1
|
Liu X, Cortes E, Ji Y, Zhao K, Ho J, Liu YS, Davicioni E, Feng FY, Alumkal JJ, Spratt DE, Sweeney CJ, Yu H, Hu Q, Cheng Z, Zhang D, Chatta G, Nastiuk KL, Goodrich DW, Rycaj K, Jamroze A, Kirk JS, Puzanov I, Liu S, Wang J, Tang DG. Increasing Stemness Drives Prostate Cancer Progression, Plasticity, Therapy Resistance and Poor Patient Survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.27.650697. [PMID: 40458374 PMCID: PMC12129099 DOI: 10.1101/2025.04.27.650697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Cancer progression involves loss of differentiation and acquisition of stem cell-like traits, broadly referred to as "stemness". Here, we test whether the level of stemness, assessed by a transcriptome-derived Stemness score, can quantitatively track prostate cancer (PCa) development, progression, therapy resistance, metastasis, plasticity, and patient survival. Integrative analysis of transcriptomic data from 87,183 samples across 26 datasets reveals a progressive increase in Stemness and decline in pro-differentiation androgen receptor activity (AR-A) along the PCa continuum, with metastatic castration-resistant PCa (mCRPC) exhibiting the highest Stemness and lowest AR-A. Both the general Stemness score and a newly developed 12-gene "PCa-Stem Signature" correlate with and predict poor clinical outcomes. Mechanistically, increased AR-A may promote Stemness in early-stage PCa while MYC amplification and bi-allelic RB1 loss likely drive greatly elevated Stemness in mCRPC where AR-A is suppressed. Our findings establish Stemness as a robust quantitative measure of PCa aggressiveness and offer a scalable framework for PCa risk stratification.
Collapse
|
2
|
de Bono JS, He M, Shi Z, Nowicka M, Bracarda S, Sternberg CN, Chi KN, Olmos D, Sandhu S, Massard C, Matsubara N, Chen G, Bienz NS, Canter D, Wongchenko M, Sweeney C. Final Overall Survival and Molecular Data Associated with Clinical Outcomes in Patients Receiving Ipatasertib and Abiraterone in the Phase 3 IPATential150 Trial. Eur Urol 2025; 87:672-682. [PMID: 39884884 DOI: 10.1016/j.eururo.2024.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025]
Abstract
BACKGROUND AND OBJECTIVE In the phase 3 IPATential150 trial, ipatasertib addition to abiraterone significantly reduced the risk of disease progression in men with metastatic castration-resistant prostate cancer (mCRPC) with PTEN loss on immunohistochemistry (IHC), but not in the intention-to-treat (ITT) population. Here we report the final overall survival (OS) analysis and present results for prespecified and exploratory biomarker analyses. METHODS Patients were randomized to receive ipatasertib (400 mg once daily) or placebo. All patients received abiraterone (1000 mg once daily) and prednisone (5 mg twice daily). OS was assessed in patients with PTEN loss on IHC and the ITT population. Exploratory biomarker analyses included PTEN status via next-generation sequencing (NGS) and other key genomic alterations. KEY FINDINGS AND LIMITATIONS At final analysis (median follow-up 33.9 mo), ipatasertib addition did not improve OS for patients with PTEN loss in IHC (n = 521; stratified hazard ratio [sHR] 0.94, 95% confidence interval [CI] 0.76-1.17; p = 0.57) or the ITT population (n = 1101; sHR 0.91, 95% CI 0.79-1.07; not formally tested). Exploratory NGS assessments identified subgroups with genomic PTEN loss (n = 208) or PIK3CA/AKT1/PTEN alterations (n = 250), with potentially better outcomes from ipatasertib (HR 0.76, 95% CI 0.54-1.07; and HR 0.70, 95% CI 0.51-0.96, respectively). Limitations include the exploratory nature of the analysis, incomplete availability of NGS data, and potential intrapatient heterogeneity. CONCLUSIONS AND CLINICAL IMPLICATIONS Ipatasertib addition to abiraterone did not improve OS for men with mCRPC, regardless of PTEN status on IHC. Exploratory biomarker analyses identified additional genomic alterations of potential clinical relevance for AKT blockade in mCRPC that require further validation in prospective studies.
Collapse
Affiliation(s)
- Johann S de Bono
- Institute of Cancer Research and Royal Marsden Hospital London UK
| | - Meng He
- Genentech South San Francisco CA USA
| | - Zhen Shi
- Genentech South San Francisco CA USA
| | | | | | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, Meyer Cancer Center, NewYork-Presbyterian New York NY USA
| | | | - David Olmos
- Instituto de Investigación Sanitaria, Hospital Universitario 12 de Octubre Madrid Spain
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre and University of Melbourne Melbourne Australia
| | | | | | - Geng Chen
- Genentech South San Francisco CA USA
| | | | | | | | - Christopher Sweeney
- South Australian Immunogenomics Cancer Institute, University of Adelaide Adelaide Australia.
| |
Collapse
|
3
|
Feng E, Feng E, Berg T, Nguyen IS, Nguyen LG, Chen W, Zhang M, Quigley D, Sharifi M, Li H, Coleman I, Nelson PS, Sjöström M, Zhao SG. Identifying prognostic targets in metastatic prostate cancer beyond AR. FEBS Open Bio 2025. [PMID: 40405591 DOI: 10.1002/2211-5463.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/01/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
Genome-wide screens using CRISPR/RNAi can identify new therapeutic vulnerabilities in prostate cancer. In this study, we combine DepMap functional screen data with a large gene expression database (N = 1012) and clinical outcomes to identify potentially druggable targets. Eight genes (CYC, CYP51A1, DHFR, EBP, KIF15, PPM1D, SQLE, and UMPS) demonstrated strong dependency in cell lines and were also associated with worse prognosis clinically, representing potential therapeutic targets in metastatic prostate cancer. Four of these (DHFR, EBP, KIF15, and PPM1D) demonstrated higher expression in neuroendocrine prostate cancer. Furthermore, all but one (KIF15) were not significantly decreased from pretreatment to posttreatment, suggesting that they may remain targetable postabiraterone therapy. All eight genes showed evidence of protein expression in prostate cancers or cell lines. These potentially druggable targets associated with prostate cancer cell line dependency and worse clinical outcomes have also demonstrated literature support as potential targets, supporting further research into their potential clinical relevance as therapeutic targets in prostate cancer.
Collapse
Affiliation(s)
- Emily Feng
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - Eric Feng
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - Tracy Berg
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Isabella S Nguyen
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - Lilac G Nguyen
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - William Chen
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - David Quigley
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - Marina Sharifi
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Haolong Li
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ilsa Coleman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, CA, USA
- Lund University, Sweden
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
4
|
Erdmann É, Agolli S, Fix S, Cottard F, Keyser C, Zvenigorosky V, Gonzalez A, Haili Z, Kieffer B, Céraline J. Human-specific genomic evolution of a regulatory network enables fine-tuning of N-cadherin gene expression. Cell Mol Life Sci 2025; 82:196. [PMID: 40343501 PMCID: PMC12064536 DOI: 10.1007/s00018-025-05725-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Androgen receptor (AR), a member of the nuclear receptor superfamily controls prostate epithelial cell plasticity by repressing a panel of genes involved in epithelial-mesenchymal transition (EMT), including the human CDH2 gene encoding N-cadherin. At the opposite, pathological AR variants such as AR-V7 associated with prostate tumor progression upregulate those EMT genes. Here, focusing on the human CDH2 gene, we show that this duality between AR and AR-V7 relies on a potential human accelerated region present in the intron 1. This fastest-evolving region of the human genome is actually a variable number tandem repeat (VNTR) comprising 24 repetitions of a DNA sequence that englobes binding sites for steroid hormone receptors, recombination signal binding protein for immunoglobulin kappa j region (RBPJ) an effector of the Notch pathway, and zinc finger e-box binding homeobox 1 (ZEB1). Genomic DNA sequencing, multiple sequence alignment, data mining, as well as protein-DNA interaction and gene expression analyses indicate that this VNTR constitutes a potential transcriptional hub for different transcription factors to control human CDH2 expression. Also, our data suggest that prostate tumor cells may unlock an up to now unknown molecular mechanism associated with a fine-tuned control of human CDH2 gene expression.
Collapse
Affiliation(s)
- Éva Erdmann
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Savera Agolli
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Simon Fix
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Félicie Cottard
- CNRS UMR 7242, ESBS, Université de Strasbourg, Illkirch, 67404, France
| | | | | | - Angéla Gonzalez
- Strasbourg Institute of Legal Medicine, Strasbourg, 67085, France
| | - Zakary Haili
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Bruno Kieffer
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France
| | - Jocelyn Céraline
- CNRS UMR 7104, INSERM U1258, IGBMC, Université de Strasbourg, Illkirch, 67404, France.
- Hôpitaux Universitaires de Strasbourg, Strasbourg, 67091, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, Strasbourg, 67085, France.
- CNRS UMR 7104, INSERM U1258, IGBMC, 1, rue Laurent Fries, Illkirch, 67404, France.
| |
Collapse
|
5
|
Wang Y, Xue H, Zhu X, Lin D, Chen Z, Dong X, Chen J, Shi M, Ni Y, Cao J, Wu R, Kang C, Pang X, Crea F, Lin Y, Collins CC, Gleave ME, Parolia A, Chinnaiyan A, Ong CJ, Wang Y. Deciphering the Transcription Factor Landscape in Prostate Cancer Progression: A Novel Approach to Understand NE Transdifferentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404938. [PMID: 40091506 PMCID: PMC12120771 DOI: 10.1002/advs.202404938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Prostate cancer (PCa) stands as a leading cause of cancer-related mortality among men, with treatment-induced neuroendocrine prostate cancer (NEPC) posing a challenge as an ARPI-resistant subtype. The role of transcription factors (TFs) in PCa progression and NEPC transdifferentiation remains inadequately understood, underscoring a critical gap in current research. In this study, an internal Z score-based approach is developed to identify lineage-specific TF profiles in prostatic adenocarcinoma and NEPC for a nuanced understanding of TF expression dynamics. Distinct TF profiles for adenocarcinoma and NEPC are unveiled, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs, validated across multiple cohorts. Gene Ontology is employed to validate their biological and functional roles in PCa progression. Implications are revealed in cell development, differentiation, and lineage determination. Knockdown experiments suggest that lineage-TFs are functionally important in maintaining lineage-specific cell proliferation. Additionally, a longitudinal study on NE transdifferentiation highlights dynamic TF expression shifts, proposing a three-phases hypothesis for PCa progression mechanisms. This study introduces a groundbreaking approach for deciphering the TF landscape in PCa, providing a molecular basis for adenocarcinoma to NEPC progression, and paving the way for innovative treatment strategies with potential impact on patient outcomes.
Collapse
Affiliation(s)
- Yu Wang
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverV5Z 1M9Canada
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
| | - Xiaohui Zhu
- The First Affiliated Hospital of Jinan University, First Clinical Medical CollegeJinan UniversityGuangzhou510632P. R. China
| | - Dong Lin
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
| | - Zheng Chen
- The First Affiliated Hospital of Jinan University, First Clinical Medical CollegeJinan UniversityGuangzhou510632P. R. China
| | - Xin Dong
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
| | - Junru Chen
- Department of Urology, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Mingchen Shi
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverV5Z 1M9Canada
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
| | - Yuchao Ni
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverV5Z 1M9Canada
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
- Department of Urology, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jonathan Cao
- Department of Cell and Systems BiologyUniversity of TorontoTorontoM5S 3G5Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
| | - Connie Kang
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
| | - Xinyao Pang
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverV5Z 1M9Canada
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
| | - Francesco Crea
- Cancer Research Group, School of Life Health and Chemical SciencesThe Open UniversityMilton KeynesMK7 6AAUK
| | - Yen‐Yi Lin
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverV5Z 1M9Canada
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
| | - Colin C. Collins
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverV5Z 1M9Canada
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
| | - Martin E. Gleave
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverV5Z 1M9Canada
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
| | - Abhijit Parolia
- Michigan Center for Translational PathologyDepartment of UrologyUniversity of Michigan Medical SchoolRogel Cancer CenterUniversity of Michigan HospitalAnn Arbor48109USA
| | - Arul Chinnaiyan
- Michigan Center for Translational PathologyDepartment of UrologyUniversity of Michigan Medical SchoolRogel Cancer CenterUniversity of Michigan HospitalAnn Arbor48109USA
| | - Christopher J. Ong
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverV5Z 1M9Canada
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
| | - Yuzhuo Wang
- Department of Urologic SciencesFaculty of MedicineUniversity of British ColumbiaVancouverV5Z 1M9Canada
- Vancouver Prostate CentreVancouverV6H 3Z6Canada
- Department of Experimental Therapeutics, BC CancerVancouverV5Z 1L3Canada
| |
Collapse
|
6
|
Belge Bilgin G, Lucien-Matteoni F, Chaudhuri AA, Orme JJ, Childs DS, Muniz M, Li GG, Chauhan PS, Lee S, Gupta S, Thorpe MP, Johnson DR, Johnson GB, Kendi AT, Sartor O. Current and future directions in theranostics for neuroendocrine prostate cancer. Cancer Treat Rev 2025; 136:102941. [PMID: 40239461 DOI: 10.1016/j.ctrv.2025.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Neuroendocrine prostate cancer (NEPC) is rare at the time of initial diagnosis but much more common in patients treated with the combination of androgen deprivation therapy (ADT) and androgen receptor pathway inhibitors (ARPI) such as abiraterone and enzalutamide. NEPC is typically characterized by the loss of prostate-specific membrane antigen (PSMA) expression while exhibiting variable neuroendocrine markers. Recent advancements in nuclear medicine have provided a promising avenue for the development of molecular imaging techniques and targeted therapies tailored to NEPC. This review examines the current and future role of theranostics in the diagnosis and management of NEPC and explores potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | - Jacob J Orme
- Department of Oncology, Mayo Clinic Rochester, MN, USA
| | | | - Miguel Muniz
- Department of Oncology, Mayo Clinic Rochester, MN, USA
| | | | | | - SeungBaek Lee
- Department of Radiology, Mayo Clinic Rochester, MN, USA
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, MN, USA
| | | | | | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic Rochester, MN, USA; Department of Immunology, Mayo Clinic Rochester, MN, USA
| | | | - Oliver Sartor
- Department of Radiology, Mayo Clinic Rochester, MN, USA; Department of Urology, Mayo Clinic Rochester, MN, USA; Department of Oncology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
7
|
Zhuang R, Xie R, Peng S, Zhou Q, Lin W, Ou Y, Chen B, Su T, Li Z, Huang H, Li K, Duan Y. An anti-androgen resistance-related gene signature acts as a prognostic marker and increases enzalutamide efficacy via PLK1 inhibition in prostate cancer. J Transl Med 2025; 23:480. [PMID: 40289088 PMCID: PMC12034143 DOI: 10.1186/s12967-025-06457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Anti-androgen resistance remains a major clinical challenge in the treatment of prostate cancer (PCa), leading to disease progression and treatment failure. Despite extensive research on resistance mechanisms, a reliable prognostic model for predicting patient outcomes and guiding therapeutic strategies is still lacking. This study aimed to develop a novel gene signature related to anti-androgen resistance and evaluate its prognostic and therapeutic implications. METHODS Anti-androgen resistance-related differentially expressed genes (ARRDEGs) were identified through transcriptomic analysis of enzalutamide- and dual enzalutamide abiraterone-resistant PCa cell lines from the GEO database. Functional enrichment analysis was performed to determine the biological roles of these genes. A prognostic gene signature was developed using univariate Cox regression, LASSO, and multivariate Cox regression models. The model was validated in independent PCa cohorts from The Cancer Genome Atlas (TCGA). Additionally, we assessed the correlation between the signature, immune infiltration, immune checkpoint expression, and drug sensitivity. The efficacy of PLK1 inhibition combined with enzalutamide was further explored using in vitro and in vivo experiments. RESULTS We identified 304 ARRDEGs, from which three key genes (LMNB1, SSPO, and PLK1) were selected to construct a prognostic signature. This gene signature effectively stratified PCa patients into high- and low-risk groups, with the high-risk group exhibiting shorter recurrence-free survival and distinct immune characteristics. High-risk patients demonstrated elevated immune checkpoint expression (B7H3, CTLA-4, B7-1, and TIGIT), increased M2 macrophage infiltration, and enhanced sensitivity to chemotherapy and targeted therapy. Mechanistically, PLK1 inhibition potentiated the antitumor effect of enzalutamide by downregulating SLC7A11 and inducing ferroptosis, providing a potential therapeutic strategy to overcome anti-androgen resistance. CONCLUSION We established a novel ARRDEGs-based prognostic signature that predicts PCa progression and response to chemotherapy and targeted therapy. The integration of this signature with immune profiling and drug sensitivity analysis provides a valuable tool for precision oncology in PCa. Our findings highlight the potential of PLK1 inhibition as a therapeutic strategy to enhance enzalutamide efficacy and overcome resistance.
Collapse
Affiliation(s)
- Ruilin Zhuang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ruihui Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shirong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Weilong Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yuan Ou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Bingliang Chen
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tong Su
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zean Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Kaiwen Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Yu Duan
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Guo J, Li N, Liu Q, Hao Z, Zhu G, Wang X, Wang H, Pan Q, Xu B, Han Y, Zhang G, Lian Y, Zhang W, Gu Y, Lin N, Zeng X, Jin Z, Lan W, Jiang J, Gao D, Dong L, Yuan H, Liang C, Qin J. KMT2C deficiency drives transdifferentiation of double-negative prostate cancer and confer resistance to AR-targeted therapy. Cancer Cell 2025:S1535-6108(25)00139-4. [PMID: 40280125 DOI: 10.1016/j.ccell.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/25/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Double-negative prostate cancer (DNPC), characterized by an androgen receptor (AR)- and neuroendocrine-null phenotype, frequently emerges following androgen deprivation therapy (ADT). However, our understanding of the origins and regulatory mechanisms of DNPC remains limited. Here, we discover that tumors with KMT2C mutation or loss are highly susceptible to transitioning into DNPC following ADT. We clarify that DNPC primarily stems from luminal cell transdifferentiation rather than basal cell transformation. Antiandrogen treatment induces KMT2C binding at enhancers of a subset of AR-regulated genes, preserving the adenocarcinoma lineage. KMT2C maintains ASPP2 expression via enhancer-promoter communication post-AR inhibition, while its inactivation reduces ASPP2, triggering ΔNp63-dependent transdifferentiation. This DNPC transition maintains fatty acid (FA) synthesis through ΔNp63-mediated SREBP1c transactivation, fueling DNPC growth via HRAS palmitoylation and MAPK signaling activation. These findings highlight KMT2C as an epigenetic checkpoint against DNPC development and suggest the therapeutic potential of targeting fatty acid synthesis.
Collapse
Affiliation(s)
- Jiacheng Guo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ni Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China.
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongyao Hao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230022, China
| | - Guanghui Zhu
- West China School of Public Health, West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610000, China
| | - Xuege Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hanling Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiang Pan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Beitao Xu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Ying Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China
| | - Guoying Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yannan Lian
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wei Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongqiang Gu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Naiheng Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Xin Zeng
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zige Jin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| | - Huairui Yuan
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Chaozhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230022, China.
| | - Jun Qin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Jinfeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
9
|
Shen J, Lu L, Chen Z, Guo W, Wang S, Liu Z, Gong X, Qi Y, Jin R, Zhang C. Multi-omics analysis constructs a novel neuroendocrine prostate cancer classifier and classification system. Sci Rep 2025; 15:13901. [PMID: 40263498 PMCID: PMC12015331 DOI: 10.1038/s41598-025-96683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/31/2025] [Indexed: 04/24/2025] Open
Abstract
Neuroendocrine prostate cancer (NEPC), a subtype of prostate cancer (PCa) with poor prognosis and high heterogeneity, currently lacks accurate markers. This study aims to identify a robust NEPC classifier and provide new perspectives for resolving intra- tumoral heterogeneity. Multi-omics analysis included 19 bulk transcriptomics, 14 single-cell transcriptomics, 1 spatial transcriptomics, 16 published NE signatures and 10 cellular experiments combined with multiple machine learning algorithms to construct a novel NEPC classifier and classification. A comprehensive single-cell atlas of prostate cancer was created from 70 samples, comprising 196,309 cells, among which 9% were identified as NE cells. Within this framework and in combination with bulk transcriptomics, a total of 100 high-quality NE-specific feature genes were identified and differentiated into NEPup sig and NEPdown sig. The random forest (RF) algorithm proved to be the most effective classifier for NEPC, leading to the establishment of the NEP100 model, which demonstrated robust validation across various datasets. In clinical settings, the use of the NEP100 model can greatly improve the diagnostic and prognostic prediction of NEPC. Hierarchical clustering based on NEP100 revealed four distinct NEPC subtypes, designated VR_O, Prol_N, Prol_P, and EMT_Y, each of which presented unique biological characteristics. This allows us to select different targeted therapeutic strategies for different subtypes of phenotypic pathways. Notably, NEP100 expression correlated positively with neuroendocrine differentiation and disease progression, while the VR-NE phenotype dominated by VR_O cells indicated a propensity for treatment resistance. Furthermore, AMIGO2, a component of the NEP100 signature, was associated with chemotherapy resistance and a poor prognosis, indicating that it is a pivotal target for future therapeutic strategies. This study used multi-omics analysis combined with machine learning to construct a novel NEPC classifier and classification system. NEP100 provides a clinically actionable framework for NEPC diagnosis and subtyping.
Collapse
Affiliation(s)
- Junxiao Shen
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Luyuan Lu
- Department of General Surgery, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Zujie Chen
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wei Guo
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Shuwen Wang
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ziqiao Liu
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xuke Gong
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yiming Qi
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Ruyi Jin
- Department of Dermatology, NHC Key Laboratory of Immunodermatology, The First Hospital of China Medical University, China Medical University, Shenyang, 110001, People's Republic of China
| | - Cheng Zhang
- Department of Urology, The Fourth Affiliated Hospital of the School of Medicine, International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
10
|
Tang DG. Serotonin sets up neutrophil extracellular traps to promote neuroendocrine prostate cancer metastasis in the liver. J Clin Invest 2025; 135:e191687. [PMID: 40231471 PMCID: PMC11996856 DOI: 10.1172/jci191687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Castration-resistant prostate cancer frequently metastasizes to the liver, and prostate cancer liver metastases often present a neuroendocrine phenotype (i.e., neuroendocrine prostate cancer [NEPC]), but the underlying molecular underpinnings remain unclear. In this issue of the JCI, Liu et al. demonstrate that the neurotransmitter serotonin (also known as 5-hydroxytryptamine), produced by NEPC cells, gained access to and activated neutrophils by modifying histone 3 (H3) to form neutrophil extracellular traps, which in turn promoted NEPC macrometastases in the liver. The study suggests that blocking serotonin transport to neutrophils and inhibiting the enzymes that catalyze serotonin-mediated H3 modifications may represent alternative approaches to treating prostate cancer liver metastases.
Collapse
Affiliation(s)
- Dean G. Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Experimental Therapeutics Graduate Program, University at Buffalo and Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
11
|
Zhang L, Liu Y, Wen X, Zhang X, Fan P, Cao X. Integrated bioinformatics analysis reveals that OPRK1 inhibits ferroptosis and induces enzalutamide resistance in prostate cancer. Eur J Med Res 2025; 30:279. [PMID: 40229787 PMCID: PMC11998335 DOI: 10.1186/s40001-025-02484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Enzalutamide (Enz) is employed in the management of castration-resistant prostate cancer (CRPC). However, a substantial subset of patients may develop resistance to Enz, thereby reducing its therapeutic effectiveness. The underlying mechanisms contributing to the development of Enz resistance in PCa, whether arising from androgen deprivation or the burden of Enz treatment, remain inadequately understood. OPRK1 plays a key role in Enz resistance through ferroptosis inhibition, which is detected by the analysis of Gene Expression Omnibus (GEO) databases. Silencing OPRK1 via small interfering RNA (siRNA) resulted in the activation of ferroptosis signaling in LNCaP cells. These findings indicate that OPRK1 significantly contributes to Enz resistance in PCa and may serve as a promising therapeutic target for resistant patients.
Collapse
Affiliation(s)
- Liangrong Zhang
- Department of Urology, The First Hospital of Shanxi Medical University, 85 Jiefang South Street, Yingze District, Taiyuan, 030001, Shanxi, People's Republic of China
- Department of Urology, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, People's Republic of China
| | - Yanqin Liu
- Department of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, People's Republic of China
| | - Xiaodong Wen
- Department of Urology, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, People's Republic of China
| | - Xiangkai Zhang
- Department of Urology, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, People's Republic of China
| | - Peng Fan
- Department of Radiology, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, People's Republic of China
| | - Xiaoming Cao
- Department of Urology, The First Hospital of Shanxi Medical University, 85 Jiefang South Street, Yingze District, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
12
|
Zhao Z, Jing Y, Xu Z, Zhao H, He X, Lu T, Bai J, Qin W, Yang L. The mechanism of histone modifications in regulating enzalutamide sensitivity in advanced prostate cancer. Int J Biol Sci 2025; 21:2880-2890. [PMID: 40303302 PMCID: PMC12035886 DOI: 10.7150/ijbs.109638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/23/2025] [Indexed: 05/02/2025] Open
Abstract
Prostate cancer (PCa) is the second most common malignant tumor in men worldwide, particularly castration-resistant prostate cancer (CRPC), for which enzalutamide (Enz) resistance is of particular concern. Modifications to histone methylation and acetylation patterns are closely associated with resistance to Enz in these patients. As PCa progresses, cancer cells alter their histone modification patterns, leading to a reduction in Enz treatment efficacy. Signaling pathways in the tumor microenvironment regulate gene expression by affecting the activity of histone-modifying enzymes, further affecting the efficacy of Enz. This review summarizes recent research about changes in histone modification patterns that occur in drug resistance-related genes at different stages of PCa and explores the potential use of combination therapies for reversing this process, providing insights into novel treatment strategies to improve the clinical efficacy of Enz.
Collapse
Affiliation(s)
- Zhite Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuming Jing
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhicheng Xu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hongfan Zhao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xinglin He
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 710000, China
| | - Tong Lu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianhui Bai
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- Department of Urology, Joint Logistics Support Force, Hospital 987, Baoji, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lijun Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
13
|
Bergmann L, Greimeier S, Riethdorf S, Rohlfing T, Kaune M, Busenbender T, Strewinsky N, Dyshlovoy S, Joosse S, Peine S, Pantel K, von Amsberg G, Werner S. Transcriptional profiles of circulating tumor cells reflect heterogeneity and treatment resistance in advanced prostate cancer. J Exp Clin Cancer Res 2025; 44:111. [PMID: 40181402 PMCID: PMC11967125 DOI: 10.1186/s13046-025-03367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
PURPOSE New biomarkers for the detection and monitoring of aggressive variant prostate cancer (AVPC) including therapy-induced neuroendocrine prostate cancer (NEPC) are urgently needed, as measuring prostate-specific antigen (PSA) is not reliable in androgen-indifferent diseases. Molecular analysis of circulating tumor cells (CTC) enables repeated analysis for monitoring and allows to capture the heterogeneity of the disease. EXPERIMENTAL DESIGN 102 blood samples from 76 metastatic prostate cancer (mPC) patients, including 37 samples from histologically proven NEPC, were collected and CTCs were enriched using label-dependent and label-independent methods. Relevant transcripts were selected for CTC profiling using semi-quantitative RT-PCR analysis and validated in published datasets and cell lines. Transcriptional profiles in patient samples were analyzed using supervised and unsupervised methods. RESULTS CTC counts were increased in AVPC and NEPC as compared to metastatic hormone-sensitive prostate cancer (mHSPC). Gene expression profiles of CTCs showed a high degree of inter-patient heterogeneity, but NEPC-specific transcripts were significantly increased in patients with proven NEPC, while adenocarcinoma markers were decreased. Unsupervised analysis identified four distinct clusters of CTClow, ARhigh, amphicrine and pure NEPC gene expression profiles that reflected the clinical groups. Based on the transcript panel, NEPC could be distinguished from mHSPC or AVPC patients with a specificity of 95.5% and 88.2%, respectively. CONCLUSION Molecular subtypes of mPC can be distinguished by transcriptional profiling of CTCs. In the future, our convenient PCR-based analysis may complement the monitoring of advanced PCa patients and allow timely detection of resistance to androgen receptor pathway inhibitors.
Collapse
Affiliation(s)
- Lina Bergmann
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Sarah Greimeier
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Sabine Riethdorf
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Tina Rohlfing
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Moritz Kaune
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Tobias Busenbender
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Nadja Strewinsky
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sergey Dyshlovoy
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Joosse
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Gunhild von Amsberg
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Stefan Werner
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
- Mildred Scheel Cancer Career Centre HaTriCS4, University Medical Centre Hamburg- Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
14
|
Wang H, Zhang S, Pan Q, Guo J, Li N, Chen L, Xu J, Zhou J, Gu Y, Wang X, Zhang G, Lian Y, Zhang W, Lin N, Jin Z, Zang Y, Lan W, Cheng X, Tan M, Chen FX, Jiang J, Liu Q, Zheng M, Qin J. Targeting the histone reader ZMYND8 inhibits antiandrogen-induced neuroendocrine tumor transdifferentiation of prostate cancer. NATURE CANCER 2025; 6:629-646. [PMID: 40102673 DOI: 10.1038/s43018-025-00928-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/10/2025] [Indexed: 03/20/2025]
Abstract
The transdifferentiation from adenocarcinoma to neuroendocrine prostate cancer (NEPC) in men confers antiandrogen therapy resistance. Here our analysis combining CRISPR‒Cas9 screening with single-cell RNA sequencing tracking of tumor transition demonstrated that antiandrogen-induced zinc finger MYND-type containing 8 (ZMYND8)-dependent epigenetic programming orchestrates NEPC transdifferentiation. Ablation of Zmynd8 prevents NEPC development, while ZMYND8 upregulation mediated by achaete-scute homolog 1 promotes NEPC differentiation. We show that forkhead box protein M1 (FOXM1) stabilizes ZMYND8 binding to chromatin regions characterized by H3K4me1-H3K14ac modification and FOXM1 targeting. Antiandrogen therapy releases the SWI/SNF chromatin remodeling complex from the androgen receptor, facilitating its interaction with ZMYND8-FOXM1 to upregulate critical neuroendocrine lineage regulators. We develop iZMYND8-34, a small molecule designed to inhibit ZMYND8's histone recognition, which effectively blocks NEPC development. These findings reveal the critical role of ZMYND8-dependent epigenetic programming induced by androgen deprivation therapy in orchestrating lineage fate. Targeting ZMYND8 emerges as a promising strategy for impeding NEPC development.
Collapse
Affiliation(s)
- Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Jinfeng Laboratory, Chongqing, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Jinfeng Laboratory, Chongqing, China
| | - Lifan Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junyu Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jingyi Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yongqiang Gu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xuege Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yannan Lian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Naiheng Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zige Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | | | - Minjia Tan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
15
|
Nauseef JT, Chu TR, Hooper WF, Alonso A, Oku A, Geiger H, Goldstein ZR, Shah M, Sigouros M, Manohar J, Steinsnyder Z, Winterkorn L, Robinson BD, Sboner A, Beltran H, Elemento O, Hajirasouliha I, Imielinski M, Nanus DM, Tagawa ST, Robine N, Mosquera JM. A complex phylogeny of lineage plasticity in metastatic castration resistant prostate cancer. NPJ Precis Oncol 2025; 9:91. [PMID: 40155466 PMCID: PMC11953479 DOI: 10.1038/s41698-025-00854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/25/2025] [Indexed: 04/01/2025] Open
Abstract
Aggressive variant and androgen receptor (AR)-independent castration resistant prostate cancers (CRPC) represent the most significant diagnostic and therapeutic challenges in prostate cancer. This study examined a case of simultaneous progression of both adenocarcinoma and squamous tumors from the same common origin. Using whole-genome and transcriptome sequencing from 17 samples collected over >6 years, we established the clonal relationship of all samples, defined shared complex structural variants, and demonstrated both divergent and convergent evolution at AR. Squamous CRPC-associated circulating tumor DNA was identified at clinical progression prior to biopsy detection of any squamous differentiation. Dynamic changes in the detection rate of histology-specific clones in circulation reflected histology-specific sensitivity to treatment. This dataset serves as an illustration of non-neuroendocrine transdifferentiation and highlights the importance of serial sampling at progression in CRPC for the detection of emergent non-adenocarcinoma histologies with implications for the treatment of lineage plasticity and transdifferentiation in metastatic CRPC.
Collapse
Affiliation(s)
- Jones T Nauseef
- Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | | | | | - Alicia Alonso
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ali Oku
- New York Genome Center, New York, NY, USA
| | | | | | | | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Brian D Robinson
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Iman Hajirasouliha
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Marcin Imielinski
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Scott T Tagawa
- Division of Hematology & Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Lee J, Park J, Hur Y, Um D, Choi HS, Park J, Kim Y, Lee JS, Choi K, Kim E, Park YB, Choi JM, Kim TK, Lee Y. ETV5 reduces androgen receptor expression and induces neural stem-like properties during neuroendocrine prostate cancer development. Proc Natl Acad Sci U S A 2025; 122:e2420313122. [PMID: 40117308 PMCID: PMC11962414 DOI: 10.1073/pnas.2420313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Neuroendocrine prostate cancer (NEPC), an aggressive subtype induced by hormone therapy, lacks effective treatments. This study explored the role of E26 transformation-specific variant 5 (ETV5) in NEPC development. Analysis of multiple prostate cancer datasets revealed that NEPC is characterized by significantly elevated ETV5 expression compared to other subtypes. ETV5 expression increased progressively under hormone therapy through epigenetic modifications. ETV5 induced neural stem-like features in prostate cancer cells and facilitated their differentiation into NEPC under hormone treatment conditions, both in vitro and in vivo. Our molecular mechanistic study identified PBX3 and TLL1 as target genes of ETV5 that contribute to ETV5 overexpression-induced castration resistance and stemness. Notably, obeticholic acid, identified as an ETV5 inhibitor in this study, exhibited promising efficacy in suppressing NEPC development. This study highlights ETV5 as a key transcription factor that facilitates NEPC development and underscores its potential as a therapeutic target for this aggressive cancer subtype.
Collapse
Affiliation(s)
- Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Hyung-Seok Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Joonyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yewon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jeon-Soo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Eunjeong Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu41566, Republic of Korea
| | - Young Bin Park
- Calici Co., Ltd., Korea, Daejeon34134, Republic of Korea
| | - Jae-Mun Choi
- Calici Co., Ltd., Korea, Daejeon34134, Republic of Korea
- Department of Bio-Artificial Intelligence Convergence, Chungnam National University, Daejeon34134, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong30019, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| |
Collapse
|
17
|
Li S, Song K, Sun H, Tao Y, Huang A, Bhatia V, Hanratty B, Patel RA, Long HW, Morrissey C, Haffner MC, Nelson PS, Graeber TG, Lee JK. Defined cellular reprogramming of androgen receptor-active prostate cancer to neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637904. [PMID: 40027790 PMCID: PMC11870442 DOI: 10.1101/2025.02.12.637904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neuroendocrine prostate cancer (NEPC) arises primarily through neuroendocrine transdifferentiation (NEtD) as an adaptive mechanism of therapeutic resistance. Models to define the functional effects of putative drivers of this process on androgen receptor (AR) signaling and NE cancer lineage programs are lacking. We adapted a genetically defined strategy from the field of cellular reprogramming to directly convert AR-active prostate cancer (ARPC) to AR-independent NEPC using candidate factors. We delineated critical roles of the pioneer factors ASCL1 and NeuroD1 in NEtD and uncovered their abilities to silence AR expression and signaling by remodeling chromatin at the somatically acquired AR enhancer and global AR binding sites with enhancer activity. We also elucidated the dynamic temporal changes in the transcriptomic and epigenomic landscapes of cells undergoing acute lineage conversion from ARPC to NEPC which should inform future therapeutic development. Further, we distinguished the activities of ASCL1 and NeuroD1 from the inactivation of RE-1 silencing transcription factor (REST), a master suppressor of a major neuronal gene program, in establishing a NEPC lineage state and in modulating the expression of genes associated with major histocompatibility complex class I (MHC I) antigen processing and presentation. These findings provide important, clinically relevant insights into the biological processes driving NEtD of prostate cancer.
Collapse
Affiliation(s)
- Shan Li
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kai Song
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Huiyun Sun
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Yong Tao
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arthur Huang
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Vipul Bhatia
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Brian Hanratty
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Radhika A Patel
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Center for Functional Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, 98195, USA
| | - Michael C Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA. 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA. 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Medical Oncology, University of Washington, Seattle, WA, 98195, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - John K Lee
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Institute of Urologic Oncology, Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| |
Collapse
|
18
|
von Amsberg G, Dyshlovoy S, Kaune M. [Aggressive variant prostate cancer and transdifferentiated neuroendocrine prostate cancer: from diagnosis to therapy]. UROLOGIE (HEIDELBERG, GERMANY) 2025; 64:246-255. [PMID: 39928109 DOI: 10.1007/s00120-024-02511-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 02/11/2025]
Abstract
Aggressive variants of prostate cancer (AVPC) comprise a heterogeneous group of prostate carcinomas characterized by androgen-independent, aggressive tumor growth. Clinically, they are characterized by prostate-specific antigen (PSA)-negative progression and an atypical metastatic pattern with increased visceral and osteolytic metastasis. Based on immunohistochemistry and transcriptome profiling, AVPC are divided into four subgroups: neuroendocrine prostate cancer (NEPC), amphicrine prostate cancer, androgen receptor-low expressing prostate cancer and double-negative prostate cancer. However, differentiating between the subgroups can be challenging. For the transformation process of an adenocarcinoma into an AVPC, so-called transdifferentiation, the inactivation of the tumor suppressor genes RB1, PTEN and TP53 plays a crucial role. Epigenetic changes contribute to the development of stem cell-like properties. AVPC is mostly treated with platinum-based chemotherapy, depending on the subtype in combination with etoposide or a taxane. New therapeutic approaches are investigating the use of chemotherapy combinations with PARP inhibitors, checkpoint inhibitors or immunomodulators. In addition, T‑cell engagers have achieved initial promising results, particularly in NEPC. Treatment of AVPC patients in trials is desirable to improve evidence for this aggressive form of prostate cancer.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- Klinik für Onkologie und Hämatologie, Onkologisches Zentrum, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
- Uroonkologie an der Martini-Klinik, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland.
| | - Sergey Dyshlovoy
- Klinik für Onkologie und Hämatologie, Onkologisches Zentrum, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| | - Moritz Kaune
- Klinik für Onkologie und Hämatologie, Onkologisches Zentrum, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Deutschland
| |
Collapse
|
19
|
Suzuki H, Akamatsu S, Shiota M, Kakiuchi H, Kimura T. Triplet therapy for metastatic castration-sensitive prostate cancer: Rationale and clinical evidence. Int J Urol 2025; 32:239-250. [PMID: 39651632 PMCID: PMC11923528 DOI: 10.1111/iju.15647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024]
Abstract
Prostate cancer (PC) growth is hormone-dependent and it frequently develops distant metastases as disease progresses. Patients with metastatic castration-sensitive prostate cancer (mCSPC) initially respond to androgen deprivation therapy (ADT) but eventually become refractory and develop metastatic castration-resistant prostate cancer (mCRPC). Castration-resistance is associated with high lethality and metastases confer poor prognosis, therefore unmet needs in treatment for mCSPC remain high. So far, improvements in survival in mCSPC have been achieved by doublet combination therapy such as docetaxel or an androgen-receptor signaling inhibitor (ARSI) in addition to ADT. Further, recent phase 3 trials have shown that triplet therapy-a combination of ARSI, docetaxel, and ADT improves prognosis compared with docetaxel plus ADT in mCSPC. PC tumors manifest intra- and inter-tumoral heterogeneity at both the genetic and phenotypic level. As heterogeneity increases during sequential treatment and disease progression, it is reasonable to initiate combination therapy using drugs with different mechanisms of action early in the course of disease, such as mCSPC. Previous research about tumor heterogeneity and drug resistant mechanism support this rationale, as well as preclinical studies and real-world data provide the scientific evidence of benefit by combining ARSI and docetaxel. Here, we review the rationale and clinical evidence for triplet therapy in patients with mCSPC.
Collapse
Affiliation(s)
- Hiroyoshi Suzuki
- Department of UrologyToho University Sakura Medical CenterChibaJapan
| | | | | | - Haruka Kakiuchi
- Oncology Medical Affairs, Medical Affairs and PharmacovigilanceBayer Yakuhin Ltd.OsakaJapan
| | - Takahiro Kimura
- Department of UrologyThe Jikei University School of MedicineTokyoJapan
| |
Collapse
|
20
|
Fanelli GN, Nuzzo PV, Pederzoli F, Loda M. Deciphering Complexity: The Molecular Landscape of Castration-Resistant Prostate Cancer. Surg Pathol Clin 2025; 18:25-39. [PMID: 39890307 PMCID: PMC11787547 DOI: 10.1016/j.path.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Despite improvements in diagnosis and treatment approaches, prostate cancer (PC) remains a leading cause of cancer-related death in men. PC progresses through various stages, mostly driven by androgen receptor signaling. However, after androgen deprivation therapies, in a significant portion of patients, several different molecular mechanisms contribute to the development of castration resistance. Delving deeply into the molecular landscape of castration-resistant PC, grasping the selective pressures exerted by therapies, and understanding the drivers of lineage plasticity is pivotal to prevent progression. Targeting genetic and epigenetic alterations that drive this transition will guide clinical management strategies and possibly prevent and/or treat lethal disease.
Collapse
Affiliation(s)
- Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, Pisa 56125, Italy
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Filippo Pederzoli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
21
|
Sharifi MN, Feng E, Rydzewski NR, Taylor AK, Sperger JM, Shi Y, Helzer KT, Bootsma ML, Carreno V, Chang AH, Nunamaker LA, Blitzer GC, Shang TA, Subramanian A, Bjartell A, Josefsson A, Wikström P, Feng E, Kohli M, Yang R, Dehm SM, Small EJ, Aggarwal R, Quigley DA, Lang JM, Zhao SG, Sjöström M. Adverse prognosis gene expression patterns in metastatic castration-resistant prostate cancer. Mol Oncol 2025. [PMID: 39985777 DOI: 10.1002/1878-0261.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/21/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease. Several studies have identified transcriptional subtypes of mCRPC, but comprehensive analysis of prognostic gene expression pathways has been limited. Therefore, we aggregated a cohort of 1012 mCRPC tissue samples from 769 patients and investigated the association of gene expression-based pathways with clinical outcomes and intrapatient and intratumor heterogeneity. Survival data were obtained for 272 patients. Pathway-level enrichment was evaluated using gene set variation analysis. scRNA-seq datasets from mCRPC tissue biopsies and circulating tumor cells were used to investigate heterogeneity of adverse pathways. We identified five pathway clusters: (a) Immune response/WNT/TGF-beta signaling, (b) AR signaling/luminal signatures, (c) mTOR signaling and glycolysis, (d) cell proliferation, and (e) neuroendocrine differentiation. Proliferation, AR signaling loss, and glycolysis/mTOR signaling were independently prognostic. Adverse prognostic pathway scores decreased on treatment with AR signaling inhibitors, but not at progression, suggesting failure to permanently target these pathways. scRNA-seq datasets from mCRPC tissue biopsies and circulating tumor cells were used to investigate heterogeneity of adverse pathways. Our results suggest loss of AR signaling, high proliferation, and a glycolytic phenotype as adverse prognostic pathways in mCRPC that could be used in conjunction with clinical factors to prognosticate for treatment decisions.
Collapse
Affiliation(s)
- Marina N Sharifi
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, WI, USA
| | - Eric Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | | | - Amy K Taylor
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, WI, USA
| | - Jamie M Sperger
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, WI, USA
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin-Madison, WI, USA
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin-Madison, WI, USA
| | - Matthew L Bootsma
- Department of Human Oncology, University of Wisconsin-Madison, WI, USA
| | | | - Alex H Chang
- Department of Medicine, University of Wisconsin-Madison, WI, USA
| | | | - Grace C Blitzer
- Department of Human Oncology, University of Wisconsin-Madison, WI, USA
| | - Tianfu Andy Shang
- Department of Human Oncology, University of Wisconsin-Madison, WI, USA
| | - Aishwarya Subramanian
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Anders Bjartell
- Department of Translational Medicine, Lund University, Malmö, Sweden
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Andreas Josefsson
- Department of Diagnostics and Interventions, Urology, Umeå University, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, Sweden
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, Sweden
| | - Emily Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Manish Kohli
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Rendong Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Scott M Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Joshua M Lang
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, WI, USA
| | - Shuang G Zhao
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
- Department of Human Oncology, University of Wisconsin-Madison, WI, USA
- William S. Middleton Memorial Veterans' Hospital, Madison, WI, USA
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Sweden
- Department of Hematology, Oncology, and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
22
|
Fu Y, Chen J, Zhu X, Ding M, Wang H, Fu S. Roles and therapeutic potential of the SLC family in prostate cancer-literature review. BMC Urol 2025; 25:32. [PMID: 39966814 PMCID: PMC11837367 DOI: 10.1186/s12894-025-01714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in men worldwide. Despite advances in treatment, many patients develop resistance to conventional therapies. Solute carrier (SLC) proteins, as transmembrane transporters, have recently emerged as potential therapeutic targets due to their role in tumor metabolism and progression. This review summarizes the key roles of six SLC proteins in PCa, including their involvement in metabolic reprogramming, regulation of signaling pathways, and effects on the tumor microenvironment. Although targeting of SLC family members in prostate cancer remains an underexplored area, the growing body of evidence suggests that it holds potential for future development.
Collapse
Affiliation(s)
- Yuanzhi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China
- Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Junhao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China
| | - Xingcheng Zhu
- Department of Clinical Laboratory, The Second People's Hospital of Qujing City Qujing, Yunnan, China
| | - Mingxia Ding
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China.
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Wuhua District, Kunming, 650101, Yunnan, China.
| |
Collapse
|
23
|
Sipola J, Munzur AD, Kwan EM, Seo CCY, Hauk BJ, Parekh K, Liao YJ(R, Bernales CQ, Donnellan G, Bloise I, Fung E, Ng SWS, Wang G, Vandekerkhove G, Nykter M, Annala M, Maurice-Dror C, Chi KN, Herberts C, Wyatt AW, Takeda DY. Plasma Cell-Free DNA Chromatin Immunoprecipitation Profiling Depicts Phenotypic and Clinical Heterogeneity in Advanced Prostate Cancer. Cancer Res 2025; 85:791-807. [PMID: 39652574 PMCID: PMC11832346 DOI: 10.1158/0008-5472.can-24-2052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 12/04/2024] [Indexed: 02/18/2025]
Abstract
Cell phenotype underlies prostate cancer presentation and treatment resistance and can be regulated by epigenomic features. However, the osteotropic tendency of prostate cancer limits access to metastatic tissue, meaning most prior insights into prostate cancer chromatin biology are from preclinical models that do not fully represent disease complexity. Noninvasive chromatin immunoprecipitation of histones in plasma cell-free DNA (cfDNA) in humans may enable the capture of disparate prostate cancer phenotypes. In this study, we analyzed activating promoter- and enhancer-associated H3K4me2 from cfDNA in metastatic prostate cancer enriched for divergent patterns of metastasis and diverse clinical presentation. H3K4me2 density across prostate cancer genes, accessible chromatin, and lineage-defining transcription factor-binding sites correlated strongly with ctDNA fraction-demonstrating capture of prostate cancer-specific biology and informing the development of a statistical framework to adjust for ctDNA fraction. Chromatin hallmarks mirrored synchronously measured clinicogenomic features: bone- versus liver-predominant disease, serum PSA, biopsy-confirmed histopathologic subtype, and RB1 deletions convergently indicated phenotype segregation along an axis of differential androgen receptor activity and neuroendocrine identity. Detection of lineage switching after sequential progression on systemic therapy in select patients indicates potential use for individualized resistance monitoring. Epigenomic footprints of metastasis-induced normal tissue destruction were evident in bulk cfDNA from two patients. Finally, a public epigenomic resource was generated using a distinct chromatin marker that has not been widely investigated in prostate cancer. These results provide insights into the adaptive molecular landscape of aggressive prostate cancer and endorse plasma cfDNA chromatin profiling as a biomarker source and biological discovery tool. Significance: Plasma cell-free chromatin immunoprecipitation sequencing enables phenotypic dissection of lethal prostate cancer and is a practical tool for biomarker discovery while overcoming prior limitations of access to relevant tissue and reliance on model systems.
Collapse
Affiliation(s)
- Joonatan Sipola
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Asli D. Munzur
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Edmond M. Kwan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
- Department of Medicine, School of Clinical Sciences; Monash University; Melbourne, Victoria, Australia
| | - Clara C. Y. Seo
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Benjamin J. Hauk
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Karan Parekh
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Yi Jou (Ruby) Liao
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Cecily Q. Bernales
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Gráinne Donnellan
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Ingrid Bloise
- Instituto Brasileiro de Controle ao Cancer, Sao Paulo, Brazil
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Emily Fung
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Sarah W. S. Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gillian Vandekerkhove
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | - Matti Annala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere, Finland
| | | | - Kim N. Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | - Alexander W. Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - David Y. Takeda
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
24
|
Pitzen SP, Rudenick AN, Qiu Y, Zhang W, Munro SA, McCluskey BM, Forster C, Bergom HE, Ali A, Boytim E, Lafin JT, Linder S, Ismail M, Devlies W, Sessions CJ, Claessens F, Joniau S, Attard G, Zwart W, Nelson PS, Corey E, Wang Y, Lang JM, Beltran H, Strand D, Antonarakis ES, Hwang J, Murugan P, Huang RS, Dehm SM. Comparative transcriptomics reveals a mixed basal, club, and hillock epithelial cell identity in castration-resistant prostate cancer. Proc Natl Acad Sci U S A 2025; 122:e2415308122. [PMID: 39913208 PMCID: PMC11831193 DOI: 10.1073/pnas.2415308122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025] Open
Abstract
Inhibiting the androgen receptor (AR) is effective for treatment of advanced prostate cancers because of their AR-dependent luminal epithelial cell identity. Tumors progress during therapy to castration-resistant prostate cancer (CRPC) by restoring AR signaling and maintaining luminal identity or by converting through lineage plasticity to a neuroendocrine (NE) identity or double-negative CRPC (DNPC) lacking luminal or NE identities. Here, we show that DNPC cells express genes defining basal, club, and hillock epithelial cells from benign prostate. We identified KLF5 as a regulator of genes defining this mixed basal, club, and hillock cell identity in DNPC models. KLF5-mediated upregulation of RARG uncovered a DNPC sensitivity to growth inhibition by retinoic acid receptor agonists, which down-regulated KLF5 and up-regulated AR. These findings offer CRPC classifications based on prostate epithelial cell identities and nominate KLF5 and RARG as therapeutic targets for CRPC displaying a mixed basal, club, and hillock identity.
Collapse
Affiliation(s)
- Samuel P. Pitzen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
- Graduate Program in Molecular, Cellular, and Developmental Biology and Genetics, University of Minnesota, Minneapolis, MN55455
| | - Amber N. Rudenick
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
| | - Yinjie Qiu
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN55455
| | - Weijie Zhang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN55455
| | - Sarah A. Munro
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN55455
| | - Braedan M. McCluskey
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN55455
| | - Colleen Forster
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN55455
| | - Hannah E. Bergom
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN55455
- Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN55455
| | - Atef Ali
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN55455
- Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN55455
| | - Ella Boytim
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN55455
- Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN55455
| | - John T. Lafin
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Simon Linder
- Division on Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands1066 CX
| | - Mazlina Ismail
- Department of Oncology, University College London Cancer Institute, London, United KingdomWC1E 6BT
| | - Wout Devlies
- Department of Urology, University Hospitals Leuven, Leuven 3000, Belgium
- Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | | | - Frank Claessens
- Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Leuven 3000, Belgium
- Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Gerhardt Attard
- Department of Oncology, University College London Cancer Institute, London, United KingdomWC1E 6BT
- University College London Hospitals, LondonWC1E 6DN, United Kingdom
| | - Wilbert Zwart
- Division on Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands1066 CX
| | - Peter S. Nelson
- Division of Hematology and Oncology, University of Washington, Fred Hutchinson Cancer Center, SeattleWA98109
- Human Biology Division, Fred Hutchinson Cancer Center, SeattleWA98109
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA98195
| | - Yuzhuo Wang
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BCV6H 3Z6, Canada
- Department of Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, BCV5Z 1L3, Canada
| | - Joshua M. Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI53792
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI53792
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA02115
| | - Douglas Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN55455
- Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN55455
| | - Justin Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN55455
- Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN55455
| | - Paari Murugan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN55455
| | - R. Stephanie Huang
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN55455
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN55455
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN55455
- Department of Urology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
25
|
Graham LS, Su LJ, Nicklawsky A, Feng FX, Orlicky D, Petraccione J, Salzmann-Sullivan M, Nordeen SK, Flaig TW. Cell Models of Castration Resistant and High Dose Testosterone-Resistant Prostate Cancer Recapitulate the Heterogeneity of Response Observed in Clinical Practice. Cancers (Basel) 2025; 17:593. [PMID: 40002188 PMCID: PMC11852443 DOI: 10.3390/cancers17040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The use of supraphysiologic testosterone, particularly when alternated with an anti-androgen agent in men with metastatic castration-resistant prostate cancer (CRPC), has demonstrated promising results in clinical trials. As the use of this therapy in clinical practice is more widely adopted, there will be a growing need to understand the mechanisms of resistance. To that end, we independently derived three separate cell models of testosterone-sensitive CRPC. From each CRPC line, high dose testosterone-resistance (HTR) lines were selected. We demonstrated the differential response of the three CRPC lines to a high dose of testosterone in vitro and in vivo. We subsequently demonstrated the resistance of the HTR lines to testosterone and varying responses to testosterone withdrawal in vivo. The heterogeneity in responses to hormonal manipulation is correlated with varying levels of androgen receptor expression within the population. Overall, we show that we have developed three models of HTR that can be used to study the mechanisms of high dose testosterone resistance and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Laura S. Graham
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (J.P.); (M.S.-S.); (T.W.F.)
| | - Lih-Jen Su
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (J.P.); (M.S.-S.); (T.W.F.)
| | - Andrew Nicklawsky
- Biostatistics and Bioinformatics, University of Colorado Cancer Center, Aurora, CO 80045, USA;
| | - Frances Xiuyan Feng
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (F.X.F.); (D.O.); (S.K.N.)
| | - David Orlicky
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (F.X.F.); (D.O.); (S.K.N.)
| | - Joseph Petraccione
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (J.P.); (M.S.-S.); (T.W.F.)
| | - Maren Salzmann-Sullivan
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (J.P.); (M.S.-S.); (T.W.F.)
| | - Steven K. Nordeen
- Department of Pathology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (F.X.F.); (D.O.); (S.K.N.)
| | - Thomas W. Flaig
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; (L.-J.S.); (J.P.); (M.S.-S.); (T.W.F.)
| |
Collapse
|
26
|
Haffner MC, Morris MJ, Ding CKC, Sayar E, Mehra R, Robinson B, True LD, Gleave M, Lotan TL, Aggarwal R, Huang J, Loda M, Nelson PS, Rubin MA, Beltran H. Framework for the Pathology Workup of Metastatic Castration-Resistant Prostate Cancer Biopsies. Clin Cancer Res 2025; 31:466-478. [PMID: 39589343 PMCID: PMC11790385 DOI: 10.1158/1078-0432.ccr-24-2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Lineage plasticity and histologic transformation from prostate adenocarcinoma to neuroendocrine (NE) prostate cancer (NEPC) occur in up to 15% to 20% of patients with castration-resistant prostate cancer (CRPC) as a mechanism of treatment resistance and are associated with aggressive disease and poor prognosis. NEPC tumors typically display small cell carcinoma morphology with loss of androgen receptor (AR) expression and gain of NE lineage markers. However, there is a spectrum of phenotypes that are observed during the lineage plasticity process, and the clinical significance of mixed histologies or those that co-express AR and NE markers or lack all markers is not well defined. Translational research studies investigating NEPC have used variable definitions, making clinical trial design challenging. In this manuscript, we discuss the diagnostic workup of metastatic biopsies to help guide the reproducible classification of phenotypic CRPC subtypes. We recommend classifying CRPC tumors based on histomorphology (adenocarcinoma, small cell carcinoma, poorly differentiated carcinoma, other morphologic variant, or mixed morphology) and IHC markers with a priority for AR, NK3 homeobox 1, insulinoma-associated protein 1, synaptophysin, and cell proliferation based on Ki-67 positivity, with additional markers to be considered based on the clinical context. Ultimately, a unified workup of metastatic CRPC biopsies can improve clinical trial design and eventually practice.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chien-Kuang C. Ding
- Department of Anatomic Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Erolcan Sayar
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Tamara L. Lotan
- Departments of Pathology, Urology, Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rahul Aggarwal
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jiaoti Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mark A. Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
27
|
Miyahira AK, Sharifi M, Chesner LN, El-Kenawi A, Haas R, Sena LA, Tewari AK, Pienta KJ, Soule HR. Personalized Medicine: Leave no Patient Behind; Report From the 2024 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2025; 85:211-226. [PMID: 39604057 DOI: 10.1002/pros.24826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION The 11th Annual 2024 Coffey - Holden Prostate Cancer Academy (CHPCA) Meeting, was themed "Personalized Medicine: Leave No Patient Behind," and was held from June 20 to 23, 2024 at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA. METHODS The CHPCA Meeting is an academy-styled annual conference organized by the Prostate Cancer Foundation, to focus discussion on the most critical emerging research that have the greatest potential to advance knowledge of prostate cancer biology and treatment. The 2024 CHPCA Meeting was attended by 75 academic investigators and included 37 talks across 8 sessions. RESULTS The meeting sessions focused on: novel human, mouse and systems biology research models, novel immunotherapies for prostate cancer, efforts to overcome treatment resistance, the role of metabolism and diet in prostate cancer biology and as a therapeutic target, mechanisms that drive differentiation into neuroendocrine cancer subtypes, the evolving prostate cancer epigenome in disease progression and treatment resistance, and machine learning and advanced computational approaches for precision oncology. DISCUSSION This article summarizes the presentations and discussions from the 2024 CHPCA Meeting. We hope that sharing this knowledge will inspire and accelerate research into new discoveries and solutions for prostate cancer.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Marina Sharifi
- Department of Medicine and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lisa N Chesner
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Asmaa El-Kenawi
- Department of Urology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
| | - Roni Haas
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alok K Tewari
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Department of Science, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
28
|
Furlano K, Keshavarzian T, Biernath N, Fendler A, de Santis M, Weischenfeldt J, Lupien M. Epigenomics-guided precision oncology: Chromatin variants in prostate tumor evolution. Int J Cancer 2025. [PMID: 39853587 DOI: 10.1002/ijc.35327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025]
Abstract
Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases. As cellular plasticity is largely driven by non-genetic events, complementary studies in cancer epigenomics are now being conducted to identify chromatin variants. These variants, defined as genomic loci in cancer cells that show changes in chromatin state due to the loss or gain of epigenomic marks, inclusive of histone post-translational modifications, DNA methylation and histone variants, are considered the fundamental units of epigenomic heterogeneity. In prostate cancer chromatin variants hold the promise of guiding the new era of precision oncology. In this review, we explore the role of epigenomic heterogeneity in prostate cancer, focusing on how chromatin variants contribute to tumor evolution and therapy resistance. We therefore discuss their impact on cellular plasticity and stochastic events, highlighting the value of single-cell sequencing and liquid biopsy epigenomic assays to uncover new therapeutic targets and biomarkers. Ultimately, this review aims to support a new era of precision oncology, utilizing insights from epigenomics to improve prostate cancer patient outcomes.
Collapse
Affiliation(s)
- Kira Furlano
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Tina Keshavarzian
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Nadine Biernath
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Fendler
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
| | - Maria de Santis
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Joachim Weischenfeldt
- Department of Urology, Charité- Universitätsmedizin Berlin, Berlin, Germany
- Biotech Research & Innovation Centre (BRIC), The Finsen Laboratory, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Oyende Y, Taus LJ, Fatatis A. IL-1β in Neoplastic Disease and the Role of Its Tumor-Derived Form in the Progression and Treatment of Metastatic Prostate Cancer. Cancers (Basel) 2025; 17:290. [PMID: 39858071 PMCID: PMC11763358 DOI: 10.3390/cancers17020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since its discovery, IL-1β has taken center stage as a key mediator of a very broad spectrum of diseases revolving around immuno-mediated and inflammatory events. Predictably, the pleiotropic nature of this cytokine in human pathology has led to the development of targeted therapeutics with multiple treatment indications in the clinic. Following the accumulated findings of IL-1β's central modulatory role in the immune system and the implication of inflammatory pathways in cancer, the use of IL-1β antagonists was first proposed and then also pursued for oncology disorders. However, this approach has consistently relied on the perceived need of interfering with IL-1β synthesized and secreted by immune cells. Herein, we discuss the importance of IL-1β derived from cancer cells which impacts primary tumors, particularly metastatic lesions, separately from and in addition to its more recognized role in immune-mediated inflammatory events. To this end, we focus on the instrumental contribution of IL-1β in the establishment and progression of advanced prostate adenocarcinoma. Special emphasis is placed on the potential role that the standard-of-care treatment strategies for prostate cancer patients have in unleashing IL-1β expression and production at metastatic sites. We conclude by reviewing the therapeutics currently used for blocking IL-1β signaling and propose a rationale for their concomitant use with standard-of-care treatments to improve the clinical outcomes of advanced prostate cancer.
Collapse
Affiliation(s)
- Yetunde Oyende
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Y.O.); (L.J.T.)
| | - Luke J. Taus
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Y.O.); (L.J.T.)
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Y.O.); (L.J.T.)
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
30
|
Ding E, Pinho-Schwermann M, Zhang S, Purcell C, El-Deiry WS. Small cell lung cancer and prostate cancer cells with varying neuroendocrine differentiation markers show sensitivity to imipridone ONC201/TIC10. Am J Transl Res 2025; 17:104-115. [PMID: 39959215 PMCID: PMC11826210 DOI: 10.62347/ibus3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/10/2024] [Indexed: 02/18/2025]
Abstract
OBJECTIVES To investigate whether neuroendocrine differentiation (NED) markers, activation of the integrated stress response (ISR), and TRAIL pathway alter neuroendocrine tumor (NET) cell death and ONC201 sensitivity. METHODS We conducted cell viability assays to determine ONC201 sensitivity. Western blot analysis was performed to evaluate NED, ISR, and TRAIL pathway markers. Expression levels of NED markers were compared between cell lines with and without BRN2 overexpression. RESULTS Prostate cancer (PCa) and small cell lung cancer (SCLC) cell lines (N = 6) were sensitive to ONC201. Endogenous NET marker levels varied across PCa and SCLC cells. Transient BRN2 overexpression slightly reduced some NET markers while maintaining the sensitivity of PCa cells to ONC201. CONCLUSIONS PCa cell lines exhibit sensitivity to ONC201, with variability of NED features. These findings are relevant to the design of future studies evaluating imipridone efficacy in PCa and suggest that non-NET patients could be included in such studies.
Collapse
Affiliation(s)
- Elizabeth Ding
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Maximillian Pinho-Schwermann
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Shengliang Zhang
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Translational Cancer Therapeutics, The Warren Alpert Medical School of Brown UniversityProvidence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown UniversityProvidence, RI 02903, USA
- Division of Hematology-Oncology, Department of Medicine, Rhode Island Hospital and Brown UniversityProvidence, RI 02903, USA
- The Joint Program in Cancer Biology, Brown University and The Lifespan Health SystemProvidence, RI 02903, USA
| |
Collapse
|
31
|
Chauhan PS, Alahi I, Sinha S, Ledet EM, Mueller R, Linford J, Shiang AL, Webster J, Greiner L, Yang B, Ni G, Dang HX, Saha D, Babbra RK, Feng W, Harris PK, Qaium F, Duose DY, Alexander SE, Sherry AD, Jaeger EB, Miller PJ, Caputo SA, Orme JJ, Lucien F, Park SS, Tang C, Pachynski RK, Sartor O, Maher CA, Chaudhuri AA. Genomic and Epigenomic Analysis of Plasma Cell-Free DNA Identifies Stemness Features Associated with Worse Survival in Lethal Prostate Cancer. Clin Cancer Res 2025; 31:151-163. [PMID: 39177583 PMCID: PMC11743868 DOI: 10.1158/1078-0432.ccr-24-1658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Metastatic castration-resistant prostate cancer (mCRPC) resistant to androgen receptor signaling inhibitors (ARSI) is often lethal. Liquid biopsy biomarkers for this deadly form of disease remain under investigation, and underpinning mechanisms remain ill-understood. EXPERIMENTAL DESIGN We applied targeted cell-free DNA (cfDNA) sequencing to 126 patients with mCRPC from three academic cancer centers and separately performed genome-wide cfDNA methylation sequencing on 43 plasma samples collected prior to the initiation of first-line ARSI treatment. To analyze the genome-wide sequencing data, we performed nucleosome positioning and differential methylated region analysis. We additionally analyzed single-cell and bulk RNA sequencing data from 14 and 80 patients with mCRPC, respectively, to develop and validate a stem-like signature, which we inferred from cfDNA. RESULTS Targeted cfDNA sequencing detected AR/enhancer alterations prior to first-line ARSIs that correlated with significantly worse progression-free survival (P = 0.01; HR = 2.12) and overall survival (P = 0.02; HR = 2.48). Plasma methylome analysis revealed that AR/enhancer lethal mCRPC patients have significantly higher promoter-level hypomethylation than AR/enhancer wild-type mCRPC patients (P < 0.0001). Moreover, gene ontology and CytoTRACE analysis of nucleosomally more accessible transcription factors in cfDNA revealed enrichment for stemness-associated transcription factors in patients with lethal mCRPC. The resulting stemness signature was then validated in a completely held-out cohort of 80 patients with mCRPC profiled by tumor RNA sequencing. CONCLUSIONS We analyzed a total of 220 patients with mCRPC, validated the importance of cell-free AR/enhancer alterations as a prognostic biomarker in lethal mCRPC, and showed that the underlying mechanism for lethality involves reprogramming developmental states toward increased stemness. See related commentary by Nawfal et al., p. 7.
Collapse
Affiliation(s)
- Pradeep S. Chauhan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Irfan Alahi
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Savar Sinha
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elisa M. Ledet
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Ryan Mueller
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jessica Linford
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | | | - Jace Webster
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Lilli Greiner
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Breanna Yang
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gabris Ni
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ha X. Dang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University in St. Louis, Missouri, United States of America
| | - Debanjan Saha
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ramandeep K. Babbra
- Wilmot Institute Cancer Center, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Wenjia Feng
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter K. Harris
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Faridi Qaium
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Dzifa Y. Duose
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Sanchez E. Alexander
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Alexander D. Sherry
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ellen B. Jaeger
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Patrick J. Miller
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Sydney A. Caputo
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Jacob J. Orme
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, United States of America
| | - Fabrice Lucien
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sean S. Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, United States of America
| | - Chad Tang
- Department of Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Russell K. Pachynski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, Missouri, United States of America
| | - Oliver Sartor
- Division of Oncology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Urology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christopher A. Maher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- McDonnell Genome Institute, Washington University in St. Louis, Missouri, United States of America
- Siteman Cancer Center, Washington University in St. Louis, Missouri, United States of America
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Aadel A. Chaudhuri
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
32
|
Brea L, Yu J. Tumor-intrinsic regulators of the immune-cold microenvironment of prostate cancer. Trends Endocrinol Metab 2025:S1043-2760(24)00325-4. [PMID: 39753502 DOI: 10.1016/j.tem.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025]
Abstract
Prostate cancer (PC) is a notoriously immune-cold tumor in that it often lacks substantial infiltration by antitumor immune cells, and in advanced diseases such as neuroendocrine PC, it could be devoid of immune cells. A majority of PC patients thus have, unfortunately, been unable to benefit from recent advances in immunotherapies. What causes this immunosuppressive microenvironment around PC? In this review, we discuss various genetic and epigenetic regulators intrinsic to prostate tumor cells that could have profound effects on the tumor microenvironment, thus contributing to this immune-cold status. It will be essential to target the cancer cells themselves in order to change the tumor microenvironment to harness existing and developing immunotherapies that had great success in other tumors.
Collapse
Affiliation(s)
- Lourdes Brea
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Jindan Yu
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
33
|
Wu X, Ma L, Zhang Y, Liu S, Cheng L, You C, Dong Z. Application progress of nanomaterials in the treatment of prostate cancer. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:1-12. [PMID: 39187009 DOI: 10.1016/j.pharma.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Prostate cancer is one of the most common malignant tumors in men, which seriously threatens the survival and quality of life of patients. At present, there are serious limitations in the treatment of prostate cancer, such as drug tolerance, drug resistance and easy recurrence. Sonodynamic therapy and chemodynamic therapy are two emerging tumor treatment methods, which activate specific drugs or sonosensitizers through sound waves or chemicals to produce reactive oxygen species and kill tumor cells. Nanomaterials are a kind of nanoscale materials with many excellent physical properties such as high targeting, drug release regulation and therapeutic monitoring. Sonodynamic therapy and chemodynamic therapy combined with the application of nanomaterials can improve the therapeutic effect of prostate cancer, reduce side effects and enhance tumor immune response. This article reviews the application progress of nanomaterials in the treatment of prostate cancer, especially the mechanism, advantages and challenges of nanomaterials in sonodynamic therapy and chemodynamic therapy, which provides new ideas and prospects for research in this field.
Collapse
Affiliation(s)
- Xuewu Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Longtu Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Yang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Shuai Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Long Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Chengyu You
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Zhilong Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China.
| |
Collapse
|
34
|
Li F, Dai P, Shi H, Zhang Y, He J, Gopalan A, Li D, Chen Y, Du Y, Xu G, Yang W, Liang C, Gao D. LKB1 inactivation promotes epigenetic remodeling-induced lineage plasticity and antiandrogen resistance in prostate cancer. Cell Res 2025; 35:59-71. [PMID: 39743630 PMCID: PMC11701123 DOI: 10.1038/s41422-024-01025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 01/04/2025] Open
Abstract
Epigenetic regulation profoundly influences the fate of cancer cells and their capacity to switch between lineages by modulating essential gene expression, thereby shaping tumor heterogeneity and therapy response. In castration-resistant prostate cancer (CRPC), the intricacies behind androgen receptor (AR)-independent lineage plasticity remain unclear, leading to a scarcity of effective clinical treatments. Utilizing single-cell RNA sequencing on both human and mouse prostate cancer samples, combined with whole-genome bisulfite sequencing and multiple genetically engineered mouse models, we investigated the molecular mechanism of AR-independent lineage plasticity and uncovered a potential therapeutic strategy. Single-cell transcriptomic profiling of human prostate cancers, both pre- and post-androgen deprivation therapy, revealed an association between liver kinase B1 (LKB1) pathway inactivation and AR independence. LKB1 inactivation led to AR-independent lineage plasticity and global DNA hypomethylation during prostate cancer progression. Importantly, the pharmacological inhibition of TET enzymes and supplementation with S-adenosyl methionine were found to effectively suppress AR-independent prostate cancer growth. These insights shed light on the mechanism driving AR-independent lineage plasticity and propose a potential therapeutic strategy by targeting DNA hypomethylation in AR-independent CRPC.
Collapse
MESH Headings
- Male
- Animals
- Humans
- Epigenesis, Genetic/drug effects
- Mice
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- AMP-Activated Protein Kinase Kinases
- DNA Methylation/drug effects
- Cell Line, Tumor
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/metabolism
- Cell Lineage
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Plasticity/drug effects
- AMP-Activated Protein Kinases
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Pengfei Dai
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huili Shi
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajuan Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan He
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Anuradha Gopalan
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Li
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yarui Du
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Guoliang Xu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Yang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
35
|
Nouruzi S, Zoubeidi A. LKB1 inactivation unleashes prostate cancer lineage plasticity. Cell Res 2025; 35:5-6. [PMID: 39743629 PMCID: PMC11701086 DOI: 10.1038/s41422-024-01030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Affiliation(s)
- Shaghayegh Nouruzi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|
36
|
Chen W, Mao Y, Zhan Y, Li W, Wu J, Mao X, Xu B, Shu F. Exosome-delivered NR2F1-AS1 and NR2F1 drive phenotypic transition from dormancy to proliferation in treatment-resistant prostate cancer via stabilizing hormonal receptors. J Nanobiotechnology 2024; 22:761. [PMID: 39695778 DOI: 10.1186/s12951-024-03025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
Cancer cells acquire the ability to reprogram their phenotype in response to targeted therapies, yet the transition from dormancy to proliferation in drug-resistant cancers remains poorly understood. In prostate cancer, we utilized high-plasticity mouse models and enzalutamide-resistant (ENZ-R) cellular models to elucidate NR2F1 as a key factor in lineage transition and ENZ resistance. Depletion of NR2F1 drives ENZ-R cells into a relative dormancy state, characterized by reduced proliferation and heightened drug resistance, while NR2F1 overexpression yields contrasting outcomes. Transcriptional sequencing analysis of NR2F1-silenced prostate cancer cells and tissues from the Cancer Genome Atlas-prostate cancer and SU2C cohorts indicated exosomes as the most enriched cell component, with pathways implicated in steroid hormone biosynthesis and drug metabolism. Moreover, NR2F1-AS1 forms a complex with SRSF1 to upregulate NR2F1 expression, facilitating its binding with ESR1 to sustain hormonal receptor expression and enhance proliferation in ENZ-R cells. Furthermore, HnRNPA2B1 interacts with NR2F1 and NR2F1-AS1, assisting their packaging into exosomes, wherein exosomal NR2F1 and NR2F1-AS1 promote the proliferation of dormant ENZ-R cells. Our works offer novel insights into the reawaking of dormant drug-resistant cancer cells governed by NR2F1 upregulation triggered by exosome-derived NR2F1-AS1 and NR2F1, suggesting therapeutic potential for phenotype reversal.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yiyou Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - YiYuan Zhan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenfeng Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jun Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Fangpeng Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Celada SI, Li G, Celada LJ, Kanagasabai T, Lu W, Brown LK, Mark ZA, Izban MG, Ballard BR, Zhou X, Adunyah SE, Matusik RJ, Wang X, Chen Z. Castration-resistant prostate cancer is resensitized to androgen deprivation by autophagy-dependent apoptosis induced by blocking SKP2. Sci Signal 2024; 17:eadk4122. [PMID: 39689183 PMCID: PMC11784317 DOI: 10.1126/scisignal.adk4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/04/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Resistance to androgen receptor (AR)-targeted therapies for prostate cancer (PCa) is characteristic of an aggressive subtype called castration-resistant prostate cancer (CRPC) and is often associated with tumor relapse. Both relapse and poor prognosis in patients with CRPC are associated with increased abundance of the E3 ubiquitin ligase SKP2. Therefore, we investigated the therapeutic potential of combined inhibition of AR and SKP2 for CRPC. We found that combined targeting of AR and SKP2 with small-molecule inhibitors decreased proliferation in two CRPC cell lines in culture and in xenografts in humanized mice. Furthermore, combined therapy in mice markedly decreased the growth of Pten/Trp53 double-knockout tumors, a particularly invasive model of CRPC, whereas disruption of either AR or SKP2 alone only modestly suppressed their growth. Mechanistically, the inhibition of SKP2 in CRPC cells induced autophagy-dependent apoptosis and promoted luminal-associated phenotypes, which promoted responsiveness to AR-targeted therapy. These effects were further enhanced by coinhibition of AR and were not induced by the AR inhibitor alone. Our findings indicate that targeting both AR and SKP2 signaling pathways is necessary to treat CRPC.
Collapse
Affiliation(s)
- Sherly I. Celada
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Guoliang Li
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Lindsay J. Celada
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Wenfu Lu
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - LaKendria K. Brown
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Zaniya A. Mark
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Michael G. Izban
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Billy R. Ballard
- Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Robert J. Matusik
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaofei Wang
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Zhenbang Chen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
38
|
Lu X, Keo V, Cheng I, Xie W, Gritsina G, Wang J, Jin Q, Jin P, Yue F, Sanda MG, Corces V, Altemose N, Zhao JC, Yu J. Epigenetic remodeling and 3D chromatin reorganization governed by NKX2-1 drive neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626816. [PMID: 39677680 PMCID: PMC11643106 DOI: 10.1101/2024.12.04.626816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A significant number of castration-resistant prostate cancer (CRPC) evolve into a neuroendocrine (NE) subtype termed NEPC, leading to resistance to androgen receptor (AR) pathway inhibitors and poor clinical outcomes. Through Hi-C analyses of a panel of patient-derived xenograft tumors, here we report drastically different 3D chromatin architectures between NEPC and CRPC samples. Such chromatin re-organization was faithfully recapitulated in vitro on isogenic cells undergoing NE transformation (NET). Mechanistically, neural transcription factor (TF) NKX2-1 is selectively and highly expressed in NEPC tumors and is indispensable for NET across various models. NKX2-1 preferentially binds to gene promoters, but it interacts with chromatin-pioneering factors such as FOXA2 at enhancer elements through chromatin looping, further strengthening FOXA2 binding at NE enhancers. Conversely, FOXA2 mediates regional DNA demethylation, attributing to NE enhancer priming and inducing NKX2-1 expression, forming a feed-forward loop. Single-cell multiome analyses of isogenic cells over time-course NET cells identify individual cells amid luminal-to-NE transformation, exhibiting intermediate epigenetic and transcriptome states. Lastly, NKX2-1/FOXA2 interacts with, and recruits CBP/p300 proteins to activate NE enhancers, and pharmacological inhibitors of CBP/p300 effectively blunted NE gene expression and abolished NEPC tumor growth. Thus, our study reports a hierarchical network of TFs governed by NKX2-1 in regulating the 2D and 3D chromatin re-organization during NET and uncovers a promising therapeutic approach to eradicate NEPC.
Collapse
|
39
|
Nouruzi S, Namekawa T, Tabrizian N, Kobelev M, Sivak O, Scurll JM, Cui CJ, Ganguli D, Zoubeidi A. ASCL1 regulates and cooperates with FOXA2 to drive terminal neuroendocrine phenotype in prostate cancer. JCI Insight 2024; 9:e185952. [PMID: 39470735 PMCID: PMC11623946 DOI: 10.1172/jci.insight.185952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024] Open
Abstract
Lineage plasticity mediates resistance to androgen receptor pathway inhibitors (ARPIs) and progression from adenocarcinoma to neuroendocrine prostate cancer (NEPC), a highly aggressive and poorly understood subtype. Neuronal transcription factor ASCL1 has emerged as a central regulator of the lineage plasticity driving neuroendocrine differentiation. Here, we showed that ASCL1 was reprogrammed in ARPI-induced transition to terminal NEPC and identified that the ASCL1 binding pattern tailored the expression of lineage-determinant transcription factor combinations that underlie discrete terminal NEPC identity. Notably, we identified FOXA2 as a major cofactor of ASCL1 in terminal NEPC, which is highly expressed in ASCL1-driven NEPC. Mechanistically, FOXA2 and ASCL1 interacted and worked in concert to orchestrate terminal neuronal differentiation. We identified that prospero homeobox 1 was a target of ASCL1 and FOXA2. Targeting prospero homeobox 1 abrogated neuroendocrine characteristics and led to a decrease in cell proliferation in vitro and tumor growth in vivo. Our findings provide insights into the molecular conduit underlying the interplay between different lineage-determinant transcription factors to support the neuroendocrine identity and nominate prospero homeobox 1 as a potential target in ASCL1-high NEPC.
Collapse
Affiliation(s)
- Shaghayegh Nouruzi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Takeshi Namekawa
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Nakisa Tabrizian
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Maxim Kobelev
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Olena Sivak
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Joshua M Scurll
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Cassandra Jingjing Cui
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | | | - Amina Zoubeidi
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
40
|
Abreu AP, Gomes J, Mota J, Almeida AP, Carvalhal R, Vidal F, Medeiros R, Sousa H, Lawall M, Gil da Costa RM, Brito HO, Brito LMO. GSTM1 and GSTT1 deletions in penile cancer are associated with TNM stage but not with HPV DNA status. Pathol Res Pract 2024; 264:155686. [PMID: 39481227 DOI: 10.1016/j.prp.2024.155686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Deletions of the GSTT1 and GSTM1 are associated with chemical carcinogenesis and genitourinary malignancies like bladder cancer, where they correlate with increased tumor aggressiveness. In uterine cervical lesions, GSTT1 and GSTM1 deletions have also been suggested to facilitate the persistence of human papillomavirus (HPV) infection and HPV-induced carcinogenesis. This work addresses the hypothesis that GSTT1/GSTM1 deletions are associated with presence of HPV DNA and aggressiveness in penile cancer, a rare malignancy with HPV+ and HPV- subtypes. Tumor DNA samples and medical records from HPV+ and HPV- penile cancer patients were analyzed. Each sample was screened for GSTT1 and GSTM1 deletions and for the presence of HPV DNA using PCR-based techniques. 74.5 % of samples contained HPV DNA. 61.8 % of cases showed T2 and T3 staging. There were no differences in the frequencies of GSTT1/GSTM1 genotypes between HPV+ and HPV- cases (p>0.05). GSTT1wt/GSTMnull patients were more likely to have higher TNM stages compared with other genotypes (p=0.012), but no differences were observed concerning perineural invasion nor lymphovascular invasion. These findings indicate that GSTT1 and GSTM1 deletions are common in HPV+ and HPV- penile cancers. GSTM1 deletions in the presence of wild-type GSTT1 seems to be associated with tumor progression, and additional studies are warranted to confirm its potential as a prognostic marker in penile cancer.
Collapse
Affiliation(s)
- Ana Paula Abreu
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| | - Jhessica Gomes
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| | - Jucileide Mota
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| | - Ana Paula Almeida
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| | - Rita Carvalhal
- Federal University of Maranhão University Hospital (HUUFMA), Rua Barão de Itapary, 227 - Centro, São Luís, Maranhão 65020-070, Brazil.
| | - Flávia Vidal
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil; Department of Morphology, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão 65080-805, Brazil.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal.
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal.
| | - Melaine Lawall
- Department of Morphology, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão 65080-805, Brazil.
| | - Rui M Gil da Costa
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil; Department of Morphology, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão 65080-805, Brazil; Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, Porto 4200-072, Portugal; Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, Porto 4200-465, Portugal.
| | - Haissa O Brito
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil; Department of Morphology, Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966 - Bacanga, São Luís, Maranhão 65080-805, Brazil.
| | - Luciane M O Brito
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), Av. dos Portugueses, 1966, São Luís, Maranhão 65080-805, Brazil.
| |
Collapse
|
41
|
Guo W, Zhang X, Li L, Shao P, Liang C, Zhang H, Liu K, Wang S, Peng Y, Luo J, Ju Y, De Marzo AM, Yu C, Chen L, Zhou B, Gao D. JAK/STAT signaling maintains an intermediate cell population during prostate basal cell fate determination. Nat Genet 2024; 56:2776-2789. [PMID: 39537874 DOI: 10.1038/s41588-024-01979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Unipotent basal and luminal stem cells maintain prostate homeostasis, with an intermediate cell population emerging during prostate inflammation or cancer. However, the identities of basal stem cell and intermediate cell population remain unclear. Here we identified a rare intermediate cell population expressing luminal markers (termed Basal-B) with enhanced organoid formation capacity, and a larger basal population (termed Basal-A). Genetic lineage tracing revealed Basal-B cells represented a transient basal stem cell state during prostate homeostasis and androgen-mediated regeneration. Activated JAK/STAT signaling was identified in Basal-B cells, and its inhibition significantly reduced Basal-B markers expression. Inflammation increased Basal-B-to-luminal cell transdifferentiation, but JAK/STAT inhibition notably attenuated this effect. Pten gene deletion increased Nkx3.1-expressing Basal-B-like cell population and led to neoplasia. In humans, h-Basal-B cells were more prevalent in benign prostate hyperplasia. This study reveals the identities of intermediate Basal-B cells and underscores the role of JAK/STAT signaling in prostate cell fate determination.
Collapse
Affiliation(s)
- Wangxin Guo
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xiaoyu Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Shao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Liang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjiong Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kuo Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuoming Wang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunyi Peng
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Luo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Ju
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Angelo M De Marzo
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chen Yu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Luonan Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, China.
| | - Bin Zhou
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, China.
| | - Dong Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
42
|
Liao J, Liao J, Zhang M, Yu Y, Cai L, Le K, Fu W, Qin Y, Hou T, Li D, Sheng R. Identification of Oral Bioavailable Coumarin Derivatives as Potential AR Antagonists Targeting Prostate Cancer. J Med Chem 2024; 67:19395-19416. [PMID: 39492719 DOI: 10.1021/acs.jmedchem.4c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Androgen receptor (AR) is a crucial driver of prostate cancer (PCa), but acquired resistance to AR antagonists significantly undermines their clinical efficacy. We previously discovered coumarin derivative 1, which is capable of disrupting AR ligand-binding domain dimers, offering the potential for overcoming resistance. However, its poor oral bioavailability limited further development. In this study, comprehensive structure optimizations led to compound 4a (IC50 = 0.051 μM), which exhibited comparable AR antagonistic activity to enzalutamide (IC50 = 0.060 μM) and demonstrated excellent selectivity over other nuclear receptors in vitro. Especially, 4a showed superior efficacy against ARF876L/T877A and ARW741C mutants compared to darolutamide and enzalutamide. Moreover, 4a exhibited favorable pharmacokinetic profiles (F = 66.24%) in vivo and significant tumor growth inhibition in an LNCaP xenograft mouse model upon oral administration. These results highlight the potential of 4a as a promising oral AR antagonist for overcoming drug resistance in PCa.
Collapse
Affiliation(s)
- Jinbiao Liao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianing Liao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Minkui Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanzhen Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lvtao Cai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321000 Zhejiang, China
| | - Kaixin Le
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321000 Zhejiang, China
| | - Weitao Fu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiyang Qin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingjun Hou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Dan Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321000 Zhejiang, China
| | - Rong Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321000 Zhejiang, China
| |
Collapse
|
43
|
Oka T, Hatano K, Tani M, Yoshimura A, Horibe Y, Liu Y, Sassi N, Okuda Y, Yamamoto A, Uemura T, Yamamichi G, Ishizuya YU, Yamamoto Y, Kato T, Kawashima A, Fujita K, Nonomura N. PSA Kinetics Affect Prognosis in Patients With Castration-resistant Prostate Cancer Treated With Enzalutamide. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:706-714. [PMID: 39502601 PMCID: PMC11534038 DOI: 10.21873/cdp.10385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 11/08/2024]
Abstract
Background/Aim There is little evidence regarding the predictive value of prostate-specific antigen (PSA) kinetics in patients with castration-resistant prostate cancer treated with an androgen receptor signaling inhibitor. This study investigated the correlation between PSA kinetics and prognosis in patients with castration-resistant prostate cancer treated with enzalutamide. Patients and Methods We analyzed data from 103 patients who received enzalutamide as primary treatment for castration-resistant prostate cancer at our hospital, focusing on the associations between overall survival and PSA kinetics variables, such as maximal PSA response, PSA nadir, and time to PSA nadir. Results The median PSA level at the initiation of enzalutamide was 18.1 ng/ml (interquartile range=7.9-61.2 ng/ml). The median maximal PSA response rate was 88% (interquartile range 55-98), and the median PSA nadir was 1.84 (interquartile range (IQR)=0.38-14.7) ng/ml. The median time to PSA nadir was 19 (IQR=6-28.5) weeks. Maximal PSA response rate <90% [hazard ratio (HR)=2.28, 95% confidence interval (CI)=1.03-5.03, p=0.0413], PSA nadir >2 ng/ml (HR=2.30, 95%CI=1.05-5.07, p=0.0379), time to nadir <19 weeks (HR=2.48, 95%CI=1.15-5.35, p=0.0204) were all independently predictive of shortened overall survival even after adjusting for pre-treatment factors. Conclusion Maximal PSA response, PSA nadir, and time to PSA nadir correlated with survival in patients with castration-resistant prostate cancer receiving enzalutamide as a first-line therapy.
Collapse
Affiliation(s)
- Toshiki Oka
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaru Tani
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Yoshimura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Horibe
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yutong Liu
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nesrine Sassi
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yohei Okuda
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akinaru Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshihiro Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Gaku Yamamichi
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Y U Ishizuya
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiyuki Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
44
|
Zhao F, Zhang T, Wei J, Chen L, Liu Z, Jin Y, Liu M, Zhou H, Hu Y, Sheng X. Integrated single-cell transcriptomic analyses identify a novel lineage plasticity-related cancer cell type involved in prostate cancer progression. EBioMedicine 2024; 109:105398. [PMID: 39418984 PMCID: PMC11530610 DOI: 10.1016/j.ebiom.2024.105398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cancer cell plasticity is the ability of neoplastic cells to alter their identity and acquire new biological properties under microenvironmental pressures. In prostate cancer (PCa), lineage plasticity often results in therapy resistance and trans-differentiation to neuroendocrine (NE) lineage. However, identifying the cancer cells harboring lineage plasticity-related status remains challenging. METHODS Based on 13 multi-center human PCa bulk transcriptomic cohorts (samples = 3314) and 9 bulk transcriptomic datasets derived from PCa experimental models, we established an integrated lineage plasticity-related gene signature, termed LPSig. Leveraging this gene signature, AUCell enrichment analysis was applied to identify the cell population with high lineage plasticity from a comprehensive single-cell RNA-sequencing (scRNA-seq) meta-atlas assembled by us, which consisted of 10 public human PCa scRNA-seq datasets (samples = 93, cells = 222,529). Moreover, additional scRNA-seq dataset of human PCa, multiplex immunohistochemistry staining for human PCa tissues, in vitro and in vivo functional experiments, as well as qPCR and Western blot analyses were employed to validate our findings. FINDINGS We found that LPSig could finely capture the dynamics of tumor lineage plasticity throughout the progression of PCa, accurately estimating the status of lineage plasticity. Based on LPSig, we identified a previously undefined minority population of lineage plasticity-related PCa cells (LPCs) from the human PCa scRNA-seq meta-atlas assembled by this study. Furthermore, in-depth dissection revealed pivotal roles of LPCs in trans-differentiation, tumor recurrence, and poor patient survival during PCa progression. Furthermore, we identified HMMR as a representative cell surface marker for LPCs, which was validated using additional scRNA-seq datasets and multiplexed immunohistochemistry. Moreover, HMMR was transcriptionally inhibited by androgen receptor (AR), and was required for the aggressive adenocarcinoma features and NE phenotype. INTERPRETATION Our study uncovers a novel population of lineage plasticity-related cells with low AR activity, stemness-like traits, and elevated HMMR expression, that may facilitate poor prognosis in PCa. FUNDING This work was supported by National Key R&D Program of China (2022YFA0807000), National Natural Science Foundation of China (82160584), Advanced Prostate Cancer Diagnosis and Treatment Technology Innovation Team of Kunming Medical University (CXTD202216), and Reserve Talents of Young and Middle-aged Academic Leaders in Yunnan Province (202105AC160013).
Collapse
Affiliation(s)
- Faming Zhao
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Zhang
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinlan Wei
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang Jin
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo 0316, Norway
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Hongqing Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing 655000, China
| | - Yanxia Hu
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Xia Sheng
- School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
45
|
Liu S, Garcia-Marques FJ, Shen M, Bermudez A, Pitteri SJ, Stoyanova T. Ubiquitin C-terminal hydrolase L1 is a regulator of tumor growth and metastasis in double-negative prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2024; 12:306-322. [PMID: 39584005 PMCID: PMC11578776 DOI: 10.62347/jnbr1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Prostate cancer is the second leading cause of cancer-related deaths among men worldwide. With heavy androgen deprivation therapies, prostate cancer may shift to androgen receptor negative and neuroendocrine negative subtype of castration resistant prostate cancer, defined as double-negative prostate cancer. Double-negative prostate cancer is associated with poor prognosis and disease mortality. The molecular mechanisms underlying the emergence of double-negative prostate cancer remain poorly understood. Here, we demonstrate that Ubiquitin C-Terminal Hydrolase L1 (UCH-L1), is negatively correlated with androgen receptor levels in prostate cancer patients. UCH-L1 plays a functional role in tumorigenesis and metastasis in double-negative prostate cancer. Knock-down of UCH-L1 decreases double-negative prostate cancer colony formation in vitro and tumor growth in vivo. Moreover, decrease of UCH-L1 significantly delays cell migration in vitro and spontaneous metastasis and metastatic colonization in vivo. Proteomic analysis revealed that mTORC1 signaling, androgen response signaling and MYC targets are the top three decreased pathways upon UCH-L1 decrease. Further, treatment with LDN-57444, a UCH-L1 small molecule inhibitor, impairs double-negative prostate cancer cell colony formation, migration in vitro, and metastatic colonization in vivo. Our study reveals that UCH-L1 is an important regulator of double-negative prostate cancer tumor growth and progression, providing a promising therapeutic target for this subtype of metastatic prostate cancer.
Collapse
Affiliation(s)
- Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | | | - Michelle Shen
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford UniversityPalo Alto, CA, USA
| | | | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos Angeles, CA, USA
- Department of Urology, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
46
|
Ni X, Wei Y, Li X, Pan J, Fang B, Zhang T, Lu Y, Ye D, Zhu Y. From biology to the clinic - exploring liver metastasis in prostate cancer. Nat Rev Urol 2024; 21:593-614. [PMID: 38671281 DOI: 10.1038/s41585-024-00875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Liver metastases from prostate cancer are associated with an aggressive disease course and poor prognosis. Results from autopsy studies indicate a liver metastasis prevalence of up to 25% in patients with advanced prostate cancer. Population data estimate that ~3-10% of patients with metastatic castration-resistant prostate cancer harbour liver metastases at the baseline, rising to 20-30% in post-treatment cohorts, suggesting that selective pressure imposed by novel therapies might promote metastatic spread to the liver. Liver metastases are associated with more aggressive tumour biology than lung metastases. Molecular profiling of liver lesions showed an enrichment of low androgen receptor, neuroendocrine phenotypes and high genomic instability. Despite advancements in molecular imaging modalities such as prostate-specific membrane antigen PET-CT, and liquid biopsy markers such as circulating tumour DNA, early detection of liver metastases from prostate cancer remains challenging, as both approaches are hampered by false positive and false negative results, impeding the accurate identification of early liver lesions. Current therapeutic strategies showed limited efficacy in this patient population. Emerging targeted radionuclide therapies, metastasis-directed therapy, and novel systemic agents have shown preliminary activity against liver metastases, but require further validation. Treatment with various novel prostate cancer therapies might lead to an increase in the prevalence of liver metastasis, underscoring the urgent need for coordinated efforts across preclinical and clinical researchers to improve characterization, monitoring, and management of liver metastases from prostate cancer. Elucidating molecular drivers of liver tropism and interactions with the liver microenvironment might ultimately help to identify actionable targets to enhance survival in this high-risk patient group.
Collapse
Affiliation(s)
- Xudong Ni
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
| |
Collapse
|
47
|
Liu S, Nam HS, Zeng Z, Deng X, Pashaei E, Zang Y, Yang L, Li C, Huang J, Wendt MK, Lu X, Huang R, Wan J. CDHu40: a novel marker gene set of neuroendocrine prostate cancer. Brief Bioinform 2024; 25:bbae471. [PMID: 39318189 PMCID: PMC11422505 DOI: 10.1093/bib/bbae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer affecting American men. Castration-resistant prostate cancer (CRPC) can emerge during hormone therapy for PCa, manifesting with elevated serum prostate-specific antigen levels, continued disease progression, and/or metastasis to the new sites, resulting in a poor prognosis. A subset of CRPC patients shows a neuroendocrine (NE) phenotype, signifying reduced or no reliance on androgen receptor signaling and a particularly unfavorable prognosis. In this study, we incorporated computational approaches based on both gene expression profiles and protein-protein interaction networks. We identified 500 potential marker genes, which are significantly enriched in cell cycle and neuronal processes. The top 40 candidates, collectively named CDHu40, demonstrated superior performance in distinguishing NE PCa (NEPC) and non-NEPC samples based on gene expression profiles. CDHu40 outperformed most of the other published marker sets, excelling particularly at the prognostic level. Notably, some marker genes in CDHu40, absent in the other marker sets, have been reported to be associated with NEPC in the literature, such as DDC, FOLH1, BEX1, MAST1, and CACNA1A. Importantly, elevated CDHu40 scores derived from our predictive model showed a robust correlation with unfavorable survival outcomes in patients, indicating the potential of the CDHu40 score as a promising indicator for predicting the survival prognosis of those patients with the NE phenotype. Motif enrichment analysis on the top candidates suggests that REST and E2F6 may serve as key regulators in the NEPC progression.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| | - Hye Seung Nam
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Ziyu Zeng
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN 46556, United States
| | - Xuehong Deng
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Elnaz Pashaei
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| | - Yong Zang
- Department of Biostatistics & Health Data Science, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| | - Lei Yang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN 46202, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1345 Center Dr Room P3-12, Gainesville, FL 32603, United States
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Davison Building, 40 Duke Medicine, Durham, NC 27710, United States
| | - Michael K Wendt
- Department of Internal Medicine, Division of Hematology and Oncology, University of Iowa, 200 Hawkins Dr, Iowa City, IA 52242, United States
- Holden Comprehensive Cancer Center, University of Iowa, 200 Hawkins Dr, Iowa City, IA, 52242, United States
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, 100 Galvin Life Science Center, Notre Dame, IN 46556, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr, Indianapolis, IN 46202, United States
| | - Rong Huang
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 535 Barnhill Dr, Indianapolis, IN 46202, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 410 W 10th Street, Indianapolis, IN 46202, United States
| |
Collapse
|
48
|
Kwon WA, Song YS, Lee MK. Strategic Advances in Combination Therapy for Metastatic Castration-Sensitive Prostate Cancer: Current Insights and Future Perspectives. Cancers (Basel) 2024; 16:3187. [PMID: 39335158 PMCID: PMC11430187 DOI: 10.3390/cancers16183187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/14/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The contemporary treatment for metastatic castration-sensitive prostate cancer (mCSPC) has evolved significantly, building on successes in managing metastatic castration-resistant prostate cancer (mCRPC). Although androgen deprivation therapy (ADT) alone has long been the cornerstone of mCSPC treatment, combination therapies have emerged as the new standard of care based on recent advances, offering improved survival outcomes. Landmark phase 3 trials demonstrated that adding chemotherapy (docetaxel) and androgen receptor pathway inhibitors to ADT significantly enhances overall survival, particularly for patients with high-volume, high-risk, or de novo metastatic disease. Despite these advancements, a concerning gap between evidence-based guidelines and real-world practice remains, with many patients not receiving recommended combination therapies. The challenge in optimizing therapy sequences, considering both disease control and treatment burdens, and identifying clinical and biological subgroups that could benefit from personalized treatment strategies persists. The advent of triplet therapy has shown promise in extending survival, but the uro-oncology community must narrow the gap between evidence and practice to deliver the most effective care. Current research is focused on refining treatment approaches and utilizing biomarkers to guide therapy selection, aiming to offer more personalized and adaptive strategies for mCSPC management. Thus, aligning clinical practices with the evolving evidence is urgently needed to improve outcomes for patients facing this incurable disease.
Collapse
Affiliation(s)
- Whi-An Kwon
- Department of Urology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| | - Min-Kyung Lee
- Department of Internal Medicine, Hanyang University College of Medicine, Myongji Hospital, Goyang 10475, Republic of Korea
| |
Collapse
|
49
|
Westaby D, Jiménez-Vacas JM, Figueiredo I, Rekowski J, Pettinger C, Gurel B, Lundberg A, Bogdan D, Buroni L, Neeb A, Padilha A, Taylor J, Zeng W, Das S, Hobern E, Riisnaes R, Crespo M, Miranda S, Ferreira A, Hanratty BP, Nava Rodrigues D, Bertan C, Seed G, Fenor de La Maza MDLD, Guo C, Carmichael J, Grochot R, Chandran K, Stavridi A, Varkaris A, Stylianou N, Hollier BG, Tunariu N, Balk SP, Carreira S, Yuan W, Nelson PS, Corey E, Haffner M, de Bono J, Sharp A. BCL2 expression is enriched in advanced prostate cancer with features of lineage plasticity. J Clin Invest 2024; 134:e179998. [PMID: 39286979 PMCID: PMC11405043 DOI: 10.1172/jci179998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
The widespread use of potent androgen receptor signaling inhibitors (ARSIs) has led to an increasing emergence of AR-independent castration-resistant prostate cancer (CRPC), typically driven by loss of AR expression, lineage plasticity, and transformation to prostate cancers (PCs) that exhibit phenotypes of neuroendocrine or basal-like cells. The anti-apoptotic protein BCL2 is upregulated in neuroendocrine cancers and may be a therapeutic target for this aggressive PC disease subset. There is an unmet clinical need, therefore, to clinically characterize BCL2 expression in metastatic CRPC (mCRPC), determine its association with AR expression, uncover its mechanisms of regulation, and evaluate BCL2 as a therapeutic target and/or biomarker with clinical utility. Here, using multiple PC biopsy cohorts and models, we demonstrate that BCL2 expression is enriched in AR-negative mCRPC, associating with shorter overall survival and resistance to ARSIs. Moreover, high BCL2 expression associates with lineage plasticity features and neuroendocrine marker positivity. We provide evidence that BCL2 expression is regulated by DNA methylation, associated with epithelial-mesenchymal transition, and increased by the neuronal transcription factor ASCL1. Finally, BCL2 inhibition had antitumor activity in some, but not all, BCL2-positive PC models, highlighting the need for combination strategies to enhance tumor cell apoptosis and enrich response.
Collapse
Affiliation(s)
- Daniel Westaby
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | | | | | - Jan Rekowski
- The Institute of Cancer Research, London, United Kingdom
| | | | - Bora Gurel
- The Institute of Cancer Research, London, United Kingdom
| | - Arian Lundberg
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Lorenzo Buroni
- The Institute of Cancer Research, London, United Kingdom
| | - Antje Neeb
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Padilha
- The Institute of Cancer Research, London, United Kingdom
| | - Joe Taylor
- The Institute of Cancer Research, London, United Kingdom
| | - Wanting Zeng
- The Institute of Cancer Research, London, United Kingdom
| | - Souvik Das
- The Institute of Cancer Research, London, United Kingdom
| | - Emily Hobern
- The Institute of Cancer Research, London, United Kingdom
| | - Ruth Riisnaes
- The Institute of Cancer Research, London, United Kingdom
| | - Mateus Crespo
- The Institute of Cancer Research, London, United Kingdom
| | - Susana Miranda
- The Institute of Cancer Research, London, United Kingdom
| | - Ana Ferreira
- The Institute of Cancer Research, London, United Kingdom
| | | | | | - Claudia Bertan
- The Institute of Cancer Research, London, United Kingdom
| | - George Seed
- The Institute of Cancer Research, London, United Kingdom
| | | | - Christina Guo
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Juliet Carmichael
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Rafael Grochot
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Khobe Chandran
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | | | - Andreas Varkaris
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Nataly Stylianou
- Australian Prostate Cancer Research Centre–Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Brett G. Hollier
- Australian Prostate Cancer Research Centre–Queensland, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Nina Tunariu
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Steven P. Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Peter S. Nelson
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Eva Corey
- University of Washington, Seattle, Washington, USA
| | - Michael Haffner
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | - Johann de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| |
Collapse
|
50
|
Thapa B, De Sarkar N, Giri S, Sharma K, Kim M, Kilari D. Integrating PARP Inhibitors in mCRPC Therapy: Current Strategies and Emerging Trends. Cancer Manag Res 2024; 16:1267-1283. [PMID: 39308935 PMCID: PMC11416116 DOI: 10.2147/cmar.s411023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Metastatic castrate-resistant prostate cancer (mCRPC) is associated with poor prognosis. DNA damage response (DDR) genes are commonly altered in mCRPC rendering them as promising therapeutic targets. Poly (ADP ribose) polymerase inhibitors (PARPi) demonstrated antitumor activity in mCRPC patients with DDR gene mutations through synthetic lethality. Multiple clinical trials with PARPi monotherapy exhibited encouraging clinical outcomes in selected patients with mCRPC. More recently, three Phase III randomized clinical trials (RCTs) combining PARPi with androgen receptor signaling inhibitors (ARSIs) demonstrated improved antitumor activity compared to ARSI monotherapy in mCRPC patients as the first-line therapy. Clinical benefit was more pronounced in patients harboring DDR alterations, specifically BRCA1/2. Interestingly, antitumor activity was also observed irrespective of DDR gene mutations, highlighting BRCAness phenotype with androgen receptor blockade resulting in synergistic activity between ARSIs and PARPi. In this review, we discuss the clinical efficacy and safety data of the combination of PARPi plus ARSI in all Phase 3 randomized controlled trials (RCTs), emphasizing strategies for patient selection and highlighting emerging trends based on clinical trial data.
Collapse
Affiliation(s)
- Bicky Thapa
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Navonil De Sarkar
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Subhajit Giri
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Komal Sharma
- Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Data Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mingee Kim
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Deepak Kilari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|