1
|
Kumar A, Pramanik J, Batta K, Bamal P, Gaur M, Rustagi S, Prajapati BG, Bhattacharya S. Impact of metallic nanoparticles on gut microbiota modulation in colorectal cancer: A review. CANCER INNOVATION 2024; 3:e150. [PMID: 39398260 PMCID: PMC11467490 DOI: 10.1002/cai2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer. Ongoing research aims to uncover the causes of CRC, with a growing focus on the role of gut microbiota (GM) in carcinogenesis. The GM influences CRC development, progression, treatment efficacy, and therapeutic toxicities. For example, Fusobacterium nucleatum and Escherichia coli can regulate microbial gene expression through the incorporation of human small noncode RNA and potentially contribute to cancer progression. Metallic nanoparticles (MNPs) have both negative and positive impacts on GM, depending on their type. Several studies state that titanium dioxide may increase the diversity, richness, and abundance of probiotics bacteria, whereas other studies demonstrate dose-dependent GM dysbiosis. The MNPs offer cytotoxicity through the modulation of MAPK signaling pathways, NF-kB signaling pathways, PI3K/Akt signaling pathways, extrinsic signaling pathways, intrinsic apoptosis, and cell cycle arrest at G1, G2, or M phase. MNPs enhance drug delivery, enable targeted therapy, and may restore GM. However, there is a need to conduct well-designed clinical trials to assess the toxicity, safety, and effectiveness of MNPs-based CRC therapies.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food TechnologySRM University, Delhi NCRSonepatIndia
- MMICT & BM (Hotel Management), Maharishi Markandeshwar (Deemed to be University)MullanaIndia
| | - Jhilam Pramanik
- Department of Food TechnologyWilliam Carey UniversityShillongIndia
| | - Kajol Batta
- Department of Food TechnologyITM UniversityGwaliorIndia
| | - Pooja Bamal
- Department of Food TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Mukesh Gaur
- Department of Food TechnologyGuru Jambheshwar University of Science and TechnologyHisarIndia
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunIndia
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and ResearchGanpat UniversityMehsanaIndia
| | - Sankha Bhattacharya
- Department of PharmaceuticsSchool of Pharmacy & Technology Management, SVKM'S NMIMS Deemed‐to‐be UniversityShirpurMaharashtraIndia
| |
Collapse
|
2
|
Yoosefian M, Sabaghian H. Silver nanoparticle-based drug delivery systems in the fight against COVID-19: enhancing efficacy, reducing toxicity and improving drug bioavailability. J Drug Target 2024; 32:794-806. [PMID: 38742854 DOI: 10.1080/1061186x.2024.2356147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Nanoparticles (NPs) have played a pivotal role in various biomedical applications, spanning from sensing to drug delivery, imaging and anti-viral therapy. The therapeutic utilisation of NPs in clinical trials was established in the early 1990s. Silver nanoparticles (AgNPs) possess anti-microbial, anti-cancer and anti-viral properties, which make them a possible anti-viral drug to combat the COVID-19 virus. Free radicals and reactive oxygen species are produced by AgNPs, which causes apoptosis induction and prevents viral contamination. The shape and size of AgNPs can influence their interactions and biological activities. Therefore, it is recommended that silver nanoparticles (AgNPs) be used as a valuable tool in the management of COVID-19 pandemic. These nanoparticles possess strong anti-microbial properties, allowing them to penetrate and destroy microbial cells. Additionally, the toxicity level of nanoparticles depends on the administered dose, and surface modifications are necessary to reduce toxicity, preventing direct interaction between metal surfaces and cells. By utilising silver nanoparticles, drugs can be targeted to specific areas in the body. For example, in the case of COVID-19, anti-viral drugs can be stimulated as nanoparticles in the lungs to accelerate disease recovery. Nanoparticle-based systems have the capability to transport drugs and treat specific body parts. This review offers an examination of silver nanoparticle-based drug delivery systems for combatting COVID-19, with the objective of boosting the bioavailability of existing medications, decreasing their toxicity and raising their efficiency.
Collapse
Affiliation(s)
- Mehdi Yoosefian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| | - Hanieh Sabaghian
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
3
|
Malik MA, Wani AH, Bhat MY, Siddiqui S, Alamri SAM, Alrumman SA. Fungal-mediated synthesis of silver nanoparticles: a novel strategy for plant disease management. Front Microbiol 2024; 15:1399331. [PMID: 39006753 PMCID: PMC11239364 DOI: 10.3389/fmicb.2024.1399331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.
Collapse
Affiliation(s)
- Mansoor Ahmad Malik
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Abdul Hamid Wani
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Mohd Yaqub Bhat
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Saad A M Alamri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Baigonakova G, Marchenko ES, Gordienko II, Larikov VA, Volinsky AA, Prokopchuk AO. Biocompatibility and Antibacterial Properties of NiTiAg Porous Alloys for Bone Implants. ACS OMEGA 2024; 9:25638-25645. [PMID: 38911803 PMCID: PMC11190923 DOI: 10.1021/acsomega.3c08163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 06/25/2024]
Abstract
In order to reduce infections, porous NiTi alloys with 62% porosity were obtained by self-propagating high-temperature synthesis with the addition of 0.2 and 0.5 at. % silver nanoparticles. Silver significantly improved the alloys' antibacterial activity without compromising cytocompatibility. An alloy with 0.5 at. % Ag showed the best antibacterial ability against Staphylococcus epidermidis. All alloys exhibited good biocompatibility with no cellular toxicity against embryonic fibroblast 3T3 cells. Clinical evaluation of the results after implantation showed a complete absence of purulent-inflammatory complications in all animals. Even distribution of silver nanoparticles in the surface layer of the porous NiTi alloy provides a uniform antibacterial effect.
Collapse
Affiliation(s)
- Gulsharat
A. Baigonakova
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
| | - Ekaterina S. Marchenko
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
| | - Ivan I. Gordienko
- Department
of Pediatric Surgery, Ural State Medical
University, 620014 Yekaterinburg, Russia
| | - Victor A. Larikov
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
| | - Alex A. Volinsky
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
- Department
of Mechanical Engineering, University of
South Florida, 4202 E. Fowler Avenue ENG030, Tampa, Florida 33620, United States
| | - Anna O. Prokopchuk
- Laboratory
of Superelastic Biointerfaces, National
Research Tomsk State University, 36 Lenin Avenue, 634045 Tomsk, Russia
| |
Collapse
|
5
|
Grodzicki W, Dziendzikowska K, Gromadzka-Ostrowska J, Wilczak J, Oczkowski M, Kopiasz Ł, Sapierzyński R, Kruszewski M, Grzelak A. In Vivo Pro-Inflammatory Effects of Silver Nanoparticles on the Colon Depend on Time and Route of Exposure. Int J Mol Sci 2024; 25:4879. [PMID: 38732098 PMCID: PMC11084194 DOI: 10.3390/ijms25094879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Nanosilver is a popular nanomaterial, the potential influence of which on humans is of serious concern. Herein, we exposed male Wistar rats to two regimens: a repeated oral dose of 30 mg/kg bw silver nanoparticles (AgNPs) over 28 days and a single-dose injection of 5 mg/kg bw of AgNPs. At three different time points, we assessed antioxidant defense, oxidative stress and inflammatory parameters in the colon, as well as toxicity markers in the liver and plasma. Both experimental scenarios showed increased oxidative stress and inflammation in the colon. Oral administration seemed to be linked to increased reactive oxygen species generation and lipid peroxidation, while the effects induced by the intravenous exposure were probably mediated by silver ions released from the AgNPs. Repeated oral exposure had a more detrimental effect than the single-dose injection. In conclusion, both administration routes had a similar impact on the colon, although the underlying mechanisms are likely different.
Collapse
Affiliation(s)
- Wojciech Grodzicki
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Jacek Wilczak
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Łukasz Kopiasz
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (W.G.); (J.G.-O.); (M.O.); (Ł.K.)
| | - Rafał Sapierzyński
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland;
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland
| | - Agnieszka Grzelak
- Cytometry Lab, Department Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
6
|
Su D, Li W, Zhang Z, Cai H, Zhang L, Sun Y, Liu X, Tian Z. Discrepancy of Growth Toxicity of Polystyrene Nanoplastics on Soybean ( Glycine max) and Mung Bean ( Vigna radiata). TOXICS 2024; 12:155. [PMID: 38393250 PMCID: PMC10892715 DOI: 10.3390/toxics12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanoplastics, as a hot topic of novel contaminants, lack extensive concern in higher plants; especially the potential impact and mechanism of nanoplastics on legume crops remains elusive. In this study, the toxicity of polystyrene nanoplastics (PS-NPs, 200 nm) with diverse doses (control, 10, 50, 100, 200, 500 mg/L) to soybean and mung bean plants grown hydroponically for 7 d was investigated at both the macroscopic and molecular levels. The results demonstrated that the root length of both plants was markedly suppressed to varying degrees. Similarly, mineral elements (Fe, Zn) were notably decreased in soybean roots, consistent with Cu alteration in mung bean. Moreover, PS-NPs considerably elevated malondialdehyde (MDA) levels only in soybean roots. Enzyme activity data indicated mung bean exhibited significant damage only at higher doses of PS-NPs stress than soybean, implying mung bean is more resilient. Transcriptome analysis showed that PS-NPs stimulated the expression of genes associated with the antioxidant system in plant roots. Furthermore, starch and sucrose metabolism might play a key role in coping with PS-NPs to enhance soybean resistance, but the MAPK pathway was enriched in mung bean. Our findings provide valuable perspectives for an in-depth understanding of the performance of plants growing in waters contaminated by nanoplastics.
Collapse
Affiliation(s)
- Dan Su
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wangwang Li
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zhaowei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Hui Cai
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Le Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yuanlong Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Zhiquan Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
7
|
Sun M, Cai Z, Li C, Hao Y, Xu X, Qian K, Li H, Guo Y, Liang A, Han L, Shang H, Jia W, Cao Y, Wang C, Ma C, White JC, Xing B. Nanoscale ZnO Improves the Amino Acids and Lipids in Tomato Fruits and the Subsequent Assimilation in a Simulated Human Gastrointestinal Tract Model. ACS NANO 2023; 17:19938-19951. [PMID: 37782568 DOI: 10.1021/acsnano.3c04990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
With the widespread use of nanoenabled agrochemicals, it is essential to evaluate the food safety of nanomaterials (NMs)-treated vegetable crops in full life cycle studies as well as their potential impacts on human health. Tomato seedlings were foliarly sprayed with 50 mg/L ZnO NMs, including ZnO quantum dots (QDs) and ZnO nanoparticles once per week over 11 weeks. The foliar sprayed ZnO QDs increased fruit dry weight and yield per plant by 39.1% and 24.9, respectively. It also significantly increased the lycopene, amino acids, Zn, B, and Fe in tomato fruits by 40.5%, 15.1%, 44.5%, 76.2%, and 12.8%, respectively. The tomato fruit metabolome of tomatoes showed that ZnO NMs upregulated the biosynthesis of unsaturated fatty acids and sphingolipid metabolism and elevated the levels of linoleic and arachidonic acids. The ZnO NMs-treated tomato fruits were then digested in a human gastrointestinal tract model. The results of essential mineral release suggested that the ZnO QDs treatment increased the bioaccessibility of K, Zn, and Cu by 14.8-35.1% relative to the control. Additionally, both types of ZnO NMs had no negative impact on the α-amylase, pepsin, and trypsin activities. The digested fruit metabolome in the intestinal fluid demonstrated that ZnO NMs did not interfere with the normal process of human digestion. Importantly, ZnO NMs treatments increased the glycerophospholipids, carbohydrates, amino acids, and peptides in the intestinal fluids of tomato fruits. This study suggests that nanoscale Zn can be potentially used to increase the nutritional value of vegetable crops and can be an important tool to sustainably increase food quality and security.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zeyu Cai
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinxin Xu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Hao Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaozu Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Anqi Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Heping Shang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education,Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven 06511, Connecticut, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst 01003, Massachusetts, United States
| |
Collapse
|
8
|
Xu K, Phue WH, Basu N, George S. The potential of dietary nanoparticles to enhance allergenicity of milk proteins: an in vitro investigation. Immunol Cell Biol 2023; 101:625-638. [PMID: 37157183 DOI: 10.1111/imcb.12649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
In recent years, the popularity of dietary nanoparticles (NPs) in the food industry as additives has raised concerns because of the lack of knowledge about potential adverse health outcomes ensuing from the interactions of NPs with components of the food matrix and gastrointestinal system. In this study, we used a transwell culture system that consisted of human colorectal adenocarcinoma (Caco-2) cells in the apical insert and Laboratory of Allergic Diseases 2 mast cells in the basal compartment to study the effect of NPs on milk allergen delivery across the epithelial layer, mast cell responses and signaling between epithelial and mast cells in allergenic inflammation. A library of dietary particles (silicon dioxide NPs, titanium dioxide NPs and silver NPs) that varied in particle size, surface chemistry and crystal structures with or without pre-exposure to milk was used in this investigation. Milk-interacted particles were found to acquire surface corona and increased the bioavailability of milk allergens (casein and β-lactoglobulin) across the intestinal epithelial layer. The signaling between epithelial cells and mast cells resulted in significant changes in the early phase and late-phase activation of the mast cells. This study suggested that antigen challenge in mast cells with the presence of dietary NPs may cause the transition of allergic responses from an immunoglobulin E (IgE)-dependent mechanism to a mixed mechanism (both IgE-dependent and IgE-independent mechanisms).
Collapse
Affiliation(s)
- Ke Xu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Wut Hmone Phue
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Niladri Basu
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
9
|
Perrotta BG, Simonin M, Colman BP, Anderson SM, Baruch E, Castellon BT, Matson CW, Bernhardt ES, King RS. Chronic Engineered Nanoparticle Additions Alter Insect Emergence and Result in Metal Flux from Aquatic Ecosystems into Riparian Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:8085-8095. [PMID: 37200151 DOI: 10.1021/acs.est.3c00620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Freshwater ecosystems are exposed to engineered nanoparticles (NPs) through discharge from wastewater and agricultural runoff. We conducted a 9-month mesocosm experiment to examine the combined effects of chronic NP additions on insect emergence and insect-mediated contaminant flux to riparian spiders. Two NPs (copper, gold, plus controls) were crossed by two levels of nutrients in 18 outdoor mesocosms open to natural insect and spider colonization. We collected adult insects and two riparian spider genera, Tetragnatha and Dolomedes, for 1 week on a monthly basis. We estimated a significant decrease in cumulative insect emergence of 19% and 24% after exposure to copper and gold NPs, irrespective of nutrient level. NP treatments led to elevated copper and gold tissue concentrations in adult insects, which resulted in terrestrial fluxes of metals. These metal fluxes were associated with increased gold and copper tissue concentrations for both spider genera. We also observed about 25% fewer spiders in the NP mesocosms, likely due to reduced insect emergence and/or NP toxicity. These results demonstrate the transfer of NPs from aquatic to terrestrial ecosystems via emergence of aquatic insects and predation by riparian spiders, as well as significant reductions in insect and spider abundance in response to NP additions.
Collapse
Affiliation(s)
- Brittany G Perrotta
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, Texas 76798, United States
- Department of Biology, Baylor University, Waco, Texas 76798, United States
| | - Marie Simonin
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Duke University, Durham, North Carolina 27708, United States
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France
| | - Benjamin P Colman
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Steven M Anderson
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Duke University, Durham, North Carolina 27708, United States
| | - Ethan Baruch
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Duke University, Durham, North Carolina 27708, United States
| | - Benjamin T Castellon
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, Texas 76798, United States
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76798, United States
| | - Cole W Matson
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, Texas 76798, United States
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
- Institute of Biomedical Studies, Baylor University, Waco, Texas 76798, United States
| | - Emily S Bernhardt
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Duke University, Durham, North Carolina 27708, United States
| | - Ryan S King
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, Texas 76798, United States
- Department of Biology, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
10
|
Qi M, Wang X, Chen J, Liu Y, Liu Y, Jia J, Li L, Yue T, Gao L, Yan B, Zhao B, Xu M. Transformation, Absorption and Toxicological Mechanisms of Silver Nanoparticles in the Gastrointestinal Tract Following Oral Exposure. ACS NANO 2023; 17:8851-8865. [PMID: 37145866 DOI: 10.1021/acsnano.3c00024] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Oral exposure is known as the primary way for silver nanoparticles (AgNPs), which are commonly used as food additives or antibacterial agents in commercial products, to enter the human body. Although the health risk of AgNPs has been a concern and extensively researched over the past few decades, there are still numerous knowledge gaps that need to be filled to disclose what AgNPs experience in the gastrointestinal tract (GIT) and how they cause oral toxicity. In order to gain more insight into the fate of AgNPs in the GIT, the main gastrointestinal transformation of AgNPs, including aggregation/disaggregation, oxidative dissolution, chlorination, sulfuration, and corona formation, is first described. Second, the intestinal absorption of AgNPs is presented to show how AgNPs interact with epithelial cells and cross the intestinal barrier. Then, more importantly, we make an overview of the mechanisms underlying the oral toxicity of AgNPs in light of recent advances as well as the factors affecting the nano-bio interactions in the GIT, which have rarely been thoroughly elaborated in published literature. At last, we emphatically discuss the issues that need to be addressed in the future to answer the question "How does oral exposure to AgNPs cause detrimental effects on the human body?".
Collapse
Affiliation(s)
- Mengying Qi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xudong Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Chen
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Science, Hefei 230031, China
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Lingxiangyu Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: Taking a Unique Position in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:574. [PMID: 36770535 PMCID: PMC9920911 DOI: 10.3390/nano13030574] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The human nature of curiosity, wonder, and ingenuity date back to the age of humankind. In parallel with our history of civilization, interest in scientific approaches to unravel mechanisms underlying natural phenomena has been developing. Recent years have witnessed unprecedented growth in research in the area of pharmaceuticals and medicine. The optimism that nanotechnology (NT) applied to medicine and drugs is taking serious steps to bring about significant advances in diagnosing, treating, and preventing disease-a shift from fantasy to reality. The growing interest in the future medical applications of NT leads to the emergence of a new field for nanomaterials (NMs) and biomedicine. In recent years, NMs have emerged as essential game players in modern medicine, with clinical applications ranging from contrast agents in imaging to carriers for drug and gene delivery into tumors. Indeed, there are instances where nanoparticles (NPs) enable analyses and therapies that cannot be performed otherwise. However, NPs also bring unique environmental and societal challenges, particularly concerning toxicity. Thus, clinical applications of NPs should be revisited, and a deep understanding of the effects of NPs from the pathophysiologic basis of a disease may bring more sophisticated diagnostic opportunities and yield more effective therapies and preventive features. Correspondingly, this review highlights the significant contributions of NPs to modern medicine and drug delivery systems. This study also attempted to glimpse the future impact of NT in medicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), Arab League St, Doha P.O. Box 24449, Qatar
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Cairo 12622, Egypt
| | - Mashhoor Kattali
- Department of Biotechnology, EMEA College of Arts and Science, Kondotty 673638, India
| | - Józef Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza, 80-233 Gdańsk, Poland
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686560, India
| |
Collapse
|
12
|
Hu W, Wang C, Gao D, Liang Q. Toxicity of transition metal nanoparticles: A review of different experimental models in the gastrointestinal tract. J Appl Toxicol 2023; 43:32-46. [PMID: 35289422 DOI: 10.1002/jat.4320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
The development of nanotechnology is becoming a major trend nowadays. Nanoparticles (NPs) have been widely used in fields including food, biomedicine, and cosmetics, endowing NPs more opportunities to enter the human body. It is well-known that the gut microbiome plays a key role in human health, and the exposure of intestines to NPs is unavoidable. Accordingly, the toxicity of NPs has attracted more attention than before. This review mainly highlights recent advances in the evaluation of NPs' toxicity in the gastrointestinal system from the existing cell-based experimental models, such as the original mono-culture models, co-culture models, three-dimensional (3D) culture models, and the models established on microfluidic chips, to those in vivo experiments, such as mice models, Caenorhabditis elegans models, zebrafish models, human volunteers, as well as computer-simulated toxicity models. Owing to these models, especially those more biomimetic models, the outcome of the toxicity of NPs acting in the gastrointestinal tract can get results closer to what happened inside the real human microenvironment.
Collapse
Affiliation(s)
- Wanting Hu
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Chenlong Wang
- Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| | - Dan Gao
- State Key Laboratory of Chemical Oncogenomics, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Qionglin Liang
- Center for Synthetic and Systems Biology, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Di Cristo L, Sabella S. Cell Cultures at the Air-Liquid Interface and Their Application in Cancer Research. Methods Mol Biol 2023; 2645:41-64. [PMID: 37202611 DOI: 10.1007/978-1-0716-3056-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air-liquid interface (ALI) cell cultures are considered a valid tool for the replacement of animals in biomedical research. By mimicking crucial features of the human in vivo epithelial barriers (e.g., lung, intestine, and skin), ALI cell cultures enable proper structural architectures and differentiated functions of normal and diseased tissue barriers. Thereby, ALI models realistically resemble tissue conditions and provide in vivo-like responses. Since their implementation, they are routinely used in several applications, from toxicity testing to cancer research, receiving an appreciable level of acceptance (in some cases a regulatory acceptance) as attractive testing alternatives to animals. In this chapter, an overview of the ALI cell cultures will be presented together with their application in cancer cell culture, highlighting the potential advantages and disadvantages of the model.
Collapse
Affiliation(s)
- Luisana Di Cristo
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy.
| | - Stefania Sabella
- D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Genoa, Italy
| |
Collapse
|
14
|
Xu K, Mittal K, Ewald J, Rulli S, Jakubowski JL, George S, Basu N. Transcriptomic points of departure calculated from human intestinal cells exposed to dietary nanoparticles. Food Chem Toxicol 2022; 170:113501. [DOI: 10.1016/j.fct.2022.113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
15
|
He Y, Li Z, Xu T, Luo D, Chi Q, Zhang Y, Li S. Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway. CHEMOSPHERE 2022; 307:135662. [PMID: 35830933 DOI: 10.1016/j.chemosphere.2022.135662] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The widespread occurrence of nanoplastics (NPs), has markedly affected the ecosystem and has become a global threat to animals and human health. There is growing evidence showing that polystyrene nanoparticles (PSNPs) exposure induced enteritis and the intestinal barrier disorder. Lipopolysaccharide (LPS) can trigger the inflammation burden of various tissues. Whether PSNPs deteriorate LPS-induced intestinal damage via ROS drived-NF-κB/NLRP3 pathway is remains unknown. In this study, PSNPs exposure/PSNPs and LPS co-exposure mice model were duplicated by intraperitoneal injection. The results showed that exposure to PSNPs/LPS caused duodenal inflammation and increased permeability. We evaluated the change of duodenum structure, oxidative stress parameters, inflammatory factors, and tight junction protein in the duodenum. We found that PSNPs/LPS could aggravate the production of ROS and oxidative stress in cells, activate NF-κB/NLRP3 pathway, decrease the expression tight junction proteins (ZO-1, Claudin 1, and Occludin) levels, promote inflammatory factors (TNF-α, IL-6, and IFN-γ) expressions. Duodenal oxidative stress and inflammation in PS + LPS group were more serious than those in single exposure group, which could be alleviated by NF-kB inhibitor QNZ. Collectively, the results verified that PSNPs deteriorated LPS-induced inflammation and increasing permeability in mice duodenum via ROS drived-NF-κB/NLRP3 pathway. The current study indicated the relationship and molecular mechanism between PSNPs and intestinal injury, providing novel insights into the adverse effects of PSNPs exposure on mammals and humans.
Collapse
Affiliation(s)
- Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
16
|
Wu J, Zhu Z, Liu W, Zhang Y, Kang Y, Liu J, Hu C, Wang R, Zhang M, Chen L, Shao L. How Nanoparticles Open the Paracellular Route of Biological Barriers: Mechanisms, Applications, and Prospects. ACS NANO 2022; 16:15627-15652. [PMID: 36121682 DOI: 10.1021/acsnano.2c05317] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biological barriers are essential physiological protective systems and obstacles to drug delivery. Nanoparticles (NPs) can access the paracellular route of biological barriers, either causing adverse health impacts on humans or producing therapeutic opportunities. This Review introduces the structural and functional influences of NPs on the key components that govern the paracellular route, mainly tight junctions, adherens junctions, and cytoskeletons. Furthermore, we evaluate their interaction mechanisms and address the influencing factors that determine the ability of NPs to open the paracellular route, which provides a better knowledge of how NPs can open the paracellular route in a safer and more controllable way. Finally, we summarize limitations in the research models and methodologies of the existing research in the field and provide future research direction. This Review demonstrates the in-depth causes for the reversible opening or destruction of the integrity of barriers generated by NPs; more importantly, it contributes insights into the design of NP-based medications to boost paracellular drug delivery efficiency.
Collapse
Affiliation(s)
- Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| | - Zhenjun Zhu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chen Hu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruolan Wang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Manjin Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
17
|
Wang S, Kang X, Alenius H, Wong SH, Karisola P, El-Nezami H. Oral exposure to Ag or TiO 2 nanoparticles perturbed gut transcriptome and microbiota in a mouse model of ulcerative colitis. Food Chem Toxicol 2022; 169:113368. [PMID: 36087619 DOI: 10.1016/j.fct.2022.113368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Silver (nAg) and titanium dioxide (nTiO2) nanoparticles improve texture, flavour or anti-microbial properties of various food products and packaging materials. Despite their increased oral exposure, their potential toxicities in the dysfunctional intestine are unclear. Here, the effects of ingested nAg or nTiO2 on inflamed colon were revealed in a mouse model of chemical-induced acute ulcerative colitis. Mice (eight/group) were exposed to nAg or nTiO2 by oral gavage for 10 consecutive days. We characterized disease phenotypes, histology, and alterations in colonic transcriptome (RNA sequencing) and gut microbiome (16S sequencing). Oral exposure to nAg caused only minor changes in phenotypic hallmarks of colitic mice but induced extensive responses in gene expression enriching processes of apoptotic cell death and RNA metabolism. Instead, ingested nTiO2 yielded shorter colon, aggravated epithelial hyperplasia and deeper infiltration of inflammatory cells. Both nanoparticles significantly changed the gut microbiota composition, resulting in loss of diversity and increase of potential pathobionts. They also increased colonic mucus and abundance of Akkermansia muciniphila. Overall, nAg and nTiO2 induce dissimilar immunotoxicological changes at the molecular and microbiome level in the context of colon inflammation. The results provide valuable information for evaluation of utilizing metallic nanoparticles in food products for the vulnerable population.
Collapse
Affiliation(s)
- Shuyuan Wang
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| | - Xing Kang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Harri Alenius
- Human Microbiome Research Program, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland; Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, 171 77, Sweden.
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| | - Piia Karisola
- Human Microbiome Research Program, University of Helsinki, Haartmaninkatu 3, 00290, Helsinki, Finland.
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China; Nutrition and Health, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
18
|
Xiao S, Shoaib A, Xu J, Lin D. Mesoporous silica size, charge, and hydrophobicity affect the loading and releasing performance of lambda-cyhalothrin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154914. [PMID: 35364147 DOI: 10.1016/j.scitotenv.2022.154914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Nanopesticides are attracting increasing attention as a promising technology in agriculture to improve insecticidal efficacy, decrease pesticides uses, and reduce potential environmental impacts. We synthesized mesoporous silica nanoparticles, i.e., Mobil Composition of Matter No.48 (MCM-48), with different sizes (63-130 nm), charges (-22 to 12 mV), and hydrophobicity (water contact angle 29-103°) to assess their loading amount and release of a typical poorly soluble halogenated pyrethroid (i.e., lambda-cyhalothrin particles, LCNS). The smallest MCM-48 displayed relatively higher loading amount of LCNS (~16%) compared to the larger MCM-48 nanoparticles, likely because of its higher pore volume (1.46 cm3 g-1) and pore size (3.56 nm). LCNS loading amount was further improved to ~26% and ~36% after -NH2 (positively charged) and -CH3 (hydrophobic) functionalization, respectively, probably due to hydrogen bonding, electrostatic, and hydrophobic interactions with LCNS. Loading LCNS in MCM-48 nanoparticles also significantly improved its dispersion in water and ultraviolet (UV) light stability, with a 3-7 times longer half-life than that of free LCNS. Although the -NH2 and -CH3 modifications of MCM-48 slightly decreased the UV stability of LCNS, they significantly decreased the release efficiency of LCNS, possibly because of their stronger interactions with LCNS. In addition, the insecticidal effects of LCNS-loaded MCM-48 were more efficient and longer than those of free LCNS. The findings clarify the relationships between physicochemical properties and performance of mesoporous silica nanoparticles, and will inform the rational design of materials for controlled release of pesticides and sustainable control of pests.
Collapse
Affiliation(s)
- Shuting Xiao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ali Shoaib
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Parajuli P, Gokulan K, Khare S. Preclinical In Vitro Model to Assess the Changes in Permeability and Cytotoxicity of Polarized Intestinal Epithelial Cells during Exposure Mimicking Oral or Intravenous Routes: An Example of Arsenite Exposure. Int J Mol Sci 2022; 23:ijms23094851. [PMID: 35563241 PMCID: PMC9101442 DOI: 10.3390/ijms23094851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/04/2022] Open
Abstract
The gastrointestinal tract (GIT) is exposed to xenobiotics, including drugs, through both: local (oral) and systemic routes. Despite the advances in drug discovery and in vitro pre-clinical models, there is a lack of appropriate translational models to distinguish the impact of these routes of exposure. Changes in intestinal permeability has been observed in different gastrointestinal and systemic diseases. This study utilized one such xenobiotic, arsenic, to which more than 200 million people around the globe are exposed via their food, drinking water, work environment, soil, and air. The purpose of this study was to establish an in vitro model to mimic gastrointestinal tract exposure to xenobiotics via oral or intravenous routes. To achieve this, we compared the route (mimicking oral and intravenous exposure to GIT and the dose response (using threshold approach) of trivalent and pentavalent inorganic arsenic species on the permeability of in vitro cultured polarized T84 cells, an example of intestinal epithelial cells. Arsenic treatment to polarized T84 cells via the apical and basolateral compartment of the trans-well system reflected oral or intravenous routes of exposure in vivo, respectively. Sodium arsenite, sodium arsenate, dimethyl arsenic acid sodium salt (DMAV), and disodium methyl arsonate hydrate (MMAV) were assessed for their effects on intestinal permeability by measuring the change in trans-epithelial electrical resistance (TEER) of T-84 cells. Polarized T-84 cells exposed to 12.8 µM of sodium arsenite from the basolateral side showed a marked reduction in TEER. Cytotoxicity of sodium arsenite, as measured by release of lactate dehydrogenase (LDH), was increased when cells were exposed via the basolateral side. The mRNA expression of genes related to cell junctions in T-84 cells was analyzed after exposure with sodium arsenite for 72 h. Changes in TEER correlated with mRNA expression of focal-adhesion-, tight-junction- and gap-junction-related genes (upregulation of Jam2, Itgb3 and Notch4 genes and downregulation of Cldn2, Cldn3, Gjb1, and Gjb2). Overall, exposure to sodium arsenite from the basolateral side was found to have a differential effect on monolayer permeability and on cell-junction-related genes as compared to apical exposure. Most importantly, this study established a preclinical human-relevant in vitro translational model to assess the changes in permeability and cytotoxicity during exposure, mimicking oral or intravenous routes.
Collapse
|
20
|
Detection, Identification and Size Distribution of Silver Nanoparticles (AgNPs) in Milk and Migration Study for Breast Milk Storage Bags. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082539. [PMID: 35458739 PMCID: PMC9028484 DOI: 10.3390/molecules27082539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
The engineered silver nanoparticles (AgNPs) have been widely used in various food contact materials (FCMs) based on their antibacterial properties. This widespread use of nanosilver has, however, increased the risk of exposure of AgNPs to human due to their migration from FCMs causing a potential hazard present in foods. Therefore, it is important to establish a reliable and practical method for the detection of AgNPs in food matrices to support risk assessment on AgNPs exposure. Taking the examples of milk and AgNPs-containing breast milk storage bags, this study established an approach for size characterization and quantification of AgNPs in milk and evaluated the relevant silver migration, based on enzymatic digestion and the analysis by asymmetric flow field–flow fractionation (AF4) hyphenated with inductively coupled plasma mass spectrometry (ICP-MS) and single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). No migration of AgNPs was found from breast milk storage bags under various simulated storage conditions as well as extreme scenarios. The suitability and reliability of this method were also validated by the determination of multiple parameters, including accuracy, repeatability, limit of detection (LOD), limit of quantification (LOQ), and recovery, for AF4-ICP-MS and SP-ICP-MS, respectively, with good and overall acceptable evaluation results obtained for all. The established and validated approach was demonstrated to be suitable for the characterization and quantitation of AgNPs in milk as well as the analysis of their migration from breast milk storage bags.
Collapse
|
21
|
Ong WTJ, Nyam KL. Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications. Saudi J Biol Sci 2022; 29:2085-2094. [PMID: 35531241 PMCID: PMC9073040 DOI: 10.1016/j.sjbs.2022.01.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023] Open
Abstract
Silver nanoparticles are well received in the cosmeceutical industry due to their broad spectrum of pharmacology applications. Research on the therapeutic properties exhibited by silver nanoparticles revealed that the antimicrobial and anti-inflammatory properties are the main attraction in the establishment of nanocosmeceutical products whereby their mechanisms of action are reviewed in this paper. In addition, studies on other uses of silver nanoparticles acknowledged that the particles act as antifungal agents in nail polishes and pigments in coloured beauty products such as lipsticks and eye shadows. Despite the extensive use of silver nanoparticles in the cosmetic line, there are still limited resources on the mechanism of actions and the effect of the particles on the bio-functionality of the body. The safety of silver nanoparticles could be comprehended from their skin penetration ability and toxicity to the human body in which it could be justified that both features are mainly influenced by the morphology of the particles and the method of application. This article summarizes exclusively on the synthesis of silver nanoparticles, the biomedical mechanisms and applications as well the limitations with respect to skin penetration ability and toxicity effects which will contribute significantly to the vast research on the association of nanotechnology and cosmetics.
Collapse
Affiliation(s)
| | - Kar Lin Nyam
- Corresponding author at: UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Wang LM, Wang YT, Yang WX. Engineered nanomaterials induce alterations in biological barriers: focus on paracellular permeability. Nanomedicine (Lond) 2021; 16:2725-2741. [PMID: 34870452 DOI: 10.2217/nnm-2021-0165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Engineered nanoparticles (ENPs) are widely used in medical diagnosis and treatment, as food additives and as energy materials. ENPs may exert adverse or beneficial effects on the human body, which may be linked to interactions with biological barriers. In this review, the authors summarize the influences of four typical metal/metal oxide nanomaterials (Ag, TiO2, Au, ZnO nanoparticles) on the paracellular permeability of biological barriers. Disruptions on tight junctions, adhesion junctions, gap junctions and desmosomes via complex signaling pathways, such as the MAPK, PKC and ROCK signaling pathways, affect paracellular permeability. Reactive oxygen species and cytokines underlie the mechanism of ENP-triggered alterations in paracellular permeability. This review provides the information necessary for the cautious application of nanoparticles in medicine and life sciences in the future.
Collapse
Affiliation(s)
- Lan-Min Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu-Ting Wang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
23
|
M'bitsi-Ibouily GC, Marimuthu T, du Toit LC, Kumar P, Choonara YE. In vitro, ex vivo and in vivo evaluation of a novel metal-liganded nanocomposite for the controlled release and improved oral bioavailability of sulpiride. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Feizi S, Javadiyan S, Cooksley CM, Shaghayegh G, Psaltis AJ, Wormald PJ, Vreugde S. Green synthesized colloidal silver is devoid of toxic effects on primary human nasal epithelial cells in vitro. Food Chem Toxicol 2021; 157:112606. [PMID: 34653555 DOI: 10.1016/j.fct.2021.112606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 11/15/2022]
Abstract
Evaluating the safety of previously fabricated and effective green synthetized colloidal silver (GSCS) on the mucosal barrier structure and function is essential prior to conduct human trials. The GSCS was applied to primary human nasal epithelial cells (HNECs) grown in an air-liquid interface (ALI) culture. Epithelial barrier integrity was evaluated by measuring the transepithelial electrical resistance (TEER) and fluorescein isothiocyanate (FITC)-dextran paracellular permeability. Ciliary beat frequency (CBF) was quantified. Effects of the GSCS on cell viability and inflammation were examined through lactate dehydrogenase, the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide viability assay and interleukin 6 (IL-6) enzyme linked immunosorbent assay. The localization and transportation of GSCS within HNECs and their HNEC-ALI cultures was assessed by transmission electron microscopy and inductively coupled plasma-mass-spectrometry, respectively. Application of GSCS to HNECs-ALI cultures for up to 2 h caused a significant reduction in the TEER values, however, it did not drop within the first 10 and 20 min for CRS and non-CRS control HNECs. The paracellular permeability, cell viability, IL-6 secretion and CBF remained unchanged. No GSCS was observed within or transported across HNECs. In conclusion, application of GSCS to HNECs is devoid of toxic effects.
Collapse
Affiliation(s)
- Sholeh Feizi
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, South, Australia; The University of Adelaide, Adelaide, Australia
| | - Shari Javadiyan
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, South, Australia; The University of Adelaide, Adelaide, Australia
| | - Clare M Cooksley
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, South, Australia; The University of Adelaide, Adelaide, Australia
| | - Gohar Shaghayegh
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, South, Australia; The University of Adelaide, Adelaide, Australia
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, South, Australia; The University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, South, Australia; The University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, South, Australia; The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
25
|
Xu K, Basu N, George S. Dietary nanoparticles compromise epithelial integrity and enhance translocation and antigenicity of milk proteins: An in vitro investigation. NANOIMPACT 2021; 24:100369. [PMID: 35559811 DOI: 10.1016/j.impact.2021.100369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 05/28/2023]
Abstract
Nanoparticles (NPs) are increasingly being used in the food sector, yet little is known about the potential health risks associated with oral exposure to dietary NPs. In this study, the most widely used NPs in food industry including food grade silicon dioxide (SiO2), titanium dioxide (TiO2) and silver (Ag), along with their non-food grade and bulk counterparts, are characterized for physicochemical properties and molecular, cellular, and intracellular effects on human intestinal epithelial cells (Caco-2 and HIEC-6). Silver NPs are the most cytotoxic and induce significant cellular changes in oxidative stress, Ca2+ flux and mitochondria function, leading to cellular junction disruption at the lowest exposure concentration. At higher testing concentrations, NPs but not microparticles of SiO2 and TiO2 cause sublethal cellular responses and remodel tight junctions without impairing epithelial integrity. To relate the cellular results to key events in GI disorder progression, NPs are exposed to an in vitro co-culture model for cow's milk allergy comprised of Caco-2 and allergy sera-primed mast cells (LUVA). All particle treatments increase the allergen delivery across intestinal epithelium and subsequent allergy responses. Overall, the study has identified a particle-dependent alteration in intestinal epithelium and highlighted potential safety concerns of dietary NPs.
Collapse
Affiliation(s)
- Ke Xu
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, QC H9X, Canada
| | - Niladri Basu
- Department of Natural Resource Science, McGill University, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, QC H9X, Canada
| | - Saji George
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore Dr, Sainte-Anne-de-Bellevue, QC H9X, Canada.
| |
Collapse
|
26
|
Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci 2021; 22:7202. [PMID: 34281254 PMCID: PMC8268496 DOI: 10.3390/ijms22137202] [Citation(s) in RCA: 549] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been imposed as an excellent antimicrobial agent being able to combat bacteria in vitro and in vivo causing infections. The antibacterial capacity of AgNPs covers Gram-negative and Gram-positive bacteria, including multidrug resistant strains. AgNPs exhibit multiple and simultaneous mechanisms of action and in combination with antibacterial agents as organic compounds or antibiotics it has shown synergistic effect against pathogens bacteria such as Escherichia coli and Staphylococcus aureus. The characteristics of silver nanoparticles make them suitable for their application in medical and healthcare products where they may treat infections or prevent them efficiently. With the urgent need for new efficient antibacterial agents, this review aims to establish factors affecting antibacterial and cytotoxic effects of silver nanoparticles, as well as to expose the advantages of using AgNPs as new antibacterial agents in combination with antibiotic, which will reduce the dosage needed and prevent secondary effects associated to both.
Collapse
Affiliation(s)
- Tamara Bruna
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile;
| | - Francisca Maldonado-Bravo
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile;
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Paul Jara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7800003, Chile;
| | - Nelson Caro
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile;
| |
Collapse
|
27
|
Carnovale C, Guarnieri D, Di Cristo L, De Angelis I, Veronesi G, Scarpellini A, Malvindi MA, Barone F, Pompa PP, Sabella S. Biotransformation of Silver Nanoparticles into Oro-Gastrointestinal Tract by Integrated In Vitro Testing Assay: Generation of Exposure-Dependent Physical Descriptors for Nanomaterial Grouping. NANOMATERIALS 2021; 11:nano11061587. [PMID: 34204296 PMCID: PMC8233905 DOI: 10.3390/nano11061587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022]
Abstract
Grouping approaches of nanomaterials have the potential to facilitate high throughput and cost effective nanomaterial screening. However, an effective grouping of nanomaterials hinges on the application of suitable physicochemical descriptors to identify similarities. To address the problem, we developed an integrated testing approach coupling acellular and cellular phases, to study the full life cycle of ingested silver nanoparticles (NPs) and silver salts in the oro-gastrointestinal (OGI) tract including their impact on cellular uptake and integrity. This approach enables the derivation of exposure-dependent physical descriptors (EDPDs) upon biotransformation of undigested nanoparticles, digested nanoparticles and digested silver salts. These descriptors are identified in: size, crystallinity, chemistry of the core material, dissolution, high and low molecular weight Ag-biomolecule soluble complexes, and are compared in terms of similarities in a grouping hypothesis. Experimental results indicate that digested silver nanoparticles are neither similar to pristine nanoparticles nor completely similar to digested silver salts, due to the presence of different chemical nanoforms (silver and silver chloride nanocrystals), which were characterized in terms of their interactions with the digestive matrices. Interestingly, the cellular responses observed in the cellular phase of the integrated assay (uptake and inflammation) are also similar for the digested samples, clearly indicating a possible role of the soluble fraction of silver complexes. This study highlights the importance of quantifying exposure-related physical descriptors to advance grouping of NPs based on structural similarities.
Collapse
Affiliation(s)
- Catherine Carnovale
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
| | - Daniela Guarnieri
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy;
- Research Centre for Biomaterials BIONAM, University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084 Salerno, Italy
| | - Luisana Di Cristo
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
| | | | - Giulia Veronesi
- Laboratory of Chemistry and Biology of Metals (CBM), University Grenoble Alpes/CNRS/CEA, 38000 Grenoble, France;
- ESRF, the European Synchrotron, 71 Av. des Martyrs, 38000 Grenoble, France
| | - Alice Scarpellini
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | | | - Flavia Barone
- Istituto Superiore di Sanità (ISS), 00161 Rome, Italy; (I.D.A.); (F.B.)
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy;
| | - Stefania Sabella
- Istituto Italiano Di Tecnologia, Nanoregulatory Platform, Drug Discovery and Development Department, 16163 Genova, Italy; (C.C.); (L.D.C.)
- Correspondence:
| |
Collapse
|
28
|
Kohl Y, Hesler M, Drexel R, Kovar L, Dähnhardt-Pfeiffer S, Selzer D, Wagner S, Lehr T, von Briesen H, Meier F. Influence of Physicochemical Characteristics and Stability of Gold and Silver Nanoparticles on Biological Effects and Translocation across an Intestinal Barrier-A Case Study from In Vitro to In Silico. NANOMATERIALS 2021; 11:nano11061358. [PMID: 34063963 PMCID: PMC8224057 DOI: 10.3390/nano11061358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 11/27/2022]
Abstract
A better understanding of their interaction with cell-based tissue is a fundamental prerequisite towards the safe production and application of engineered nanomaterials. Quantitative experimental data on the correlation between physicochemical characteristics and the interaction and transport of engineered nanomaterials across biological barriers, in particular, is still scarce, thus hampering the development of effective predictive non-testing strategies. Against this background, the presented study investigated the translocation of gold and silver nanoparticles across the gastrointestinal barrier along with related biological effects using an in vitro 3D-triple co-culture cell model. Standardized in vitro assays and quantitative polymerase chain reaction showed no significant influence of the applied nanoparticles on both cell viability and generation of reactive oxygen species. Transmission electron microscopy indicated an intact cell barrier during the translocation study. Single particle ICP-MS revealed a time-dependent increase of translocated nanoparticles independent of their size, shape, surface charge, and stability in cell culture medium. This quantitative data provided the experimental basis for the successful mathematical description of the nanoparticle transport kinetics using a non-linear mixed effects modeling approach. The results of this study may serve as a basis for the development of predictive tools for improved risk assessment of engineered nanomaterials in the future.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
- Correspondence: (Y.K.); (F.M.); Tel.: +49-6897-9071-256 (Y.K.); +49-8191-985-6880 (F.M.)
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
| | - Roland Drexel
- Postnova Analytics GmbH, 86899 Landsberg am Lech, Germany;
| | - Lukas Kovar
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.K.); (D.S.); (T.L.)
| | | | - Dominik Selzer
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.K.); (D.S.); (T.L.)
| | - Sylvia Wagner
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
| | - Thorsten Lehr
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany; (L.K.); (D.S.); (T.L.)
| | - Hagen von Briesen
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany; (M.H.); (S.W.); (H.v.B.)
| | - Florian Meier
- Postnova Analytics GmbH, 86899 Landsberg am Lech, Germany;
- Correspondence: (Y.K.); (F.M.); Tel.: +49-6897-9071-256 (Y.K.); +49-8191-985-6880 (F.M.)
| |
Collapse
|
29
|
Li L, Bi Z, Hu Y, Sun L, Song Y, Chen S, Mo F, Yang J, Wei Y, Wei X. Silver nanoparticles and silver ions cause inflammatory response through induction of cell necrosis and the release of mitochondria in vivo and in vitro. Cell Biol Toxicol 2021; 37:177-191. [PMID: 32367270 DOI: 10.1007/s10565-020-09526-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/06/2020] [Indexed: 02/05/2023]
Abstract
Owing to the excellent antibacterial and antiviral activity, silver nanoparticles have a widespread use in the food and pharmaceutical industries. With the increase in the production and use of the related products, the potential hazard of silver nanoparticles has aroused public attention. The main purpose of this study is to explore the toxicity of silver nanoparticles and induction of lung inflammation in vitro and in vivo. Here, we validated that small amounts of silver ions dissolved from silver nanoparticles caused the depolarization of plasma membrane, resulting in an overload of intracellular sodium and calcium, and eventually led to the cell necrosis. The blockers of calcium or sodium channels inversed the toxicity of silver ions. Then, we instilled silver nanoparticles or silver nitrate (50 μg per mouse) into the lungs of mice, and this induced pulmonary injury and mitochondrial content release, led to the recruitment of neutrophils to the lung tissue via p38 MAPK pathway. Altogether, these data show that released silver ions from nanoparticles induced cell necrosis through Na+ and Ca2+ influx and triggered pulmonary inflammation through elevating mitochondrial-related contents released from these necrotic cells.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuzhu Hu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lu Sun
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanlin Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Siyuan Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Fei Mo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
30
|
Cao X, Khare S, DeLoid GM, Gokulan K, Demokritou P. Co-exposure to boscalid and TiO 2 (E171) or SiO 2 (E551) downregulates cell junction gene expression in small intestinal epithelium cellular model and increases pesticide translocation. NANOIMPACT 2021; 22:100306. [PMID: 33869896 PMCID: PMC8045770 DOI: 10.1016/j.impact.2021.100306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/20/2021] [Indexed: 05/13/2023]
Abstract
A recent published study showed that TiO2 (E171) and SiO2 (E551), two widely used nano-enabled food additives, increased the translocation of the commonly used pesticide boscalid by 20% and 30% respectively. Such increased absorption of pesticides due to the presence of engineered nanomaterials (ENMs) in food raises health concerns for these food additives. In this companion study, mRNA expression of genes related to cell junctions in a small intestinal epithelial cellular model after exposure to simulated digestas of fasting food model (phosphate buffer) containing boscalid (150 ppm) with or without either TiO2 or SiO2 (1% w/w) were analyzed. Specific changes in cell barrier function underlying or contributing to the increased translocation of boscalid observed in the previous study were assessed. Results showed that exposure to boscalid alone has no significant effect on cell junction genes, however, co-exposure to boscalid and TiO2 significantly regulated expression of cell-matrix junction focal adhesion-related genes, e.g., downregulating Cav1 (- 1.39-fold, p<0.05), upregulating Cav3 (+ 3.30-fold, p<0.01) and Itga4 (+ 3.30-fold, p<0.05). Similarly, co-exposure to boscalid and SiO2 significantly downregulated multiple cell-cell junction genes, including tight junction genes (Cldn1, Cldn11, Cldn16, Cldn18, and Jam3), adherens junction genes (Notch1, Notch3, Pvrl1) and gap junction genes (Gja3 and Gjb2), as well as cell-matrix junction focal adhesion genes (Itga4, Itga6, Itga7). Together, these findings suggest that co-ingestion of boscalid with TiO2 (E171) or SiO2 (E551) could cause weakening of cell junctions and intercellular adhesion, which could result in dysregulation of paracellular transport, and presumably contributed to the previously observed increased translocation of boscalid at the presence of these ENMs. This novel finding raises health safety concerns for such popular food additives.
Collapse
Affiliation(s)
- Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Sangeeta Khare
- National Center for Toxicological Research, Division of Microbiology, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Glen M. DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kuppan Gokulan
- National Center for Toxicological Research, Division of Microbiology, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- corresponding author: Philip Demokritou,
| |
Collapse
|
31
|
Gillois K, Stoffels C, Leveque M, Fourquaux I, Blesson J, Mils V, Cambier S, Vignard J, Terrisse H, Mirey G, Audinot JN, Theodorou V, Ropers MH, Robert H, Mercier-Bonin M. Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142324. [PMID: 33254900 DOI: 10.1016/j.scitotenv.2020.142324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 μg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 μg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.
Collapse
Affiliation(s)
- Kévin Gillois
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Charlotte Stoffels
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Mathilde Leveque
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, CMEAB, 133 route de Narbonne, 31062 Toulouse, France
| | - Justine Blesson
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Valérie Mils
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Julien Vignard
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Gladys Mirey
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Nicolas Audinot
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Vassilia Theodorou
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Hervé Robert
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
| |
Collapse
|
32
|
Liang D, Su W, Tan M. Advances of microfluidic intestine-on-a-chip for analyzing anti-inflammation of food. Crit Rev Food Sci Nutr 2021; 62:4418-4434. [PMID: 33480263 DOI: 10.1080/10408398.2021.1875395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microfluidic intestine-on-a-chip enables novel means of emulating human intestinal pathophysiology in vitro, which can potentially reduce animal testing and substitute simple 2D culture system. Though a great deal of work has been done in the development of microfluidic platforms for intestinal disease modeling and drug screening, potential investigation of the effect of bioactive food compounds on intestinal inflammation remains largely unexplored. In this review, different biomaterials and chip designs have been explored in the fabrication of intestine-on-a-chip. Other key parameters must be carefully controlled and selected, including shear stress, cell type and cell co-culture spatial configuration, etc. Appropriate techniques to quantify the barrier integrity including trans-epithelial electric resistance, specific tight junction markers and permeability measurements should be standardized and compared with in vivo data. Integration of the gut microbiome and the provision of intestinal-specific environment are the key parameters to realize the in vivo intestinal model simulation and accelerate the screening efficiency of bioactive food compounds.
Collapse
Affiliation(s)
- Duo Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, China.,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning, China
| |
Collapse
|
33
|
Human Intestinal Tissue Explant Exposure to Silver Nanoparticles Reveals Sex Dependent Alterations in Inflammatory Responses and Epithelial Cell Permeability. Int J Mol Sci 2020; 22:ijms22010009. [PMID: 33374948 PMCID: PMC7792613 DOI: 10.3390/ijms22010009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Consumer products manufactured with antimicrobial silver nanoparticles (AgNPs) may affect the gastrointestinal (GI) system. The human GI-tract is complex and there are physiological and anatomical differences between human and animal models that limit comparisons between species. Thus, assessment of AgNP toxicity on the human GI-tract may require tools that allow for the examination of subtle changes in inflammatory markers and indicators of epithelial perturbation. Fresh tissues were excised from the GI-tract of human male and female subjects to evaluate the effects of AgNPs on the GI-system. The purpose of this study was to perform an assessment on the ability of the ex vivo model to evaluate changes in levels of pro-/anti-inflammatory cytokines/chemokines and mRNA expression of intestinal permeability related genes induced by AgNPs in ileal tissues. The ex vivo model preserved the structural and biological functions of the in-situ organ. Analysis of cytokine expression data indicated that intestinal tissue of male and female subjects responded differently to AgNP treatment, with male samples showing significantly elevated Granulocyte-macrophage colony-stimulating factor (GM-CSF) after treatment with 10 nm and 20 nm AgNPs for 2 h and significantly elevated RANTES after treatment with 20 nm AgNPs for 24 h. In contrast, tissues of female showed no significant effects of AgNP treatment at 2 h and significantly decreased RANTES (20 nm), TNF-α (10 nm), and IFN-γ (10 nm) at 24 h. Smaller size AgNPs (10 nm) perturbed more permeability-related genes in samples of male subjects, than in samples from female subjects. In contrast, exposure to 20 nm AgNPs resulted in upregulation of a greater number of genes in female-derived samples (36 genes) than in male-derived samples (8 genes). The ex vivo tissue model can distinguish sex dependent effects of AgNP and could serve as a translational non-animal model to assess the impacts of xenobiotics on human intestinal mucosa.
Collapse
|
34
|
Das C, Paul SS, Saha A, Singh T, Saha A, Im J, Biswas G. Silver-Based Nanomaterials as Therapeutic Agents Against Coronaviruses: A Review. Int J Nanomedicine 2020; 15:9301-9315. [PMID: 33262589 PMCID: PMC7695609 DOI: 10.2147/ijn.s280976] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
Since the identification of the first human coronavirus in the 1960s, a total of six coronaviruses that are known to affect humans have been identified: 229E, OC43, severe acute respiratory syndrome coronavirus (SARS-CoV), NL63, HKU1, and Middle East respiratory syndrome coronavirus (MERS-CoV). Presently, the human world is affected by a novel version of the coronavirus family known as SARS-CoV-2, which has an extremely high contagion rate. Although the infection fatality rate (IFR) of this rapidly spreading virus is not high (ranging from 0.00% to 1.54% across 51 different locations), the increasing number of infections and deaths has created a worldwide pandemic situation. To provide therapy to severely infected patients, instant therapeutic support is urgently needed and the repurposing of already approved drugs is presently in progress. In this regard, the development of nanoparticles as effective transporters for therapeutic drugs or as alternative medicines is highly encouraged and currently needed. The size range of the viruses is within 60-140 nm, which is slightly larger than the diameters of nanoparticles, making nanomaterials efficacious tools with antiviral properties. Silver-based nanomaterials (AgNMs) demonstrate antimicrobial and disinfectant effects mostly by generating reactive oxygen species (ROS) and are presently considered as a versatile tool for the treatment of COVID-19 patients. Other metal-based nanoparticles have been primarily reported as delivery agents or surface modifying agents, vaccine adjuvant against coronavirus. The present review summarizes and discusses the possible effectiveness of various surface-modified AgNMs against animal coronaviruses and presents a concept for AgNM-based therapeutic treatment of SARS-CoV-2 in the near future.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal736101, India
| | - Subha Sankar Paul
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore637551, Singapore
| | - Arighna Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal736101, India
| | - Tejinder Singh
- Department of Electronic Materials and Devices Engineering, Soonchunhyang University, Asan31538, Republic of Korea
| | - Abhijit Saha
- Chemistry Department, UGC-DAE Consortium for Scientific Research, Kolkata700106, India
| | - Jungkyun Im
- Department of Electronic Materials and Devices Engineering, Soonchunhyang University, Asan31538, Republic of Korea
- Department of Chemical Engineering, Soonchunhyang University, Asan31538, Republic of Korea
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal736101, India
| |
Collapse
|
35
|
He X, Zhang H, Shi H, Liu W, Sahle-Demessie E. Fates of Au, Ag, ZnO, and CeO 2 Nanoparticles in Simulated Gastric Fluid Studied using Single-Particle-Inductively Coupled Plasma-Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2180-2190. [PMID: 32881526 PMCID: PMC7877237 DOI: 10.1021/jasms.0c00278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The increasing use of engineered nanoparticles (ENPs) in many industries has generated significant research interest regarding their impact on the environment and human health. The major routes of ENPs to enter the human body are inhalation, skin contact, and ingestion. Following ingestion, ENPs have a long contact time in the human stomach. Hence, it is essential to know the fate of the ENPs under gastric conditions. This study aims to investigate the fate of the widely used nanoparticles Ag-NP, Au-NP, CeO2-NP, and ZnO-NP in simulated gastric fluid (SGF) under different conditions through the application of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS). The resulting analytical methods have size detection limits for Ag-NP, Au-NP, ZnO-NP, and CeO2-NP from 15 to 35 nm, and the particle concentration detection limit is 135 particles/mL. Metal ions corresponding to the ENPs of interest were detected simultaneously with detection limits from 0.02 to 0.1 μg/L. The results showed that ZnO-NPs dissolved completely and rapidly in SGF, whereas Au-NPs and CeO2-NPs showed apparent aggregation and did not dissolve significantly. Both aggregation and dissolution were observed in Ag-NP samples following exposure to SGF. The size distributions and concentrations of ENPs were affected by the original ENP concentration, ENP size, the contact time in SGF, and temperature. This work represents a significant advancement in the understanding of ENP characteristics under gastric conditions.
Collapse
Affiliation(s)
- Xiaolong He
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Haiting Zhang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Single Particle, Single Cell and Single Molecule Monitoring (CS3M), Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Endalkachew Sahle-Demessie
- The U.S. Environmental Protection Agency, ORD, CESER, LRTD, 26 West Martin Luther King Jr. Drive, Cincinnati, Ohio 45268, United States
| |
Collapse
|
36
|
Ali SA, Arafa AF, Aly HF, Ibrahim NA, Kadry MO, Abdel-Megeed RM, Hamed MA, Farghaly AA, El Regal NS, Fouad GI, Khalil WKB, Refaat EA. DNA damage and genetic aberration induced via different sized silver nanoparticles: Therapeutic approaches of Casimiroa edulis and Glycosmis pentaphylla leaves extracts. J Food Biochem 2020; 44:e13398. [PMID: 32754950 DOI: 10.1111/jfbc.13398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/27/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023]
Abstract
Potential of Casimiroa edulis and Glycosmis pentaphylla leaves extracts were investigated against the effect of two different particle sizes of silver nanoparticles induced toxicity in mice. Mice received silver nanoparticles (AgNPs) (100 mg/kg) with 20 and 100 nm for four weeks followed by daily oral dose of extracts (500 mg/kg) for three weeks. C. edulis leaves identified fourteen phenolic compounds while, G. pentaphylla leaves identified, twelve phenolic compounds. Additionally, biochemical, genotoxicity, mutagenicity, and histopathological investigations were carried out, revealed that liver function activities, lipid profile, hydrogen peroxide, and C-reactive protein were significantly elevate post AgNPs exposure. While, superoxide dismutase, glutathione-S-transferases, and glutathione peroxidase significantly reduce. A marked amelioration in all detected biomarkers, improved histopathological changes and repair DNA damage after treated with C. edulis and G. pentaphylla leaves extracts. These extracts are used for the first time as promising candidate therapeutic agents against toxicity induced by AgNPs. PRACTICAL APPLICATIONS: The potential applications of AgNPs make it necessary to investigate the possible toxicity associated with release of free silver ions in the biological system. AgNPs of varying particle sizes had toxic effects as evidenced by alterations in some cellular biochemical parameters, genotoxicity, mutagenicity, and histopathological indices on mice. Casimiroa edulis and Glycosmis pentaphylla leaves extracts are used for the first time as promising candidate therapeutic, where they are able to ameliorate the toxicity induced via AgNPs and record vacillate percentage of improvement in the selected biomarkers, as a result of the bioactive secondary metabolites especially flavonoids and other polyphenolic compounds.
Collapse
Affiliation(s)
- Sanaa A Ali
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Azza F Arafa
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Nabaweya A Ibrahim
- Departments of Pharmacognosy, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Mai O Kadry
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Rehab M Abdel-Megeed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Ayman A Farghaly
- Department of Genetics and Cytology, Genetic Engineering and Biotechnology Research Division, National Research Centre (NRC), Giza, Egypt
| | - Nagy S El Regal
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Ghada I Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, Genetic Engineering and Biotechnology, National Research Centre (NRC), Giza, Egypt
| | - Esraa A Refaat
- Departments of Pharmacognosy, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
37
|
Zorraquín-Peña I, Cueva C, González de Llano D, Bartolomé B, Moreno-Arribas MV. Glutathione-Stabilized Silver Nanoparticles: Antibacterial Activity against Periodontal Bacteria, and Cytotoxicity and Inflammatory Response in Oral Cells. Biomedicines 2020; 8:E375. [PMID: 32977686 PMCID: PMC7598685 DOI: 10.3390/biomedicines8100375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) have been proposed as new alternatives to limit bacterial dental plaque because of their antimicrobial activity. Novel glutathione-stabilized silver nanoparticles (GSH-AgNPs) have proven powerful antibacterial properties in food manufacturing processes. Therefore, this study aimed to evaluate the potentiality of GSH-AgNPs for the prevention/treatment of oral infectious diseases. First, the antimicrobial activity of GSH-AgNPs against three oral pathogens (Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mutans) was evaluated. Results demonstrated the efficiency of GSH-AgNPs in inhibiting the growth of all bacteria, especially S. mutans (IC50 = 23.64 μg/mL, Ag concentration). Second, GSH-AgNPs were assayed for their cytotoxicity (i.e., cell viability) toward a human gingival fibroblast cell line (HGF-1), as an oral epithelial model. Results indicated no toxic effects of GSH-AgNPs at low concentrations (≤6.16 µg/mL, Ag concentration). Higher concentrations resulted in losing cell viability, which followed the Ag accumulation in cells. Finally, the inflammatory response in the HGF-1 cells after their exposure to GSH-AgNPs was measured as the production of immune markers (interleukins 6 and 8 (IL-6 and IL-8) and tumor necrosis factor-alpha (TNF-α)). GSH-AgNPs activates the inflammatory response in human gingival fibroblasts, increasing the production of cytokines. These findings provide new insights for the use of GSH-AgNPs in dental care and encourage further studies for their application.
Collapse
Affiliation(s)
| | | | | | | | - M. Victoria Moreno-Arribas
- Institute of Food Science Research (CIAL), CSIC-UAM, C/Nicolás Cabrera, 9, Campus de Cantoblanco, 28049 Madrid, Spain; (I.Z.-P.); (C.C.); (D.G.d.L.); (B.B.)
| |
Collapse
|
38
|
Perrotta BG, Simonin M, Back JA, Anderson SM, Avellan A, Bergemann CM, Castellon BT, Colman BP, Lowry GV, Matson CW, Bernhardt ES, King RS. Copper and Gold Nanoparticles Increase Nutrient Excretion Rates of Primary Consumers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10170-10180. [PMID: 32672035 DOI: 10.1021/acs.est.0c02197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Freshwater ecosystems are exposed to engineered nanoparticles through municipal and industrial wastewater-effluent discharges and agricultural nonpoint source runoff. Because previous work has shown that engineered nanoparticles from these sources can accumulate in freshwater algal assemblages, we hypothesized that nanoparticles may affect the biology of primary consumers by altering the processing of two critical nutrients associated with growth and survivorship, nitrogen and phosphorus. We tested this hypothesis by measuring the excretion rates of nitrogen and phosphorus of Physella acuta, a ubiquitous pulmonate snail that grazes heavily on periphyton, exposed to either copper or gold engineered nanoparticles for 6 months in an outdoor wetland mesocosm experiment. Chronic nanoparticle exposure doubled nutrient excretion when compared to the control. Gold nanoparticles increased nitrogen and phosphorus excretion rates more than copper nanoparticles, but overall, both nanoparticles led to higher consumer excretion, despite contrasting particle stability and physiochemical properties. Snails in mesocosms enriched with nitrogen and phosphorus had overall higher excretion rates than ones in ambient (no nutrients added) mesocosms. Stimulation patterns were different between nitrogen and phosphorus excretion, which could have implications for the resulting nutrient ratio in the water column. These results suggest that low concentrations of engineered nanoparticles could alter the metabolism of consumers and increase consumer-mediated nutrient recycling rates, potentially intensifying eutrophication in aquatic systems, for example, the increased persistence of algal blooms as observed in our mesocosm experiment.
Collapse
Affiliation(s)
- Brittany G Perrotta
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, Texas 76798, United States
- Department of Biology, Baylor University, Waco, Texas 76798, United States
| | - Marie Simonin
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Biology Department, Duke University, Durham, North Carolina 27708, United States
| | - Jeffrey A Back
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, Texas 76798, United States
| | - Steven M Anderson
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Biology Department, Duke University, Durham, North Carolina 27708, United States
- Department of Forestry & Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Astrid Avellan
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Christina M Bergemann
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Biology Department, Duke University, Durham, North Carolina 27708, United States
| | - Benjamin T Castellon
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, Texas 76798, United States
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
| | - Benjamin P Colman
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana 59812, United States
| | - Gregory V Lowry
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Cole W Matson
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, Texas 76798, United States
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
| | - Emily S Bernhardt
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Biology Department, Duke University, Durham, North Carolina 27708, United States
| | - Ryan S King
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, North Carolina 27708, United States
- Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University, Waco, Texas 76798, United States
- Department of Biology, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
39
|
Anuar N, Sabri AH, Bustami Effendi TJ, Abdul Hamid K. Development and characterisation of ibuprofen-loaded nanoemulsion with enhanced oral bioavailability. Heliyon 2020; 6:e04570. [PMID: 32775730 PMCID: PMC7394867 DOI: 10.1016/j.heliyon.2020.e04570] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lipophilic compounds constitute a majority of therapeutics in the pipeline of drug discovery. Despite possessing enhanced efficacy and permeability, some of these drugs suffer poor solubility necessitating the need of a suitable drug delivery system. Nanoemulsion is a drug delivery system that provides enhanced solubility for poorly soluble drugs in an attempt to improve the oral bioavailability. The purpose of this study is to develop a nanoemulsion system using ibuprofen as a model drug in order to investigate the potential of this colloidal system to enhance the absorption of poorly water-soluble drugs. Ibuprofen loaded-nanoemulsion with different drug concentrations (1.5, 3 and 6% w/w) were formulated from olive oil, sucrose ester L-1695 and glycerol using D-phase emulsification technique. A pseudoternary phase diagram was utilised to identify the optimal excipient composition to formulate the nanoemulsion system. In vitro diffusion chamber studies using rodent intestinal linings highlighted improved absorption profile when ibuprofen was delivered as nanoemulsion in comparison to microemulsions and drug-in-oil systems. This was further corroborated by in vivo studies using rat model that highlighted a two-fold increase in ibuprofen absorption when the drug was administered as a nanoemulsion relative to drug-in-oil system. On the other hand, when ibuprofen was administered as microemulsions, only a 1.5-fold increase in absorption was observed relative to drug-in-oil system. Thus, this study highlights the potential of using nanoemulsion as a drug delivery system to enhance the oral bioavailability of hydrophobic drugs.
Collapse
Affiliation(s)
- Nurfazreen Anuar
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Akmal H. Sabri
- Advanced Materials and Healthcare Technologies Group, School of Pharmacy, The University of Nottingham, NG7 2RD, Nottingham, UK
| | - Tommy Julianto Bustami Effendi
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor, Malaysia
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, 42300 Puncak Alam, Selangor, Malaysia
| |
Collapse
|
40
|
Jiang C, Lin W, Wang L, Lv Y, Song Y, Chen X, Yang H. Fushen Granule, A Traditional Chinese Medicine, ameliorates intestinal mucosal dysfunction in peritoneal dialysis rat model by regulating p38MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112501. [PMID: 31877365 DOI: 10.1016/j.jep.2019.112501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/12/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fushen Granule (FSG) is a Chinese medicinal formular prepared in hospital to treat intestinal mucosal dysfunction induced by peritoneal dialysis (PD). However, the mechanisms of this formular has not been studied yet. AIM OF THE STUDY The present study was designed to investigate the effect of FSG against intestinal dysfunction during PD treatment and explore the potential mechanisms using a rat PD model. METHODS AND METHODS In the present study, the effect of FSG on improving intestinal mucosal architecture injury was intuitively shown by hematoxylin-eosin staining, the serum levels of DAO and D-lactate were measured to evaluate the intestinal permeability by the DAO Assay Kit and D-Lactic Acid ELISA Kit. The expression of the intestinal mucosal barrier related inflammation factor by real-time PCR. The main effective constituents of FSG were characterized by UPLC/Q-TOF analysis, and the targets and pathways of the constituents were predicted via TCMSP database and IPA. the activation of p38MAPK signaling pathway by western blotting. RESULTS HE staining results showed that FSG protected against intestinal mucosal injury in pathology in PD rats. FSG decreased the intestinal mucosal permeability by increasing the transepithelial electrical resistance (TER) level and decreasing the intestinal clearance of fluorescein-isothiocyanate dextran (FD4) and the level of D-lactate and diamine oxidase (DAO). FSG significantly decreased the expression of ICAM-1, IL-1β, iNOS and TNF-α, and further inhibited the activation of p38MAPK signaling pathway via down-regulating the expression of P-p38MAPK and up-regulating the expression of DUSP1, occludin, and ZO-1. CONCLUSION This study demonstrates that FSG ameliorated intestinal mucosal dysfunction in PD by decreasing expression of pro-inflammatory cytokines and inhibiting the activation of p38MAPK signaling pathway. The results provide a promising basis for the alternative medicine treatment of intestinal mucosal dysfunction in PD.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Wei Lin
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yang Lv
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Yu Song
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Xin Chen
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
41
|
Poli D, Mattei G, Ucciferri N, Ahluwalia A. An Integrated In Vitro-In Silico Approach for Silver Nanoparticle Dosimetry in Cell Cultures. Ann Biomed Eng 2020; 48:1271-1280. [PMID: 31933000 PMCID: PMC7089903 DOI: 10.1007/s10439-020-02449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/05/2020] [Indexed: 12/30/2022]
Abstract
Potential human and environmental hazards resulting from the exposure of living organisms to silver nanoparticles (Ag NPs) have been the subject of intensive discussion in the last decade. Despite the growing use of Ag NPs in biomedical applications, a quantification of the toxic effects as a function of the total silver mass reaching cells (namely, target cell dose) is still needed. To provide a more accurate dose-response analysis, we propose a novel integrated approach combining well-established computational and experimental methodologies. We first used a particokinetic model (ISD3) for providing experimental validation of computed Ag NP sedimentation in static-cuvette experiments. After validation, ISD3 was employed to predict the total mass of silver reaching human endothelial cells and hepatocytes cultured in 96 well plates. Cell viability measured after 24 h of culture was then related to this target cell dose. Our results show that the dose perceived by the cell monolayer after 24 h of exposure is around 85% lower than the administered nominal media concentration. Therefore, accurate dosimetry considering particle characteristics and experimental conditions (e.g., time, size and shape of wells) should be employed for better interpreting effects induced by the amount of silver reaching cells.
Collapse
Affiliation(s)
- Daniele Poli
- Research Center E. Piaggio, University of Pisa, Pisa, Italy
| | - Giorgio Mattei
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Arti Ahluwalia
- Research Center E. Piaggio, University of Pisa, Pisa, Italy.
- Department of Information Engineering, University of Pisa, Pisa, Italy.
| |
Collapse
|
42
|
Raja G, Jang YK, Suh JS, Kim HS, Ahn SH, Kim TJ. Microcellular Environmental Regulation of Silver Nanoparticles in Cancer Therapy: A Critical Review. Cancers (Basel) 2020; 12:E664. [PMID: 32178476 PMCID: PMC7140117 DOI: 10.3390/cancers12030664] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) play significant roles in various cancer cells such as functional heterogeneity, microenvironmental differences, and reversible changes in cell properties (e.g., chemotherapy). There is a lack of targets for processes involved in tumor cellular heterogeneity, such as metabolic clampdown, cytotoxicity, and genotoxicity, which hinders microenvironmental biology. Proteogenomics and chemical metabolomics are important tools that can be used to study proteins/genes and metabolites in cells, respectively. Chemical metabolomics have many advantages over genomics, transcriptomics, and proteomics in anticancer therapy. However, recent studies with AgNPs have revealed considerable genomic and proteomic changes, particularly in genes involved in tumor suppression, apoptosis, and oxidative stress. Metabolites interact biochemically with energy storage, neurotransmitters, and antioxidant defense systems. Mechanobiological studies of AgNPs in cancer metabolomics suggest that AgNPs may be promising tools that can be exploited to develop more robust and effective adaptive anticancer therapies. Herein, we present a proof-of-concept review for AgNPs-based proteogenomics and chemical metabolomics from various tumor cells with the help of several technologies, suggesting their promising use as drug carriers for cancer therapy.
Collapse
Affiliation(s)
- Ganesan Raja
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea;
| | - Yoon-Kwan Jang
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Jung-Soo Suh
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Heon-Su Kim
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Sang Hyun Ahn
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Tae-Jin Kim
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea;
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
- Institute of Systems Biology, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
43
|
Staroń A, Długosz O, Pulit-Prociak J, Banach M. Analysis of the Exposure of Organisms to the Action of Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E349. [PMID: 31940903 PMCID: PMC7014467 DOI: 10.3390/ma13020349] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
The rapid development of the production of materials containing metal nanoparticles and metal oxides is a potential risk to the environment. The degree of exposure of organisms to nanoparticles increases from year to year, and its effects are not fully known. This is due to the fact that the range of nanoparticle interactions on cells, tissues and the environment requires careful analysis. It is necessary to develop methods for testing the properties of nanomaterials and the mechanisms of their impact on individual cells as well as on entire organisms. The particular need to raise public awareness of the main sources of exposure to nanoparticles should also be highlighted. This paper presents the main sources and possible routes of exposure to metal nanoparticles and metal oxides. Key elements of research on the impact of nanoparticles on organisms, that is, in vitro tests, in vivo tests and methods of detection of nanoparticles in organisms, are presented.
Collapse
Affiliation(s)
| | | | | | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland; (A.S.); (O.D.); (J.P.-P.)
| |
Collapse
|
44
|
Mei L, Wang Q. Advances in Using Nanotechnology Structuring Approaches for Improving Food Packaging. Annu Rev Food Sci Technol 2020; 11:339-364. [PMID: 31905018 DOI: 10.1146/annurev-food-032519-051804] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in food packaging materials largely rely on nanotechnology structuring. Owing to several unique properties of nanostructures that are lacking in their bulk forms, the incorporation of nanostructures into packaging materials has greatly improved the performance and enriched the functionalities of these materials. This review focuses on the functions and applications of widely studied nanostructures for developing novel food packaging materials. Nanostructures that offer antimicrobial activity, enhance mechanical and barrier properties, and monitor food product freshness are discussed and compared. Furthermore, the safety and potential toxicity of nanostructures in food products are evaluated by summarizing the migration activity of nanostructures to different food systems and discussing the metabolism of nanostructures at the cellular level and in animal models.
Collapse
Affiliation(s)
- Lei Mei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20740, USA;
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland 20740, USA;
| |
Collapse
|
45
|
Ubeyitogullari A, Ciftci ON. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin's bioaccessibility. Sci Rep 2019; 9:19112. [PMID: 31836788 PMCID: PMC6911079 DOI: 10.1038/s41598-019-55619-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023] Open
Abstract
Health-promoting effects of curcumin are well-known; however, curcumin has a very low bioavailability due to its crystalline structure. The main objective of this study was to develop a novel green nanoparticle formation method to generate low-crystallinity curcumin nanoparticles to enhance the bioavailability of curcumin. Nanoporous starch aerogels (NSAs) (surface area of 60 m2/g, pore size of 20 nm, density of 0.11 g/cm3, and porosity of 93%) were employed as a mold to produce curcumin nanoparticles with the help of supercritical carbon dioxide (SC-CO2). The average particle size of the curcumin nanoparticles was 66 nm. Impregnation into NSAs decreased the crystallinity of curcumin and did not create any chemical bonding between curcumin nanoparticles and the NSA matrix. The highest impregnation capacity was 224.2 mg curcumin/g NSA. Curcumin nanoparticles significantly enhanced the bioaccessibility of curcumin by 173-fold when compared to the original curcumin. The concentration of curcumin in the bioaccessible fraction was improved from 0.003 to 0.125 mg/mL by impregnation of curcumin into NSAs (42-fold). This is a novel approach to produce food grade curcumin nanoparticles with reduced crystallinity and maximize the utilization of curcumin due to increased bioaccessibility.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA.
| |
Collapse
|
46
|
Ha-Lien Tran P, Wang T, Yang C, Tran TTD, Duan W. Development of conjugate-by-conjugate structured nanoparticles for oral delivery of docetaxel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110346. [PMID: 31761193 DOI: 10.1016/j.msec.2019.110346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 09/26/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022]
Abstract
In the current study, we developed interpolymer-complex structures composed of hydroxypropyl methylcellulose (HPMC) and chitosan knitted with d-α-tocopherol polyethylene glycol succinate (TPGS) to establish oral nanoparticle delivery systems that could keep the drug dose from releasing into the gastrointestinal tract for at least 6 h. Two kinds of nanoparticle formations based on the so-called conjugate-by-conjugate strategy were introduced in the study. In the first conjugate-by-conjugate structured nanoparticle formation, TPGS was conjugated with an HPMC-chitosan conjugate, followed by the drug loading process. In the second approach, the drug was loaded with TPGS directly and subsequently conjugated with the HPMC-chitosan conjugate. Beneficially, polyvinyl alcohol could act not only as a stabilizing agent but also as a crosslinking agent for the nanoparticles. This study created newly modified structures of HPMC and chitosan, altering their physicochemical properties that could then retard drug release. The nanoparticles were cytotoxic towards MDA-MB-231 breast cancer cells when docetaxel was loaded in the nanoparticles, particularly the nanoparticles produced in the second approach, demonstrating their ability to kill cancerous cells and their potential for further applications in cancer therapy. Additionally, when Caco-2 cells were used as an absorption model in a transport study, the nanoparticles in the second approach showed their capacity to increase drug permeability across the monolayers of Caco-2 cells compared to the free-drug solution. This study also illustrated the enhanced uptake of the nanoparticles by the Caco-2 cells, implying enhanced absorption through the intestine. Therefore, these oral nanoparticles can be considered for delivery systems of agents that are sensitive to the gastrointestinal tract so that they can be transported across the epithelial cells to the bloodstream to deliver the loading cargo at an optimal concentration.
Collapse
Affiliation(s)
- Phuong Ha-Lien Tran
- Deakin University, Geelong, School of Medicine and Centre for Molecular and Medical Research, Victoria, 3216, Australia.
| | - Tao Wang
- School of Nursing, Zhengzhou University, Zhengzhou, 450001, China; Centre for Comparative Genomics, Murdoch University, Perth, WA, 6150, Australia.
| | | | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Wei Duan
- Deakin University, Geelong, School of Medicine and Centre for Molecular and Medical Research, Victoria, 3216, Australia.
| |
Collapse
|
47
|
Effects of Acute and Chronic Exposure to Residual Level Erythromycin on Human Intestinal Epithelium Cell Permeability and Cytotoxicity. Microorganisms 2019; 7:microorganisms7090325. [PMID: 31489925 PMCID: PMC6780317 DOI: 10.3390/microorganisms7090325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/11/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
Residual concentrations of erythromycin in food could result in gastrointestinal tract exposure that potentially poses a health-hazard to the consumer, affecting intestinal epithelial permeability, barrier function, microbiota composition, and antimicrobial resistance. We investigated the effects of erythromycin after acute (48 h single treatment with 0.03 μg/mL to 300 μg/mL) or chronic (repeated treatment with 0.3 µg/mL and 300 µg/mL erythromycin for five days) exposures on the permeability of human colonic epithelial cells, a model that mimics a susceptible intestinal surface devoid of commensal microbiota. Transepithelial electrical resistance (TER) measurements indicated that erythromycin above 0.3 µg/mL may compromise the epithelial barrier. Acute exposure increased cytotoxicity, while chronic exposure decreased the cytotoxicity. Quantitative PCR analysis revealed that only ICAM1 (intercellular adhesion molecule 1) was up-regulated during 0.3 μg/mL acute-exposure, while ICAM1, JAM3 (junctional adhesion molecule 3), and ITGA8 (integrin alpha 8), were over-expressed in the 300 μg/mL acute treatment group. However, during chronic exposure, no change in the mRNA expression was observed at 0.3 μg/mL, and only ICAM2 was significantly up-regulated after 300 μg/mL. ICAM1 and ICAM2 are known to be involved in the formation of extracellular matrices. These gene expression changes may be related to the immunoregulatory activity of erythromycin, or a compensatory mechanism of the epithelial cells to overcome the distress caused by erythromycin due to increased permeability.
Collapse
|
48
|
Senchukova M. A Brief Review about the Role of Nanomaterials, Mineral-Organic Nanoparticles, and Extra-Bone Calcification in Promoting Carcinogenesis and Tumor Progression. Biomedicines 2019; 7:65. [PMID: 31466331 PMCID: PMC6783842 DOI: 10.3390/biomedicines7030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
People come in contact with a huge number of nanoparticles (NPs) throughout their lives, which can be of both natural and anthropogenic origin and are capable of entering the body through swallowing, skin penetration, or inhalation. In connection with the expanding use of nanomaterials in various industrial processes, the question of whether there is a need to study the potentially adverse effects of NPs on human health becomes increasingly important. Despite the fact that the nature and the extent of damage caused depends on the chemical and the physical characteristics of individual NPs, there are also general mechanisms related to their toxicity. These mechanisms include the ability of NPs to translocate to various organs through endocytosis, as well as their ability to stimulate the production of reactive oxygen species (ROS), leading to oxidative stress, inflammation, genotoxicity, metabolic changes, and potentially carcinogenesis. In this review, we discuss the main characteristics of NPs and the effects they cause at both cellular and tissue levels. We also focus on possible mechanisms that underlie the relationship of NPs with carcinogenesis. We briefly summarize the main concepts related to the role of endogenous mineral organic NPs in the development of various human diseases and their participation in extra-bone calcification. Considering data from both our studies and those published in scientific literature, we propose the revision of some ideas concerning extra-bone calcification, since it may be one of the factors associated with the initiation of the mechanisms of immunological tolerance.
Collapse
Affiliation(s)
- Marina Senchukova
- Department of Oncology, Orenburg State Medical University, 460000 Orenburg, Russia.
| |
Collapse
|
49
|
Montano E, Vivo M, Guarino AM, di Martino O, Di Luccia B, Calabrò V, Caserta S, Pollice A. Colloidal Silver Induces Cytoskeleton Reorganization and E-Cadherin Recruitment at Cell-Cell Contacts in HaCaT Cells. Pharmaceuticals (Basel) 2019; 12:E72. [PMID: 31096606 PMCID: PMC6631624 DOI: 10.3390/ph12020072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Up until the first half of the 20th century, silver found significant employment in medical applications, particularly in the healing of open wounds, thanks to its antibacterial and antifungal properties. Wound repair is a complex and dynamic biological process regulated by several pathways that cooperate to restore tissue integrity and homeostasis. To facilitate healing, injuries need to be promptly treated. Recently, the interest in alternatives to antibiotics has been raised given the widespread phenomenon of antibiotic resistance. Among these alternatives, the use of silver appears to be a valid option, so a resurgence in its use has been recently observed. In particular, in contrast to ionic silver, colloidal silver, a suspension of metallic silver particles, shows antibacterial activity displaying less or no toxicity. However, the human health risks associated with exposure to silver nanoparticles (NP) appear to be conflicted, and some studies have suggested that it could be toxic in different cellular contexts. These potentially harmful effects of silver NP depend on various parameters including NP size, which commonly range from 1 to 100 nm. In this study, we analyzed the effect of a colloidal silver preparation composed of very small and homogeneous nanoparticles of 0.62 nm size, smaller than those previously tested. We found no adverse effect on the cell proliferation of HaCaT cells, even at high NP concentration. Time-lapse microscopy and indirect immunofluorescence experiments demonstrated that this preparation of colloidal silver strongly increased cell migration, re-modeled the cytoskeleton, and caused recruitment of E-cadherin at cell-cell junctions of human cultured keratinocytes.
Collapse
Affiliation(s)
- Elena Montano
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Maria Vivo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Andrea Maria Guarino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Orsola di Martino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Blanda Di Luccia
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Viola Calabrò
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI) Università degli Studi Napoli Federico II, P.le Tecchio, 80, 80125 Napoli, Italy.
| | - Alessandra Pollice
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy.
| |
Collapse
|
50
|
Orr SE, Gokulan K, Boudreau M, Cerniglia CE, Khare S. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague-Dawley rats. J Nanobiotechnology 2019; 17:63. [PMID: 31084603 PMCID: PMC6513523 DOI: 10.1186/s12951-019-0499-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Silver ions from silver nanoparticles (AgNP) or AgNPs themselves itself that are ingested from consumer health care products or indirectly from absorbed food contact material can interact with the gastrointestinal tract (GIT). The permeability of the GIT is strictly regulated to maintain barrier function and proper nutrient absorption. The single layer intestinal epithelium adheres and communicates actively to neighboring cells and the extracellular matrix through different cell junctions. In the current study, we hypothesized that oral exposure to AgNPs may alter the intestinal permeability and expression of genes controlling cell junctions. Changes in cell junction gene expression in the ileum of male and female rats administered different sizes of AgNP for 13-weeks were assessed using qPCR. RESULTS The results of this study indicate that AgNPs have an altering effect on cell junctions that are known to dictate intestinal permeability. mRNA expression of genes representing tight junction (Cldn1, Cldn5, Cldn6, Cldn10 and Pecam1), focal adhesion (Cav1, Cav2, and Itgb2), adherens junction (Pvrl1, Notch1, and Notch2), and hemidesmosome (Dst) groups were upregulated significantly in females treated with 10 nm AgNP, while no change or downregulation of same genes was detected in male animals. In addition, a higher concentration of pro-inflammatory cytokine, TNF-α, was noticed in AgNP-treated female animals as compared to controls. CONCLUSIONS This study proposes that interaction of silver with GIT could potentially initiate an inflammatory process that could lead to changes in the gastrointestinal permeability and/or nutrient deficiencies in sex-specific manner. Fully understanding the mechanistic consequences of oral AgNP exposure may lead to stricter regulation for the commercial usage of AgNPs and/or improved clinical therapy in the future.
Collapse
Affiliation(s)
- Sarah E Orr
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA
| | - Mary Boudreau
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA
| | - Carl E Cerniglia
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72029, USA.
| |
Collapse
|