1
|
Komitova KS, Dimitrov LD, Stancheva GS, Kyurkchiyan SG, Petkova V, Dimitrov SI, Skelina SP, Kaneva RP, Popov TM. A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma. Int J Mol Sci 2024; 25:13468. [PMID: 39769234 PMCID: PMC11676902 DOI: 10.3390/ijms252413468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
During the past decade, a vast number of studies were dedicated to unravelling the obscurities of non-coding RNAs in all fields of the medical sciences. A great amount of data has been accumulated, and consequently a natural need for organization and classification in all subfields arises. The aim of this review is to summarize all reports on microRNAs that were delineated as prognostic biomarkers in laryngeal carcinoma. Additionally, we attempt to allocate and organize these molecules according to their association with key pathways and oncogenes affected in laryngeal carcinoma. Finally, we critically analyze the common shortcomings and biases of the methodologies in some of the published papers in this area of research. A literature search was performed using the PubMed and MEDLINE databases with the keywords "laryngeal carcinoma" OR "laryngeal cancer" AND "microRNA" OR "miRNA" AND "prognostic marker" OR "prognosis". Only research articles written in English were included, without any specific restrictions on study type. We have found 43 articles that report 39 microRNAs with prognostic value associated with laryngeal carcinoma, and all of them are summarized along with the major characteristics and methodology of the respective studies. A second layer of the review is structural analysis of the outlined microRNAs and their association with oncogenes and pathways connected with the cell cycle (p53, CCND1, CDKN2A/p16, E2F1), RTK/RAS/PI3K cascades (EGFR, PI3K, PTEN), cell differentiation (NOTCH, p63, FAT1), and cell death (FADD, TRAF3). Finally, we critically review common shortcomings in the methodology of the papers and their possible effect on their results.
Collapse
Affiliation(s)
| | | | | | | | - Veronika Petkova
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | | | | | - Radka P. Kaneva
- Molecular Medicine Center, Medical University, 1000 Sofia, Bulgaria
| | - Todor M. Popov
- Department of ENT, Medical University, 1000 Sofia, Bulgaria
| |
Collapse
|
2
|
Kristiansson A, Ceberg C, Bjartell A, Ceder J, Timmermand OV. Investigating Ras homolog gene family member C (RhoC) and Ki67 expression following external beam radiation therapy show increased RhoC expression in relapsing prostate cancer xenografts. Biochem Biophys Res Commun 2024; 728:150324. [PMID: 38968772 DOI: 10.1016/j.bbrc.2024.150324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Ras homolog gene family member C (RhoC) is a GTPase involved in cell migration, implicated in epithelial-mesenchymal transition and treatment resistance and metastasis of cancer. For example, RhoC has been shown to be involved in resistance to radiation in cervical carcinoma. Here, the effect of X-ray irradiation on RhoC expression in prostate cancer (PCa) xenografts was investigated in both xenografts in regression and relapse. Male BALB/cAnNRj-Foxn1nu/nu mice were inoculated with 4-6 million LNCaP-FGC cells and established xenografts were irradiated with X-rays (200 kV, 1 Gymin-1), 5, 10 or 15 Gy using a Gulmay Medical X-ray system. Expression of RhoC and Ki67, a known proliferation marker, was investigated in xenografts, given 15 Gy, 7 days (midst response as measured by size) or 3 weeks (relapse) post irradiation. Staining was quantified using the Halo software (v2.3.2089.34) with the Indica Labs - cytonuclear v1.6 algorithm. RhoC and Ki67 staining was divided into weak, medium, and strong staining and the percentage of cells stained, single and dual staining, was quantified. The HALO software was further used to classify the tissue in each section so that analysis of RhoC and Ki67 expression in cancer cells, stroma and necrotic areas could be done separately. The results showed that RhoC expression in cancer and stroma cells was significantly higher in relapsed xenografts than in those in regression. This was not seen for Ki67 staining, where the percentage of stained cells were the same in regressing and relapsing tumors. RhoC could be a useful biomarker to confirm relapse following external beam radiation therapy.
Collapse
Affiliation(s)
- Amanda Kristiansson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden; Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Section for Pediatrics, Lund, Sweden; Department of Neonatology, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Medical Radiation Physics, Lund, Sweden
| | - Anders Bjartell
- Lund University, Faculty of Medicine, Department of Translational Medicine, Urological Cancers, Malmö, Sweden
| | - Jens Ceder
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden
| | - Oskar Vilhelmsson Timmermand
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Oncology and pathology, Lund, Sweden.
| |
Collapse
|
3
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ismail A, Abulsoud AI, Fathi D, Elshafei A, El-Mahdy HA, Elsakka EG, Aglan A, Elkhawaga SY, Doghish AS. The role of miRNAs in Ovarian Cancer Pathogenesis and Therapeutic Resistance - A Focus on Signaling Pathways Interplay. Pathol Res Pract 2022; 240:154222. [DOI: 10.1016/j.prp.2022.154222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
5
|
m6A Modification of Long Non-Coding RNA HNF1A-AS1 Facilitates Cell Cycle Progression in Colorectal Cancer via IGF2BP2-Mediated CCND1 mRNA Stabilization. Cells 2022; 11:cells11193008. [PMID: 36230970 PMCID: PMC9562639 DOI: 10.3390/cells11193008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Long non-coding RNAs modulate tumor occurrence through different molecular mechanisms. It had been reported that HNF1A-AS1 (HNF1A Antisense RNA 1) was differently expressed in multiple tumors. The role of HNF1A-AS1 in colorectal cancer was less analyzed, and the mechanism of regulating the cell cycle has not been completely elucidated. Methods: Differentially expressed lncRNAs were screened out from the TCGA database. HNF1A-AS1 was examined in CRC clinical samples and cell lines by RT-qPCR. CCK8 assay, colony formation assay, flow cytometry, transwell assays, tube forming assay and vivo experiments were performed to study the function of HNF1A-AS1 in CRC tumor progression. Bioinformatic analysis, luciferase report assay, RNA pull-down and RIP assays were carried out to explore proteins binding HNF1A-AS1 and the potential downstream targets. Results: Our results showed that HNF1A-AS1 was upregulated in CRC and associated with unfavorable prognosis. HNF1A-AS1 promoted proliferation, migration and angiogenesis, accelerated cell cycle and reduced cell apoptosis in CRC. Bioinformatics prediction and further experiments proved that HNF1A-AS1 could promote CCND1 expression by suppressing PDCD4 or competitively sponging miR-93-5p. Meanwhile, METTL3 mediated HNF1A-AS1 m6A modification and affected its RNA stability. HNF1A-AS1/IGF2BP2/CCND1 may act as a complex to regulate the stability of CCND1. Conclusion: In summary, our result reveals the novel mechanism in which m6A-mediated HNF1A-AS1/IGF2BP2/CCND1 axis promotes CRC cell cycle progression, along with competitively sponging miR-93-5p to upregulate CCND1, demonstrating its significant role in cell cycle regulation and suggesting that HNF1A-AS1 may act as a potential prognostic marker of colorectal cancer in the future.
Collapse
|
6
|
Chen G, Yan Y, Qiu X, Ye C, Jiang X, Song S, Zhang Y, Chang H, Wang L, He X, Tang L, Zhang Q, Zhang Y. miR-93-5p suppresses ovarian cancer malignancy and negatively regulate CCND2 by binding to its 3'UTR region. Discov Oncol 2022; 13:15. [PMID: 35306579 PMCID: PMC8934892 DOI: 10.1007/s12672-022-00478-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/08/2022] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the most fatal gynecological cancer worldwide, yet the fundamental mechanism of malignancy acquisition in ovarian cancer remains unknown. miRNA has been implicated to a variety of diseases, including cancer initiation and progression. Cyclin-D2 (CCND2) is ubiquitously implicated in cancer uncontrol cell proliferation. Bioinformatic research revealed that CCND2 is a candidate gene for miR-93-5p with a binding site in its 3'UTR region in the current study. Using our ovarian cancer sample, we verified that miR-93-5p is negatively correlated with CCND2 mRNA and protein levels. Luciferase report assay revealed miR-93-5p inhibits CCND2 production through binding to the 3'UTR region. The expression of miR-93-5p in ovarian cancer patient samples was then determined, and a survival analysis was performed. Our findings showed that miR-93-5p is downregulated in ovarian cancer and is a favorable predictive factor in ovarian cancer patient. CCK8 assay, wound healing assay and flow cytometry-based cell cycle and apoptotic cell analyses were employed here. We found that miR-93-5p suppresses ovarian cancer cell proliferation and migration while enhances cell death. Our research certified that miR-93-5p reduces ovarian cancer malignancy by targeting CCND2.
Collapse
Affiliation(s)
- Guotong Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiwei Yan
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xiaojv Qiu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Chengfeng Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xingmei Jiang
- Graduate School of Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Shuo Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Huanhuan Chang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Leqi Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Xuehuan He
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Lingrong Tang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Qingyu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
7
|
The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases. Int J Mol Sci 2022; 23:ijms23031553. [PMID: 35163477 PMCID: PMC8835816 DOI: 10.3390/ijms23031553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target of miRNAs due to their regulatory function on AR gene expression. A deeper understanding of the AR–miRNA interactions may contribute to the development of better diagnostic tools as well as to providing new therapeutic approaches. While most studies usually focus on the role of miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and AR-independent diseases.
Collapse
|
8
|
Liu Y, Ma L, Shangguan F, Zhao X, Wang W, Gao Z, Zhou H, Qu G, Huang Y, An J, Xue J, Yang S, Cao Q. LAIR-1 suppresses cell growth of ovarian cancer cell via the PI3K-AKT-mTOR pathway. Aging (Albany NY) 2021; 12:16142-16154. [PMID: 32628130 PMCID: PMC7485720 DOI: 10.18632/aging.103589] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/13/2020] [Indexed: 12/25/2022]
Abstract
Recently, over-expression of LAIR-1 has been found in some solid cancers, including ovarian cancer. The role of LAIR-1 in cancer progression needs further investigation. In this study, we identified the LAIR-1 cDNA sequence of the ovarian cancer cells HO8910. Using SKOV3 cells, we confirmed the finding from our previous study that LAIR-1 could suppress in vitro cell proliferation and cell migration. We also found LAIR-1 overexpression can induce apoptosis of SKOV3 cells. We revealed LAIR-1 suppressed cell growth by inhibiting the PI3K-AKT-mTOR axis. Moreover, the LAIR-1 antitumor activity and its mechanism were also identified in vivo. We used Co-IP assay and mass spectrometry to identify potential LAIR-1-binding proteins in LAIR-1 overexpressing SKOV3 cells. MS analysis identified 167 potentially interacting proteins. GO analyses indicated a possible involvement of LAIR-1 in mRNA processing through its interaction with some eukaryotic translation initiation factors (eIF4E1B, eIF2S3, eIF3D, eIF4G2, eIF5B) and eukaryotic translation elongation factors (eEF1A2 and eEF1B2). Our findings suggest that LAIR-1 may suppress the growth of ovarian cancer cells by serving as a modulator that suppresses PI3K-AKT-mTOR directly or regulating protein synthesis at the translational level. Our results indicate that a LAIR-1-based strategy may prevent or suppress the progression of ovarian cancer.
Collapse
Affiliation(s)
- Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, P.R. China.,Equal contribution
| | - Li Ma
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, P.R. China.,Equal contribution
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, P.R. China.,Equal contribution
| | - Xuena Zhao
- Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Wenjie Wang
- Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Zhiyue Gao
- Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Huimin Zhou
- Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Guiwu Qu
- Anti-aging Research Institution, Binzhou Medical University, Yantai 264003, Shandong, P.R.China
| | - Yumei Huang
- Department of Stomatology, Affiliated Hospital of Binzhou Medical College, Binzhou 256603, Shandong, P.R. China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California at San Diego, La Jolla, CA 92037, USA
| | - Jiangnan Xue
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Shude Yang
- School of Agriculture, Ludong University, Yantai 264025, Shandong, P.R.China
| | - Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, P.R. China.,Anti-aging Research Institution, Binzhou Medical University, Yantai 264003, Shandong, P.R.China
| |
Collapse
|
9
|
Liu X, Song X, Li H. Transcription elongation factor A-like 7, regulated by miR-758-3p inhibits the progression of melanoma through decreasing the expression levels of c-Myc and AKT1. Cancer Cell Int 2021; 21:43. [PMID: 33430878 PMCID: PMC7802185 DOI: 10.1186/s12935-020-01737-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Ectopic expression of transcription elongation factor A (SII)-like 7 (TCEAL7) has been observed in several kinds of cancers, but its role in melanoma is still unclear. This study was carried out to investigate TCEAL7 role in melanoma progression, and uncover the underlying mechanisms. METHODS TCEAL7 expression levels in melanoma tissues and cells were determined by using real-time quantitative PCR (RT-PCR) and western blotting. CCK-8, transwell chambers, flow cytometry, starch assay and tumorigenesis assay were applied to detect cell growth, invasion, apoptosis, migration and tumorigenesis, respectively. RESULTS A low expression level of TCEAL7 was observed in melanoma tissues and cells, which was associated with malignant clinical process and poor prognosis. TCEAL7 negatively modulated AKT1, AKT2, c-Myc, N-cadherin and PCNA expression and inhibited cancer progression via decreasing AKT1 and c-Myc levels. In addition, TCEAL7 was negatively modulated by miR-758-3p which promoted melanoma progression. Moreover, overexpression of TCEAL7 abolished miR-758-3p role in promoting melanoma progression. CONCLUSION This study demonstrated that TCEAL7, regulated by miR-758-3p inhibited melanoma progression through decreasing the expression levels of c-Myc and AKT1.
Collapse
Affiliation(s)
- Xilin Liu
- Department of Hand Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Xianji Song
- Orthopaedic Surgery, China Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hong Li
- Emergency Medical of China Japan Union Hospital of Jilin University, No. 126 Xian Tai Street, Changchun, 130033, Jilin, China.
| |
Collapse
|
10
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
11
|
Hao S, Liu Y, Li S, Wang J, Zhao L, Wang C, Sun B. Insight into the potential antineoplastic mechanism of phycocyanin in non-small cell lung carcinoma A549 cells based on micro-RNA sequencing. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Johnson SC, Chakraborty S, Drosou A, Cunnea P, Tzovaras D, Nixon K, Zawieja DC, Muthuchamy M, Fotopoulou C, Moore JE. Inflammatory state of lymphatic vessels and miRNA profiles associated with relapse in ovarian cancer patients. PLoS One 2020; 15:e0230092. [PMID: 32716937 PMCID: PMC7384632 DOI: 10.1371/journal.pone.0230092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/05/2020] [Indexed: 01/20/2023] Open
Abstract
Lymphogenic spread is associated with poor prognosis in epithelial ovarian cancer (EOC), yet little is known regarding roles of non-peri-tumoural lymphatic vessels (LVs) outside the tumour microenvironment that may impact relapse. The aim of this feasibility study was to assess whether inflammatory status of the LVs and/or changes in the miRNA profile of the LVs have potential prognostic and predictive value for overall outcome and risk of relapse. Samples of macroscopically normal human lymph LVs (n = 10) were isolated from the external iliac vessels draining the pelvic region of patients undergoing debulking surgery. This was followed by quantification of the inflammatory state (low, medium and high) and presence of cancer-infiltration of each LV using immunohistochemistry. LV miRNA expression profiling was also performed, and analysed in the context of high versus low inflammation, and cancer-infiltrated versus non-cancer-infiltrated. Results were correlated with clinical outcome data including relapse with an average follow-up time of 13.3 months. The presence of a high degree of inflammation correlated significantly with patient relapse (p = 0.033). Cancer-infiltrated LVs showed a moderate but non-significant association with relapse (p = 0.07). Differential miRNA profiles were identified in cancer-infiltrated LVs and those with high versus low inflammation. In particular, several members of the let-7 family were consistently down-regulated in highly inflamed LVs (>1.8-fold, p<0.05) compared to the less inflamed ones. Down-regulation of the let-7 family appears to be associated with inflammation, but whether inflammation contributes to or is an effect of cancer-infiltration requires further investigation.
Collapse
Affiliation(s)
- Sarah C. Johnson
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Anastasios Drosou
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Paula Cunnea
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Dimitrios Tzovaras
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Katherine Nixon
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - David C. Zawieja
- College of Medicine, Texas A&M University, TX, United States of America
| | | | - Christina Fotopoulou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Expression patterns of seven key genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a and miR-93 in gastric cancer. Sci Rep 2020; 10:12342. [PMID: 32704077 PMCID: PMC7378835 DOI: 10.1038/s41598-020-69308-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is one of the most prevalent cancers and a major cause of cancer related mortality worldwide. Incidence of GC is affected by various factors, including genetic and environmental factors. Despite extensive research has been done for molecular characterization of GC, it remains largely unknown. Therefore, further studies specially conducted among various ethnicities in different geographic locations, are required to know the precise molecular mechanisms leading to tumorigenesis and progression of GC. The expression patterns of seven candidate genes, including β-catenin, Notch1, GATA6, CDX2, miR-34a, miR-181a, and miR-93 were determined in 24 paired GC tissues and corresponding non-cancerous tissues by quantitative Real-Time PCR. The association between the expression of these genes and clinicopathologic factors were also investigated. Our results demonstrated that overall mRNA levels of GATA6 were significantly decreased in the tumor samples in comparison with the non-cancerous tissues (median fold change (FC) = 0.3143; P = 0.0003). Overall miR-93 levels were significantly increased in the tumor samples relative to the non-cancerous gastric tissues (FC = 2.441; P = 0.0002). β-catenin mRNA expression showed a strong positive correlation with miR-34a (r = 0.5784; P = 0.0031), and miR-181a (r = 0.5652; P = 0.004) expression. miR-34a and miR-181a expression showed a significant positive correlation (r = 0.4862; P = 0.016). Moreover, lower expression of Notch1 was related to distant metastasis in GC patients with a borderline statistical significance (p = 0.0549). These data may advance our understanding of the molecular biology that drives GC as well as provide potential targets for defining novel therapeutic strategies for GC treatment.
Collapse
|
14
|
Ashrafizadeh M, Najafi M, Mohammadinejad R, Farkhondeh T, Samarghandian S. Flaming the fight against cancer cells: the role of microRNA-93. Cancer Cell Int 2020; 20:277. [PMID: 32612456 PMCID: PMC7325196 DOI: 10.1186/s12935-020-01349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
There have been attempts to develop novel anti-tumor drugs in cancer therapy. Although satisfying results have been observed at a consequence of application of chemotherapeutic agents, the cancer cells are capable of making resistance into these agents. This has forced scientists into genetic manipulation as genetic alterations are responsible for generation of a high number of cancer cells. MicroRNAs (miRs) are endogenous, short non-coding RNAs that affect target genes at the post-transcriptional level. Increasing evidence reveals the potential role of miRs in regulation of biological processes including angiogenesis, metabolism, cell proliferation, cell division, and cell differentiation. Abnormal expression of miRs is associated with development of a number of pathologic events, particularly cancer. MiR-93 plays a significant role in both physiological and pathological mechanisms. At the present review, we show how this miR dually affects the proliferation and invasion of cancer cells. Besides, we elucidate the oncogenesis or oncosuppressor function of miR-93.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
15
|
Rho GTPases in Gynecologic Cancers: In-Depth Analysis toward the Paradigm Change from Reactive to Predictive, Preventive, and Personalized Medical Approach Benefiting the Patient and Healthcare. Cancers (Basel) 2020; 12:cancers12051292. [PMID: 32443784 PMCID: PMC7281750 DOI: 10.3390/cancers12051292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Rho guanosine triphospatases (GTPases) resemble a conserved family of GTP-binding proteins regulating actin cytoskeleton dynamics and several signaling pathways central for the cell. Rho GTPases create a so-called Ras-superfamily of GTPases subdivided into subgroups comprising at least 20 members. Rho GTPases play a key regulatory role in gene expression, cell cycle control and proliferation, epithelial cell polarity, cell migration, survival, and apoptosis, among others. They also have tissue-related functions including angiogenesis being involved in inflammatory and wound healing processes. Contextually, any abnormality in the Rho GTPase function may result in severe consequences at molecular, cellular, and tissue levels. Rho GTPases also play a key role in tumorigenesis and metastatic disease. Corresponding mechanisms include a number of targets such as kinases and scaffold/adaptor-like proteins initiating GTPases-related signaling cascades. The accumulated evidence demonstrates the oncogenic relevance of Rho GTPases for several solid malignancies including breast, liver, bladder, melanoma, testicular, lung, central nervous system (CNS), head and neck, cervical, and ovarian cancers. Furthermore, Rho GTPases play a crucial role in the development of radio- and chemoresistance e.g. under cisplatin-based cancer treatment. This article provides an in-depth overview on the role of Rho GTPases in gynecological cancers, highlights relevant signaling pathways and pathomechanisms, and sheds light on their involvement in tumor progression, metastatic spread, and radio/chemo resistance. In addition, insights into a spectrum of novel biomarkers and innovative approaches based on the paradigm shift from reactive to predictive, preventive, and personalized medicine are provided.
Collapse
|
16
|
MiR-93 is related to poor prognosis in pancreatic cancer and promotes tumor progression by targeting microtubule dynamics. Oncogenesis 2020; 9:43. [PMID: 32366853 PMCID: PMC7198506 DOI: 10.1038/s41389-020-0227-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
Biomarkers and effective therapeutic agents to improve the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) are urgently required. We aimed to analyze the prognostic value and mechanistic action of miR-93 in PDAC. Correlation of miR-93 tumor levels from 83 PDAC patients and overall survival (OS) was analyzed by Kaplan-Meier. MiR-93 depletion in PANC-1 and MIA PaCa-2 cells was achieved by CRISPR/Cas9 and miR-93 overexpression in HPDE cells by retroviral transduction. Cell proliferation, migration and invasion, cell cycle analysis, and in vivo tumor xenografts in nude mice were assessed. Proteomic analysis by mass spectrometry and western-blot was also performed. Finally, miR-93 direct binding to candidate mRNA targets was evaluated by luciferase reporter assays. High miR-93 tumor levels are significantly correlated with a worst prognosis in PDAC patients. MiR-93 abolition altered pancreatic cancer cells phenotype inducing a significant increase in cell size and a significant decrease in cell invasion and proliferation accompanied by a G2/M arrest. In vivo, lack of miR-93 significantly impaired xenograft tumor growth. Conversely, miR-93 overexpression induced a pro-tumorigenic behavior by significantly increasing cell proliferation, migration, and invasion. Proteomic analysis unveiled a large group of deregulated proteins, mainly related to G2/M phase, microtubule dynamics, and cytoskeletal remodeling. CRMP2, MAPRE1, and YES1 were confirmed as direct targets of miR-93. MiR-93 exerts oncogenic functions by targeting multiple genes involved in microtubule dynamics at different levels, thus affecting the normal cell division rate. MiR-93 or its direct targets (CRMP2, MAPRE1, or YES1) are new potential therapeutic targets for PDAC.
Collapse
|
17
|
Chen Y, Wang G, Lin B, Huang J. MicroRNA‐93‐5p expression in tumor tissue and its tumor suppressor function via targeting programmed death ligand‐1 in colorectal cancer. Cell Biol Int 2020; 44:1224-1236. [PMID: 32068322 DOI: 10.1002/cbin.11323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yi‐Lin Chen
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 Fujian China
| | - Gao‐Xiong Wang
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 Fujian China
| | - Bei‐An Lin
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 Fujian China
| | - Jing‐Shan Huang
- Department of General SurgeryThe Second Affiliated Hospital of Fujian Medical University Quanzhou 362000 Fujian China
| |
Collapse
|
18
|
Kazmierczak D, Jopek K, Sterzynska K, Ginter-Matuszewska B, Nowicki M, Rucinski M, Januchowski R. The Significance of MicroRNAs Expression in Regulation of Extracellular Matrix and Other Drug Resistant Genes in Drug Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21072619. [PMID: 32283808 PMCID: PMC7177408 DOI: 10.3390/ijms21072619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer rates the highest mortality among all gynecological malignancies. The main reason for high mortality is the development of drug resistance. It can be related to increased expression of drug transporters and increased expression of extracellular matrix (ECM) proteins. Our foremost aim was to exhibit alterations in the miRNA expression levels in cisplatin (CIS), paclitaxel (PAC), doxorubicin (DOX), and topotecan (TOP)-resistant variants of the W1 sensitive ovarian cancer cell line-using miRNA microarray. The second goal was to identify miRNAs responsible for the regulation of drug-resistant genes. According to our observation, alterations in the expression of 40 miRNAs were present. We could observe that, in at least one drug-resistant cell line, the expression of 21 miRNAs was upregulated and that of 19 miRNAs was downregulated. We identified target genes for 22 miRNAs. Target analysis showed that miRNA regulates key genes responsible for drug resistance. Among others, we observed regulation of the ATP-binding cassette subfamily B member 1 gene (ABCB1) in the paclitaxel-resistant cell line by miR-363 and regulation of the collagen type III alpha 1 chain gene (COL3A1) in the topotekan-resistant cell line by miR-29a.
Collapse
|
19
|
Xie SL, Wang M, Du XH, Zhao ZW, Lv GY. miR-455 Inhibits HepG2 Cell Proliferation and Promotes Apoptosis by Targeting RhoC. Mol Biol 2020. [DOI: 10.1134/s002689332001015x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Al-Alem LF, Baker AT, Pandya UM, Eisenhauer EL, Rueda BR. Understanding and Targeting Apoptotic Pathways in Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11111631. [PMID: 31652965 PMCID: PMC6893837 DOI: 10.3390/cancers11111631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer cells evade the immune system as well as chemotherapeutic and/or biologic treatments through inherent or acquired mechanisms of survival and drug resistance. Depending on the cell type and the stimuli, this threshold can range from external forces such as blunt trauma to programmed processes such as apoptosis, autophagy, or necroptosis. This review focuses on apoptosis, which is one form of programmed cell death. It highlights the multiple signaling pathways that promote or inhibit apoptosis and reviews current clinical therapies that target apoptotic pathways in ovarian cancer.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew T Baker
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
| | - Unnati M Pandya
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
| | - Eric L Eisenhauer
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
- Gynecology and Oncology Division, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Bo R Rueda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
- Obstetrics and Gynecology, Harvard Medical School, Boston, MA 02115, USA.
- Gynecology and Oncology Division, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
21
|
Zhu HR, Yu XN, Zhang GC, Shi X, Bilegsaikhan E, Guo HY, Liu LL, Cai Y, Song GQ, Liu TT, Dong L, Janssen HLA, Weng SQ, Wu J, Shen XZ, Zhu JM. Comprehensive analysis of long non‑coding RNA‑messenger RNA‑microRNA co‑expression network identifies cell cycle‑related lncRNA in hepatocellular carcinoma. Int J Mol Med 2019; 44:1844-1854. [PMID: 31485608 PMCID: PMC6777664 DOI: 10.3892/ijmm.2019.4323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to contribute to progression and prognosis of hepatocellular carcinoma (HCC). However, expression profiling and interaction of lncRNAs with messenger RNAs (mRNAs) and microRNAs (miRNAs) remain largely unknown in HCC. The expression profiling of lncRNAs, mRNA and miRNAs was obtained using microarray. The Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to characterize potential functions of differentially expressed mRNAs. Cytoscape was applied to construct an lncRNA-miRNA-mRNA co-expression network and candidate lncRNAs were validated via quantitative PCR in 30 pairs of HCC and adjacent tumor-free tissues. In this study, 1,056 upregulated and 1,288 downregulated lncRNAs were identified, while 2,687 mRNAs and 6 miRNAs were aberrantly expressed in HCC compared with adjacent tumor-free tissues. Potential functions of differentially expressed mRNAs were demonstrated to significantly participate in modulating critical genes in the cell cycle, such as cyclin E1 and cyclin B2. After screening, 95 lncRNAs, 5 miRNAs and 36 mRNAs were recruited for construction of lncRNA-mRNA-miRNA co-expression network in the cell cycle pathway. Subsequently, the top 5 lncRNAs that potentially modulate critical genes in the cell cycle were selected as the candidates for further verification. Kaplan-Meier curves using the Cancer Genome Atlas database showed that 13 targeted mRNAs were associated with overall survival of HCC patients. Finally, three lncRNAs, including ENST00000522221, lnc-HACE1-6:1 and lnc-ICOSLG-11:1, are significantly upregulated in HCC tissues compared with adjacent tumor-free tissues. These findings suggest that lncRNAs play essential roles in the pathogenesis of HCC via regulating coding genes and miRNAs, and may be important targets for diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Hai-Rong Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Xuan Shi
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Enkhnaran Bilegsaikhan
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Hong-Ying Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Li-Li Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Yu Cai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Guang-Qi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Harry L A Janssen
- Division of Gastroenterology, University of Toronto and University Health Network, Toronto, ON M5G 2C4, Canada
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Jian Wu
- Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Thomas P, Pranatharthi A, Ross C, Srivastava S. RhoC: a fascinating journey from a cytoskeletal organizer to a Cancer stem cell therapeutic target. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:328. [PMID: 31340863 PMCID: PMC6651989 DOI: 10.1186/s13046-019-1327-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023]
Abstract
Tumor heterogeneity results in differential response to therapy due to the existence of plastic tumor cells, called cancer stem cells (CSCs), which exhibit the property of resistance to therapy, invasion and metastasis. These cells have a distinct, signaling network active at every stage of progression. It is difficult to envisage that the CSCs will have a unique set of signaling pathways regulating every stage of disease progression. Rather, it would be easier to believe that a single pivotal pathway having significant contribution at every stage, which can further turn on a battery of signaling mechanisms specific to that stage, would be instrumental in regulating the signaling network, enabling easy transition from one state to another. In this context, we discuss the role of RhoC which has contributed to several phenotypes during tumor progression. RhoC (Ras homolog gene family member C) has been widely reported to regulate actin organization. It has been shown to impact the motility of cancer cells, resultantly affecting invasion and metastasis, and has contributed to carcinoma progression of the breast, pancreas, lung, ovaries and cervix, among several others. The most interesting finding has been its indispensable role in metastasis. Also, it has the ability to modulate various other phenotypes like angiogenesis, motility, invasion, metastasis, and anoikis resistance. These observations suggest that RhoC imparts the plasticity required by tumor cells to exhibit such diverse functions based on microenvironmental cues. This was further confirmed by recent reports which show that it regulates cancer stem cells in breast, ovary and head and neck cancers. Studies also suggest that the inhibition of RhoC results in abolition of advanced tumor phenotypes. Our review throws light on how RhoC, which is capable of modulating various phenotypes may be the apt core signaling candidate regulating disease progression. Additionally, mice studies show that RhoC is not essential for embryogenesis, giving scope for its development as a possible therapeutic target. This review thus stresses on the need to understand the protein and its functioning in greater detail to enable its development as a stem cell marker and a possible therapeutic target.
Collapse
Affiliation(s)
- Pavana Thomas
- Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India.,School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India
| | - Annapurna Pranatharthi
- Rajiv Gandhi University of Health Sciences (RGUHS), Bangalore, 560041, India.,National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Cecil Ross
- Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India.
| |
Collapse
|
23
|
Kotagama K, Schorr AL, Steber HS, Mangone M. ALG-1 Influences Accurate mRNA Splicing Patterns in the Caenorhabditis elegans Intestine and Body Muscle Tissues by Modulating Splicing Factor Activities. Genetics 2019; 212:931-951. [PMID: 31073019 PMCID: PMC6614907 DOI: 10.1534/genetics.119.302223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are known to modulate gene expression, but their activity at the tissue-specific level remains largely uncharacterized. To study their contribution to tissue-specific gene expression, we developed novel tools to profile putative miRNA targets in the Caenorhabditis elegans intestine and body muscle. We validated many previously described interactions and identified ∼3500 novel targets. Many of the candidate miRNA targets curated are known to modulate the functions of their respective tissues. Within our data sets we observed a disparity in the use of miRNA-based gene regulation between the intestine and body muscle. The intestine contained significantly more putative miRNA targets than the body muscle highlighting its transcriptional complexity. We detected an unexpected enrichment of RNA-binding proteins targeted by miRNA in both tissues, with a notable abundance of RNA splicing factors. We developed in vivo genetic tools to validate and further study three RNA splicing factors identified as putative miRNA targets in our study (asd-2, hrp-2, and smu-2), and show that these factors indeed contain functional miRNA regulatory elements in their 3'UTRs that are able to repress their expression in the intestine. In addition, the alternative splicing pattern of their respective downstream targets (unc-60, unc-52, lin-10, and ret-1) is dysregulated when the miRNA pathway is disrupted. A reannotation of the transcriptome data in C. elegans strains that are deficient in the miRNA pathway from past studies supports and expands on our results. This study highlights an unexpected role for miRNAs in modulating tissue-specific gene isoforms, where post-transcriptional regulation of RNA splicing factors associates with tissue-specific alternative splicing.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona 85287
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona
| | - Anna L Schorr
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona 85287
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona
| | - Hannah S Steber
- Barrett, The Honors College, Arizona State University, Tempe, Arizona 85281
| | - Marco Mangone
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, Arizona State University, Tempe, Arizona 85287
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, Arizona
| |
Collapse
|
24
|
Yuan XL, Wen FQ, Chen XW, Jiang XP, Liu SX. miR-373 promotes neuroblastoma cell proliferation, migration, and invasion by targeting SRCIN1. Onco Targets Ther 2019; 12:4927-4936. [PMID: 31417287 PMCID: PMC6593744 DOI: 10.2147/ott.s205582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 05/17/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction Previous studies have shown that miR-373 functions as either a tumor suppressor or an oncogene depending on which type of cancer it’s operating in. However, the functional role of miR-373 in neuroblastoma (NB) remains largely unclear. Methods Expression of miR-373 and SRC kinase signaling inhibitor 1 (SRCIN1) in 20 metastatic and 20 primary NB tissues was detected by quantitative real-time PCR (qRT-PCR) and Western blotting. MTT assay, flow cytometry analysis and transwell migration and invasion assays were performed to evaluate the influence of miR-373 inhibition on the growth, migration and invasion of NB cells, respectively. In vivo experiment was applied to determine the effect of miR-373 inhibition on tumor growth. Dual-luciferase reporter assay was used to confirm the interaction between miR-373 and SRCIN1. Results We observed a significant increase in the expression of miR-373 in metastatic NB samples compared with primary NB samples, and this was inversely correlated with SRCIN1 expression. Functional studies revealed that depletion of miR-373 inhibited in vitro NB cell growth, migration and invasion, and also suppressed tumor growth in an in vivo mouse model. Moreover, we identified that SRCIN1 was a direct and functional target gene of miR-373. Silencing of SRCIN1 partially rescued the antimiR-373-mediated inhibition of cell growth, migration and invasion. Conclusion The data from our study verified a potential oncogenic role of miR-373 in NB cells that occurs through direct targeting SRCIN1. The newly identified miR-373/SRCIN1 axis represents a new potential candidate for therapeutic intervention of malignant NB.
Collapse
Affiliation(s)
- Xiu-Li Yuan
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| | - Fei-Qiu Wen
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| | - Xiao-Wen Chen
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| | - Xian-Ping Jiang
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| | - Si-Xi Liu
- Department of Hematology/Oncology, Shenzhen Children's Hospital, Shenzhen 518036, People's Republic of China
| |
Collapse
|
25
|
Su LL, Chang XJ, Zhou HD, Hou LB, Xue XY. Exosomes in esophageal cancer: A review on tumorigenesis, diagnosis and therapeutic potential. World J Clin Cases 2019; 7:908-916. [PMID: 31119136 PMCID: PMC6509264 DOI: 10.12998/wjcc.v7.i8.908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023] Open
Abstract
Exosomes are nanovesicles secreted from various types of cells and can be isolated from various bodily fluids, such as blood and urine. The number and molecular contents, including proteins and RNA of exosomes, have been shown to reflect their parental cell origins, characteristics and biological behaviors. An increasing number of studies have demonstrated that exosomes play a role in the course of tumorigenesis, diagnosis, treatment and prognosis, although its precise functions in tumors are still unclear. Moreover, owing to a lack of a standard approach, exosomes and its contents have not yet been put into clinical practice successfully. This review aims to summarize the current knowledge on exosomes and its contents in esophageal cancer as well as the current limitations/challenges in its clinical application, which may provide a basis for an all-around understanding of the implementation of exosomes and exosomal contents in the surveillance and therapy of esophageal cancer.
Collapse
Affiliation(s)
- Lin-Lin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Jing Chang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Huan-Di Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Liu-Bing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Ying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
26
|
Li J, Shao W, Feng H. MiR-542-3p, a microRNA targeting CDK14, suppresses cell proliferation, invasiveness, and tumorigenesis of epithelial ovarian cancer. Biomed Pharmacother 2018; 110:850-856. [PMID: 30557834 DOI: 10.1016/j.biopha.2018.11.104] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 02/08/2023] Open
Abstract
MicroRNA-542-3p (miR-542-3p) has been implicated in several cancers; however, its precise role in ovarian cancer is unclear. In this study, we found that miR-542-3p was significantly downregulated in epithelial ovarian cancer (EOC) tissues and cell lines. Functional assays showed that overexpression of miR-542-3p suppressed tumor cell proliferation, migration, and invasion in vitro, whereas miR-542-3p knockdown dramatically promoted tumor cell proliferation and invasion. An in vivo assay also revealed that miR-542-3p overexpression significantly attenuated tumor growth. Mechanistically, the gene of cyclin-dependent kinase 14 (CDK14) was identified as a novel target of miR-542-3p. CDK14 overexpression reversed the suppressive effects of miR-542-3p in ovarian cancer cells. Collectively, these results suggest that miR-542-3p functions as a tumor-suppressive miRNA in ovarian cancer by directly targeting CDK14. Our data provide novel insights into potential future treatments for patients with ovarian cancer.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Gynaecology and Obstetrics, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wei Shao
- Department of Gynaecology and Obstetrics, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Huian Feng
- Department of Gynaecology and Obstetrics, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
27
|
Karihtala P, Porvari K, Soini Y, Eskelinen M, Juvonen P, Haapasaari KM. Expression Levels of microRNAs miR-93 and miR-200a in Pancreatic Adenocarcinoma with Special Reference to Differentiation and Relapse-Free Survival. Oncology 2018; 96:164-170. [PMID: 30537722 DOI: 10.1159/000494274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/02/2018] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Protein levels of the transcription factor nuclear factor erythroid-derived 2-like 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein 1 (Keap1) have been proposed as prognostic factors in pancreatic ductal adenocarcinomas (PDACs). These cellular redox-state-regulating enzymes are targeted by several microRNAs, including miR-93 and miR-200a. METHODS We assessed mRNA levels of Nrf2 and Keap1 and tissue expression of miR-93 and miR-200a in 51 patients with surgically treated PDAC. Expression levels were separately measured in malignant cells and adjacent benign cells. RESULTS Keap1 and Nrf2 mRNA expression levels in cancer cells were lower than in adjacent benign tissue (Wilcoxon's test; p = 0.0015 and p = 0.000032, respectively). Conversely, miR-93 expression was higher in cancer cells than in adjacent benign tissue (p = 0.00082). Low levels of miR-93 and miR-200a in cancer cells were associated with poorer differentiation (p = 0.004 and p = 0.002, respectively). In univariate survival analysis, benign-tissue levels of miR-200a above the median predicted better relapse-free survival (RFS) (p = 0.045). CONCLUSIONS High miR-93 and miR-200a levels in cancer cells of PDAC were associated with better differentiation, and miR-200a expression in benign tissue with excellent RFS. Keap1 and Nrf2 mRNA levels showed prominent down-regulation in cancerous versus benign tissue, but they were not associated with disease aggressiveness or outcome.
Collapse
Affiliation(s)
- Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland,
| | - Katja Porvari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Ylermi Soini
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Matti Eskelinen
- Department of Surgery, Kuopio University Hospital and School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Petri Juvonen
- Department of Surgery, Kuopio University Hospital and School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Kirsi-Maria Haapasaari
- Department of Pathology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
28
|
Gao Y, Deng K, Liu X, Dai M, Chen X, Chen J, Chen J, Huang Y, Dai S, Chen J. Molecular mechanism and role of microRNA-93 in human cancers: A study based on bioinformatics analysis, meta-analysis, and quantitative polymerase chain reaction validation. J Cell Biochem 2018; 120:6370-6383. [PMID: 30390344 DOI: 10.1002/jcb.27924] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Currently, studies have shown that microRNA-93 (miR-93) can be an oncogene or a tumor suppressor in different kinds of cancers. The role of miR-93 in human cancers is inconsistent and the underlying mechanism on the aberrant expression of miR-93 is complicated. METHODS We first conducted gene enrichment analysis to give insight into the prospective mechanism of miR-93. Second, we performed a meta-analysis to evaluate the clinical value of miR-93. Finally, a validation test based on quantitative polymerase chain reaction (qPCR) was performed to further investigate the role of miR-93 in pan-cancer. RESULTS Gene Ontology (GO) enrichment analysis results showed that the target genes of miR-93 were closely related to transcription, and MAPK1, RBBP7 and Smad7 became the hub genes. In the diagnostic meta-analysis, the overall sensitivity, specificity, and area under the curve were 0.76 (0.64-0.85), 0.82 (0.64-0.92), and 0.85 (0.82-0.88), respectively, which suggested that miR-93 had excellent performance on the diagnosis for human cancers. In the prognostic meta-analysis, dysregulated miR-93 was found to be associated with poor OS in cancer patients. In the qPCR validation test, the serum levels of miR-93 were upregulated in breast cancer, breast hyperplasia, lung cancer, chronic obstructive pulmonary disease, nasopharyngeal cancer, hepatocellular cancer, gastric ulcer, endometrial cancer, esophageal cancer, laryngeal cancer, and prostate cancer compared with healthy controls. CONCLUSIONS miR-93 could act as an effective diagnostic and prognostic factor for cancer patients. Its clinical value for cancer early diagnosis and survival prediction is promising.
Collapse
Affiliation(s)
- Yun Gao
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Kaifeng Deng
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xuexiang Liu
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Meiyu Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xiaoli Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jifei Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jianming Chen
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Yujie Huang
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Shengming Dai
- Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Jingfan Chen
- Department of General Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
29
|
Cao Y, Xia F, Wang P, Gao M. MicroRNA‑93‑5p promotes the progression of human retinoblastoma by regulating the PTEN/PI3K/AKT signaling pathway. Mol Med Rep 2018; 18:5807-5814. [PMID: 30365088 DOI: 10.3892/mmr.2018.9573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/06/2018] [Indexed: 11/06/2022] Open
Abstract
Numerous reports have indicated that microRNA‑93‑5p (miR‑93‑5p) is involved in the development and progression of human cancer, including non‑small cell lung, gastric and breast cancer; however, the role of miR‑93‑5p in retinoblastoma (RB) remains unknown. In the present study, it was reported that miR‑93‑5p expression levels were significantly upregulated in RB tissues compared with in normal tissues by reverse transcription‑quantitative polymerase chain reaction. Furthermore, it was demonstrated via cell counting kit‑8 and Transwell assays that knockdown of miR‑93‑5p significantly suppressed the proliferation, migration and invasion of RB cells, but promoted cellular apoptosis. Regarding the underlying mechanism, the present study reported that phosphatase and tensin homolog (PTEN) was a direct target of miR‑93‑5p in RB cells. Overexpression of miR‑93‑5p significantly inhibited the expression of PTEN; opposing results were observed when PTEN expression was downregulated. Furthermore, the present study revealed that PTEN expression levels were downregulated and were inversely correlated with that of miR‑93‑5p in RB tissues. Additionally, the present study demonstrated that knockdown of PTEN in miR‑93‑5p‑depleted RB cells significantly reversed the effects of miR‑93‑5p on cell proliferation, migration and invasion; miR‑93‑5p knockdown was suggested to promote PTEN expression, consequently inhibiting the activation of phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) signaling pathway. Collectively, the results of the present study demonstrated that miR‑93‑5p may serve a role as an oncogene by modulating the PTEN/PI3K/AKT signaling pathway in RB, indicating that miR‑93‑5p may be a potential therapeutic target for the treatment of RB.
Collapse
Affiliation(s)
- Yongliang Cao
- Department of Ophthalmology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Fei Xia
- Department of Ophthalmology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ping Wang
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Meng Gao
- Department of Ophthalmology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
30
|
Pan C, Stevic I, Müller V, Ni Q, Oliveira-Ferrer L, Pantel K, Schwarzenbach H. Exosomal microRNAs as tumor markers in epithelial ovarian cancer. Mol Oncol 2018; 12:1935-1948. [PMID: 30107086 PMCID: PMC6210043 DOI: 10.1002/1878-0261.12371] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/03/2018] [Accepted: 08/07/2018] [Indexed: 12/11/2022] Open
Abstract
Specific microRNAs (miRNAs) are packaged in exosomes that regulate processes in tumor development and progression. The current study focuses on the influence of exosomal miRNAs in the pathogenesis of epithelial ovarian cancer (EOC). MiRNA profiles were determined in exosomes from plasma of 106 EOC patients, eight ovarian cystadenoma patients, and 29 healthy women by TaqMan real‐time PCR‐based miRNA array cards containing 48 different miRNAs. In cell culture experiments, the impact of miR‐200b and miR‐320 was determined on proliferation and apoptosis of ovarian cancer cell lines. We report that miR‐21 (P = 0.0001), miR‐100 (P = 0.034), miR‐200b (P = 0.008), and miR‐320 (P = 0.034) are significantly enriched, whereas miR‐16 (P = 0.009), miR‐93 (P = 0.014), miR‐126 (P = 0.012), and miR‐223 (P = 0.029) are underrepresented in exosomes from plasma of EOC patients as compared to those of healthy women. The levels of exosomal miR‐23a (P = 0.009, 0.008) and miR‐92a (P = 009, 0.034) were lower in ovarian cystadenoma patients than in EOC patients and healthy women, respectively. The exosomal levels of miR‐200b correlated with the tumor marker CA125 (P = 0.002) and patient overall survival (P = 0.019). MiR‐200b influenced cell proliferation (P = 0.0001) and apoptosis (P < 0.008). Our findings reveal specific exosomal miRNA patterns in EOC and ovarian cystadenoma patients, which are indicative of a role of these miRNAs in the pathogenesis of EOC.
Collapse
Affiliation(s)
- Chi Pan
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Ines Stevic
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Germany
| | - Qingtao Ni
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
31
|
Kato S, Liberona MF, Cerda-Infante J, Sánchez M, Henríquez J, Bizama C, Bravo ML, Gonzalez P, Gejman R, Brañes J, García K, Ibañez C, Owen GI, Roa JC, Montecinos V, Cuello MA. Simvastatin interferes with cancer 'stem-cell' plasticity reducing metastasis in ovarian cancer. Endocr Relat Cancer 2018; 25:821-836. [PMID: 29848667 DOI: 10.1530/erc-18-0132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 12/15/2022]
Abstract
Cell plasticity of 'stem-like' cancer-initiating cells (CICs) is a hallmark of cancer, allowing metastasis and cancer progression. Here, we studied whether simvastatin, a lipophilic statin, could impair the metastatic potential of CICs in high-grade serous ovarian cancer (HGS-ovC), the most lethal among the gynecologic malignancies. qPCR, immunoblotting and immunohistochemistry were used to assess simvastatin effects on proteins involved in stemness and epithelial-mesenchymal cell plasticity (EMT). Its effects on tumor growth and metastasis were evaluated using different models (e.g., spheroid formation and migration assays, matrigel invasion assays, 3D-mesomimetic models and cancer xenografts). We explored also the clinical benefit of statins by comparing survival outcomes among statin users vs non-users. Herein, we demonstrated that simvastatin modifies the stemness and EMT marker expression patterns (both in mRNA and protein levels) and severely impairs the spheroid assembly of CICs. Consequently, CICs become less metastatic in 3D-mesomimetic models and show fewer ascites/tumor burden in HGS-ovC xenografts. The principal mechanism behind statin-mediated effects involves the inactivation of the Hippo/YAP/RhoA pathway in a mevalonate synthesis-dependent manner. From a clinical perspective, statin users seem to experience better survival and quality of life when compared with non-users. Considering the high cost and the low response rates obtained with many of the current therapies, the use of orally or intraperitoneally administered simvastatin offers a cost/effective and safe alternative to treat and potentially prevent recurrent HGS-ovCs.
Collapse
Affiliation(s)
- S Kato
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - M F Liberona
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - J Cerda-Infante
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
- Department of Cellular and MolecularFaculty of Biological Sciences, PUC, Santiago, Chile
| | - M Sánchez
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
| | - J Henríquez
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
| | - C Bizama
- Department of PathologyFaculty of Medicine, PUC, Santiago, Chile
| | - M L Bravo
- Department of Physiological SciencesFaculty of Biological Sciences, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - P Gonzalez
- Department of Physiological SciencesFaculty of Biological Sciences, PUC, Santiago, Chile
| | - R Gejman
- Department of PathologyFaculty of Medicine, PUC, Santiago, Chile
| | - J Brañes
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - K García
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| | - C Ibañez
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - G I Owen
- Department of Physiological SciencesFaculty of Biological Sciences, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - J C Roa
- Department of PathologyFaculty of Medicine, PUC, Santiago, Chile
- Millennium Institute on Immunology and ImmunotherapyPUC, Santiago, Chile
| | - V Montecinos
- Department of Hematology and OncologyFaculty of Medicine, PUC, Santiago, Chile
| | - M A Cuello
- Division of Obstetrics and GynecologyFaculty of Medicine, Pontificia Universidad Católica de Chile (PUC), Santiago, Chile
| |
Collapse
|
32
|
Hao J, Jin X, Shi Y, Zhang H. miR-93-5p enhance lacrimal gland adenoid cystic carcinoma cell tumorigenesis by targeting BRMS1L. Cancer Cell Int 2018; 18:72. [PMID: 29760585 PMCID: PMC5944175 DOI: 10.1186/s12935-018-0552-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background Lacrimal adenoid cystic carcinoma (LACC) is one of the most common malignancies that affects lacrimal gland. MicroRNAs are known to play a crucial role as oncogenes or tumor suppressors. Specifically, miR-93 has been reported to play a crucial role in colorectal, breast, pancreatic, lung cancer and hepatocellular carcinoma. However, the role of miR-93 in LACC and the potential molecular mechanisms involved remain unknown. Therefore, we took the challenge to determine the involvement of miR-93 in the LACC by targeting BRMS1L. Method A total of 5 adenoid cystic carcinoma (ACC) of lacrimal gland patient tissues and their plasma were examined. Three normal lacrimal glands and three normal serums were collected as a control group. After surgical resection, the specimens were preserved in liquid nitrogen and stored at − 80 °C until RNA extraction. Afterwards, LACC cells with miR-93-5p overexpression were subjected to qRT-PCR and western blot for epithelial–mesenchymal transition (EMT) markers levels. Ability of LACC cell migration, invasion, proliferation and apoptosis was examined by wounded healing, transwell, CCK-8 and apoptosis assays. Afterwards, TargetScan was used to predict putative targets of miR-93-5p. Then, the examination was performed whether miR-93-5p targets BRMS1L by the use of luciferase reporter assays and western blotting. Finally, immunohistochemical staining was sone and all the images were taken using a microscope (Nikon, Tokyo). Results Our results showed that miR-93 was overexpressed in tissues and plasma of LACC patients compared to healthy controls. MiR-93 downregulated E-cadherin expression while increasing N-cadherin expression and significantly inhibited luciferase activity. Furthermore, western blotting results confirmed that miR-93-5p could inhibit BRMS1L expression. The BRMS1L staining in LACC tissues was weaker than in normal controls. In addition, miR-93-5p revealed a reverse correlation with the expression of BRMS1L. In addition, significant upregulation of E-cadherin and downregulation of N-cadherin were found when LACC cells were transfected with BRMS1L. Finally, miR-93-5p significantly enhanced TOP/FOP luciferase activity. Upregulation of BRMS1L reduced TOP/FOP luciferase activity while further overexpression of miR-93-5p could not rescue Wnt signaling activity. Conclusions Our findings report that miR-93 promotes LACC cell migration, invasion, and proliferation via targeting downregulation of BRMS1L through regulation of Wnt signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12935-018-0552-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Hao
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 194 Xuefu Road, Harbin, 150001 Heilongjiang China
| | - Xin Jin
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 194 Xuefu Road, Harbin, 150001 Heilongjiang China
| | - Yan Shi
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 194 Xuefu Road, Harbin, 150001 Heilongjiang China
| | - Hong Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, 194 Xuefu Road, Harbin, 150001 Heilongjiang China
| |
Collapse
|
33
|
Tian S, Zhang M, Chen X, Liu Y, Lou G. MicroRNA-595 sensitizes ovarian cancer cells to cisplatin by targeting ABCB1. Oncotarget 2018; 7:87091-87099. [PMID: 27893429 PMCID: PMC5349973 DOI: 10.18632/oncotarget.13526] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is among the leading cause of cancer-related deaths in females. In this study, we demonstrated that miR-595 expression was downregulated in the ovarian cancer tissues and cell lines. miR-595 expression was lower in the lymph node metastases tissues than in the primary ovarian cancer tissues and normal tissues. Furthermore, miR-595 overexpression suppressed the ovarian cancer cell proliferation, colony formation and invasion and promoted the sensitivity of ovarian cancer cell to cisplatin. We identified ABCB1 as a direct target gene of miR-595 in the ovarian cancer cell. ABCB1 expression was upregulated in the ovarian cancer tissues and cell lines. Morevoer, the expression level of ABCB1 was inversely correlated with miR-595 in the ovarian cancer tissues. In addition, overexpression of ABCB1 decreased the miR-595-overexpressing HO8910PM and SKOV-3 cell sensitivity to cisplatin. Ectopic expression of ABCB1 promoted the miR-595-overexpressing HO8910PM and SKOV-3 cell proliferation, colony formation and invasion. These data suggested that miR-595 acted a tumor suppressor role in ovarian cancer development and increased the sensitivity of ovarian cancer to cisplatin.
Collapse
Affiliation(s)
- Songyu Tian
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Mingyue Zhang
- Department of Anaesthesiology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Xiuwei Chen
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Yunduo Liu
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Ge Lou
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| |
Collapse
|
34
|
Guan H, Li W, Li Y, Wang J, Li Y, Tang Y, Lu S. MicroRNA-93 promotes proliferation and metastasis of gastric cancer via targeting TIMP2. PLoS One 2017; 12:e0189490. [PMID: 29220395 PMCID: PMC5722343 DOI: 10.1371/journal.pone.0189490] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/27/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are important regulators of pathobiological processes in various cancer. In the present study, we demonstrated that miR-93 expression was significantly up-regulated in gastric cancer tissues compared with that in matched normal mucosal tissues. High expression of miR-93 was significantly associated with lymph node metastasis and tumor-node-metastasis (TNM) stage. Functionally, ectopic expression of miR-93 promoted cell proliferation, migration, invasion, EMT phenotypes, and repressed apoptosis and G1 cell cycle arrest in vitro, and promoted tumor formation in vivo. We further identified that tissue inhibitor of metalloproteinase 2 (TIMP2) was a direct target of miR-93 by using luciferase reporter assay, qRT-PCR, and immunoblotting assay. Furthermore, knockdown of TIMP2 with specific siRNA showed similar oncogenic effects in gastric cancer cells with that transfected with miR-93 mimics. Our findings indicated that miR-93 serves as a tumor promoter in human gastric carcinogenesis by targeting TIMP2, suggesting that miR-93 might be a promising biomarker and therapeutic target for treatment of gastric cancer.
Collapse
Affiliation(s)
- Hao Guan
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Weiming Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yuanyuan Li
- Department of Translational Medicine Center, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jichang Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yanan Tang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Shaoying Lu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- * E-mail:
| |
Collapse
|
35
|
Zhang Y, Xu Z. miR-93 enhances cell proliferation by directly targeting CDKN1A in nasopharyngeal carcinoma. Oncol Lett 2017; 15:1723-1727. [PMID: 29434867 PMCID: PMC5774441 DOI: 10.3892/ol.2017.7492] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy of the head and neck with the highest incidence rate in southern China. The aim of the present study was to understand the molecular mechanisms that underlie the progression of NPC. The relative expression of miR-93 and CDKN1A was detected by the reverse-transcription quantitative PCR. Western blot analysis was applied to detect the protein levels of genes. Luciferase activity report was applied to verify the target of miRNA. Cell growth was assayed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. miR-93 was upregulated in NPC tissues and cell lines compared with normal samples. Re-expression of miR-93 promoted cell growth in vitro as determined by the MTT assay. CDKN1A was identified by luciferase reporter as a direct target of miR-93. Its expression was downregulated by miR-93. Furthermore, the results showed that the expression of miR-93 was inversely correlated with the expression of CDKN1A protein. miR-93 enhanced cell proliferation in NPC by directly targeting CDKN1A. It is suggested that miR-93/CDKN1A axis may present a new target for the treatment of NPC.
Collapse
Affiliation(s)
- Yingyao Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Zhina Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
36
|
Chen S, Wang LL, Sun KX, Xiu YL, Zong ZH, Chen X, Zhao Y. The role of the long non-coding RNA TDRG1 in epithelial ovarian carcinoma tumorigenesis and progression through miR-93/RhoC pathway. Mol Carcinog 2017; 57:225-234. [PMID: 28984384 DOI: 10.1002/mc.22749] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022]
Abstract
As one of the most frequently diagnosed cancers in women, the development and progression of epithelial ovarian carcinoma (EOC) remains an open area of research. The role of long non-coding RNAs (lncRNAs) in EOC is an emerging field of study. We found that LncRNA TDRG1 (human testis development-related gene 1) was highly expressed in EOC tissues than in normal ovarian tissues, and expression differed significantly with differentiation. LncRNA TDRG1 downregulation suppressed EOC cell proliferation, migration, and invasion, while its overexpression had the opposite effect. Bioinformatic predictions and dual-luciferase reporter assays showed that LncRNA TDRG1 has possible miRNA-93 (miR-93) binding sites. LncRNA TDRG1 downregulation upregulated miR-93 expression, while its overexpression reduced miR-93 expression. In addition, TDRG1 downregulation reduced the expression of Ras homolog gene family member C (RhoC), P70 ribosomal S6 kinase (P70S6 K), Bcl-xL, and matrix metalloproteinase 2 (MMP2) protein, which are regulated by miR-93, while its upregulation induced RhoC, P70S6 K, Bcl-xL, and MMP2 protein expression. In vivo, LncRNA TDRG1 overexpression induced tumor development and RhoC expression. Taken together, our results demonstrated for the first time that LncRNA TDRG1 may be a new and important diagnostic and therapeutic target in EOC.
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Li-Li Wang
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Yin-Ling Xiu
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, China
| | - Xi Chen
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China, Shenyang, China
| |
Collapse
|
37
|
Ma DH, Li BS, Liu JJ, Xiao YF, Yong X, Wang SM, Wu YY, Zhu HB, Wang DX, Yang SM. miR-93-5p/IFNAR1 axis promotes gastric cancer metastasis through activating the STAT3 signaling pathway. Cancer Lett 2017; 408:23-32. [PMID: 28842285 DOI: 10.1016/j.canlet.2017.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/11/2017] [Accepted: 08/13/2017] [Indexed: 01/23/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) plays an important role in gastric cancer (GC) development. miR-93-5p has shown opposing functions in different types of cancers, but the exact expression pattern and molecular mechanism of miR-93-5p in GC development remain to be elucidated. Here, we reported that miR-93-5p expression was increased in GC tissues compared with the adjacent normal tissues and that its overexpression was correlated with distant metastasis and poor survival in GC patients. miR-93-5p knockdown inhibited the migration, invasion and proliferation of GC cells in vitro and in vivo, while its overexpression displayed an opposite result. Using an mRNA microarray, we found that miR-93-5p significantly downregulated IFNAR1 expression in GC cells, which was further identified as a direct target of miR-93-5p. IFNAR1 knockdown promoted GC cell migration and invasion, but its restoration could rescue GC cell migration and invasion induced by miR-93-5p overexpression. Moreover, miR-93-5p-IFNAR1 axis increased MMP9 expression via STAT3 pathway in GC cells. Taken together, we reveal that miR-93-5p overexpression is associated with the poor survival of GC patients and miR-93-5p-IFNAR1 axis promotes GC metastasis through activation of STAT3 pathway.
Collapse
Affiliation(s)
- Dong-Hong Ma
- Department of Gastroenterology, No. 254 Hospital of PLA, Tianjin, 300142, PR China
| | - Bo-Sheng Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Jing-Jing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Shu-Ming Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Yu-Yun Wu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China
| | - Hong-Bin Zhu
- Department of Gastroenterology, No. 254 Hospital of PLA, Tianjin, 300142, PR China
| | - Dong-Xu Wang
- Department of Gastroenterology, No. 254 Hospital of PLA, Tianjin, 300142, PR China.
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, PR China.
| |
Collapse
|
38
|
Wu DD, Chen X, Sun KX, Wang LL, Chen S, Zhao Y. Role of the lncRNA ABHD11-AS 1 in the tumorigenesis and progression of epithelial ovarian cancer through targeted regulation of RhoC. Mol Cancer 2017; 16:138. [PMID: 28818073 PMCID: PMC5561620 DOI: 10.1186/s12943-017-0709-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There is increasing evidence in support of the role of lncRNAs in tumor cell proliferation, differentiation and apoptosis. METHODS We examined the expression of the lncRNA ABHD11-AS1 in epithelial ovarian cancer (EOC) tissues and normal ovarian tissues by real-time quantitative PCR (qRT-PCR). After inducing ABHD11-AS1 downregulation by small interfering RNA (siRNA) or ABHD11-AS1 overexpression by plasmid transfection, we examined the EOC cell phenotypes and expression of related molecules. RESULTS Expression of the lncRNA ABHD11-AS1 in EOC tissues was higher than that in normal ovarian tissue. It was positively associated with the tumor stage (stage I/II vs. stage III/IV), and it was lower in the well-differentiated group than in the poorly/moderately differentiated group. Overexpression of ABHD11-AS1 in the ovarian cancer cell lines A2780 and OVCAR3 promoted ovarian cancer cell proliferation, invasion and migration, and inhibited apoptosis. Silencing of ABHD11-AS1 had the opposite effect. Subcutaneous injection of tumor cells in nude mice showed that ABHD11-AS1 could significantly promote tumor growth. In addition, intraperitoneal injection of tumor cells in the nude mice resulted in an increase in the metastatic ability of the tumor. Further, overexpression of ABHD11-AS1 upregulated the expression of RhoC and its downstream molecules P70s6k, MMP2 and BCL-xL. Silencing of ABHD11-AS1 had the opposite effect. The RNA pull-down assay showed that ABHD11-AS1 can combine directly with RhoC. Silencing of RhoC was found to inhibit the cancer-promoting effects of lncRNA ABHD11-AS1. Thus, it seems that RhoC is a major target of the lncRNA ABHD11-AS1. CONCLUSIONS This is the first study to demonstrate the role of RhoC in the tumor-promoting effects of the lncRNA ABHD11-AS1. The present findings shed light on new therapeutic targets for ovarian cancer treatment.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Xi Chen
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Kai-Xuan Sun
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Li-Li Wang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Shuo Chen
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China
| | - Yang Zhao
- Department of Gynecology, the First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping Area, Liaoning, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
39
|
MicroRNAs for Detection of Pancreatic Neoplasia: Biomarker Discovery by Next-generation Sequencing and Validation in 2 Independent Cohorts. Ann Surg 2017; 265:1226-1234. [PMID: 27232245 PMCID: PMC5434964 DOI: 10.1097/sla.0000000000001809] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text Objective: The aim of our study was to analyze the miRNome of pancreatic ductal adenocarcinoma (PDAC) and its preneoplastic lesion intraductal papillary mucinous neoplasm (IPMN), to find new microRNA (miRNA)-based biomarkers for early detection of pancreatic neoplasia. Objective: Effective early detection methods for PDAC are needed. miRNAs are good biomarker candidates. Methods: Pancreatic tissues (n = 165) were obtained from patients with PDAC, IPMN, or from control individuals (C), from Hospital Clínic of Barcelona. Biomarker discovery was done using next-generation sequencing in a discovery set of 18 surgical samples (11 PDAC, 4 IPMN, 3 C). MiRNA validation was carried out by quantitative reverse transcriptase PCR in 2 different set of samples. Set 1—52 surgical samples (24 PDAC, 7 IPMN, 6 chronic pancreatitis, 15 C), and set 2—95 endoscopic ultrasound-guided fine-needle aspirations (60 PDAC, 9 IPMN, 26 C). Results: In all, 607 and 396 miRNAs were significantly deregulated in PDAC and IPMN versus C. Of them, 40 miRNAs commonly overexpressed in both PDAC and IPMN were selected for further validation. Among them, significant up-regulation of 31 and 30 miRNAs was confirmed by quantitative reverse transcriptase PCR in samples from set 1 and set 2, respectively. Conclusions: miRNome analysis shows that PDAC and IPMN have differential miRNA profiles with respect to C, with a large number of deregulated miRNAs shared by both neoplastic lesions. Indeed, we have identified and validated 30 miRNAs whose expression is significantly increased in PDAC and IPMN lesions. The feasibility of detecting these miRNAs in endoscopic ultrasound-guided fine-needle aspiration samples makes them good biomarker candidates for early detection of pancreatic cancer.
Collapse
|
40
|
Mandilaras V, Vernon M, Meryet-Figuière M, Karakasis K, Lambert B, Poulain L, Oza A, Denoyelle C, Lheureux S. Updates and current challenges in microRNA research for personalized medicine in ovarian cancer. Expert Opin Biol Ther 2017. [DOI: 10.1080/14712598.2017.1340935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Victoria Mandilaras
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mégane Vernon
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuière
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Katherine Karakasis
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Bernard Lambert
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
- Délégation régionale de Normandie, CNRS, Caen, France
| | - Laurent Poulain
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Amit Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Christophe Denoyelle
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
41
|
In vivo inhibitory effect of lentivirus-mediated RNA interference targeting RhoC on growth of SKOV3 cells. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7090-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Xiang Y, Liao XH, Yu CX, Yao A, Qin H, Li JP, Hu P, Li H, Guo W, Gu CJ, Zhang TC. MiR-93-5p inhibits the EMT of breast cancer cells via targeting MKL-1 and STAT3. Exp Cell Res 2017; 357:135-144. [PMID: 28499590 DOI: 10.1016/j.yexcr.2017.05.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in breast cancer cell metastasis. Both (megakaryoblastic leukemia)/myocardin-like 1 (MKL-1) and Signal transducer and activator of transcription 3 (STAT3) have been implicated in the control of cellular metabolism, survival and growth. Our previous study has shown that cooperativity of MKL-1 and STAT3 promoted breast cancer cell migration. Herein, we demonstrate a requirement for MKL-1 and STAT3 in miRNA-mediated cellular EMT to affect breast cancer cell migration. Here we show that cooperativity of MKL-1 and STAT3 promoted the EMT of MCF-7 cells. Importantly, MKL-1 and STAT3 promoted the expression of Vimentin via its promoter CArG box. Interestingly, miR-93-5p inhibits the EMT of breast cancer cells through suppressing the expression of MKL-1 and STAT3 via targeted their 3'UTR. These results demonstrated a novel pathway through which miR-93-5p regulates MKL-1 and STAT3 to affect EMT controlling breast cancer cell migration.
Collapse
Affiliation(s)
- Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China.
| | - Cheng-Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Ao Yao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Huan Qin
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Jia-Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Peng Hu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Wei Guo
- Shenzhen Ritzcon Biological Technology Co., LTD, Shenzhen, Guangdong 518000, PR China
| | - Chao-Jiang Gu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei 430081, PR China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
43
|
Palma Flores C, García-Vázquez R, Gallardo Rincón D, Ruiz-García E, Astudillo de la Vega H, Marchat LA, Salinas Vera YM, López-Camarillo C. MicroRNAs driving invasion and metastasis in ovarian cancer: Opportunities for translational medicine (Review). Int J Oncol 2017; 50:1461-1476. [PMID: 28393213 DOI: 10.3892/ijo.2017.3948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Epithelial ovarian cancer is the fifth most frequent cause of cancer death in women. In spite of the advantages in early detection and treatment options, overall survival rates have improved only slightly in the last decades. Therefore, alternative therapeutic approaches need to overcome resistance and improve the patient survival and outcome. MicroRNAs are evolutionary conserved small non-coding RNAs that function as negative regulators of gene expression by inhibiting translation or inducing degradation of messenger RNAs. In cancer, microRNAs are aberrantly expressed thus representing potential prognostic biomarkers and novel therapeutic targets. The knowledge of novel and unexpected functions of microRNAs is rapidly evolving and the advance in the elucidation of potential clinical applications deserves attention. Recently, a specific set of microRNAs dubbed as metastamiRs have been shown to initiate invasion and metastasis in diverse types of cancer. We reviewed the current status of microRNAs in development and progression of ovarian cancer with a special emphasis on tumor cells invasion and metastasis. Also, we show an update of microRNA functions in oncogenic pathways and discuss the current scenario for potential applications in clinical and translational research in ovarian cancer.
Collapse
Affiliation(s)
| | - Raúl García-Vázquez
- Molecular Biomedicine Program and Biotechnology Network, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Erika Ruiz-García
- Translational Medicine Laboratory, National Institute of Cancerology, Mexico City, Mexico
| | - Horacio Astudillo de la Vega
- Laboratory of Translational Cancer Research and Cellular Therapy, National Medical Center 'Siglo XXI', Mexico City, Mexico
| | - Laurence A Marchat
- Molecular Biomedicine Program and Biotechnology Network, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Yarely M Salinas Vera
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico
| | - César López-Camarillo
- Autonomous University of Mexico City, Genomics Sciences Program, Mexico City, Mexico
| |
Collapse
|
44
|
Paul S, Lakatos P, Hartmann A, Schneider-Stock R, Vera J. Identification of miRNA-mRNA Modules in Colorectal Cancer Using Rough Hypercuboid Based Supervised Clustering. Sci Rep 2017; 7:42809. [PMID: 28220871 PMCID: PMC5318911 DOI: 10.1038/srep42809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Differences in the expression profiles of miRNAs and mRNAs have been reported in colorectal cancer. Nevertheless, information on important miRNA-mRNA regulatory modules in colorectal cancer is still lacking. In this regard, this study presents an application of the RH-SAC algorithm on miRNA and mRNA expression data for identification of potential miRNA-mRNA modules. First, a set of miRNA rules was generated using the RH-SAC algorithm. The mRNA targets of the selected miRNAs were identified using the miRTarBase database. Next, the expression values of target mRNAs were used to generate mRNA rules using the RH-SAC. Then all miRNA-mRNA rules have been integrated for generating networks. The RH-SAC algorithm unlike other existing methods selects a group of co-expressed miRNAs and mRNAs that are also differentially expressed. In total 17 miRNAs and 141 mRNAs were selected. The enrichment analysis of selected mRNAs revealed that our method selected mRNAs that are significantly associated with colorectal cancer. We identified novel miRNA/mRNA interactions in colorectal cancer. Through experiment, we could confirm that one of our discovered miRNAs, hsa-miR-93-5p, was significantly up-regulated in 75.8% CRC in comparison to their corresponding non-tumor samples. It could have the potential to examine colorectal cancer subtype specific unique miRNA/mRNA interactions.
Collapse
Affiliation(s)
- Sushmita Paul
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, India
| | - Petra Lakatos
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Erlangen University Hospital and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
45
|
Li Z, Shen J, Chan MTV, Wu WKK. MicroRNA-379 suppresses osteosarcoma progression by targeting PDK1. J Cell Mol Med 2017; 21:315-323. [PMID: 27781416 PMCID: PMC5264134 DOI: 10.1111/jcmm.12966] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/04/2016] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumour. Increasing evidence has demonstrated the pathogenic role of microRNA (miRNAs) dysregulation in tumour development. miR-379 was previously reported to function as an oncogenic or tumour-suppressing miRNA in a tissue-dependent manner. However, its function in osteosarcoma remains unknown. In this study, we found that the expression of miR-379 was downregulated in osteosarcoma tissues and cell lines. Further functional characterization revealed that miR-379 suppressed osteosarcoma cell proliferation and invasion in vitro and retarded the growth of osteosarcoma xenografts in vivo. Mechanistically, PDK1 was identified as the direct target of miR-379 in osteosarcoma, in which PDK1 expression was up-regulated and showed inverse correlation with miR-379. Enforced expression of PDK1 promoted osteosarcoma cell proliferation and rescued the anti-proliferative effect of miR-379. These data suggest that miR-379 could function as a tumour-suppressing miRNA via targeting PDK1 in osteosarcoma.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianxiong Shen
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive CareState Key Laboratory of Digestive DiseaseLKS Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive CareState Key Laboratory of Digestive DiseaseLKS Institute of Health SciencesThe Chinese University of Hong KongHong KongChina
| |
Collapse
|
46
|
Liu BL, Sun KX, Zong ZH, Chen S, Zhao Y. MicroRNA-372 inhibits endometrial carcinoma development by targeting the expression of the Ras homolog gene family member C (RhoC). Oncotarget 2017; 7:6649-64. [PMID: 26673619 PMCID: PMC4872740 DOI: 10.18632/oncotarget.6544] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/16/2015] [Indexed: 01/29/2023] Open
Abstract
Here we explore the role of microRNA-372 (miR-372) in tumorigenesis and development of endometrial adenocarcinoma (EC) and analyze the underlying mechanism. We found that miR-372 expression is much lower in EC than normal endometrial specimens. Cell function experiments demonstrated that miR-372 overexpression suppressed cell proliferation, migration, and invasion, and led to a G1 phase arrest and promoted the apoptosis of endometrial carcinoma cells in vitro. The nude mouse xenograft assay demonstrated that miR-372 overexpression suppressed tumor growth. RT-PCR and Western blot assays detected the expression of known targets of miR-372 in other malignant tumors and found Cyclin A1 and Cyclin-dependent Kinase 2 (CDK2) was downregulated by miR-372. Bioinformatic predictions and dual-luciferase reporter assays found that RhoC was a possible target of miR-372. RT-PCR and Western blot assays demonstrated that miR-372 transfection reduced the expression of RhoC, matrix metalloproteinase 2 (MMP2) and MMP9, while it increased the expression of cleaved poly (ADP ribose) polymerase (PARP) and bcl-2-associated X protein (Bax). The cell function experiments that transfected siRNA with RhoC showed the same trend as those which were transfected with miR-372. Taken together, our results demonstrated for the first time that miR-372 suppresses tumorigenesis and the development of EC; RhoC is a new and potentially important therapeutic target.
Collapse
Affiliation(s)
- Bo-Liang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang 100013, China
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
47
|
Chen S, Chen X, Sun KX, Xiu YL, Liu BL, Feng MX, Sang XB, Zhao Y. MicroRNA-93 Promotes Epithelial-Mesenchymal Transition of Endometrial Carcinoma Cells. PLoS One 2016; 11:e0165776. [PMID: 27829043 PMCID: PMC5102435 DOI: 10.1371/journal.pone.0165776] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 10/18/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNA-93, derived from a paralog (miR-106b-25) of the miR-17-92 cluster, is involved in the tumorigenesis and progression of many cancers such as breast, colorectal, hepatocellular, lung, ovarian, and pancreatic cancer. However, the role of miR-93 in endometrial carcinoma and the potential molecular mechanisms involved remain unknown. Our results showed that miR-93 was overexpressed in endometrial carcinoma tissues than normal endometrial tissues. The endometrial carcinoma cell lines HEC-1B and Ishikawa were transfected with miR-93-5P, after which cell migration and invasion ability and the expression of relevant molecules were detected. MiR-93 overexpression promoted cell migration and invasion, and downregulated E-cadherin expression while increasing N-cadherin expression. Dual-luciferase reporter assay showed that miR-93 may directly bind to the 3' untranslated region of forkhead box A1 (FOXA1); furthermore, miR-93 overexpression downregulated FOXA1 expression while miR-93 inhibitor transfection upregulated FOXA1 expression at both mRNA and protein level. In addition, transfection with the most effective FOXA1 small interfering RNA promoted both endometrial cancer cell migration and invasion, and downregulated E-cadherin expression while upregulating N-cadherin expression. Therefore, we suggest that miR-93 may promote the process of epithelial-mesenchymal transition in endometrial carcinoma cells by targeting FOXA1.
Collapse
MESH Headings
- 3' Untranslated Regions
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Binding Sites
- Cadherins/genetics
- Cadherins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/metabolism
- Endometrial Neoplasms/pathology
- Endometrium/metabolism
- Endometrium/pathology
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- HEK293 Cells
- Hepatocyte Nuclear Factor 3-alpha/antagonists & inhibitors
- Hepatocyte Nuclear Factor 3-alpha/genetics
- Hepatocyte Nuclear Factor 3-alpha/metabolism
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xi Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yin-Ling Xiu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo-Liang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao-Xiao Feng
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiu-Bo Sang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
48
|
Sang XB, Sun KX, Wang LL, Chen S, Wu DD, Zong ZH, Zhao Y. Effects and mechanism of RhoC downregulation in suppressing ovarian cancer stem cell proliferation, drug resistance, invasion and metastasis. Oncol Rep 2016; 36:3267-3274. [PMID: 27748937 DOI: 10.3892/or.2016.5164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022] Open
Abstract
Cancer stem cells are considered to be the root cause of tumor initiation, metastasis, recurrence and therapeutic resistance. Recent studies have reported that RhoC plays a critical role in regulating cancer stem cells; however, its function in ovarian cancer stem cells (OCSCs) remains unknown. The ovarian cancer cell line A2780, and the paclitaxel-resistant A2780 cell line (A2780-PTX) were obtained. A2780 cells were used to isolate and identify the highly invasive A2780-PM cells, and A2780-PTX cells were used to isolate and identify the highly drug-resistant and highly invasive A2780-PTX-PM cells by Transwell assay. MTT, Transwell and wound healing assays were used to compare the differences in cell proliferation, invasion and migration ability among the four cell lines. Immunofluorescence was used to detect the expression of stem cell markers CD117 and CD133. OCSCs were sorted by flow cytometry. Following si-RhoC transfection of the OCSCs, cell proliferation, drug resistance, invasion and migration ability and RhoC, CD117 and CD133 expression levels were assayed. RT-PCR was used to assess RhoC, CD117, CD133 and matrix metalloproteinase 9 (MMP9) mRNA expression levels. A2780-PM and A2780‑PTX-PM cells exhibited higher cell proliferation, drug resistance, and invasion and migration ability than the A2780 and A2780-PTX cell lines. Furthermore, CD133 and CD117 expression levels were higher in the A2780-PM and A2780‑PTX-PM cells than levels in the A2780 and A2780-PTX cells. Transfection of si-RhoC in OCSCs suppressed the proliferation, drug resistance, invasion, migration and CD117 and CD133 expression levels. Furthermore, the expression levels of RhoC, CD117, CD133, MDR1, and MMP9 mRNA were downregulated in the transfected population. Taken together, our results demonstrated that RhoC downregulation may inhibit the proliferation, drug resistance, invasion and migration of OCSCs, and RhoC may play an important role in the formation of OCSCs.
Collapse
Affiliation(s)
- Xiu-Bo Sang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Kai-Xuan Sun
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Li-Li Wang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dan-Dan Wu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi-Hong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Heping, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
49
|
Ma Y, Lu Y, Lu B. MicroRNA and Long Non-Coding RNA in Ovarian Carcinoma: Translational Insights and Potential Clinical Applications. Cancer Invest 2016; 34:465-476. [PMID: 27673409 DOI: 10.1080/07357907.2016.1227446] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reliable biomarkers for the detection of early ovarian carcinoma are currently unavailable. MicroRNA and long non-coding RNA may be important in cancer initiation and progression by regulating gene expression through post-transcriptional mechanisms. MicroRNAs, such as miR-26a and miR-132, have been investigated as novel biomarkers for diagnosis, prognosis, monitoring of therapeutic response, and therapeutic targets in ovarian carcinomas. Some long non-coding RNAs, such as H19 and UCA1, may be involved in the pathogenesis of ovarian carcinomas. MicroRNA and long non-coding RNA have potential clinical utility in the diagnosis of ovarian cancer and predicting prognosis, metastasis, recurrence, and response to therapy.
Collapse
Affiliation(s)
- Yu Ma
- a Department of Clinical Laboratory , Women's Hospital, School of Medicine, Zhejiang University , China
| | - Yan Lu
- b Institute of Translational Medicine, School of Medicine , Zhejiang University , China
| | - Bingjian Lu
- c Department of Surgical Pathology , Women's Hospital, School of Medicine, Zhejiang University , China
| |
Collapse
|
50
|
Xin Y, Li Z, Shen J, Chan MTV, Wu WKK. CCAT1: a pivotal oncogenic long non-coding RNA in human cancers. Cell Prolif 2016; 49:255-60. [PMID: 27134049 DOI: 10.1111/cpr.12252] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) compose a group of non-protein-coding RNAs - more than 200 nucleotides in length. Recent studies have shown that lncRNAs play important roles in different cellular processes, including proliferation, differentiation, migration and invasion. Deregulation of lncRNAs has been widely reported in human tumours, in which they are able to function as either oncogenes (on the one hand) or tumour suppressor genes (on the other). Deregulation of CCAT1 (colon cancer-associated transcript-1), an oncogenic lncRNA, has been documented in different types of malignancy, such as gastric cancer, colorectal cancer and hepatocellular carcinoma. In this regard, enforced expression of CCAT1 exerts potent tumorigenic effects by promoting cell proliferation, invasion and migration. Recent evidence has also shown that CCAT1 may serve as a prognostic cancer biomarker. In this review, we provide an overview of current evidence relating to the role and biological function of CCAT1 in tumour development.
Collapse
Affiliation(s)
- Yu Xin
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Jianxiong Shen
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100042, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, China.,State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|