleven microbiomes significantly differed between LTS and STS, including Sphingopyxis and Capnocytophaga. Importantly, we demonstrate that the TIME profile with an increased abundance of memory B cells and the reduction of M0 and pro-tumoral M2 macrophages are associated with a good prognosis in PDAC. CONCLUSIONS In this study, we delved into the TIME with metatranscriptomics and IF staining analyses to understand the prerequisite of prolonged survival in PDAC patients. In LTS, several biological pathways were overexpressed, and specific microbiomes were identified. Furthermore, apparent differences in driven immune factors were found that provide valuable insights into developing new treatment strategies.
Collapse
Affiliation(s)
- Casper W F van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| | - Jie Ju
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Freek R van 't Land
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Maaike Verheij
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Yunlei Li
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Andrew Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Michael Doukas
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Karishma Lila
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center Rotterdam, the Netherlands
| | - Lara R Heij
- Institute of Pathology, Medical Center University Duisburg-Essen, Essen, Germany; Department of Surgery and Transplantation, University Hospital Essen, Germany; Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Georg Wiltberger
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Lola Alonso
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Bas Groot Koerkamp
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Eveline E Vietsch
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands
| | - Casper H J van Eijck
- Erasmus MC Cancer Institute, Department of Surgery, University Medical Center Rotterdam, the Netherlands; Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
21
|
Pan L, Yin N, Duan M, Mei Q, Zeng Y. The role of gut microbiome and its metabolites in pancreatitis. mSystems 2024; 9:e0066524. [PMID: 39212377 PMCID: PMC11494936 DOI: 10.1128/msystems.00665-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Gut microbiome plays a vital role in the intestinal ecosystem and has close association with metabolites. Due to the development of metabolomics and microbiomics, recent studies have observed that alteration of either the gut microbiome or metabolites may have effects on the progression of pancreatitis. Several new treatments based on the gut microbiome or metabolites have been studied extensively in recent years. Gut microbes, such as Bifidobacterium, Akkermansia, and Lactobacillus, and metabolites, such as short-chain fatty acids, bile acids, vitamin, hydrogen sulfide, and alcohol, have different effects on pancreatitis. Some preliminary studies about new intervention measures were based on the gut microbiome and metabolites such as diet, prebiotic, herbal medicine, and fecal microbiota transplantation. This review aims to summarize the recent advances about the gut microbiome, metabolites, and pancreatitis in order to determine the potential beneficial role of the gut microbiome and metabolites in pancreatitis.
Collapse
Affiliation(s)
- Letian Pan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Mingyu Duan
- Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Hong J, Fu Y, Chen X, Zhang Y, Li X, Li T, Liu Y, Fan M, Lin R. Gut microbiome changes associated with chronic pancreatitis and pancreatic cancer: a systematic review and meta-analysis. Int J Surg 2024; 110:5781-5794. [PMID: 38847785 PMCID: PMC11392207 DOI: 10.1097/js9.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/19/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The study of changes in the microbiome in chronic pancreatitis (CP) and pancreatic ductal adenocarcinoma (PDAC) holds significant potential for developing noninvasive diagnostic tools as well as innovative interventions to alter the progression of diseases. This systematic review and meta-analysis aimed to analyze in detail the taxonomic and functional characteristics of the gut microbiome in patients with CP and PDAC. METHODS Two researchers conducted a systematic search across public databases to gather all published research up to June 2023. Diversity and gut microbiota composition are the main outcomes the authors focus on. RESULTS This meta-analysis included 14 studies, involving a total of 1511 individuals in the PDAC ( n =285), CP ( n =342), and control ( n =649) groups. Our results show a significant difference in the composition of gut microbiota between PDAC/CP patients compared to healthy controls (HC), as evidenced by a slight decrease in α-diversity, including Shannon (SMD=-0.33; P =0.002 and SMD=-0.59; P <0.001, respectively) and a statistically significant β-diversity ( P <0.05). The pooled results showed that at the phylum level, the proportion of Firmicutes was lower in PDAC and CP patients than in HC patients. At the genus level, more than two studies demonstrated that four genera were significantly increased in PDAC patients compared to HC (e.g. Escherichia-Shigella and Veillonella ). CP patients had an increase in four genera (e.g. Escherichia-Shigella and Klebsiella ) and a decrease in eight genera (e.g. Coprococcus and Bifidobacterium ) compared to HC. Functional/metabolomics results from various studies also showed differences between PDAC/CP patients and HC. In addition, this study found no significant differences in gut microbiota between PDAC and CP patients. CONCLUSIONS Current evidence suggests changes in gut microbiota is associated with PDAC/CP, commonly reflected by a reduction in beneficial species and an increase in the pathogenic species. Further studies are needed to confirm these findings and explore therapeutic possibilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
23
|
Grigorescu RR, Husar-Sburlan IA, Gheorghe C. Pancreatic Cancer: A Review of Risk Factors. Life (Basel) 2024; 14:980. [PMID: 39202722 PMCID: PMC11355429 DOI: 10.3390/life14080980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most lethal types of gastrointestinal cancer despite the latest medical advances. Its incidence has continuously increased in recent years in developed countries. The location of the pancreas can result in the initial symptoms of neoplasia being overlooked, which can lead to a delayed diagnosis and a subsequent reduction in the spectrum of available therapeutic options. The role of modifiable risk factors in pancreatic cancer has been extensively studied in recent years, with smoking and alcohol consumption identified as key contributors. However, the few screening programs that have been developed focus exclusively on genetic factors, without considering the potential impact of modifiable factors on disease occurrence. Thus, fully understanding and detecting the risk factors for pancreatic cancer represents an important step in the prevention and early diagnosis of this type of neoplasia. This review reports the available evidence on different risk factors and identifies the areas that could benefit the most from additional studies.
Collapse
Affiliation(s)
- Raluca Roxana Grigorescu
- Gastroenterology Department, “Sfanta Maria” Hospital, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | | - Cristian Gheorghe
- Center for Digestive Disease and Liver Transplantation, Fundeni Clinical Institute, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
24
|
Ito S, Higashiyama M, Nishimura H, Tomioka A, Tanemoto R, Nishii S, Mizoguchi A, Akita Y, Okada Y, Kurihara C, Narimatsu K, Komoto S, Tomita K, Hokari R. The Role of Gut Microbiota and Innate Immune Response in an Autoimmune Pancreatitis Model. Pancreas 2024; 53:e617-e626. [PMID: 38696351 DOI: 10.1097/mpa.0000000000002339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
BACKGROUND Although the involvement of intestinal microbiota in innate immunity has been reported recently, the pathogenicity of autoimmune pancreatitis (AIP) remains unclear. This study aimed to investigate whether probiotics ameliorate inflammation in AIP through interactions with innate immunity. MATERIALS AND METHODS The AIP mouse model was generated by intraperitoneal administration of Escherichia coli to C56BL/6 female mice. Alterations in the intestinal microbiota in the AIP group were evaluated using high-throughput sequencing. Peritoneal macrophages (PMs) were collected and cocultured in vitro with Lactobacillus gasseri (LG) or ligands of Toll-like receptors (TLRs). LG was administered intraperitoneally to AIP model mice, and pancreatitis activity was evaluated to examine the ameliorative effects of LG. RESULTS In the AIP model mice, inflammation was significantly induced in the pancreas, and the intestinal microbiota was altered with decreased LG. Antimicrobial treatment suppressed pancreatitis. In vitro, E. coli stimulation increased inflammatory cytokine expression, which was significantly decreased when the LG or TLR7 ligand was cocultured with PMs. Intraperitoneal administration of LG to AIP model mice significantly suppressed pancreatitis. CONCLUSION The mouse model demonstrated the involvement of intestinal microbiota in pancreatitis, and LG administration suppressed pancreatitis, possibly through TLR7 signaling in PMs. LG may be a helpful probiotic for treating AIP.
Collapse
Affiliation(s)
- Suguru Ito
- From the Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Matsui T, Morozumi T, Yamamoto Y, Kobayashi T, Takuma R, Yoneda M, Nogami A, Kessoku T, Tamura M, Nomura Y, Takahashi T, Kamata Y, Sugihara S, Arai K, Minabe M, Aoyama N, Mitsudo K, Nakajima A, Komaki M. Relationship of Metabolic Dysfunction-Associated Steatohepatitis-Related Hepatocellular Carcinoma with Oral and Intestinal Microbiota: A Cross-Sectional Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1150. [PMID: 39064580 PMCID: PMC11279156 DOI: 10.3390/medicina60071150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: The incidence of metabolic dysfunction-associated steatohepatitis (MASH)-related hepatocellular carcinoma (HCC) is increasing worldwide, alongside the epidemic of obesity and metabolic syndrome. Based on preliminary reports regarding the potential association of HCC and periodontitis, this study aimed to analyze the involvement of periodontal bacteria as well as the oral and intestinal bacterial flora in MASH-related HCC (MASH-HCC). Materials and Methods: Forty-one patients with MASH and nineteen with MASH-HCC participated in the study, completing survey questionnaires, undergoing periodontal examinations, and providing samples of saliva, mouth-rinsed water, feces, and peripheral blood. The oral and fecal microbiome profiles were analyzed by 16S ribosomal RNA sequencing. Bayesian network analysis was used to analyze the causation between various factors, including MASH-HCC, examinations, and bacteria. Results: The genus Fusobacterium had a significantly higher occupancy rate (p = 0.002) in the intestinal microflora of the MASH-HCC group compared to the MASH group. However, Butyricicoccus (p = 0.022) and Roseburia (p < 0.05) had significantly lower occupancy rates. The Bayesian network analysis revealed the absence of periodontal pathogenic bacteria and enteric bacteria affecting HCC. However, HCC directly affected the periodontal bacterial species Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella intermedia in the saliva, as well as the genera Lactobacillus, Roseburia, Fusobacterium, Prevotella, Clostridium, Ruminococcus, Trabulsiella, and SMB53 in the intestine. Furthermore, P. gingivalis in the oral cavity directly affected the genera Lactobacillus and Streptococcus in the intestine. Conclusions: MASH-HCC directly affects periodontal pathogenic and intestinal bacteria, and P. gingivalis may affect the intestinal bacteria associated with gastrointestinal cancer.
Collapse
Affiliation(s)
- Takaaki Matsui
- Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Toshiya Morozumi
- Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan
- Department of Endodontics, The Nippon Dental University School of Life Dentistry at Niigata, Niigata 951-8580, Japan
| | - Yuko Yamamoto
- Department of Dental Hygiene, Kanagawa Dental University, Junior College, Yokosuka 238-8580, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Ryo Takuma
- Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takaomi Kessoku
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
- Department of Palliative Medicine and Gastroenterology, International University of Health and Welfare, Narita Hospital, Narita 286-8520, Japan
| | - Muneaki Tamura
- Department of Microbiology and Immunology, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Yoshiaki Nomura
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Toru Takahashi
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama 362-0806, Japan
| | - Yohei Kamata
- Department of Advanced Periodontology, Faculty of Dentistry, Kanagawa Dental University, Yokohama 221-0835, Japan
| | - Shuntaro Sugihara
- Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Kyoko Arai
- Department of Endodontics, The Nippon Dental University School of Life Dentistry at Niigata, Niigata 951-8580, Japan
| | | | - Norio Aoyama
- Department of Education Planning, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Kenji Mitsudo
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Motohiro Komaki
- Department of Periodontology, Faculty of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan
| |
Collapse
|
26
|
Jiang H, Tian Y, Xu L, Chen X, Huang Y, Wu J, Wang T, Liu T, Wu X, Ye C, Wu H, Ye W, Fang L, Zhang Y. Alterations of the bile microbiome is associated with progression-free survival in pancreatic ductal adenocarcinoma patients. BMC Microbiol 2024; 24:235. [PMID: 38956452 PMCID: PMC11218221 DOI: 10.1186/s12866-024-03371-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Patients with pancreatic ductal adenocarcinoma (PDAC) display an altered oral, gastrointestinal, and intra-pancreatic microbiome compared to healthy individuals. However, knowledge regarding the bile microbiome and its potential impact on progression-free survival in PDACs remains limited. METHODS Patients with PDAC (n = 45), including 20 matched pairs before and after surgery, and benign controls (n = 16) were included prospectively. The characteristics of the microbiomes of the total 81 bile were revealed by 16 S-rRNA gene sequencing. PDAC patients were divided into distinct groups based on tumor marker levels, disease staging, before and after surgery, as well as progression free survival (PFS) for further analysis. Disease diagnostic model was formulated utilizing the random forest algorithm. RESULTS PDAC patients harbor a unique and diverse bile microbiome (PCoA, weighted Unifrac, p = 0.038), and the increasing microbial diversity is correlated with dysbiosis according to key microbes and microbial functions. Aliihoeflea emerged as the genus displaying the most significant alteration among two groups (p < 0.01). Significant differences were found in beta diversity of the bile microbiome between long-term PFS and short-term PFS groups (PCoA, weighted Unifrac, p = 0.005). Bacillota and Actinomycetota were identified as altered phylum between two groups associated with progression-free survival in all PDAC patients. Additionally, we identified three biomarkers as the most suitable set for the random forest model, which indicated a significantly elevated likelihood of disease occurrence in the PDAC group (p < 0.0001). The area under the receiver operating characteristic (ROC) curve reached 80.8% with a 95% confidence interval ranging from 55.0 to 100%. Due to the scarcity of bile samples, we were unable to conduct further external verification. CONCLUSION PDAC is characterized by an altered microbiome of bile ducts. Biliary dysbiosis is linked with progression-free survival in all PDACs. This study revealed the alteration of the bile microbiome in PDACs and successfully developed a diagnostic model for PDAC.
Collapse
Affiliation(s)
- Hang Jiang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yitong Tian
- Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Linwei Xu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Xing Chen
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Yurun Huang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jia Wu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Tingting Liu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- NMPA Key Laboratory for Testing and Risk Warning of Pharmaceutical Microbiology, Hangzhou, China
| | - Xitian Wu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chao Ye
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hao Wu
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wenkai Ye
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Luo Fang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
| | - Yuhua Zhang
- Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Davoutis E, Gkiafi Z, Lykoudis PM. Bringing gut microbiota into the spotlight of clinical research and medical practice. World J Clin Cases 2024; 12:2293-2300. [PMID: 38765739 PMCID: PMC11099419 DOI: 10.12998/wjcc.v12.i14.2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Despite the increasing scientific interest and expanding role of gut microbiota (GM) in human health, it is rarely reported in case reports and deployed in clinical practice. Proteins and metabolites produced by microbiota contribute to immune system development, energy homeostasis and digestion. Exo- and endogenous factors can alter its composition. Disturbance of microbiota, also known as dysbiosis, is associated with various pathological conditions. Specific bacterial taxa and related metabolites are involved in disease pathogenesis and therefore can serve as a diagnostic tool. GM could also be a useful prognostic factor by predicting future disease onset and preventing hospital-associated infections. Additionally, it can influence response to treatments, including those for cancers, by altering drug bioavailability. A thorough understanding of its function has permitted significant development in therapeutics, such as probiotics and fecal transplantation. Hence, GM should be considered as a ground-breaking biological parameter, and it is advisable to be investigated and reported in literature in a more consistent and systematic way.
Collapse
Affiliation(s)
- Efstathia Davoutis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Zoi Gkiafi
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagis M Lykoudis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
28
|
Sidiropoulos T, Dovrolis N, Katifelis H, Michalopoulos NV, Kokoropoulos P, Arkadopoulos N, Gazouli M. Dysbiosis Signature of Fecal Microbiota in Patients with Pancreatic Adenocarcinoma and Pancreatic Intraductal Papillary Mucinous Neoplasms. Biomedicines 2024; 12:1040. [PMID: 38791002 PMCID: PMC11117863 DOI: 10.3390/biomedicines12051040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic cancer (PC) ranks as the seventh leading cause of cancer-related deaths, with approximately 500,000 new cases reported in 2020. Existing strategies for early PC detection primarily target individuals at high risk of developing the disease. Nevertheless, there is a pressing need to identify innovative clinical approaches and personalized treatments for effective PC management. This study aimed to explore the dysbiosis signature of the fecal microbiota in PC and potential distinctions between its Intraductal papillary mucinous neoplasm (IPMN) and pancreatic ductal adenocarcinoma (PDAC) phenotypes, which could carry diagnostic significance. The study enrolled 33 participants, including 22 diagnosed with PDAC, 11 with IPMN, and 24 healthy controls. Fecal samples were collected and subjected to microbial diversity analysis across various taxonomic levels. The findings revealed elevated abundances of Firmicutes and Proteobacteria in PC patients, whereas healthy controls exhibited higher proportions of Bacteroidota. Both LEfSe and Random Forest analyses indicated the microbiome's potential to effectively distinguish between PC and healthy control samples but fell short of differentiating between IPMN and PDAC samples. These results contribute to the current understanding of this challenging cancer type and highlight the applications of microbiome research. In essence, the study provides clear evidence of the gut microbiome's capability to serve as a biomarker for PC detection, emphasizing the steps required for further differentiation among its diverse phenotypes.
Collapse
Affiliation(s)
- Theodoros Sidiropoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.D.); (H.K.)
| | - Hector Katifelis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.D.); (H.K.)
| | - Nikolaos V. Michalopoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Panagiotis Kokoropoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Nikolaos Arkadopoulos
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (T.S.); (N.V.M.); (P.K.); (N.A.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.D.); (H.K.)
| |
Collapse
|
29
|
Hunter C, Dia K, Boykins J, Perry K, Banerjee N, Cuffee J, Armstrong E, Morgan G, Banerjee HN, Banerjee A, Bhattacharya S. An investigation for phylogenetic characterization of human Pancreatic cancer microbiome by 16SrDNA Sequencing and Bioinformatics techniques. RESEARCH SQUARE 2024:rs.3.rs-4140368. [PMID: 38585738 PMCID: PMC10996791 DOI: 10.21203/rs.3.rs-4140368/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Pancreatic cancer is a significant public health concern, with increasing incidence rates and limited treatment options. Recent studies have highlighted the role of the human microbiome, particularly the gut microbiota, in the development and progression of this disease. Microbial dysbiosis, characterized by alterations in the composition and function of the gut microbiota, has been implicated in pancreatic carcinogenesis through mechanisms involving chronic inflammation, immune dysregulation, and metabolic disturbances. Researchers have identified specific microbial signatures associated with pancreatic cancer, offering potential biomarkers for early detection and prognostication. By leveraging advanced sequencing and bioinformatics tools, scientists have delineated differences in the gut microbiota between pancreatic cancer patients and healthy individuals, providing insights into disease pathogenesis and potential diagnostic strategies. Moreover, the microbiome holds promise as a therapeutic target in pancreatic cancer treatment. Interventions aimed at modulating the microbiome, such as probiotics, prebiotics, and fecal microbiota transplantation, have demonstrated potential in enhancing the efficacy of existing cancer therapies, including chemotherapy and immunotherapy. These approaches can influence immune responses, alter tumor microenvironments, and sensitize tumors to treatment, offering new avenues for improving patient outcomes and overcoming therapeutic resistance. Overall, understanding the complex interplay between the microbiome and pancreatic cancer is crucial for advancing our knowledge of disease mechanisms and identifying innovative therapeutic strategies. Here we report phylogenetic analysis of the 16S microbial sequences of the pancreatic cancer mice microbiome and corresponding age matched healthy mice microbiome. We successfully identified differentially abundance of microbiota in the pancreatic cancer.
Collapse
Affiliation(s)
- Colby Hunter
- Elizabeth City State University campus of The University of North Carolina
| | - Khadimou Dia
- Elizabeth City State University campus of The University of North Carolina
| | - Julia Boykins
- Elizabeth City State University campus of The University of North Carolina
| | - Karrington Perry
- Elizabeth City State University campus of The University of North Carolina
| | - Narendra Banerjee
- Elizabeth City State University campus of The University of North Carolina
| | - Jazmine Cuffee
- Elizabeth City State University campus of The University of North Carolina
| | - Erik Armstrong
- Elizabeth City State University campus of The University of North Carolina
| | - Gabrielle Morgan
- Elizabeth City State University campus of The University of North Carolina
| | | | | | | |
Collapse
|
30
|
Elango A, Nesam VD, Sukumar P, Lawrence I, Radhakrishnan A. Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Arch Microbiol 2024; 206:156. [PMID: 38480544 DOI: 10.1007/s00203-024-03914-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024]
Abstract
Postbiotics are produced by microbes and have recently gained importance in the field of oncology due to their beneficial effects to the host, effectiveness against cancer cells, and their ability to suppress inflammation. In particular, butyrate dominates over all other postbiotics both in quantity and anticancer properties. Pancreatic cancer (PC), being one of the most malignant and lethal cancers, reported a decreased 5-year survival rate in less than 10% of the patients. PC causes an increased mortality rate due to its inability to be detected at an early stage but still a promising strategy for its diagnosis has not been achieved yet. It is necessary to diagnose Pancreatic cancer before the metastatic progression stage. The available blood biomarkers lack accurate and proficient diagnostic results. Postbiotic butyrate is produced by gut microbiota such as Rhuminococcus and Faecalibacterium it is involved in cell signalling pathways, autophagy, and cell cycle regulation, and reduction in butyrate concentration is associated with the occurrence of pancreatic cancer. The postbiotic butyrate is a potential biomarker that could detect PC at an early stage, before the metastatic progression stage. Thus, this review focused on the gut microbiota butyrate's role in pancreatic cancer and the immuno-suppressive environment, its effects on histone deacetylase and other immune cells, microbes in major butyrate synthesis pathways, current biomarkers in use for Pancreatic Cancer.
Collapse
Affiliation(s)
- Abinaya Elango
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Vineeta Debbie Nesam
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Padmaja Sukumar
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Infancia Lawrence
- Priyadharshani Research and Development, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India
| | - Arunkumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, Tamil Nadu, 603103, India.
| |
Collapse
|
31
|
Jin D, Jin S, Zhou T, Cui Z, Guo B, Li G, Zhang C. Quantitative evaluation of gut microbiota composition in pancreatic cancer: A pooled study. Medicine (Baltimore) 2024; 103:e36907. [PMID: 38457538 PMCID: PMC10919531 DOI: 10.1097/md.0000000000036907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Prior research has demonstrated a positive association between the composition of gut microbiota and the incidence of pancreatic cancer. Nevertheless, a thorough quantitative and systematic evaluation of the distinct properties of gut microbiota in individuals diagnosed with pancreatic cancer has yet to be conducted. The objective of this study is to examine alterations in the diversity of intestinal microbiota in individuals diagnosed with pancreatic cancer. METHODS Search for relevant literature published before July 2023 in 4 databases: PubMed, Embase, Web of Science, and Cochrane Library, without any language restrictions. RESULTS A total of 12 studies were included, including 535 patients with pancreatic cancer and 677 healthy controls. Analysis was conducted on 6 phyla, 16 genera, and 6 species. The study found significant and distinctive changes in the α-diversity of gut microbiota, as well as in the relative abundance of multiple gut bacterial groups at the phylum, genus, and species levels in pancreatic cancer patients. CONCLUSION Overall, there are certain characteristic changes in the gut microbiota of pancreatic cancer patients. However, further research is warranted to elucidate the specific mechanism of action and the potential for treatment.
Collapse
Affiliation(s)
- Dachuan Jin
- Department of Clinical Laboratory, Sixth People’s Hospital of Zhengzhou, Zhengzhou, P.R. China
| | - Shunqin Jin
- Department of Radiology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Tao Zhou
- Department of Geriatric Medicine, Key Laboratory of Cardiovascular Proteomics of Shandong University, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Zhongfeng Cui
- Department of Clinical Laboratory, Sixth People’s Hospital of Zhengzhou, Zhengzhou, P.R. China
| | - Baoqiang Guo
- Faculty of Science and Engineering, Department of Life Sciences, Manchester Metropolitan University, Manchester, U.K
| | - Guangming Li
- Department of Liver Disease, Sixth People’s Hospital of Zhengzhou, Zhengzhou, P.R. China
| | - Chunming Zhang
- Department of General Surgery, Sixth People’s Hospital of Zhengzhou, Zhengzhou, P.R. China
| |
Collapse
|
32
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
33
|
Li X, Li Y, He C, Zhu Y. Bibliometric analysis of pancreatic diseases and gut microbiota research from 2002 to 2022. Heliyon 2024; 10:e23483. [PMID: 38187305 PMCID: PMC10767372 DOI: 10.1016/j.heliyon.2023.e23483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background An increasing number of studies have indicated that pancreatic diseases are associated with the structure of the gut microbiota. We aimed to assess the research hotspots and trends in this field through a quantitative method. Materials and methods Articles related to pancreatic diseases and the gut microbiota published from 2002 to 2022 were retrieved from the Web of Science database. We visualized the countries/regions, institutions, authors, journals, and keywords using VOSviewer and CiteSpace software. The interplay between pancreatic diseases and the gut microbiota was also analysed. Results A total of 129 publications were finally identified. The number of papers increased gradually, and China held the dominant position with respect to publication output. Shanghai Jiao Tong University was the most influential institution. Zeng Yue ranked highest in the number of papers, and Scientific Reports was the most productive journal. The keywords "gut", "bacterial translocation", and "acute pancreatitis" appeared early for the first time, and "gut microbiota", "community", and "diversity" have been increasingly focused on. The predominant pancreatic disease correlated with the gut microbiota was pancreatic inflammatory disease (50.39%). Pancreatic diseases are associated with alterations in the gut microbiota, characterized by a decrease in beneficial bacteria and an increase in harmful bacteria. Conclusion This is the first comprehensive bibliometric analysis of all pancreatic diseases and the gut microbiota. The research on the relationship between them is still in the preliminary stage, and the trend is toward a gradual deepening of the research and precise treatment development. The interaction between the gut microbiota and pancreatic diseases will be of increasing concern in the future.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
34
|
Pourali G, Kazemi D, Chadeganipour AS, Arastonejad M, Kashani SN, Pourali R, Maftooh M, Akbarzade H, Fiuji H, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Avan A. Microbiome as a biomarker and therapeutic target in pancreatic cancer. BMC Microbiol 2024; 24:16. [PMID: 38183010 PMCID: PMC10768369 DOI: 10.1186/s12866-023-03166-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
Studying the effects of the microbiome on the development of different types of cancer has recently received increasing research attention. In this context, the microbial content of organs of the gastrointestinal tract has been proposed to play a potential role in the development of pancreatic cancer (PC). Proposed mechanisms for the pathogenesis of PC include persistent inflammation caused by microbiota leading to an impairment of antitumor immune surveillance and altered cellular processes in the tumor microenvironment. The limited available diagnostic markers that can currently be used for screening suggest the importance of microbial composition as a non-invasive biomarker that can be used in clinical settings. Samples including saliva, stool, and blood can be analyzed by 16 s rRNA sequencing to determine the relative abundance of specific bacteria. Studies have shown the potentially beneficial effects of prebiotics, probiotics, antibiotics, fecal microbial transplantation, and bacteriophage therapy in altering microbial diversity, and subsequently improving treatment outcomes. In this review, we summarize the potential impact of the microbiome in the pathogenesis of PC, and the role these microorganisms might play as biomarkers in the diagnosis and determining the prognosis of patients. We also discuss novel treatment methods being used to minimize or prevent the progression of dysbiosis by modulating the microbial composition. Emerging evidence is supportive of applying these findings to improve current therapeutic strategies employed in the treatment of PC.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Danial Kazemi
- Student Research Committee, Isfahan University of Medical Sciences, Hezar Jerib Street, Isfahan, Iran
| | | | - Mahshid Arastonejad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Roozbeh Pourali
- Student Research Committee, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Akbarzade
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Fiuji
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
35
|
León-Letelier RA, Dou R, Vykoukal J, Yip-Schneider MT, Maitra A, Irajizad E, Wu R, Dennison JB, Do KA, Zhang J, Schmidt CM, Hanash S, Fahrmann JF. Contributions of the Microbiome-Derived Metabolome for Risk Assessment and Prognostication of Pancreatic Cancer. Clin Chem 2024; 70:102-115. [PMID: 38175578 PMCID: PMC11836914 DOI: 10.1093/clinchem/hvad186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Increasing evidence implicates microbiome involvement in the development and progression of pancreatic ductal adenocarcinoma (PDAC). Studies suggest that reflux of gut or oral microbiota can lead to colonization in the pancreas, resulting in dysbiosis that culminates in release of microbial toxins and metabolites that potentiate an inflammatory response and increase susceptibility to PDAC. Moreover, microbe-derived metabolites can exert direct effector functions on precursors and cancer cells, as well as other cell types, to either promote or attenuate tumor development and modulate treatment response. CONTENT The occurrence of microbial metabolites in biofluids thereby enables risk assessment and prognostication of PDAC, as well as having potential for design of interception strategies. In this review, we first highlight the relevance of the microbiome for progression of precancerous lesions in the pancreas and, using liquid chromatography-mass spectrometry, provide supporting evidence that microbe-derived metabolites manifest in pancreatic cystic fluid and are associated with malignant progression of intraductal papillary mucinous neoplasm(s). We secondly summarize the biomarker potential of microbe-derived metabolite signatures for (a) identifying individuals at high risk of developing or harboring PDAC and (b) predicting response to treatment and disease outcomes. SUMMARY The microbiome-derived metabolome holds considerable promise for risk assessment and prognostication of PDAC.
Collapse
Affiliation(s)
- Ricardo A. León-Letelier
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Rongzhang Dou
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | | | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Kim-An Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Jianjun Zhang
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| | - Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA, 77030
| |
Collapse
|
36
|
Cruz MS, Tintelnot J, Gagliani N. Roles of microbiota in pancreatic cancer development and treatment. Gut Microbes 2024; 16:2320280. [PMID: 38411395 PMCID: PMC10900280 DOI: 10.1080/19490976.2024.2320280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with poor prognosis. This is due to the fact that most cases are only diagnosed at an advanced and palliative disease stage, and there is a high incidence of therapy resistance. Despite ongoing efforts, to date, the mechanisms underlying PDAC oncogenesis and its poor responses to treatment are still largely unclear. As the study of the microbiome in cancer progresses, growing evidence suggests that bacteria or fungi might be key players both in PDAC oncogenesis as well as in its resistance to chemo- and immunotherapy, for instance through modulation of the tumor microenvironment and reshaping of the host immune response. Here, we review how the microbiota exerts these effects directly or indirectly via microbial-derived metabolites. Finally, we further discuss the potential of modulating the microbiota composition as a therapy in PDAC.
Collapse
Affiliation(s)
- Mariana Santos Cruz
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Joseph Tintelnot
- II. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Nicola Gagliani
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Zeng X, Ren D, Liu R, Zhang Q, Yan X, Yuan X. Oral microbiome-driven virulence factors: A novel approach to pancreatic cancer diagnosis. BIOMOLECULES & BIOMEDICINE 2023; 24:952-958. [PMID: 38153528 PMCID: PMC11293218 DOI: 10.17305/bb.2023.9934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy, often associated with a poor prognosis for patients. One of the major challenges in managing PDAC is the difficulty in early diagnosis, owing to the limited and invasive nature of current diagnostic methods. Recent studies have identified the oral microbiome as a potential source of non-invasive biomarkers for diseases, including PDAC. In this study, we focused on leveraging the differential expression of virulence factors (VFs) encoded by the oral microbiome to create a diagnostic tool for PDAC. We observed a higher alpha diversity in VF categories among PDAC patients compared to healthy controls. We then identified a panel of VF categories that were significantly upregulated in PDAC patients, these being associated with bacterial adherence, exoenzyme production, and nutritional/metabolic processes. Moreover, Streptococcus-derived VFs were notably enriched in PDAC patients. We developed a diagnostic model using random forest analysis based on the levels of these VFs. The model's diagnostic accuracy was evaluated using receiver operating characteristic (ROC) curve analysis, with an area under the curve (AUC) of 0.88, indicating high accuracy in differentiating PDAC patients from healthy controls. Our findings suggest that VFs encoded by the oral microbiome hold potential as diagnostic tools for PDAC, offering a non-invasive approach that could significantly enhance early detection and prognosis, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Xuemin Zeng
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Wu S, Wen S, An K, Xiong L, Zeng H, Niu Y, Yin T. Bibliometric analysis of global research trends between gut microbiota and pancreatic cancer: from 2004 to 2023. Front Microbiol 2023; 14:1281451. [PMID: 38088976 PMCID: PMC10715435 DOI: 10.3389/fmicb.2023.1281451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the most lethal malignancies of the digestive system and is expected to be the second leading cause of cancer-related death in the United States by 2030. A growing body of evidence suggests that the gut microbiota (GM) is intimately involved in the clinical diagnosis, oncogenic mechanism and treatment of PC. However, no bibliometric analysis of PC and GM has been reported. METHODS The literature on PC and GM was retrieved from the Web of Science Core Collection (WoSCC) database for the period from January 1, 2004 to April 25, 2023. Microsoft Excel 2021, CiteSpace, VOSviewer, Scimago Graphica, Graphpad Prism, Origin, the R package "bibliometrics" and the bibliometric online analysis program were used to visualize the publishing trends and hot spots in this field. RESULTS A total of 1,449 articles were included, including 918 articles and 531 reviews. Publishing had grown rapidly since 2017, with the 2023 expected to publish 268 articles. Unsurprisingly, the United States ranked highest in terms of number of literatures, H index and average citations. The University of California System was the most active institution, but Harvard University tended to be cited the most on average. The three most influential researchers were Robert M. Hoffman, Zhao Minglei, and Zhang Yong. Cancers had published the most papers, while Nature was the most cited journal. Keyword analysis and theme analysis indicated that "tumor microenvironment," "gemcitabine-resistance," "ductal adenocarcinoma," "gut microbiota" and "diagnosis" will be the hotspots and frontiers of research in the future. CONCLUSION In summary, the field is receiving increasing attention. We found that future hotspots of PC/GM research may focus on the mechanism of oncogenesis, flora combination therapy and the exploitation of new predictive biomarkers, which provides effective suggestions and new insights for scholars.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su Wen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kangli An
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Xiong
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zeng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueyue Niu
- Department of Ophthalmology, Henan Provincial People’s Hospital, Clinical Medical College of Henan University, Zhengzhou, China
| | - Tiejun Yin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Martinelli S, Lamminpää I, Dübüş EN, Sarıkaya D, Niccolai E. Synergistic Strategies for Gastrointestinal Cancer Care: Unveiling the Benefits of Immunonutrition and Microbiota Modulation. Nutrients 2023; 15:4408. [PMID: 37892482 PMCID: PMC10610426 DOI: 10.3390/nu15204408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are a group of highly prevalent malignant tumors affecting the gastrointestinal tract. Globally, one in four cancer cases and one in three cancer deaths are estimated to be GI cancers. They can alter digestive and absorption functions, leading to severe malnutrition which may worsen the prognosis of the patients. Therefore, nutritional intervention and monitoring play a fundamental role in managing metabolic alterations and cancer symptoms, as well as minimizing side effects and increasing the effectiveness of chemotherapy. In this scenario, the use of immunonutrients that are able to modulate the immune system and the modification/regulation of the gut microbiota composition have gained attention as a possible strategy to improve the conditions of these patients. The complex interaction between nutrients and microbiota might contribute to maintaining the homeostasis of each individual's immune system; therefore, concurrent use of specific nutrients in combination with traditional cancer treatments may synergistically improve the overall care of GI cancer patients. This work aims to review and discuss the role of immunonutrition and microbiota modulation in improving nutritional status, postoperative recovery, and response to therapies in patients with GI cancer.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| | - Eda Nur Dübüş
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Dilara Sarıkaya
- Department of Nutrition and Dietetics, Gazi University, 06560 Ankara, Turkey; (E.N.D.); (D.S.)
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy; (S.M.); (I.L.)
| |
Collapse
|
40
|
Irajizad E, Kenney A, Tang T, Vykoukal J, Wu R, Murage E, Dennison JB, Sans M, Long JP, Loftus M, Chabot JA, Kluger MD, Kastrinos F, Brais L, Babic A, Jajoo K, Lee LS, Clancy TE, Ng K, Bullock A, Genkinger JM, Maitra A, Do KA, Yu B, Wolpin BM, Hanash S, Fahrmann JF. A blood-based metabolomic signature predictive of risk for pancreatic cancer. Cell Rep Med 2023; 4:101194. [PMID: 37729870 PMCID: PMC10518621 DOI: 10.1016/j.xcrm.2023.101194] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/20/2022] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Emerging evidence implicates microbiome involvement in the development of pancreatic cancer (PaCa). Here, we investigate whether increases in circulating microbial-related metabolites associate with PaCa risk by applying metabolomics profiling to 172 sera collected within 5 years prior to PaCa diagnosis and 863 matched non-subject sera from participants in the Prostate, Lung, Colorectal, and Ovarian (PLCO) cohort. We develop a three-marker microbial-related metabolite panel to assess 5-year risk of PaCa. The addition of five non-microbial metabolites further improves 5-year risk prediction of PaCa. The combined metabolite panel complements CA19-9, and individuals with a combined metabolite panel + CA19-9 score in the top 2.5th percentile have absolute 5-year risk estimates of >13%. The risk prediction model based on circulating microbial and non-microbial metabolites provides a potential tool to identify individuals at high risk of PaCa that would benefit from surveillance and/or from potential cancer interception strategies.
Collapse
Affiliation(s)
- Ehsan Irajizad
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Kenney
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Tiffany Tang
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marta Sans
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - James P Long
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maureen Loftus
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John A Chabot
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michael D Kluger
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Lauren Brais
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ana Babic
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kunal Jajoo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda S Lee
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas E Clancy
- Dana-Farber Brigham and Women's Cancer Center, Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA
| | - Kimmie Ng
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrea Bullock
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jeanine M Genkinger
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Columbia Mailman School of Public Health, New York, NY, USA
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Yu
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
| | - Brian M Wolpin
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
41
|
Moon J, Lee AR, Kim H, Jhun J, Lee SY, Choi JW, Jeong Y, Park MS, Ji GE, Cho ML, Park SH. Faecalibacterium prausnitzii alleviates inflammatory arthritis and regulates IL-17 production, short chain fatty acids, and the intestinal microbial flora in experimental mouse model for rheumatoid arthritis. Arthritis Res Ther 2023; 25:130. [PMID: 37496081 PMCID: PMC10373287 DOI: 10.1186/s13075-023-03118-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that leads to joint destruction and functional disability due to the targeting of self-antigens present in the synovium, cartilage, and bone. RA is caused by a number of complex factors, including genetics, environment, dietary habits, and altered intestinal microbial flora. Microorganisms in the gut bind to nod-like receptors and Toll-like receptors to regulate the immune system and produce various metabolites, such as short-chain fatty acids (SCFAs) that interact directly with the host. Faecalibacterium prausnitzii is a representative bacterium that produces butyrate, a well-known immunomodulatory agent in the body, and this microbe exerts anti-inflammatory effects in autoimmune diseases. METHODS In this study, F. prausnitzii was administered in a mouse model of RA, to investigate RA pathology and changes in the intestinal microbial flora. Using collagen-induced arthritic mice, which is a representative animal model of RA, we administered F. prausnitzii orally for 7 weeks. RESULTS The arthritis score and joint tissue damage were decreased in the mice administered F. prausnitzii compared with the vehicle-treated group. In addition, administration of F. prausnitzii reduced the abundance of systemic immune cells that secrete the pro-inflammatory cytokine IL-17 and induced changes in SCFA concentrations and the intestinal microbial flora composition. It also resulted in decreased lactate and acetate concentrations, an increased butyrate concentration, and altered compositions of bacteria known to exacerbate or improve RA. CONCLUSION These results suggest that F. prausnitzii exerts a therapeutic effect on RA by regulation of IL-17 producing cells. In addition, F. prausnitzii modify the microbial flora composition and short chain fatty acids in experimental RA mouse model.
Collapse
Affiliation(s)
- Jeonghyeon Moon
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - A Ram Lee
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea
| | - Heejung Kim
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
| | - JooYeon Jhun
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea
| | - Jeong Won Choi
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea
| | - Yunju Jeong
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Geun Eog Ji
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, South Korea
- Research Center, BIFIDO Co., Ltd., Hongcheon, South Korea
| | - Mi-La Cho
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea.
- Lab of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
| | - Sung-Hwan Park
- Rheumatism Research Center, College of Medicine, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, 06591, Korea.
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
42
|
Su Q, Jin C, Bo Z, Yang Y, Wang J, Wang J, Zhou J, Chen Y, Zeng H, Chen G, Wang Y. Association between gut microbiota and gastrointestinal cancer: a two-sample bi-directional Mendelian randomization study. Front Microbiol 2023; 14:1181328. [PMID: 37533836 PMCID: PMC10390774 DOI: 10.3389/fmicb.2023.1181328] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
Background The gut microbiome is closely related to gastrointestinal (GI) cancer, but the causality of gut microbiome with GI cancer has yet to be fully established. We conducted this two-sample Mendelian randomization (MR) study to reveal the potential causal effect of gut microbiota on GI cancer. Materials and methods Summary-level genetic data of gut microbiome were derived from the MiBioGen consortium and the Dutch Microbiome Project. Summary statistics of six GI cancers were drawn from United Kingdom Biobank. Inverse-variance-weighted (IVW), MR-robust adjusted profile score (MR-RAPS), and weighted-median (WM) methods were used to evaluate the potential causal link between gut microbiota and GI cancer. In addition, we performed sensitivity analyses and reverse MR analyses. Results We identified potential causal associations between 21 bacterial taxa and GI cancers (values of p < 0.05 in all three MR methods). Among them, phylum Verrucomicrobia (OR: 0.17, 95% CI: 0.05-0.59, p = 0.005) retained a strong negative association with intrahepatic cholangiocarcinoma after the Bonferroni correction, whereas order Bacillales (OR: 1.67, 95% CI: 1.23-2.26, p = 0.001) retained a strong positive association with pancreatic cancer. Reverse MR analyses indicated that GI cancer was associated with 17 microbial taxa in all three MR methods, among them, a strong inverse association between colorectal cancer and family Clostridiaceae1 (OR: 0.91, 95% CI: 0.86-0.96, p = 0.001) was identified by Bonferroni correction. Conclusion Our study implicates the potential causal effects of specific microbial taxa on GI cancer, potentially providing new insights into the prevention and treatment of GI cancer through specific gut bacteria.
Collapse
Affiliation(s)
- Qing Su
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Chen Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Yang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Jingxian Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Juejin Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Junxi Zhou
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Yaqing Chen
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Hao Zeng
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
Papa V, Schepis T, Coppola G, Chiappetta MF, Del Vecchio LE, Rozera T, Quero G, Gasbarrini A, Alfieri S, Papa A. The Role of Microbiota in Pancreatic Cancer. Cancers (Basel) 2023; 15:3143. [PMID: 37370753 DOI: 10.3390/cancers15123143] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer (PC) has an unfavorable prognosis with few effective therapeutic options. This has led researchers to investigate the possible links between microbiota and PC. A disrupted gut microbiome can lead to chronic inflammation, which is involved in the pathogenesis of PC. In addition, some bacterial strains can produce carcinogens that promote the growth of cancer cells. Research has also focused on pancreatic and oral microbiota. Changes in these microbiota can contribute to the development and progression of PC. Furthermore, patients with periodontal disease have an increased risk of developing PC. The potential use of microbiota as a prognostic marker or to predict patients' responses to chemotherapy or immunotherapy is also being explored. Overall, the role of microbiota-including the gut, pancreatic, and oral microbiota-in PC is an active research area. Understanding these associations could lead to new diagnostic and therapeutic targets for this deadly disease.
Collapse
Affiliation(s)
- Valerio Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tommaso Schepis
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Gaetano Coppola
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Michele Francesco Chiappetta
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Livio Enrico Del Vecchio
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Tommaso Rozera
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Quero
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Sergio Alfieri
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Alfredo Papa
- Department of Translational Medicine and Surgery, School of Medicine, Catholic University, 00168 Rome, Italy
- Center for Diagnosis and Treatment of Digestive Diseases, CEMAD, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
44
|
Bastos AR, Pereira-Marques J, Ferreira RM, Figueiredo C. Harnessing the Microbiome to Reduce Pancreatic Cancer Burden. Cancers (Basel) 2023; 15:cancers15092629. [PMID: 37174095 PMCID: PMC10177253 DOI: 10.3390/cancers15092629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Pancreatic cancer mortality is expected to rise in the next decades. This aggressive malignancy has a dismal prognosis due to late diagnosis and resistance to treatment. Increasing evidence indicates that host-microbiome interactions play an integral role in pancreatic cancer development, suggesting that harnessing the microbiome might offer promising opportunities for diagnostic and therapeutic interventions. Herein, we review the associations between pancreatic cancer and the intratumoral, gut and oral microbiomes. We also explore the mechanisms with which microbes influence cancer development and the response to treatment. We further discuss the potentials and limitations of using the microbiome as a target for therapeutic interventions, in order to improve pancreatic cancer patient outcomes.
Collapse
Affiliation(s)
- Ana Raquel Bastos
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Joana Pereira-Marques
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Rui Manuel Ferreira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Ceu Figueiredo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto (i3S), 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
45
|
Liu N, Chen L, Yan M, Tao Q, Wu J, Chen J, Chen X, Zhang W, Peng C. Eubacterium rectale Improves the Efficacy of Anti-PD1 Immunotherapy in Melanoma via l-Serine-Mediated NK Cell Activation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0127. [PMID: 37223471 PMCID: PMC10202379 DOI: 10.34133/research.0127] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Natural killer (NK) cells, as key immune cells, play essential roles in tumor cell immune escape and immunotherapy. Accumulating evidence has demonstrated that the gut microbiota community affects the efficacy of anti-PD1 immunotherapy and that remodeling the gut microbiota is a promising strategy to enhance anti-PD1 immunotherapy responsiveness in advanced melanoma patients; however, the details of the mechanism remain elusive. In this study, we found that Eubacterium rectale was significantly enriched in melanoma patients who responded to anti-PD1 immunotherapy and that a high E. rectale abundance was related to longer survival in melanoma patients. Furthermore, administration of E. rectale remarkably improved the efficacy of anti-PD1 therapy and increased the overall survival of tumor-bearing mice; moreover, application of E. rectale led to a significant accumulation of NK cells in the tumor microenvironment. Interestingly, conditioned medium isolated from an E. rectale culture system dramatically enhanced NK cell function. Gas chromatography-mass spectrometry/ultrahigh performance liquid chromatography-tandem mass spectrometry-based metabolomic analysis showed that l-serine production was significantly decreased in the E. rectale group; moreover, administration of an l-serine synthesis inhibitor dramatically increased NK cell activation, which enhanced anti-PD1 immunotherapy effects. Mechanistically, supplementation with l-serine or application of an l-serine synthesis inhibitor affected NK cell activation through Fos/Fosl. In summary, our findings reveal the role of bacteria-modulated serine metabolic signaling in NK cell activation and provide a novel therapeutic strategy to improve the efficacy of anti-PD1 immunotherapy in melanoma.
Collapse
Affiliation(s)
- Nian Liu
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Lihui Chen
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Mingjie Yan
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Qian Tao
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
| | - Jie Wu
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
| | - Jing Chen
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Clinical Pharmacology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- Furong Laboratory, Xiangya Hospital,
Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| |
Collapse
|
46
|
Temel HY, Kaymak Ö, Kaplan S, Bahcivanci B, Gkoutos GV, Acharjee A. Role of microbiota and microbiota-derived short-chain fatty acids in PDAC. Cancer Med 2023; 12:5661-5675. [PMID: 36205023 PMCID: PMC10028056 DOI: 10.1002/cam4.5323] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive lethal diseases among other cancer types. Gut microbiome and its metabolic regulation play a crucial role in PDAC. Metabolic regulation in the gut is a complex process that involves microbiome and microbiome-derived short-chain fatty acids (SCFAs). SCFAs regulate inflammation, as well as lipid and glucose metabolism, through different pathways. This review aims to summarize recent developments in PDAC in the context of gut and oral microbiota and their associations with short-chain fatty acid (SCFA). In addition to this, we discuss possible therapeutic applications using microbiota in PDAC.
Collapse
Affiliation(s)
- Hülya Yılmaz Temel
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Öznur Kaymak
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Seren Kaplan
- Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
| | - Basak Bahcivanci
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
| | - Georgios V. Gkoutos
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of BirminghamBirminghamUK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital BirminghamBirminghamUK
- MRC Health Data Research UK (HDR UK)BirminghamUK
| |
Collapse
|
47
|
Shim JA, Ryu JH, Jo Y, Hong C. The role of gut microbiota in T cell immunity and immune mediated disorders. Int J Biol Sci 2023; 19:1178-1191. [PMID: 36923929 PMCID: PMC10008692 DOI: 10.7150/ijbs.79430] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 03/14/2023] Open
Abstract
Gut microbiota was only considered as a commensal organism that aids in digestion, but recent studies revealed that the microbiome play a critical role in both physiological and pathological immune system. The gut microbiome composition is altered by environmental factors such as diet and hygiene, and the alteration affects immune cells, especially T cells. Advanced genomic techniques in microbiome research defined that specific microbes regulate T cell responses and the pathogenesis of immune-mediated disorders. Here, we review features of specific microbes-T cell crosstalk and relationship between the microbes and immunopathogenesis of diseases including in cancers, autoimmune disorders and allergic inflammations. We also discuss the limitations of current experimental animal models, cutting-edge developments and current challenges to overcome in the field, and the possibility of considering gut microbiome in the development of new drug.
Collapse
Affiliation(s)
- Ju A Shim
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Jeong Ha Ryu
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.,PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
48
|
Dong Y, Zhang K, Wei J, Ding Y, Wang X, Hou H, Wu J, Liu T, Wang B, Cao H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front Immunol 2023; 14:1158200. [PMID: 37122756 PMCID: PMC10140337 DOI: 10.3389/fimmu.2023.1158200] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Tumor immune microenvironment (TIME), a tumor-derived immune component, is proven to be closely related to the development, metastasis, and recurrence of tumors. Gut microbiota and its fermented-metabolites short-chain fatty acids (SCFAs) play a critical role in maintaining the immune homeostasis of gastrointestinal tumors. Consisting mainly of acetate, propionate, and butyrate, SCFAs can interact with G protein-coupled receptors 43 of T helper 1 cell or restrain histone deacetylases (HDACs) of cytotoxic T lymphocytes to exert immunotherapy effects. Studies have shed light on SCFAs can mediate the differentiation and function of regulatory T cells, as well as cytokine production in TIME. Additionally, SCFAs can alter epigenetic modification of CD8+ T cells by inhibiting HDACs to participate in the immune response process. In gastrointestinal tumors, the abundance of SCFAs and their producing bacteria is significantly reduced. Direct supplementation of dietary fiber and probiotics, or fecal microbiota transplantation to change the structure of gut microbiota can both increase the level of SCFAs and inhibit tumor development. The mechanism by which SCFAs modulate the progression of gastrointestinal tumors has been elucidated in this review, aiming to provide prospects for the development of novel immunotherapeutic strategies.
Collapse
|
49
|
The Microbiome in PDAC-Vantage Point for Future Therapies? Cancers (Basel) 2022; 14:cancers14235974. [PMID: 36497456 PMCID: PMC9739548 DOI: 10.3390/cancers14235974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been increasingly implicated in the pathogenesis of malignant diseases, potentially affecting different hallmarks of cancer. Despite the fact that we have recently gained tremendous insight into the existence and interaction of the microbiome with neoplastic cells, we are only beginning to understand and exploit this knowledge for the treatment of human malignancies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive solid tumor with limited therapeutic options and a poor long-term survival. Recent data have revealed fascinating insights into the role of the tumoral microbiome in PDAC, with profound implications for survival and potentially therapeutic outcomes. In this review, we outline the current scientific knowledge about the clinical and translational role of the microbiome in PDAC. We describe the microbial compositions in healthy and tumoral pancreatic tissue and point out four major aspects of the microbiome in PDAC: pathogenesis, diagnosis, treatment, and prognosis. However, caution must be drawn to inherent pitfalls in analyzing the intratumoral microbiome. Among others, contamination with environmental microbes is one of the major challenges. To this end, we discuss different decontamination approaches that are crucial for clinicians and scientists alike to foster applicability and physiological relevance in this translational field. Without a definition of an exact and reproducible intratumoral microbial composition, the exploitation of the microbiome as a diagnostic or therapeutic tool remains theoretical.
Collapse
|
50
|
Wang Y, Choy CT, Lin Y, Wang L, Hou J, Tsui JCC, Zhou J, Wong CH, Yim TK, Tsui WK, Chan UK, Siu PLK, Loo SKF, Tsui SKW. Effect of a Novel E3 Probiotics Formula on the Gut Microbiome in Atopic Dermatitis Patients: A Pilot Study. Biomedicines 2022; 10:2904. [PMID: 36428472 PMCID: PMC9687608 DOI: 10.3390/biomedicines10112904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) has been shown to be closely related to gut dysbiosis mediated through the gut−skin axis, and thus the gut microbiome has recently been explored as a potential therapeutic target for the treatment of AD. Contrasting and varying efficacy have been reported since then. In order to investigate the determining factor of probiotics responsiveness in individuals with AD, we initiated the analysis of 41 AD patients with varying disease severity in Hong Kong, whereas the severity was assessed by Eczema Area and Severity Index (EASI) by board certified dermatologist. 16S rRNA sequencing on the fecal samples from AD patients were performed to obtain the metagenomics profile at baseline and after 8 weeks of oral administration of a novel E3 probiotics formula (including prebiotics, probiotics and postbiotics). While EASI of the participants were significantly lower after the probiotics treatment (p < 0.001, paired Wilcoxon signed rank), subjects with mild AD were found to be more likely to respond to the probiotics treatment. Species richness among responders regardless of disease severity were significantly increased (p < 0.001, paired Wilcoxon signed rank). Responders exhibited (1) elevated relative abundance of Clostridium, Fecalibacterium, Lactobacillus, Romboutsia, and Streptococcus, (2) reduced relative abundance of Collinsella, Bifidobacterium, Fusicatenibacter, and Escherichia-Shigella amid orally-intake probiotics identified using the machine learning algorithm and (3) gut microbiome composition and structure resembling healthy subjects after probiotics treatment. Here, we presented the gut microbiome dynamics in AD patients after the administration of the E3 probiotics formula and delineated the unique gut microbiome signatures in individuals with AD who were responding to the probiotics. These findings could guide the future development of probiotics use for AD management.
Collapse
Affiliation(s)
- Yiwei Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Yufeng Lin
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinpao Hou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Tai Ki Yim
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Wai Kai Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Un Kei Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|