1
|
Jin Z, Li X, Liu H, He T, Jiang W, Peng L, Wu X, Chen M, Fan Y, Lu Z, Fan D, Wang H. MEGF9 prevents lipopolysaccharide-induced cardiac dysfunction through activating AMPK pathway. Redox Rep 2025; 30:2435252. [PMID: 39737911 DOI: 10.1080/13510002.2024.2435252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear. METHODS Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro. To stimulate septic injury, cardiomyocytes and mice were treated lipopolysaccharide (LPS). To clarify the necessity of AMP-activated protein kinase (AMPK), global AMPK knockout mice were used. RESULTS We found that MEGF9 expressions were reduced in cardiomyocytes and mice by LPS stimulation. Compared with negative controls, plasma MEGF9 levels were also decreased in septic patients, and negatively correlated with LPS-induced cardiac dysfunction. In addition, MEGF9 overexpression attenuated, while MEGF9 knockdown aggravated LPS-induced inflammation and oxidative damage in vivo and in vitro, thereby regulating LPS-induced cardiac injury and impairment. Mechanistic studies revealed that MEGF9 overexpression alleviated LPS-induced cardiac dysfunction through activating AMPK pathway. CONCLUSION We for the first time demonstrate that MEGF9 prevents LPS-related inflammation, oxidative damage and cardiac injury through activating AMPK pathway, and provide a proof-of-concept for the treatment of LPS-induced cardiac dysfunction by targeting MEGF9.
Collapse
Affiliation(s)
- Zhili Jin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Xianqing Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Huixia Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Tao He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Wanli Jiang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Li Peng
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Ming Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Yongzhen Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Di Fan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| | - Hairong Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Ambrose JA, Albayati A. Takotsubo - The great pretender. Int J Cardiol 2025; 434:133369. [PMID: 40360067 DOI: 10.1016/j.ijcard.2025.133369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2025] [Accepted: 05/09/2025] [Indexed: 05/15/2025]
Abstract
PURPOSE This article describes how takotsubo syndrome was misdiagnosed as other diagnoses prior to its being named in 1990. METHODS AND RESULTS Given our present understanding of the clinical, echocardiographic, and angiographic features of takotsubo, the modern literature from about 1970 to the present was reviewed to find other cardiac conditions consistent with the takotsubo diagnosis. Nine conditions were recognized, including 6 that have been previously reported. These include some patients with either STEMI, NSTEMI, MINOCA, cerebral T-waves, sepsis-related LV dysfunction, or stress-related cardiomyopathy. Three other conditions have not previous been reported and include some patients with either non-obstructive or angiographically normal coronary arteries following IV thrombolytic therapy, myocarditis mimicking acute myocardial infarction, or myocardial stunning. CONCLUSIONS Takotsubo syndrome has been a great pretender, mimicking or misdiagnosed as several other cardiac conditions. Some of these conditions have been previously reported, while others are newly described. It is intriguing to speculate what signs or symptoms of a present-day illness/ailment may, in the future, represent other conditions currently unclassified or misdiagnosed.
Collapse
Affiliation(s)
- John A Ambrose
- Department of Internal Medicine, Division of Cardiology, University of California, San Francisco, Fresno, United States.
| | - Asseel Albayati
- Department of Internal Medicine, Division of Cardiology, University of California, San Francisco, Fresno, United States
| |
Collapse
|
3
|
Weng D, Shi W, Hu Y, Su Y, Li A, Wei S, Guo S. Neutralization of IL-33 ameliorates septic myocardial injury through anti-inflammatory, anti-oxidative, and anti-apoptotic by regulating the NF-κB/STAT3/SOCS3 signaling pathway. Biochem Pharmacol 2025; 237:116954. [PMID: 40258576 DOI: 10.1016/j.bcp.2025.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/18/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Septic myocardial injury, a severe sepsis complication linked to high morbidity and mortality, remains a major global clinical challenge. Interleukin-33 (IL-33), a damage-associated pro-inflammatory factor, has been implicated in regulating immune responses and inflammation, but its specific role in septic myocardial injury has not been fully elucidated. This study examined IL-33's role in septic myocardial injury using Gene Expression Omnibus (GEO) database datasets, alongside in vitro and in vivo experiments. Our results indicated a significant upregulation of IL-33 in septic myocardial injury, as demonstrated in both clinical and experimental settings. Blocking IL-33 significantly enhanced cardiac function and alleviated cardiomyocyte damage. Mechanistic investigations revealed that neutralizing IL-33 mitigates inflammation, oxidative stress, and apoptosis in cardiomyocytes by regulating the nuclear factor kappa B (NF-κB)/signal transducer and activator of transcription 3 (STAT3)/suppressors of cytokine signaling 3 (SOCS3) signaling pathway. Peritoneal macrophages are recognized as a potential origin of IL-33, and targeting IL-33 derived from these cells further reduced cardiomyocyte injury. The study underscores IL-33's crucial involvement in septic myocardial injury pathogenesis, indicating that IL-33 may serve as a promising therapeutic target.
Collapse
Affiliation(s)
- Danlei Weng
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China
| | - Wei Shi
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China
| | - Yue Hu
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China
| | - Yanqian Su
- Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China
| | - Andong Li
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China
| | - Shuxing Wei
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Worker's Stadium South Road, Beijing 100020, China.
| |
Collapse
|
4
|
Güvenç M, Aydin T, Kutlu T, Etyemez M, İşler CT. Tomentosin mitigates the LPS induced cardiac injury by regulating Nrf-2/Nf-κβ pathway in mice. Eur J Pharmacol 2025; 996:177589. [PMID: 40187600 DOI: 10.1016/j.ejphar.2025.177589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Endotoxemic shock is a severe complication characterized by multiple organ failure, hypotension, and impaired tissue perfusion, all contributing to high morbidity and mortality. Recent studies have highlighted the anti-inflammatory and antioxidant properties of tomentosin. This study investigates the protective effects of tomentosin against lipopolysaccharide (LPS)-induced cardiac injury and elucidates its underlying mechanisms. Mice were pre-treated with tomentosin before the LPS administration. Subsequently, cardiac injury markers, oxidative stress parameters, inflammatory mediators, and Nrf-2/NF-κB protein expression levels were analysed. The results demonstrated that tomentosin significantly reduced Troponin and CK-MB levels, alleviated oxidative stress, and suppressed inflammatory responses. Furthermore, tomentosin inhibited NF-κB activation while enhancing Nrf-2 expression. In conclusion, our findings suggest that tomentosin exerts cardioprotective effects by modulating the Nrf-2/NF-κB pathway, positioning it as a potential therapeutic candidate for preventing LPS-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Mehmet Güvenç
- Department of Physiology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, 31060, Turkey.
| | - Tuba Aydin
- Department of Pharmacognosy, Faculty of Pharmacy, Ağrı İbrahim Çeçen University, Ağrı, 04100, Turkey
| | - Tuncer Kutlu
- Department of Pathology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, 31060, Turkey
| | - Muhammed Etyemez
- Department of Physiology, Faculty of Veterinary Medicine, University of Kastamonu, Kastamonu, 37150, Turkey
| | - Cafer Tayer İşler
- Department of Surgery, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, 31060, Turkey
| |
Collapse
|
5
|
Yu W, Yu S, Zhang F, Xu Q, Zhang X, Kong J. Ultrasensitive electrochemical sensor for lipopolysaccharide detection catalyzed by 3,4,9,10-perylenetetracarboxylic diimide. Anal Chim Acta 2025; 1352:343926. [PMID: 40210282 DOI: 10.1016/j.aca.2025.343926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/15/2025] [Accepted: 03/10/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Lipopolysaccharide (LPS), a bacterial endotoxin prevalent in Gram-negative pathogens (e.g., Escherichia coli), induces severe immune responses linked to endotoxemia and hepatitis. Despite its clinical significance, conventional LPS detection methods (e.g., limulus amebocyte lysate assays) face challenges including operational complexity, high cost, and limited sensitivity. Addressing these limitations necessitates the development of innovative strategies for ultrasensitive LPS quantification. RESULTS We present an electrochemical biosensor integrating dual-signal amplification: (1) affinity amplification via phenylboronic acid-cis-diol covalent binding on LPS polysaccharide chains, and (2) photocatalytic amplification using perylene diimide (PDI)-mediated atom transfer radical polymerization (Photo-ATRP) under red light (615-650 nm). Thiol-functionalized DNA aptamers enable specific LPS capture, while PDI catalyzes rapid ferrocene monomer polymerization, achieving exponential signal enhancement. The sensor demonstrates exceptional performance: (1) Ultrahigh sensitivity: Detection limit of 0.25 fg/mL. (2) Wide dynamic range: Linear response from 1.0 fg/mL to 0.1 pg/mL. (3) Robust specificity: Minimal interference in human serum matrices. SIGNIFICANCE This work establishes a paradigm for LPS detection through three key advances: (1) Operational simplicity: Eliminates enzymatic/nanomaterial dependencies via metal-free PDI photocatalysis. (2) Translational utility: Serum compatibility supports clinical diagnostics and point-of-care applications. (3) Catalytic innovation: Validates PDI as a high-efficiency photocatalyst for controlled polymer synthesis. The sensor's low-cost fabrication, rapid response (<4.5 h), and femtomolar sensitivity position it as a transformative tool for sepsis monitoring and biomedical research.
Collapse
Affiliation(s)
- Wenjie Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Fenghong Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Qinyuan Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
6
|
Torres JSS, Tamayo-Giraldo FJ, Bejarano-Zuleta A, Nati-Castillo HA, Quintero DA, Ospina-Mejía MJ, Salazar-Santoliva C, Suárez-Sangucho I, Ortiz-Prado E, Izquierdo-Condoy JS. Sepsis and post-sepsis syndrome: a multisystem challenge requiring comprehensive care and management-a review. Front Med (Lausanne) 2025; 12:1560737. [PMID: 40265185 PMCID: PMC12011779 DOI: 10.3389/fmed.2025.1560737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Sepsis, a medical emergency with high mortality rates, demands comprehensive care spanning from early identification to patient rehabilitation. The sepsis survival chain encompasses early recognition, severity assessment, activation of emergency services, initial antimicrobial therapy, hemodynamic stabilization, and integrated rehabilitation. These interconnected steps are critical to reducing morbidity and mortality. Despite advancements in international guidelines, adherence remains limited, contributing to a significant disease burden. Beyond its acute phase, post-sepsis syndrome (PSS) is characterized by long-term immune dysregulation, chronic inflammation, and metabolic dysfunction, predisposing survivors to recurrent infections, cardiovascular disease, and neurocognitive decline. Mitochondrial dysfunction and epigenetic modifications play a central role in prolonged immunosuppression, impairing adaptive and innate immune responses. Sepsis-induced organ dysfunction impacts multiple systems, including the brain, heart, and kidneys. In the brain, it is associated with neuroinflammation, blood-brain barrier dysfunction, and the accumulation of neurotoxic proteins, leading to acute and chronic cognitive impairment. Myocardial dysfunction involves inflammatory mediators such as TNF-α and IL-6, while sepsis-associated acute kidney injury (SA-AKI) arises from hypoperfusion and inflammation, heightening the risk of progression to chronic kidney disease. Additionally, immune alterations such as neutrophil dysfunction, continuous platelet activation, and suppressed antitumoral responses contribute to increased infection risk and long-term complications. Timely and targeted interventions, including antimicrobial therapy, cytokine modulation, immune restoration, metabolic support, and structured rehabilitation strategies, are pivotal for improving outcomes. However, financial and infrastructural limitations in low-resource settings pose significant barriers to effective sepsis management. Precision medicine, AI-driven early warning systems, and optimized referral networks can enhance early detection and personalized treatments. Promoting public and professional awareness of sepsis, strengthening multidisciplinary post-sepsis care, and integrating long-term follow-up programs are imperative priorities for reducing mortality and improving the quality of life in sepsis survivors.
Collapse
Affiliation(s)
| | | | - Alejandro Bejarano-Zuleta
- Servicio de Cuidado intensivo Adulto, Clínica Versalles, Cali, Colombia
- Interinstitutional Group on Internal Medicine (GIMI 1), Department of Internal Medicine, Universidad Libre, Cali, Colombia
| | - H. A. Nati-Castillo
- Interinstitutional Group on Internal Medicine (GIMI 1), Department of Internal Medicine, Universidad Libre, Cali, Colombia
| | - Diego A. Quintero
- Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - M. J. Ospina-Mejía
- Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | | | | | | | | |
Collapse
|
7
|
Brock L, Ben-Atya H, Tiwari A, Saab D, Haj N, Folle L, Saar G, Maier A, Freiman M, Vandoorne K. Improved MRI detection of inflammation-induced changes in bone marrow microstructure in mice: a machine learning-enhanced T2 distribution analysis. Eur Radiol Exp 2025; 9:39. [PMID: 40140174 PMCID: PMC11947359 DOI: 10.1186/s41747-025-00574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND We investigated inflammation-induced changes in femoral hematopoietic bone marrow using advanced magnetic resonance imaging (MRI) techniques, including T2-weighted imaging, scalar T2 mapping, and machine learning-enhanced T2 distribution analysis to improve the detection of bone marrow microstructural alterations. Findings were correlated with histological markers and systemic inflammation. METHODS Using a 9.4-T magnet, T2-weighted and multislice multiecho sequences were applied to evaluate bone marrow in female C57BL/6J mice divided into three groups: (1) controls; (2) lipopolysaccharide-induced acute inflammation (LPS); and (3) streptozotocin (STZ)- and LPS-induced diabetic inflammation (STZ + LPS). T2 relaxation times and their distributions with scalar mapping and model-informed machine learning (MIML) were analyzed. Correlations with histological iron levels and blood neutrophil counts were assessed. RESULTS T2-weighted imaging showed a reduced signal-to-noise ratio in inflamed bone marrow (p = 0.034). Scalar T2 mapping identified decreased T2 relaxation times (p = 0.042), moderately correlating with neutrophil counts (ρ = 0.027) and iron levels (ρ = 0.016). MIML-enhanced T2 distribution analysis exhibited superior sensitivity than scalar T2 mapping, revealing significant reductions in the first T2 distribution peak (p = 0.0025), which strongly correlated with neutrophil counts (ρ = 0.0016) and iron sequestration (ρ = 0.0002). Histology confirmed elevated iron deposits in inflamed marrow, aligning with systemic inflammation. CONCLUSION Combining T2-weighted imaging, scalar T2 mapping, and MIML-enhanced T2 distribution analysis offers complementary insights into inflammation-induced bone marrow remodeling. T2 distribution analysis emerged as a more sensitive tool for detecting microstructural changes, such as iron sequestration, supporting its potential as a noninvasive biomarker for diagnosing and monitoring inflammatory diseases. RELEVANCE STATEMENT This study highlights the potential of advanced MRI T2 analysis and machine learning methods for noninvasive detection of inflammation-induced microstructural changes in bone marrow, offering promising diagnostic tools for inflammatory diseases. KEY POINTS This study investigated inflammation-induced changes in bone marrow with T2 MRI and MIML. MIML outperformed quantitative scalar T2 analysis, increasingly detecting inflammation and iron sequestration in the hematopoietic bone marrow. T2 MRI with MIML analysis could aid in the early diagnosis and management of inflammatory diseases.
Collapse
Affiliation(s)
- Luise Brock
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- Department Informatik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hadas Ben-Atya
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ashish Tiwari
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dareen Saab
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Narmeen Haj
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lukas Folle
- Department Informatik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Galit Saar
- Biomedical Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Andreas Maier
- Department Informatik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Moti Freiman
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Katrien Vandoorne
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
8
|
Tian M, Shi Y, Gong X, Tan W, Guo X, Chen Y, Yang P, Ren H, Cai Q, Ma J, Zeng C, Wu G. MG53 protects against septic cardiac dysfunction by ubiquitinating ATF2. J Adv Res 2025:S2090-1232(25)00191-2. [PMID: 40107350 DOI: 10.1016/j.jare.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/16/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Septic cardiac dysfunction (SCD) is the most common complication of sepsis, which has become the primary cause of death in intensive care units. The muscle-specific protein mitsugumin-53 (MG53) has been identified to protect cell integrity as a "Molecular Band-Aid". OBJECTIVES The recombinant human MG53 (rhMG53) pretreatment has been reported to prevent cardiac function damage caused by cecal ligation and puncture (CLP). However, whether or not MG53 protects against SCD remains to be further clarified. METHODS C57BL/6J mice were intraperitoneally injected with lipopolysaccharide (LPS) to generate the SCD model. MG53 was overexpressed by intravenously injected adeno-associated virus, and the rhMG53 was administrated intraperitoneally. The cardiac function was evaluated by echocardiography, and the cardiac inflammation was assessed through ELISA and Western blot. The mechanisms of MG53 were studied by quantitative real-time PCR (qPCR) and co-immunoprecipitation (co-IP). RESULTS Our present study found that MG53 expression was lower in hearts from SCD mice than controls. Overexpression or exogenous MG53 treatment alleviated cardiac dysfunction, improved survival rate in SCD mice, accompanied with improved pathological changes, reduced cardiomyocyte apoptosis, and lowered inflammatory factor levels in serum or hearts. Mechanistically, MG53 inhibited TLR4 transcriptional activity by ubiquitinating ATF2, an essential transcriptional factor for TLR4, which ultimately reduced the expression of TLR4. CONCLUSION MG53 protect the cardiac function against sepsis by down-regulation of TLR4 expression, via ubiquitination of ATF2, a TLR4 transcriptional factor, which might be a promising therapeutic approach for septic cardiac dysfunction.
Collapse
Affiliation(s)
- Miao Tian
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Yu Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Xue Gong
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Wenjie Tan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Xinyi Guo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Yinghong Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Peili Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Qi Cai
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, PR China.
| | - Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease Research, Ministry of Education of China, Chongqing, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China.
| |
Collapse
|
9
|
Liu Z, Li F, Li N, Chen Y, Chen Z. MicroRNAs as regulators of cardiac dysfunction in sepsis: pathogenesis and diagnostic potential. Front Cardiovasc Med 2025; 12:1517323. [PMID: 40041174 PMCID: PMC11876399 DOI: 10.3389/fcvm.2025.1517323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Sepsis, a life-threatening condition arising from an uncontrolled immune response to infection, can lead to organ dysfunction, with severe inflammation potentially causing multiple organ failures. Sepsis-induced cardiac dysfunction (SIMD) is a common and severe complication of sepsis, significantly increasing patient mortality. Understanding the pathogenesis of SIMD is crucial for improving treatment, and microRNAs (miRNAs) have emerged as important regulators in this process. Methods A comprehensive literature search was conducted in PubMed, Science Direct, and Embase databases up to September 2024. The search terms included ["miRNA" or "microRNA"] and ["Cardiac" or "Heart"] and ["Sepsis" or "Septic"], with the language limited to English. After initial filtering by the database search engine, Excel software was used to further screen references. Duplicate articles, those without abstracts or full texts, and review/meta-analyses or non-English articles were excluded. Finally, 106 relevant research articles were included for data extraction and analysis. Results The pathogenesis of SIMD is complex and involves mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis and pyroptosis, dysregulation of myocardial calcium homeostasis, myocardial inhibitory factors, autonomic nervous regulation disorders, hemodynamic changes, and myocardial structural alterations. miRNAs play diverse roles in SIMD. They are involved in regulating the above-mentioned pathological processes. Discussion Although significant progress has been made in understanding the role of miRNAs in SIMD, there are still challenges. Some studies on the pathogenesis of SIMD have limitations such as small sample sizes and failure to account for confounding factors. Research on miRNAs also faces issues like inconsistent measurement techniques and unclear miRNA-target gene relationships. Moreover, the translation of miRNA-based research into clinical applications is hindered by problems related to miRNA stability, delivery mechanisms, off-target effects, and long-term safety. In conclusion, miRNAs play a significant role in the pathogenesis of SIMD and have potential as diagnostic biomarkers. Further research is needed to overcome existing challenges and fully exploit the potential of miRNAs in the diagnosis and treatment of SIMD.
Collapse
Affiliation(s)
- Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiyang Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong Chen
- Department of Critical Care Medicine, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
10
|
Liu H, Xu C, Hu Q, Wang Y. Sepsis-induced cardiomyopathy: understanding pathophysiology and clinical implications. Arch Toxicol 2025; 99:467-480. [PMID: 39601874 DOI: 10.1007/s00204-024-03916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Sepsis is a life-threatening form of organ dysfunction resulting from a dysregulated response to infection. The complex pathogenesis of sepsis poses challenges because of the lack of reliable biomarkers for early identification and effective treatments. As sepsis progresses to severe forms, cardiac dysfunction becomes a major concern, often manifesting as ventricular dilation, a reduced ejection fraction, and a diminished contractile capacity, known as sepsis-induced cardiomyopathy (SIC). The absence of standardized diagnostic and treatment protocols for SIC leads to varied criteria being used across medical institutions and studies, resulting in significant outcome disparities. Despite the high prevalence of SIC, accurate statistical data are lacking. To understand how SIC affects sepsis prognosis, a thorough exploration of its pathophysiological mechanisms, including systemic factors and complex signalling within myocardial and immune cells, is required. Identifying the factors influencing SIC occurrence and progression is crucial and must be conducted within specific clinical contexts. In this review, the clinical manifestations, pathophysiological mechanisms, and treatment strategies for SIC are discussed, along with the clinical background. We aim to connect current practices with future research challenges, providing clear guidance for clinicians and researchers.
Collapse
Affiliation(s)
- Haoran Liu
- Emergency and Trauma College, Hainan Medical University, Haikou, People's Republic of China
| | - Chaoqun Xu
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, People's Republic of China
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qin Hu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yang Wang
- Emergency Medicine Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
11
|
Ho WL, Umais M, Bai M, Dang NB, Kumari K, Izhar S, Asrar R, Haddad T, Muzammil MA. Beyond the Beat: A Multifaceted Review of Atrial Fibrillation in Sepsis: Risk Factors, Management Strategies, and Economic Impact. Cardiol Res 2025; 16:1-14. [PMID: 39897439 PMCID: PMC11779681 DOI: 10.14740/cr1723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 02/04/2025] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia in critically ill patients. The objective of this narrative review is to evaluate the characteristics of patients who develop new-onset atrial fibrillation (NOAF) because of sepsis, current management of NOAF in sepsis patients, special consideration in different populations that developed NOAF, health economic and quality of life of patients. We conducted a literature search on PubMed to find research related to NOAF, sepsis and critical illness. Nineteen studies were analyzed for risk factors and outcomes. The incidence rate ranges from 0.53% to 43.9% among these studies. There were numerous risk factors that had been reported from these articles. The most reported risk factors included advanced age, male sex, White race, and cardiovascular comorbidities. The management of septic patients is significantly challenging because of the unfavorable cardiovascular consequences and thromboembolic hazards associated with NOAF. There are comprehensive guidelines available for managing AF, but the effectiveness and safety of therapies in patients with sepsis are still uncertain. Various approaches for managing newly diagnosed AF have been explored. Sinus rhythm can be restored through either pharmacological or non-pharmacological intervention or combination of both. In addition, thromboembolism is a complication that can occur in patients with AF and can have a negative impact on the prognosis of sepsis patients. The use of anticoagulation to prevent stroke after NOAF in sepsis patients is still controversial. Extensive prospective investigations are required to have a deeper understanding of the necessity for anticoagulation following NOAF in sepsis. Beside the treatment of NOAF, early detection of NOAF in sepsis plays a critical role. The prompt initiation of rhythm control medication following a clinical diagnosis of AF can enhance cardiovascular outcomes and reduce mortality in patients with AF and cardiovascular risk factors. Additionally, NOAF in the intensive care unit can prolong hospital stays, increasing hospitalization costs and burdening the hospital. Therefore, preventing and managing NOAF effectively not only benefit the patients but also the hospital in financial aspect. Lastly, to address the existing gaps in knowledge, future research should focus on developing machine learning models that can accurately anticipate risks, establish long-term follow-up protocols, and create complete monitoring systems. The focus is on early intervention and personalized approaches to improve outcomes and quality of life.
Collapse
Affiliation(s)
- Wing Lam Ho
- St George’s University School of Medicine, West Indies, Grenada
| | | | - Meena Bai
- Peoples University of Medical and Health Sciences for Women Nawabshah, Sindh, Pakistan
| | - Ngoc Bao Dang
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| | - Kajal Kumari
- Liaquat University of Medical and Health Sciences Jamshoro, Sindh, Pakistan
| | - Sara Izhar
- Jinnah Sindh Medical University, Karachi, Pakistan
| | - Rabia Asrar
- Dow University of Health sciences, Karachi, Pakistan
| | | | | |
Collapse
|
12
|
Wang Y, Weng L, Wu X, Du B. The role of programmed cell death in organ dysfunction induced by opportunistic pathogens. Crit Care 2025; 29:43. [PMID: 39856779 PMCID: PMC11761187 DOI: 10.1186/s13054-025-05278-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Sepsis is a life-threatening condition resulting from pathogen infection and characterized by organ dysfunction. Programmed cell death (PCD) during sepsis has been associated with the development of multiple organ dysfunction syndrome (MODS), impacting various physiological systems including respiratory, cardiovascular, renal, neurological, hematological, hepatic, and intestinal systems. It is well-established that pathogen infections lead to immune dysregulation, which subsequently contributes to MODS in sepsis. However, recent evidence suggests that sepsis-related opportunistic pathogens can directly induce organ failure by promoting PCD in parenchymal cells of each affected organ. This study provides an overview of PCD in damaged organ and the induction of PCD in host parenchymal cells by opportunistic pathogens, proposing innovative strategies for preventing organ failure in sepsis.
Collapse
Affiliation(s)
- Yangyanqiu Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Weng
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xunyao Wu
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical and Science Investigation Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Bin Du
- State Key Laboratory of Complex Severe and Rare Diseases, Medical ICU, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Clinical and Science Investigation Institute, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
13
|
Soerarso R, Yonas E, Sirait SP, Hasanah DY, Raharjo SB, Siswanto BB, Cramer MJ, van der Harst P, Oerlemans MIFJ. Importance of early use of tolvaptan in hyponatremic acutely decompensated heart failure patients, a retrospective study. Egypt Heart J 2025; 77:10. [PMID: 39804452 PMCID: PMC11729578 DOI: 10.1186/s43044-024-00603-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Hyponatremia is one of the complicating findings in acute decompensated heart failure. Decrease in cardiac output and systemic blood pressure triggers activation of renin-angiotensin-aldosterone system, antidiuretic hormone, and norepinephrine due to the perceived hypovolemia. Fluid-overloaded heart failure patients are commonly treated with loop diuretics, acutely decompensated heart failure patients tend to be less responsive to conventional oral doses of a loop diuretic, while other different diuretics could work in different part of nephron circulation system. In this study, we aim to further examine the role of tolvaptan, a vasopressin receptor antagonist, in the treatment of hyponatremia secondary to acutely decompensated heart failure. RESULTS A total of 71 patients with hyponatremia secondary to ADHF were included, and all patients were given tolvaptan. 37 patients were administered tolvaptan early (up until 5 th day of admission). 34 patients received tolvaptan after 5 th day of admission mean administration as 6.86 th day, and median administration was 5 th day. Analysis showed lower length of stay in patients receiving early administration of tolvaptan compared to late administration (8.86 ± 5.06 vs 18.5 ± 9.05 p0.001, respectively). Patients with early initiation of tolvaptan also achieved a larger net increase in sodium levels at discharge compared to admission (6.46 ± 6.69 vs 3.68 ± 4.70 p0.048, respectively). CONCLUSIONS Early administration of tolvaptan in treating hyponatremia in acutely decompensated heart failure patients is associated with a lower length of hospitalization and a higher increase in serum sodium of patients in hyponatremic ADHF patients.
Collapse
Affiliation(s)
- Rarsari Soerarso
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia.
| | - Emir Yonas
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Silfi Pauline Sirait
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Dian Yaniarti Hasanah
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Sunu Budhi Raharjo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Bambang Budi Siswanto
- Department of Cardiology and Vascular Medicine, Faculty of Medicine Universitas Indonesia, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Maarten J Cramer
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marish I F J Oerlemans
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
14
|
Liu PP, Yu XY, Pan QQ, Ren JJ, Han YX, Zhang K, Wang Y, Huang Y, Ban T. Multi-Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy. Pharmaceuticals (Basel) 2025; 18:43. [PMID: 39861106 PMCID: PMC11768530 DOI: 10.3390/ph18010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses. METHODS We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq). Using network proximity analysis, we screened for FDA-approved drugs that interact with SCM-associated pathways. Additionally, we tested the cardioprotective effects of two drug candidates in the SCM mouse model and explored their mechanism-of-action in H9c2 cells. RESULTS Network analysis identified 129 drugs associated with SCM, which were refined to 14 drug candidates based on strong network predictions, proven anti-infective effects, suitability for ICU use, and minimal side effects. Among them, acetaminophen and pyridoxal phosphate significantly improved cardiac function in SCM moues, as demonstrated by the increased ejection fraction (EF) and fractional shortening (FS), and the reduced levels of cardiac injury biomarkers: B-type natriuretic peptide (BNP) and cardiac troponin I (cTn-I). In vitro assays revealed that acetaminophen inhibited prostaglandin synthesis, reducing inflammation, while pyridoxal phosphate restored amino acid balance, supporting cellular function. These findings suggest that both drugs possess protective effects against SCM. CONCLUSIONS This study provides a robust platform for drug repurposing in SCM, identifying acetaminophen and pyridoxal phosphate as promising candidates for clinical translation, with the potential to improve treatment outcomes in septic patients with cardiac complications.
Collapse
Affiliation(s)
- Pei-Pei Liu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xin-Yue Yu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Qing-Qing Pan
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Jun Ren
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Xuan Han
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Kai Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yan Wang
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College, Nanjing Medical University, Nanjing 210008, China
| | - Yin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tao Ban
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Ministry of Science and Technology, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
15
|
Windsor C, Joseph A, Pons S, Mokart D, Pène F, Kouatchet A, Demoule A, Bruneel F, Nyunga M, Borcoman E, Legrand M, Darmon M, Zafrani L, Azoulay E, Lemiale V. Previous treatment with anthracycline does not affect the course of sepsis in cancer patients: Retrospective cohort study. JOURNAL OF INTENSIVE MEDICINE 2025; 5:64-69. [PMID: 39872834 PMCID: PMC11763860 DOI: 10.1016/j.jointm.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 01/30/2025]
Abstract
Background Cancer patients who are exposed to sepsis and had previous chemotherapy may have increased severity. Among chemotherapeutic agents, anthracyclines have been associated with cardiac toxicity. Like other chemotherapeutic agents, they may cause endothelial toxicity. The aim of this study was to evaluate the effect of anthracycline treatment on the outcome of cancer patients with sepsis. Methods Data from cancer patients admitted to intensive care units (ICUs) for sepsis or septic shock were extracted from the Groupe de Recherche Respiratoire en Réanimation Onco-Hématologique database (1994-2015). Comparison between patients who received anthracycline and those who did not was performed using a propensity score, including confounding variables (age and underlying diseases). A competing risk adjusted for severity of illness (Sequential Organ Failure Assessment [SOFA] score) was used to analyze the duration of vasopressor requirement. Results Among 2046 patients, 1070 (52.3%) patients who received anthracycline were compared with 976 (47.7%) who did not. The underlying disease was mostly acute hematological malignancy (49.2%). Sepsis, mostly pneumonia (47.7%), had developed 2 days (interquartile range [IQR]:1-4 days) prior to ICU admission. Most patients (n=1156/1980,58.4%) required vasopressors for 3 days (IQR: 2-6 days). Factors associated with the need for vasopressors were aplasia (hazard ratio [HR]=1.72, 95% confidence interval [CI]: 1.21 to 2.47, P=0.002) and day 1 respiratory SOFA score (HR=7.07, 95% CI: 2.75 to 22.1, P <0.001). Previous anthracycline treatment was not associated with an increased risk of vasopressor use. The duration of vasopressors was not different between patients who received anthracycline and those who did not (P=0.79). Anthracycline was not associated with ICU mortality. Conclusion Previous anthracycline treatment did not alter the course of sepsis in a cohort of cancer patients admitted to intensive care with sepsis.
Collapse
Affiliation(s)
- Camille Windsor
- Medical Intensive Care Unit, APHP Saint-Louis University Hospital, Paris, France
| | - Adrien Joseph
- Medical Intensive Care Unit, APHP Saint-Louis University Hospital, Paris, France
| | - Stephanie Pons
- Human Immunology and Immunopathology, Institut National de la Santé et de la Recherche Médicale (INSERM) U 976, University of Paris Cité, Paris, France
| | - Djamel Mokart
- Critical Care Department, Institut Paoli Calmettes, Marseille, France
| | - Frederic Pène
- Medical Intensive Care Unit, APHP Cochin University Hospital, Paris, France
| | - Achille Kouatchet
- Medical Intensive Care Unit, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Alexandre Demoule
- Medical Intensive Care Unit, Hôpital Pitié-Salpêtrière, Paris, France
| | - Fabrice Bruneel
- Medical Intensive Care Unit, Centre Hospitalier de Versailles, Hopital Andre Mignot, Le Chesnay, France
| | - Martine Nyunga
- Medical Intensive Care Unit, Centre Hospitalier de Roubaix, Roubaix, France
| | - Edith Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - Matthieu Legrand
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Michael Darmon
- Medical Intensive Care Unit, APHP Saint-Louis University Hospital, Paris, France
| | - Lara Zafrani
- Medical Intensive Care Unit, APHP Saint-Louis University Hospital, Paris, France
| | - Elie Azoulay
- Medical Intensive Care Unit, APHP Saint-Louis University Hospital, Paris, France
| | - Virginie Lemiale
- Medical Intensive Care Unit, APHP Saint-Louis University Hospital, Paris, France
| |
Collapse
|
16
|
Goldwater PN, Gebien DJ. Metabolic acidosis and sudden infant death syndrome: overlooked data provides insight into SIDS pathogenesis. World J Pediatr 2025; 21:29-40. [PMID: 39656413 PMCID: PMC11814015 DOI: 10.1007/s12519-024-00860-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/06/2024] [Indexed: 02/12/2025]
Abstract
BACKGROUND Decades of mainstream SIDS research based on the Triple Risk Model and neuropathological findings have failed to provide convincing evidence for a primary CNS-based mechanism behind putative secondary dyshomeostasis (respiratory or cardiac) or impaired arousal. Newly revealed data indicate that severe metabolic acidosis (and severe hyperkalemia) is a common accompaniment in SIDS. This supports the direct effect of sepsis on vital-organ function and occurrence of secondary CNS changes accompanied by the dyshomeostasis leading to SIDS. DATA SOURCES Using PubMed and Google Scholar literature searches, this paper examines how metabolic acidosis and sepsis might contribute to the underlying pathophysiologic mechanisms in SIDS. RESULTS The discovery of a series of non-peer-reviewed publications provided the basis for a serious examination of the role of metabolic acidosis and sepsis in SIDS. Most SIDS risk factors relate directly or indirectly to infection. This consequently elevated the position of septic or superantigenic shock and viremia in causing secondary organ failure leading to SIDS. The latter could include diaphragmatic failure, as evidenced by peripheral respiratory (muscle) arrests in experimental septic shock, as well as infectious myositis and diaphragm myopathy in sudden unexpected deaths, including SIDS. In addition, just as acidosis lowers the threshold for ventricular fibrillation and sudden cardiac arrest, it could also contribute to similarly unstable diaphragm excitation states leading to respiratory failure. CONCLUSIONS This paper uniquely reveals compelling evidence for a connection between metabolic acidosis, sepsis, viral infections, and sudden unexpected child deaths and provides a solid basis for further work to define which pathway (or pathways) lead to the tragedy of SIDS. It is recommended that all autopsies in sudden unexpected deaths should include pH, bicarbonate, lactate, and electrolyte measurements, as well as diaphragm histology.
Collapse
Affiliation(s)
- Paul N Goldwater
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia, 5006, Australia.
| | - Dov Jordan Gebien
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, North Terrace, Adelaide, South Australia, 5006, Australia
| |
Collapse
|
17
|
Xu JQ, Zhang WY, Fu JJ, Fang XZ, Gao CG, Li C, Yao L, Li QL, Yang XB, Ren LH, Shu HQ, Peng K, Wu Y, Zhang DY, Qiu Y, Zhou X, Yao YM, Shang Y. Viral sepsis: diagnosis, clinical features, pathogenesis, and clinical considerations. Mil Med Res 2024; 11:78. [PMID: 39676169 PMCID: PMC11648306 DOI: 10.1186/s40779-024-00581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Sepsis, characterized as life-threatening organ dysfunction resulting from dysregulated host responses to infection, remains a significant challenge in clinical practice. Despite advancements in understanding host-bacterial interactions, molecular responses, and therapeutic approaches, the mortality rate associated with sepsis has consistently ranged between 10 and 16%. This elevated mortality highlights critical gaps in our comprehension of sepsis etiology. Traditionally linked to bacterial and fungal pathogens, recent outbreaks of acute viral infections, including Middle East respiratory syndrome coronavirus (MERS-CoV), influenza virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), among other regional epidemics, have underscored the role of viral pathogenesis in sepsis, particularly when critically ill patients exhibit classic symptoms indicative of sepsis. However, many cases of viral-induced sepsis are frequently underdiagnosed because standard evaluations typically exclude viral panels. Moreover, these viruses not only activate conventional pattern recognition receptors (PRRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) but also initiate primary antiviral pathways such as cyclic guanosine monophosphate adenosine monophosphate (GMP-AMP) synthase (cGAS)-stimulator of interferon genes (STING) signaling and interferon response mechanisms. Such activations lead to cellular stress, metabolic disturbances, and extensive cell damage that exacerbate tissue injury while leading to a spectrum of clinical manifestations. This complexity poses substantial challenges for the clinical management of affected cases. In this review, we elucidate the definition and diagnosis criteria for viral sepsis while synthesizing current knowledge regarding its etiology, epidemiology, and pathophysiology, molecular mechanisms involved therein as well as their impact on immune-mediated organ damage. Additionally, we discuss clinical considerations related to both existing therapies and advanced treatment interventions, aiming to enhance the comprehensive understanding surrounding viral sepsis.
Collapse
Affiliation(s)
- Ji-Qian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wan-Ying Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jia-Ji Fu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang-Zhi Fang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng-Gang Gao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chang Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qi-Lan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao-Bo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Le-Hao Ren
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hua-Qing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ke Peng
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Ying Wu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, Institute of Medical Virology, TaiKang Medical School, Wuhan University, Wuhan, 430072, China
| | - Ding-Yu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yang Qiu
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China
| | - Xi Zhou
- State Key Laboratory of Virology, Center for Antiviral Research, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 43007, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and the Fourth Medical Center of Chinese, PLA General Hospital, Beijing, 100853, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Salman M, Cicin J, Abdul Jabbar AB, El-shaer A, Tauseef A, Asghar N, Mirza M, Aboeata A. Trends in sepsis-associated cardiovascular disease mortality in the United States, 1999 to 2022. Front Cardiovasc Med 2024; 11:1505905. [PMID: 39717445 PMCID: PMC11663846 DOI: 10.3389/fcvm.2024.1505905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose Cardiovascular disease (CVD) is the leading cause of death in the United States, and sepsis significantly contributes to hospitalization and mortality. This study aims to assess the trends of sepsis-associated CVD mortality rates and variations in mortality based on demographics and regions in the US. Methods The Centers for Disease Control and Prevention Wide-ranging Online Data for Epidemiologic Research (CDC WONDER) database was used to identify CVD and sepsis-related deaths from 1999 to 2022. Data on gender, race and ethnicity, age groups, region, and state classification were statistically analyzed to obtain crude and age-adjusted mortality rates (AAMR). The Joinpoint Regression Program was used to determine trends in mortality within the study period. Results During the study period, there were a total of 1,842,641 deaths with both CVD and sepsis listed as a cause of death. Sepsis-associated CVD mortality decreased between 1999 and 2013, from AAMR of 65.7 in 1999 to 58.8 in 2013 (APC -1.06*%, 95% CI: -2.12% to -0.26%), then rose to 74.3 in 2022 (APC 3.23*%, 95% CI: 2.18%-5.40%). Throughout the study period, mortality rates were highest in men, NH Black adults, and elderly adults (65+ years old). The Northeast region, which had the highest mortality rate in the initial part of the study period, was the only region to see a decline in mortality, while the Northwest, Midwest, and Southern regions experienced significant increases in mortality rates. Conclusion Sepsis-associated CVD mortality has increased in the US over the past decade, and both this general trend and the demographic disparities have worsened since the onset of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Malik Salman
- School of Medicine, Creighton University, Omaha, NE, United States
| | - Jack Cicin
- School of Medicine, Creighton University, Omaha, NE, United States
| | | | - Ahmed El-shaer
- School of Medicine, Creighton University, Omaha, NE, United States
| | - Abubakar Tauseef
- School of Medicine, Creighton University, Omaha, NE, United States
| | - Noureen Asghar
- School of Medicine, Creighton University, Omaha, NE, United States
| | - Mohsin Mirza
- School of Medicine, Creighton University, Omaha, NE, United States
| | - Ahmed Aboeata
- Department of Cardiology, Creighton University Medical Center, Omaha, NE, United States
| |
Collapse
|
19
|
Wang X, Wang X, Ma J, Zhang S, Fang W, Xu F, Du J, Liang H, Duan W, Li Z, Liu J. GPR30 Agonist G1 Mitigates Sepsis-Induced Cardiac Dysfunction by Inhibiting ACE2/c-FOS-Mediated Necroptosis in Female Mice. ACS Infect Dis 2024; 10:3797-3809. [PMID: 39377746 DOI: 10.1021/acsinfecdis.4c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sepsis is a severe inflammatory syndrome with high mortality and morbidity. Sepsis-induced myocardial dysfunction (SIMD) is a common cause of death in sepsis. The female sex is less susceptible to sepsis-related organ dysfunction, although the underlying mechanism of this sex difference remains unclear. This study explored the role of estrogen receptor G protein-coupled estrogen receptor 30 (GPR30) in septic cardiac dysfunction. Results from the present study indicated that GPR30 activation by the G1 agonist protected female mouse hearts against SIMD exposed to lipopolysaccharides. However, this beneficial effect was absent in female ACE2-knockout mice, as demonstrated by poorer cardiac contractility, myocardial injury, and necroptosis. We also demonstrated that the Stat6 transcription factor induced ace2 transcription by enhancing its promoter activity under GPR30 activation in septic hearts. The adenovirus-mediated inhibition of ACE2 targeting c-FOS expression reversed the deterioration, restored cardiac function, and improved survival in female ACE2-knockout mice. These results demonstrate the essential role of GPR30/STAT6/ACE2/c-FOS-mediated necroptosis in G1-mediated protection and provide novel insight into the pathogenesis of sepsis-related organ damage.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Weiyi Fang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Fujie Xu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Jun Du
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
- Graduate School, Xi'an Medical University, Xi'an 710021, PR China
| | - Hongliang Liang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, California 94305, United States
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| |
Collapse
|
20
|
Verra C, Paulmann MK, Wegener J, Marzani E, Ferreira Alves G, Collino M, Coldewey SM, Thiemermann C. Spleen tyrosine kinase: a novel pharmacological target for sepsis-induced cardiac dysfunction and multi-organ failure. Front Immunol 2024; 15:1447901. [PMID: 39559354 PMCID: PMC11570271 DOI: 10.3389/fimmu.2024.1447901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Sepsis is a systemic condition caused by a dysregulated host response to infection and often associated with excessive release of proinflammatory cytokines resulting in multi-organ failure (MOF), including cardiac dysfunction. Despite a number of effective supportive treatments (e.g. ventilation, dialysis), there are no specific interventions that prevent or reduce MOF in patients with sepsis. To identify possible intervention targets, we re-analyzed the publicly accessible Gene Expression Omnibus accession GSE131761 dataset, which revealed an increased expression of spleen tyrosine kinase (SYK) in the whole blood of septic patients compared to healthy volunteers. This result suggests a potential involvement of SYK in the pathophysiology of sepsis. Thus, we investigated the effects of the highly selective SYK inhibitor PRT062607 (15mg/kg; i.p.) on sepsis-induced cardiac dysfunction and MOF in a clinically-relevant, murine model of sepsis. PRT062607 or vehicle (saline) was administered to 10-weeks-old C57BL/6 mice at 1h after the onset of sepsis induced by cecal ligation and puncture (CLP). Antibiotics (imipenem/cilastatin; 2mg/kg; s.c.) and analgesic (buprenorphine; 0.05mg/kg; i.p.) were administered at 6h and 18h post-CLP. After 24h, cardiac function was assessed in vivo by echocardiography and, after termination of the experiments, serum and cardiac samples were collected to evaluate the effects of SYK inhibition on the systemic release of inflammatory mediators and the degree of organ injury and dysfunction. Our results show that treatment of CLP-mice with PRT062607 significantly reduces systolic and diastolic cardiac dysfunction, renal dysfunction and liver injury compared to CLP-mice treated with vehicle. In addition, the sepsis-induced systemic inflammation (measured as an increase in inflammatory cytokines and chemokines in the serum) and the cardiac activation of NF-kB (IKK) and the NLRP3 inflammasome were significantly reduced in CLP-mice treated with PRT062607. These results demonstrate, for the first time, that SYK inhibition 1h after the onset of sepsis reduces the systemic inflammation, cardiac dysfunction and MOF, suggesting a potential role of the activation of SYK in the pathophysiology of sepsis. Novel therapeutic strategies that inhibit SYK activity may be of benefit in patients with diseases associated with local or systemic inflammation including sepsis.
Collapse
Affiliation(s)
- Chiara Verra
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Kerstin Paulmann
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Jamila Wegener
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Enrica Marzani
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | | | - Massimo Collino
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Turin, Italy
| | - Sina Maren Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Christoph Thiemermann
- Centre for Translational Medicine and Therapeutics, William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
21
|
Xu N, Wang C, Wan J, Chen L. Serum CIAPIN1 is lower in septic patients with cardiac dysfunction. Peptides 2024; 181:171295. [PMID: 39241831 DOI: 10.1016/j.peptides.2024.171295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The study aimed to investigate the clinical significance of serum cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and its potential impact on cardiac dysfunction and inflammatory response induced by sepsis. A cross-sectional study was conducted in an intensive care unit (ICU) involving 80 healthy individuals and 95 severe sepsis patients. The data were analyzed to establish the correlation between CIAPIN1 levels and the onset of cardiac dysfunction in patients with sepsis. The associations have been established by the Pearson correlation test, one-way ANOVA, Bonferroni post hoc test, and plotting the receiver operating characteristic (ROC). H9c2 cells were treated with LPS (1 μg/mL) for 24 h to establish an in vitro model of septic cardiomyopathy. Meanwhile, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were detected by enzyme-linked immunosorbent assay (ELISA). Serum CIAPIN1 levels were considerably lower in sepsis patients with cardiac dysfunction. CIAPIN1 expression levels were negatively correlated with TNF-α (r = -0.476, P<0.001), IL-1β (r = -0.584, P<0.001), IL-6 (r = -0.618, P<0.001), creatine kinase- MB (CK-MB) (r = -0.454, P<0.001), and high-sensitive cardiac troponin T (hs-cTnT) (r = -0.586, P<0.001). The ROC curve showed that CIAPIN1 significantly identify sepsis patients from healthy individuals. CIAPIN1 knockdown decreases cardiomyocyte proliferation and increases apoptosis induced by LPS. In addition, CIAPIN1 knockdown reduced cardiac dysfunction and increased inflammatory response in H9c2 rat cardiomyocytes. CIAPIN1 could be a potential biomarker for detecting sepsis patients and suppressing CIAPIN1 expression in H9c2 rat cardiomyocytes, attenuating sepsis-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Nongzhang Xu
- Department of Pharmacy, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai 201318, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai 201318, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai 201318, China
| | - Lin Chen
- Department of Nursing, Shanghai Pudong New Area Zhoupu Hospital (Shanghai Health Medical College Affiliated Zhoupu Hospital), Shanghai 201318, China.
| |
Collapse
|
22
|
Allam J, Ibrahim A, Rockey DC. The primary cause of markedly elevated aminotransferases in hospitalized patients with cirrhosis in ischemic hepatitis. Eur J Gastroenterol Hepatol 2024; 36:1346-1351. [PMID: 39324878 DOI: 10.1097/meg.0000000000002855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
BACKGROUND Marked elevation in aminotransferases (≥1000 IU/l) is typically associated with acute liver injury. Here, we hypothesized that the cause of elevation in aminotransferases ≥1000 in patients with cirrhosis is likely due to a limited number of disorders and may be associated with poor outcomes. AIM We aimed to investigate the most common etiologies of acute elevations in aminotransferases in patients with cirrhosis, and to examine their associated outcomes. METHODS From May 2012 to December 2022, all hospitalized patients with cirrhosis and an aspartate aminotransferase or alanine aminotransferase ≥ 1000 IU/l were identified through Medical University of South Carolina's Clinical Data Warehouse. Complete clinical data were abstracted for each patient, and in-hospital mortality was examined. RESULTS The cohort was made up of 152 patients, who were 57 ± 12 years old, with 51 (34%) women. Underlying liver disease included mainly hepatitis C cirrhosis, alcohol-related cirrhosis, metabolic dysfunction-associated steatohepatitis cirrhosis, autoimmune cirrhosis, primary sclerosing cholangitis cirrhosis, and cryptogenic cirrhosis. The most common cause of marked elevation in aminotransferases in cirrhotic patients was ischemic hepatitis (71%), followed by chemoembolization (7%), autoimmune hepatitis (6%), drug-induced liver injury (3%), post-transjugular intrahepatic portosystemic shunt placement (3%), rhabdomyolysis (3%), and hepatitis C (2%). During hospitalization and over a 1-month follow-up period, the mortality rate in patients with ischemic hepatitis was 73% (79/108), while that for other causes of liver injury was 20% (9/44). CONCLUSION Ischemic hepatitis is the leading cause of marked elevation of aminotransferases in patients with cirrhosis, with distinctive clinical characteristics than other etiologies, and significantly poorer outcomes.
Collapse
Affiliation(s)
- Jad Allam
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | |
Collapse
|
23
|
Tang F, Zhang JN, Xu LY, Zhao XL, Wan F, Ao H, Peng C. Endothelial-derived exosomes: A novel therapeutic strategy for LPS-induced myocardial damage with anisodamine. Int J Biol Macromol 2024; 282:136993. [PMID: 39489255 DOI: 10.1016/j.ijbiomac.2024.136993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Sepsis-induced myocardial dysfunction presents significant challenges in clinical management and is associated with increased mortality. Anisodamine (654-1/-2) has potentials in alleviating cardiac and endothelial impairments associated with sepsis. Exosomes, small vesicles secreted by cells, carry various bioactive molecules, such as nucleic acids, proteins, and lipids. These vesicles can travel to target cells to influence their function and modulating biological processes. In the context of endothelial-cardiac crosstalk, exosomes derived from endothelial cells can transfer signals that either exacerbate or mitigate myocardial injury, playing a crucial role in the progression of cardiovascular diseases. However, the precise role of endothelial-cardiac crosstalk, particularly through exosomes, in mediating the cardioprotective effects of anisodamine remains unclear. This study evaluated the effects of anisodamine on myocardial and endothelial injuries induced by LPS. Mechanisms were analyzed through network pharmacology, molecular docking, Western blotting, and RT-qPCR. The interaction between endothelial and cardiomyocyte inflammatory responses to anisodamine was assessed using a co-culture assay. Furthermore, both in vivo and in vitro assays were conducted to evaluate the effects of anisodamine-/LPS- treated HUVECs exosomes on A16 cell and myocardial function in mice. Anisodamine effectively mitigated apoptosis, inflammation, mitochondrial and myocardial injury, glycocalyx degradation, and oxidative stress by regulating the PI3K-AKT, NLRP-3/Caspase-1/ASC, TNF-α/PKCα/eNOs/NO, and NF-κB/iNOs/NO pathways in A16 cells and HUVECs. Moreover, in vivo and in vitro assays confirmed the protective effects of anisodamine against myocardial injuries mediated by exosomes derived from LPS-treated HUVECs. In summary, anisodamine ameliorated inflammation-induced endothelial and cardiomyocyte dysfunction. The in vitro and in vivo assays demonstrated that anisodamine could alleviate myocardial dysfunction through exosome-mediated mechanisms, offering new therapeutic avenues for treating myocardial injury and highlighting the potential of targeted exosome therapy in clinical settings.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Feng Wan
- Chengdu NO. 1 Pharmaceutical Co., Ltd., No. 133, Section 2, East Third Ring Road, Tianpeng, Pengzhou 611930, Sichuan, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
24
|
Boonha K, Kuo WW, Tsai BCK, Hsieh DJY, Lin KH, Lu SY, Kuo CH, Yang LY, Huang CY. Enhanced IGF-IIRα Expression Exacerbates Lipopolysaccharide-Induced Cardiac Inflammation, Hypertrophy, and Apoptosis Through Calcineurin Activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:5173-5186. [PMID: 39109785 DOI: 10.1002/tox.24385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 10/17/2024]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts and its association with the exacerbation of cardiac dysfunction. Using lipopolysaccharide (LPS)-induced H9c2 cardiac myoblasts as a model for sepsis, we aimed to elucidate the molecular interactions between IGF-IIRα and LPS in exacerbating cardiac injury. Our findings demonstrated a synergistic induction of cardiac inflammation and hypertrophy by LPS stimulation and IGF-IIRα overexpression, leading to decreased cell survival. Excessive calcineurin activity, triggered by this combined condition, was identified as a key factor exacerbating the negative effects on cell survival. Cellular changes such as cell enlargement, disrupted actin filaments, and upregulation of hypertrophy-related and inflammation-related proteins contributed to the overall hypertrophic and inflammatory responses. Overexpression of IGF-IIRα also exacerbated apoptosis induced by LPS in H9c2 cardiac myoblasts. Inhibiting calcineurin in LPS-treated H9c2 cardiac myoblasts with IGF-IIRα overexpression effectively reversed the detrimental effects, reducing cell damage and mitigating apoptosis-related cardiac mechanisms. Our study suggests that under sepsis-like conditions in the heart with IGF-IIRα overexpression, hyperactivation of calcineurin worsens cardiac damage. Suppressing IGF-IIRα and calcineurin expression could be a potential intervention to alleviate the impact of the illness and improve cardiac function.
Collapse
Affiliation(s)
- Khwanchit Boonha
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, Virginia, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
25
|
Sepehrinia M, Yousefi F, Valibeygi A, Alkamel A. Necrotizing fasciitis resembled acute coronary syndrome: A case report. Clin Case Rep 2024; 12:e9513. [PMID: 39493788 PMCID: PMC11527836 DOI: 10.1002/ccr3.9513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024] Open
Abstract
Chest pain is a frequent complaint in emergency departments, with various differential diagnoses from benign to life-threatening. Hereby, we described a 60-year-old man presented with chest pain and hypotension who initially misdiagnosed as acute coronary syndrome, but was ultimately diagnosed with necrotizing fasciitis. This case highlights the importance of considering rare causes of chest pain.
Collapse
Affiliation(s)
- Matin Sepehrinia
- Student Research CommitteeFasa University of Medical SciencesFasaIran
- Non‐Communicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Faeze Yousefi
- Student Research CommitteeFasa University of Medical SciencesFasaIran
| | - Adib Valibeygi
- Student Research CommitteeFasa University of Medical SciencesFasaIran
| | - Abdulhakim Alkamel
- Non‐Communicable Diseases Research CenterFasa University of Medical SciencesFasaIran
- Department of Cardiovascular Disease, Faculty of MedicineFasa University of Medical SciencesFasaIran
| |
Collapse
|
26
|
Zhou H, Gong H, Liu H, Jing G, Xia Y, Wang Y, Wu D, Yang C, Zuo J, Wang Y, Wu X, Song X. Erbin alleviates sepsis-induced cardiomyopathy by inhibiting RIPK1-dependent necroptosis through activating PKA/CREB pathway. Cell Signal 2024; 123:111374. [PMID: 39216682 DOI: 10.1016/j.cellsig.2024.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sepsis is a systemic inflammatory disease that can cause multiple organ damage. Septic patients with cardiac dysfunction have a significantly higher mortality. Based on the results of bioinformatics analysis, weighted gene co-expression network analysis (WGCNA), we found that Erbin is vital in cardiomyocyte. However, the function of Erbin in sepsis-induced cardiomyopathy (SIC) has not been explicitly studied. We discussed the role of Erbin in SIC by employing the Erbin-/- mice and HL-1 cardiomyocyte. An in vitro model of inflammation in HL-1 was used to confirm stimulation with lipopolysaccharide (LPS) and a mouse model of cecal ligation and puncture (CLP) to study the molecular mechanisms under SIC. Transmission electron microscopy (TEM) was used to characterize the morphological characteristics at the ultrastructural level. The expressions of Erbin, p-RIPK1, RIPK1, p-RIPK3, RIPK3, p-MLKL, MLKL, p-PKA, PKA, p-CREB and CREB were detected by western blot. qPCR analysis was applied to detect TNF-α, IL-1β, IL-6, RIPK1 and MLKL mRNA expression. Cell survival was detected by CCK-8 assay and the levels of c TnI concentration were detected by ELISA kit. Our study revealed that necroptosis and inflammation were activated in cardiomyocytes during sepsis and deficiency of Erbin aggravated them. Furthermore, deficiency of Erbin exacerbated systolic dysfunction including the decline of LVEF and LVFS induced by CLP. Overexpression of Erbin alleviated necroptosis and inflammation by activating PKA/CREB pathway. Our research elucidates a noval mechanism whereby Erbin participates in SIC, providing a promising therapeutic target for myocardial dysfunction during sepsis.
Collapse
Affiliation(s)
- Huimin Zhou
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Hailong Gong
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Huifan Liu
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Guoqing Jing
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Yun Xia
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - YuXuan Wang
- Renmin Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Die Wu
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Cheng Yang
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Jing Zuo
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Yanlin Wang
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Xiaojing Wu
- Renmin Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Xuemin Song
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Maiorov I, Bagrov K, Efraim R, Ankri Eliyahu G, Livneh A, Landesberg A. MMP-8 causes leftward shift in end-diastolic pressure-volume relationship and may explain the development of diastolic dysfunction in septic cardiomyopathy. Am J Physiol Heart Circ Physiol 2024; 327:H1098-H1111. [PMID: 39178029 DOI: 10.1152/ajpheart.00240.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Septic cardiomyopathy (SCM) with diastolic dysfunction carries a poor prognosis, and the mechanisms underlying the development of diastolic dysfunction remain unclear. Matrix metalloproteinase-8 (MMP-8) is released from neutrophils and degrades collagen I. MMP-8 levels correlate with SCM severity. We scrutinized, for the first time, the direct impact of MMP-8 on cardiac systolic and diastolic functions. Isolated rat hearts were perfused with Krebs-Henseleit solution in a Langendorff setup with computer-controlled filling pressures of both ventricles in an isovolumetric regime. The end-diastolic pressure (EDP) varied periodically between 3 and 20 mmHg. After baseline recordings, MMP-8 (100 µg/mL) was added to the perfusion. Short-axis views of both ventricles were continuously acquired by echocardiography. MMP-8 perfusion resulted in a progressive decline in peak systolic pressures (Psys) in both ventricles, but without significant changes in their end-systolic pressure-area relationships (ESPARs). Counterintuitively, conspicuous leftward shifts of the end-diastolic pressure-area relationships (EDPARs) were observed in both ventricles. The left ventricle (LV) end-diastolic area (EDA) decreased by 32.8 ± 5.7% (P = 0.008) at an EDP of 10.5 ± 0.4 mmHg, when LV Psys dropped by 20%. The decline of Psys was primarily due to the decrease in EDA, and restoring the baseline EDA by increasing EDP recovered 81.33 ± 5.87% of the pressure drop. Collagen I generates tensile (eccentric) stress, and its degradation by MMP-8 causes end-diastolic pressure-volume relationship (EDPVR) leftward shift, resulting in diastolic and systolic dysfunctions. The diastolic dysfunction explains the clinically observed fluid unresponsiveness, whereas the decrease in end-diastolic volume (EDV) diminishes the systolic functions. MMP-8 can explain the development of SCM with diastolic dysfunction.NEW & NOTEWORTHY MMP-8, released from activated neutrophils and macrophages, is markedly elevated in sepsis, correlating with sepsis severity and mortality. MMP-8 targets collagen I of the cardiac ECM and induces diastolic dysfunction with fluid unresponsiveness, associated with decreased EDV, reduced sarcomere length, and diminished systolic function. Unlike other MMPs that predominantly cleave collagen-III and contribute to cardiac dilatation, thereby increasing sarcomere length, MMP-8 leads to a leftward shift in the EDPVR, resulting in diastolic and systolic dysfunctions.
Collapse
Affiliation(s)
- Ida Maiorov
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Konstantin Bagrov
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Roy Efraim
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Galit Ankri Eliyahu
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Amit Livneh
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Amir Landesberg
- Cardiovascular Research, Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| |
Collapse
|
28
|
Liu W, Dai J, Zhang P, Ni M, Zhang Y, Fang H, Zhang Z. A novel vital sign pattern predicts sepsis-related myocardial injury mortality. iScience 2024; 27:110787. [PMID: 39310753 PMCID: PMC11414694 DOI: 10.1016/j.isci.2024.110787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Non-invasive, real-time monitorable indicators for early assessment of sepsis-associated myocardial injury (SMI) are still lacking. We aimed to develop non-invasive, real-time indicators for early assessment of SMI using bedside heart rate (HR) and diastolic arterial pressure (DAP) monitors. In this multi-center cohort study, piece-wise exponential additive mixed models were used to estimate the exposure window and time fraction of the hazardous exposure proportion, and secondarily to analyze the exposure characterization on this basis to identify high-risk exposure pattern. In total, 20,043 patients were finally included; we found that SMI patients had the highest survival rate when HR was <90 bpm or DAP was between 50 and 70 mmHg. Further investigation revealed that the SMI high-risk exposure pattern was the H1D-1 (HR ≥ 90 bpm and DAP ≤ 50 mmHg, exposure proportion > 0.3 and 0.2, respectively, and exposure window on admission day 1). H1D-1 exposure pattern using glucocorticoids significantly increased the risk of mortality in H1D-1. Validation against various methodologies and data sources demonstrated acceptable consistency.
Collapse
Affiliation(s)
- Wanjun Liu
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinjin Dai
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Pengyue Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Menglin Ni
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yafei Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Zhenhua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
29
|
Li W, Hua S, Yang J, Cao Y, Gao R, Sun H, Yang K, Wang Y, Peng P. Investigating immune dysregulation and hub genes in septic cardiomyopathy development. Sci Rep 2024; 14:21608. [PMID: 39294340 PMCID: PMC11411067 DOI: 10.1038/s41598-024-72724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/10/2024] [Indexed: 09/20/2024] Open
Abstract
Septic cardiomyopathy is a life-threatening heart dysfunction caused by severe infection. Considering the complexity of pathogenesis and high mortality, the identification of efficient biomarkers are needed to guide clinical practice. Based on multimicroarray analysis, this study aimed to explore the pathogenesis of septic cardiomyopathy and the related immune landscape. The results showed that septic cardiomyopathy resulted in organ dysfunction due to extreme pro- and anti-inflammatory effects. In this process, KLRG1, PRF1, BCL6, GAB2, MMP9, IL1R1, JAK3, IL6ST, and SERPINE1 were identified as the hub genes regulating the immune landscape of septic cardiomyopathy. Nine transcription factors regulated the expression of these genes: SRF, STAT1, SP1, RELA, PPARG, NFKB1, PPARA, SMAD3, and STAT3. The hub genes activated the Th17 cell differentiation pathway, JAK-STAT signaling pathway, and cytokine‒cytokine receptor interaction pathway. These pathways were mainly involved in regulating the inflammatory response, adaptive immune response, leukocyte-mediated immunity, cytokine-mediated immunity, immune effector processes, myeloid cell differentiation, and T-helper cell differentiation. These nine hub genes could be considered biomarkers for the early prediction of septic cardiomyopathy.
Collapse
Affiliation(s)
- Wenli Li
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Shi Hua
- Department of Neurosurgery, Linyi People's Hospital, Linyi, People's Republic of China
| | - Jianzhong Yang
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Yang Cao
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Ranran Gao
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Hu Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Kai Yang
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China
| | - Ying Wang
- Medical Department, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Peng Peng
- Emergency Trauma Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, 830011, Xinjiang, People's Republic of China.
| |
Collapse
|
30
|
Li H, Li X, Xu G, Zhan F. Minocycline alleviates lipopolysaccharide-induced cardiotoxicity by suppressing the NLRP3/Caspase-1 signaling pathway. Sci Rep 2024; 14:21180. [PMID: 39261543 PMCID: PMC11390881 DOI: 10.1038/s41598-024-72133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Minocycline (Min), as an antibiotic, possesses various beneficial properties such as anti-inflammatory, antioxidant, and anti-apoptotic effects. Despite these known qualities, the precise cardioprotective effect and mechanism of Min in protecting against sepsis-induced cardiotoxicity (SIC) remain unspecified. To address this, our study sought to assess the protective effects of Min on the heart. Lipopolysaccharide (LPS) was utilized to establish a cardiotoxicity model both in vivo and in vitro. Min was pretreated in the models. In the in vivo setting, evaluation of heart tissue histopathological injury was performed using hematoxylin and eosin (H&E) staining and TUNEL. Immunohistochemistry (IHC) was employed to evaluate the expression levels of NLRP3 and Caspase-1 in the heart tissue of mice. During in vitro experiments, the viability of H9c2 cells was gauged utilizing the CCK8 assay kit. Intracellular ROS levels in H9c2 cells were quantified using a ROS assay kit. Both in vitro and in vivo settings were subjected to measurement of oxidative stress indexes, encompassing glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) levels. Additionglly, myocardial injury markers like lactate dehydrogenase (LDH) and creatine kinase MB (CK-MB) activity were quantified using appropriate assay kits. Western blotting (WB) analysis was conducted to detect the expression levels of NOD-like receptor protein-3 (NLRP3), caspase-1, IL-18, and IL-1β, alongside apoptosis-related proteins such as Bcl-2 and Bax, and antioxidant proteins including superoxide dismutase-1 (SOD-1) and antioxidant proteins including superoxide dismutase-1 (SOD-2), both in H9c2 cells and mouse heart tissues. In vivo, Min was effective in reducing LPS-induced inflammation in cardiac tissue, preventing cell damage and apoptosis in cardiomyocytes. The levels of LDH and CK-MB were significantly reduced with Min treatment. In vitro studies showed that Min improved the viability of H9C2 cells, reduced apoptosis, and decreased ROS levels in these cells. Further analysis indicated that Min decreased the protein levels of NLRP3, Caspase-1, IL-18, and IL-1β, while increasing the levels of SOD-1 and SOD-2 both in vivo and in vitro. Min alleviates LPS-induced SIC by suppressing the NLRP3/Caspase-1 signalling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Huijuan Li
- Department of Anesthesiology, Wuhan Third Hospital, Wuhan, 430074, China
| | - Xiaozhong Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang, 330006, China.
| |
Collapse
|
31
|
Armstrong A, Tang Y, Mukherjee N, Zhang N, Huang G. Into the storm: the imbalance in the yin-yang immune response as the commonality of cytokine storm syndromes. Front Immunol 2024; 15:1448201. [PMID: 39318634 PMCID: PMC11420043 DOI: 10.3389/fimmu.2024.1448201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
There is a continuous cycle of activation and contraction in the immune response against pathogens and other threats to human health in life. This intrinsic yin-yang of the immune response ensures that inflammatory processes can be appropriately controlled once that threat has been resolved, preventing unnecessary tissue and organ damage. Various factors may contribute to a state of perpetual immune activation, leading to a failure to undergo immune contraction and development of cytokine storm syndromes. A literature review was performed to consider how the trajectory of the immune response in certain individuals leads to cytokine storm, hyperinflammation, and multiorgan damage seen in cytokine storm syndromes. The goal of this review is to evaluate how underlying factors contribute to cytokine storm syndromes, as well as the symptomatology, pathology, and long-term implications of these conditions. Although the recognition of cytokine storm syndromes allows for universal treatment with steroids, this therapy shows limitations for symptom resolution and survival. By identifying cytokine storm syndromes as a continuum of disease, this will allow for a thorough evaluation of disease pathogenesis, consideration of targeted therapies, and eventual restoration of the balance in the yin-yang immune response.
Collapse
Affiliation(s)
- Amy Armstrong
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Yuting Tang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Neelam Mukherjee
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Urology, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Nu Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gang Huang
- Department of Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Pathology & Laboratory Medicine, Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
32
|
Jiang C, Shi Q, Yang J, Ren H, Zhang L, Chen S, Si J, Liu Y, Sha D, Xu B, Ni J. Ceria nanozyme coordination with curcumin for treatment of sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation. J Adv Res 2024; 63:159-170. [PMID: 37871772 PMCID: PMC11380017 DOI: 10.1016/j.jare.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
INTRODUCTION Sepsis-induced cardiac injury is the leading cause of death in patients. Recent studies have reported that reactive oxygen species (ROS)-mediated ferroptosis and macrophage-induced inflammation are the two main key roles in the process of cardiac injury. The combination of ferroptosis and inflammation inhibition is a feasible strategy in the treatment of sepsis-induced cardiac injury. OBJECTIVES In the present study, ceria nanozyme coordination with curcumin (CeCH) was designed by a self-assembled method with human serum albumin (HSA) to inhibit ferroptosis and inflammation of sepsis-induced cardiac injury. METHODS AND RESULTS The formed CeCH obtained the superoxide dismutase (SOD)-like and catalase (CAT)-like activities from ceria nanozyme to scavenge ROS, which showed a protective effect on cardiomyocytes in vitro. Furthermore, it also showed ferroptosis inhibition to reverse cell death from RSL3-induced cardiomyocytes, denoted from curcumin. Due to the combination therapy of ceria nanozyme and curcumin, the formed CeCH NPs could also promote M2 macrophage polarization to reduce inflammation in vitro. In the lipopolysaccharide (LPS)-induced sepsis model, the CeCH NPs could effectively inhibit ferroptosis, reverse inflammation, and reduce the release of pro-inflammatory factors, which markedly alleviated the myocardial injury and recover the cardiac function. CONCLUSION Overall, the simple self-assembled strategy with ceria nanozyme and curcumin showed a promising clinical application for sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation.
Collapse
Affiliation(s)
- Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qianzhi Shi
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Jing Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Lu Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Shan Chen
- Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiayi Si
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Dujuan Sha
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Jie Ni
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
33
|
Wang Y, Feng W, Li S, Liu C, Jia L, Wang P, Li L, Du H, Yu W. Oxycodone attenuates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidation and pyroptosis via Nrf2/HO-1 signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13910. [PMID: 39073215 DOI: 10.1111/1440-1681.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Myocardial injury and cardiovascular dysfunction are the most common complications of sepsis, and effective therapeutic candidate is still lacking. This study aims to investigate the protective effect of oxycodone in myocardial injury of lipopolysaccharide-induced sepsis and its related signalling pathways. Wild-type and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout mice, as well as H9c2 cardiomyocytes cultures treated with lipopolysaccharide (LPS) were used as models of septic myocardial injury. H9c2 cardiomyocytes culture showed that oxycodone protected cells from pyroptosis induced by LPS. Mice model confirmed that oxycodone pretreatment significantly attenuated myocardial pathological damage and improved cardiac function demonstrated by increased ejection fraction (EF) and fractional shortening (FS), as well as decreased cardiac troponin I (cTnI) and creatine kinase isoenzymes MB (CK-MB). Oxycodone also reduced the levels of inflammatory factors and oxidative stress damage induced by LPS, which involves pyroptosis-related proteins including: Nod-like receptor protein 3 (NLRP3), Caspase 1, Apoptosis-associated speck-like protein contain a CARD (ASC), and Gasdermin D (GSDMD). These changes were mediated by Nrf2 and heme oxygenase-1 (HO-1) because Nrf2-knockout mice or Nrf2 knockdown in H9c2 cells significantly reversed the beneficial effect of oxycodone on oxidative stress, inflammatory responses and NLRP3-mediated pyroptosis. Our findings yielded that oxycodone therapy reduces LPS-induced myocardial injury by suppressing NLRP3-mediated pyroptosis via the Nrf2/HO-1 signalling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Yanting Wang
- The First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Wei Feng
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaona Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cuicui Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Pei Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Linlin Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyin Du
- Tianjin Municipal Health Commission, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Loaiza R, Fattahi F, Kalbitz M, Grailer JJ, Russell MW, Jalife J, Valdivia HH, Zetoune FS, Ward PA. The Impact of Extracellular Histones and Absence of Toll-like Receptors on Cardiac Functional and Electrical Disturbances in Mouse Hearts. Int J Mol Sci 2024; 25:8653. [PMID: 39201339 PMCID: PMC11354419 DOI: 10.3390/ijms25168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
In polymicrobial sepsis, the extracellular histones, mainly released from activated neutrophils, significantly contribute to cardiac dysfunction (septic cardiomyopathy), as demonstrated in our previous studies using Echo-Doppler measurements. This study aims to elucidate the roles of extracellular histones and their interactions with Toll-like receptors (TLRs) in cardiac dysfunction. Through ex vivo assessments of ECG, left ventricle (LV) function parameters, and in vivo Echo-Doppler studies in mice perfused with extracellular histones, we aim to provide comprehensive insights into the mechanisms underlying sepsis-induced cardiac dysfunction. Langendorff-perfused hearts from both wild-type and TLR2, TLR3, or TLR4 knockout (KO) mice were examined. Paced mouse hearts were perfused with histones to assess contractility and relaxation. Echo-Doppler studies evaluated cardiac dysfunction after intravenous histone injection. Histone perfusion caused defects in contractility and relaxation, with TLR2 and TLR3 KO mice being partially protected. Specifically, TLR2 KO mice exhibited the greatest reduction in Echo-Doppler abnormalities, while TLR4 KO exacerbated cardiac dysfunction. Among individual histones, H1 induced the most pronounced abnormalities in cardiac function, apoptosis of cardiomyocytes, and LDH release. Our data highlight significant interactions between histones and TLRs, providing insights into histones especially H1 as potential therapeutic targets for septic cardiomyopathy. Further studies are needed to explore specific histone-TLR interactions and their mechanisms.
Collapse
Affiliation(s)
- Randall Loaiza
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA; (R.L.); (J.J.); (H.H.V.)
- CENIBiot Laboratory, The National Center of High Technology (CeNAT-CONARE), San José 10109, Costa Rica
| | - Fatemeh Fattahi
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
| | - Miriam Kalbitz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
- Department of Orthopaedic Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital of Ulm, 89081 Ulm, Germany
- Military Medical City Hospital, Doha 486441, Qatar
| | - Jamison J. Grailer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
- Integrated Biology R&D, Bioassay Development, Promega Corporation, Madison, WI 53711, USA
| | - Mark W. Russell
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA;
| | - Jose Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA; (R.L.); (J.J.); (H.H.V.)
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Hector H. Valdivia
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA; (R.L.); (J.J.); (H.H.V.)
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Firas S. Zetoune
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
| | - Peter A. Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; (M.K.); (J.J.G.); (F.S.Z.)
| |
Collapse
|
35
|
Ford VJ, Applefeld WN, Wang J, Sun J, Solomon SB, Sidenko S, Feng J, Sheffield C, Klein HG, Yu Z, Torabi‐Parizi P, Danner RL, Sachdev V, Solomon MA, Chen MY, Natanson C. Cardiac Magnetic Resonance Studies in a Large Animal Model That Simulates the Cardiac Abnormalities of Human Septic Shock. J Am Heart Assoc 2024; 13:e034026. [PMID: 39101510 PMCID: PMC11964030 DOI: 10.1161/jaha.123.034026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Septic shock is associated with increases in end-diastolic volume (EDV) and decreases in ejection fraction that reverse within 10 days. Nonsurvivors do not develop EDV increases. The mechanism is unknown. METHODS AND RESULTS Purpose-bred beagles (n=33) were randomized to receive intrabronchial Staphylococcus aureus or saline. Over 96 hours, cardiac magnetic resonance imaging and echocardiograms were performed. Tissue was obtained at 66 hours. From 0 to 96 hours after bacterial challenge, septic animals versus controls had significantly increased left ventricular wall edema (6%) and wall thinning with loss of mass (15%). On histology, the major finding was nonocclusive microvascular injury with edema in myocytes, the interstitium, and endothelial cells. Edema was associated with significant worsening of biventricular ejection fractions, ventricular-arterial coupling, and circumferential strain. Early during sepsis, (0-24 hours), the EDV decreased; significantly more in nonsurvivors (ie, greater diastolic dysfunction). From 24 to 48 hours, septic animals' biventricular chamber sizes increased; in survivors significantly greater than baseline and nonsurvivors, whose EDVs were not different from baseline. Preload, afterload, or heart rate differences did not explain these differential changes. CONCLUSIONS The cardiac dysfunction of sepsis is associated with wall edema. In nonsurvivors, at 0 to 24 hours, sepsis induces a more severe diastolic dysfunction, further decreasing chamber size. The loss of left ventricular mass with wall thinning in septic survivors may, in part, explain the EDV increases from 24 to 48 hours because of a potentially reparative process removing damaged wall tissue. Septic cardiomyopathy is most consistent with a nonocclusive microvascular injury resulting in edema causing reversible systolic and diastolic dysfunction with more severe diastolic dysfunction being associated with a decreased EDV and death.
Collapse
MESH Headings
- Animals
- Dogs
- Disease Models, Animal
- Shock, Septic/physiopathology
- Shock, Septic/complications
- Stroke Volume
- Magnetic Resonance Imaging
- Edema, Cardiac/physiopathology
- Edema, Cardiac/pathology
- Edema, Cardiac/diagnostic imaging
- Ventricular Function, Left
- Time Factors
- Humans
- Staphylococcal Infections/complications
- Staphylococcal Infections/physiopathology
- Echocardiography
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/etiology
- Male
Collapse
Affiliation(s)
- Verity J. Ford
- Critical Care Medicine Department, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
| | - Willard N. Applefeld
- Critical Care Medicine Department, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
- Division of CardiologyDuke University Medical CenterDurhamNCUSA
| | - Jeffrey Wang
- Critical Care Medicine Department, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
- Emory UniversityAtlantaGAUSA
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
| | - Stanislav Sidenko
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Jing Feng
- Critical Care Medicine Department, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
| | | | - Harvey G. Klein
- Department of Transfusion Medicine, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
| | - Zu‐Xi Yu
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | | | - Robert L. Danner
- Critical Care Medicine Department, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Vandana Sachdev
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Michael A. Solomon
- Critical Care Medicine Department, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Marcus Y. Chen
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical CenterNational Institutes of Health, (NIH, CC)BethesdaMDUSA
- National Heart Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
36
|
Liu CH, Wen ZH, Huo YN, Lin CY, Yang HY, Tsai CS. Piscidin-1 regulates lipopolysaccharide-induced intracellular calcium, sodium dysregulation, and oxidative stress in atrial cardiomyocytes. Eur J Pharmacol 2024; 976:176695. [PMID: 38821161 DOI: 10.1016/j.ejphar.2024.176695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Lipopolysaccharide (LPS) triggers an inflammatory response, causing impairment of cardiomyocyte Ca2+ and Na + regulation. This study aimed to determine whether piscidin-1 (PCD-1), an antimicrobial peptide, improves intracellular Ca2+ and Na + regulation in LPS-challenged atrial cardiomyocytes. Rabbit atrial cardiomyocytes were enzymatically isolated from the left atria. Patch-clamp ionic current recording, intracellular Ca2+ monitoring using Fluo-3, and detection of cytosolic reactive oxygen species production were conducted in control, LPS-challenged, and LPS + PCD-1-treated atrial cardiomyocytes. LPS-challenged cardiomyocytes showed shortened durations of action potential at their 50% and 90% repolarizations, which was reversed by PCD-1 treatment. LPS-challenged cardiomyocytes showed decreased L-type Ca2+ channel currents and larger Na+/Ca2+ exchange currents compared to controls. While LPS did not affect the sodium current, an enhanced late sodium current with increased cytosolic Na+ levels was observed in LPS-challenged cardiomyocytes. These LPS-induced alterations in the ionic current were ameliorated by PCD-1 treatment. LPS-challenged cardiomyocytes displayed lowered Ca2+ transient amplitudes and decreased Ca2+ stores and greater Ca2+ leakage in the sarcoplasmic reticulum compared to the control. Exposure to PCD-1 attenuated LPS-induced alterations in Ca2+ regulation. The elevated reactive oxygen species levels observed in LPS-challenged myocytes were suppressed after PCD-1 treatment. The protein levels of NF-κB and IL-6 increased following LPS treatment. Decreased sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a protein levels were observed in LPS-challenged cardiomyocytes. PCD-1 modulates LPS-induced alterations in inflammatory and Ca2+ regulatory protein levels. Our results suggest that PCD-1 modulates LPS-induced alterations in intracellular Ca2+ and Na + homeostasis, reactive oxygen species production, and the NF-κB inflammatory pathway in atrial cardiomyocytes.
Collapse
Affiliation(s)
- Ching-Han Liu
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan; Division of Cardiology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 804201, Taiwan
| | - Yen-Nien Huo
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Yu Yang
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan.
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
37
|
Li X, Chen Y, Yuan Q, Zhou H, Lu L, Guo R. Neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio associated with 28-day all-cause mortality in septic patients with coronary artery disease: a retrospective analysis of MIMIC-IV database. BMC Infect Dis 2024; 24:749. [PMID: 39075364 PMCID: PMC11288105 DOI: 10.1186/s12879-024-09516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND High Neutrophil-to-Lymphocyte Ratio (NLR), Monocyte-to-Lymphocyte Ratio (MLR), Platelet-to-Lymphocyte Ratio (PLR) were associated with worse prognosis of patients with sepsis. In-hospital mortality has been reported to be higher in patients with coronary artery disease (CAD) and sepsis than those with sepsis alone. However, the relationship between NLR, MLR, PLR and mortality in septic patients with coronary artery disease (CAD) remains unclear. The study aimed to explore the association between NLR, MLR, PLR and 28-day all-cause mortality in septic patients with CAD. METHODS We performed an observational cohort study of septic patients with CAD from the Medical Information Mart for Intensive Care (MIMIC)-IV database between 2008 and 2019. The patients were categorized by three group (Q1: low levels, Q2: medium levels, Q3: high levels) based on tertiles of NLR, MLR, and PLR. The associations between NLR, MLR, PLR and 28-day all-cause mortality were examined using the Cox proportional hazards model. Subsequently, we applied receiver operating characteristic (ROC) analysis for predicting 28-day mortality in septic patients with CAD by combining NLR, MLR and PLR with the modified sequential organ failure assessment (mSOFA) scores. RESULTS Overall 1,175 septic patients with CAD were included in the study. Observed all-cause mortality rates in 28 days were 27.1%. Multivariate Cox proportional hazards regression analysis results showed that 28-day all-cause mortality of septic patients with CAD was significantly related to rising NLR levels (adjusted hazard ratio [aHR]: 1.02; 95% confidence interval [CI]: 1.01-1.02; P < 0.001), MLR levels (aHR: 1.29; 95%CI: 1.18-1.41; P < 0.001), and PLR levels (aHR: 1.0007; 95%CI: 1.0004-1.0011; P < 0.001). Meanwhile, the higher levels (Q3) group of NLR, MLR, and PLR also had a higher risk of 28-day all-cause mortality than the lower (Q1) group. The area under the ROC curve of NLR, MLR, PLR, and mSOFA score were 0.630 (95%CI 0.595-0.665), 0.611 (95%CI 0.576-0.646), 0.601 (95%CI 0.567-0.636) and 0.718 (95%CI 0.689-0.748), respectively. Combining NLR, MLR, and PLR with mSOFA scores may improve ability of predicting 28-day mortality (AUC: 0.737, 95%CI 0.709-0.766). CONCLUSION Higher levels of NLR, MLR and PLR were associated with 28-day all-cause mortality in septic patients with CAD. Further investigation will be needed to improve understanding of the pathophysiology of this relationship.
Collapse
Affiliation(s)
- Xicong Li
- Department of Cardiology, the 920th Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan, China
| | - Yubiao Chen
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Qi Yuan
- Department of Cardiology, the 920th Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan, China
| | - Hongya Zhou
- Department of Cardiology, the 920th Hospital, Kunming Medical University, Kunming, 650032, Yunnan, China
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan, China
| | - Lifei Lu
- State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, China.
| | - Ruiwei Guo
- Department of Cardiology, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan, China.
| |
Collapse
|
38
|
Higashikawa T, Ito T, Ito T, Mizuno T, Ishigami K, Kuroki K, Maekawa N, Usuda D, Yoshida M, Morita T, Hamada K, Yano H, Takeshima K, Haraguchi T, Yamada S, Yamada S, Ushimoto T, Sangen R, Izumida T, Kiyosawa J, Ono T, Iguchi M, Wato Y, Nakahashi T, Kasamaki Y, Fukuda A, Kanda T, Morimoto S, Okuro M. Procalcitonin, brain natriuretic peptide and albumin as markers to predict prognosis in hospitalized older Japanese patients with a risk of infection. Geriatr Gerontol Int 2024; 24:571-576. [PMID: 38690756 DOI: 10.1111/ggi.14887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
AIM Whether serum concentration of procalcitonin (PCT), brain natriuretic peptide (BNP) and albumin (Alb) have an association with the outcome of hospitalized older patients is unclear. We investigated clinical outcomes and any predictive factors in hospitalized Japanese older patients with a risk of infection. METHODS In the retrospective study, 820 Japanese patients were followed up for 30 days or until death. During the observation period, 656 patients survived and 164 patients died. The predictive factors of death were analyzed according to demographic and clinical variables. RESULTS The survival rate was decreased as the serum PCT increased from <0.5 to ≥10 ng/mL, as was also the case with BNP from <300 to ≥300 pg./mL, whereas low Alb (<2.5 g/dL) showed a lower survival rate than high Alb (≥2.5 g/dL; P < 0.01). Using the Cox regression model, the multivariable-adjusted hazard ratios (95% confidence interval) were as follows: PCT 0.5-2 versus <0.5 ng/mL: 1.61(1.04-2.49), PCT 2-10 versus <0.5 ng/mL: 1.91(1.15-3.16), PCT ≥10 versus <0.5 ng/mL: 2.90(1.84-4.59), high BNP 1.26 (0.89-1.76) and low Alb 0.68 (0.52-0.87). The mortality rate increased as the number of scores (PCT + BNP + Alb) increased. CONCLUSIONS Concentration-dependent high PCT, high BNP and low Alb were positive risk factors associated with poor prognosis in hospitalized older patients with a risk of infection. Geriatr Gerontol Int 2024; 24: 571-576.
Collapse
Affiliation(s)
- Toshihiro Higashikawa
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
- Department of Geriatric Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Toru Ito
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Tomohiko Ito
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Takuro Mizuno
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Keiichirou Ishigami
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Kengo Kuroki
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Naoto Maekawa
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Daisuke Usuda
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Michiteru Yoshida
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Takuro Morita
- Department of Geriatric Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Kazu Hamada
- Department of Geriatric Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Hiroshi Yano
- Department of Geriatric Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Kento Takeshima
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Takatoshi Haraguchi
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Shinya Yamada
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Sohsuke Yamada
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Tomoyuki Ushimoto
- Department of Emergency Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Ryusho Sangen
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Toshihide Izumida
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Jun Kiyosawa
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Taisuke Ono
- Department of Geriatric Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Masaharu Iguchi
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Yukihiro Wato
- Department of Emergency Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Takeshi Nakahashi
- Department of Geriatric Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Yuji Kasamaki
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Akihiro Fukuda
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Tsugiyasu Kanda
- Department of Geriatric Medicine, Kanazawa Medical University Himi Municipal Hospital, Toyama, Japan
| | - Shigeto Morimoto
- Department of Geriatric Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Masashi Okuro
- Department of Geriatric Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| |
Collapse
|
39
|
Chen Y, Chen S, Zhang J, Hu X, Li N, Liu Z, Huang L, Yu J, Zhang Y, Lin X, Xu Z, Fang Y, Chen Z, Guo Y, Chen B. Electroacupuncture pre-treatment exerts a protective effect on LPS-induced cardiomyopathy in mice through the delivery of miR-381 via exosomes. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167208. [PMID: 38701956 DOI: 10.1016/j.bbadis.2024.167208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE This study aims to investigate the cardiac protective effects and molecular mechanisms of electroacupuncture (EA) pre-treatment in lipopolysaccharide (LPS)-Induced Cardiomyopathy. METHODS AND RESULTS Pre-treatment with EA was performed 30 min before intraperitoneal injection of LPS. Cardiac function changes in mice of the EA + LPS group were observed using electrocardiography, echocardiography, and enzyme linked immunosorbent assay (ELISA) and compared with the LPS group. The results demonstrated that EA pre-treatment significantly improved the survival rate of septic mice, alleviated the severity of endotoxemia, and exhibited notable cardiac protective effects. These effects were characterized by a reduction in ST-segment elevation on electrocardiography, an increase in ejection fraction (EF) and fraction shortening (FS) on echocardiography and a decrease in the expression of serum cardiac troponin I (cTn-I) levels. Serum exosomes obtained after EA pre-treatment were extracted and administered to septic mice, revealing significant cardiac protective effects of EA-derived exosomes. Furthermore, the antagonism of circulating exosomes in mice markedly suppressed the cardiac protective effects conferred by EA pre-treatment. Analysis of serum exosomes using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant upregulation of miR-381 expression after EA pre-treatment. Inhibition or overexpression of miR-381 through serotype 9 adeno-associated virus (AAV9)-mediated gene delivery demonstrated that overexpression of miR-381 exerted a cardiac protective effect, while inhibition of miR-381 significantly attenuated the cardiac protective effects conferred by EA pre-treatment. CONCLUSIONS Our research findings have revealed a novel endogenous cardiac protection mechanism, wherein circulating exosomes derived from EA pre-treatment mitigate LPS-induced cardiac dysfunction via miR-381.
Collapse
Affiliation(s)
- Yong Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ningcen Li
- Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 500515, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300102, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
40
|
Li J, Teng D, Jia W, Gong L, Dong H, Wang C, Zhang L, Xu B, Wang W, Zhong L, Wang J, Yang J. PLD2 deletion ameliorates sepsis-induced cardiomyopathy by suppressing cardiomyocyte pyroptosis via the NLRP3/caspase 1/GSDMD pathway. Inflamm Res 2024; 73:1033-1046. [PMID: 38630134 PMCID: PMC11106193 DOI: 10.1007/s00011-024-01881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/27/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVE Sepsis-induced cardiomyopathy (SICM) is a life-threatening complication. Phospholipase D2 (PLD2) is crucial in mediating inflammatory reactions and is associated with the prognosis of patients with sepsis. Whether PLD2 is involved in the pathophysiology of SICM remains unknown. This study aimed to investigate the effect of PLD2 knockout on SICM and to explore potential mechanisms. METHODS The SICM model was established using cecal ligation and puncture in wild-type and PLD2-knockout mice and lipopolysaccharide (LPS)-induced H9C2 cardiomyocytes. Transfection with PLD2-shRNA lentivirus and a PLD2 overexpression plasmid were used to interfere with PLD2 expression in H9C2 cells. Cardiac pathological alterations, cardiac function, markers of myocardial injury, and inflammatory factors were used to evaluate the SICM model. The expression of pyroptosis-related proteins (NLRP3, cleaved caspase 1, and GSDMD-N) was assessed using western blotting, immunofluorescence, and immunohistochemistry. RESULTS SICM mice had myocardial tissue damage, increased inflammatory response, and impaired heart function, accompanied by elevated PLD2 expression. PLD2 deletion improved cardiac histological changes, mitigated cTNI production, and enhanced the survival of the SICM mice. Compared with controls, PLD2-knockdown H9C2 exhibits a decrease in inflammatory markers and lactate dehydrogenase production, and scanning electron microscopy results suggest that pyroptosis may be involved. The overexpression of PLD2 increased the expression of NLRP3 in cardiomyocytes. In addition, PLD2 deletion decreased the expression of pyroptosis-related proteins in SICM mice and LPS-induced H9C2 cells. CONCLUSION PLD2 deletion is involved in SICM pathogenesis and is associated with the inhibition of the myocardial inflammatory response and pyroptosis through the NLRP3/caspase 1/GSDMD pathway.
Collapse
Affiliation(s)
- Jun Li
- School of Basic Medical Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Da Teng
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Wenjuan Jia
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lihui Zhang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Bowen Xu
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Wenlong Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China
| | - Lin Zhong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China.
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, No. 308 Ningxia Road, Qingdao, 266071, Shandong, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, No. 20 Yudong Road, Yantai, 264000, Shandong, China.
| |
Collapse
|
41
|
Zhang M, Zhi D, Liu P, Wang Y, Duan M. Protective effects of Dioscin against sepsis-induced cardiomyopathy via regulation of toll-like receptor 4/MyD88/p65 signal pathway. Immun Inflamm Dis 2024; 12:e1229. [PMID: 38775678 PMCID: PMC11110714 DOI: 10.1002/iid3.1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 02/19/2024] [Accepted: 03/08/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Dioscin has many pharmacological effects; however, its role in sepsis-induced cardiomyopathy (SIC) is unknown. Accordingly, we concentrate on elucidating the mechanism of Dioscin in SIC rat model. METHODS The SIC rat and H9c2 cell models were established by lipopolysaccharide (LPS) induction. The heart rate (HR), left ventricle ejection fraction (LVEF), mean arterial blood pressure (MAP), and heart weight index (HWI) of rats were evaluated. The myocardial tissue was observed by hematoxylin and eosin staining. 4-Hydroxy-2-nonenal (4-HNE) level in myocardial tissue was detected by immunohistochemistry. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in serum samples of rats and H9c2 cells were determined by colorimetric assay. Bax, B-cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated-p65 (p-p65), and p65 levels in myocardial tissues of rats and treated H9c2 cells were measured by quantitative real-time PCR and Western blot. Viability and reactive oxygen species (ROS) accumulation of treated H9c2 cells were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and dihydroethidium staining assays. RESULTS Dioscin decreased HR and HWI, increased LVEF and MAP, alleviated the myocardial tissue damage, and reduced 4-HNE level in SIC rats. Dioscin reversed LPS-induced reduction on SOD, CAT, GSH, and Bcl-2 levels, and increment on Bax and TLR4 levels in rats and H9c2 cells. Overexpressed TLR4 attenuated the effects of Dioscin on promoting viability, as well as dwindling TLR4, ROS and MyD88 levels, and p-p65/p65 value in LPS-induced H9c2 cells. CONCLUSION Protective effects of Dioscin against LPS-induced SIC are achieved via regulation of TLR4/MyD88/p65 signal pathway.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Deyuan Zhi
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Pei Liu
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yajun Wang
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Meili Duan
- Department of Critical Care Medicine, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
42
|
Hou D, Liao H, Hao S, Liu R, Huang H, Duan C. Curcumin simultaneously improves mitochondrial dynamics and myocardial cell bioenergy after sepsis via the SIRT1-DRP1/PGC-1α pathway. Heliyon 2024; 10:e28501. [PMID: 38586339 PMCID: PMC10998060 DOI: 10.1016/j.heliyon.2024.e28501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Septic cardiomyopathy (SCM) is associated with an imbalance in mitochondrial quality and high mortality rates, with no effective treatment developed to date. Curcumin provides antioxidant, anti-inflammatory, cardiovascular, and mitochondrial protection. However, curcumin has not been confirmed to improve cardiac dysfunction in sepsis. We hypothesized that curcumin can reduce abnormal inflammatory responses by improving mitochondrial function as a novel mechanism to improve SCM. To explore this hypothesis, we used an in vivo male C57BL/6 mouse sepsis model and an in vitro model of lipopolysaccharide-stimulated HL-1 cells. The effects of curcumin on sepsis-induced cardiac dysfunction, inflammatory responses, and mitochondrial quality of cardiac cells were observed using quantitative polymerase chain reaction, western blotting, echocardiography, and transmission electron microscopy. Curcumin activated sirtuin 1 (SIRT1); increased expression of the mitochondrial biogenesis-related genes Pgc1α, Tfam, and Nrf2; reduced dynamin-related protein 1 translocation from the cytoplasm to mitochondria; and restored the mitochondrial morphology and function in cardiac cells. Accordingly, curcumin protected heart function after septic shock and alleviated the effects of SCM. SIRT1 knockdown reversed the protective effects of curcumin on mitochondria. Therefore, curcumin promotes mitochondrial biogenesis and inhibits mitochondrial fragmentation by activating SIRT1, thereby improving the mitochondrial quality and reducing oxidative stress in cardiomyocytes and sepsis-induced cardiac dysfunction. These findings provide new evidence supporting the use of curcumin to treat SCM.
Collapse
Affiliation(s)
- Dongyao Hou
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Department of Intensive Care Unit, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400011, China
| | - Shuai Hao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ruixue Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| |
Collapse
|
43
|
Duignan SM, Lakshminrusimha S, Armstrong K, de Boode WP, El-Khuffash A, Franklin O, Molloy EJ. Neonatal sepsis and cardiovascular dysfunction I: mechanisms and pathophysiology. Pediatr Res 2024; 95:1207-1216. [PMID: 38044334 DOI: 10.1038/s41390-023-02926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 12/05/2023]
Abstract
The highest incidence of sepsis across all age groups occurs in neonates leading to substantial mortality and morbidity. Cardiovascular dysfunction frequently complicates neonatal sepsis including biventricular systolic and/or diastolic dysfunction, vasoregulatory failure, and pulmonary arterial hypertension. The haemodynamic response in neonatal sepsis can be hyperdynamic or hypodynamic and the underlying pathophysiological mechanisms are heterogeneous. The diagnosis and definition of both neonatal sepsis and cardiovascular dysfunction complicating neonatal sepsis are challenging and not consensus-based. Future developments in neonatal sepsis management will be facilitated by common definitions and datasets especially in neonatal cardiovascular optimisation. IMPACT: Cardiovascular dysfunction is common in neonatal sepsis but there is no consensus-based definition, making calculating the incidence and designing clinical trials challenging. Neonatal cardiovascular dysfunction is related to the inflammatory response, which can directly target myocyte function and systemic haemodynamics.
Collapse
Affiliation(s)
- Sophie M Duignan
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | | | - Kathryn Armstrong
- Children's Heart Centre, BC Children's Hospital, Vancouver, BC, Canada
| | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Afif El-Khuffash
- School of Medicine, Department of Paediatrics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orla Franklin
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Trinity College, The University of Dublin, Trinity Research in Childhood (TRiCC) & Trinity Translational Medicine Institute (TTMI), Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Trinity Research in Childhood (TRiCC) & Trinity Translational Medicine Institute (TTMI), Dublin, Ireland.
- Department of Neonatology, Children's Health Ireland at Crumlin, Dublin, Ireland.
- Department of Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland.
- Paediatric Neurodisability, Children's Health Ireland at Tallaght, Dublin, Ireland.
| |
Collapse
|
44
|
Wang J, Hou J, Peng C. Phospholipid transfer protein ameliorates sepsis-induced cardiac dysfunction through NLRP3 inflammasome inhibition. Open Med (Wars) 2024; 19:20240915. [PMID: 38584827 PMCID: PMC10996989 DOI: 10.1515/med-2024-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Cardiomyocyte pyroptosis is a primary contributor to sepsis-induced cardiac dysfunction (SICD). Recombinant phospholipid transfer protein (PLTP) have been demonstrated to possess anti-inflammatory and antiseptic properties. However, the effect of PLTP on SICD remains unknown. In this study, we established the in vivo and in vitro sepsis model with the recombinant PLTP treatment. The survival rates of mice, mouse cardiac function, cell viability, the protein level of proinflammatory cytokine, and lactate dehydrogenase level were evaluated. The cardiomyocyte pyroptotic changes were observed. The distribution of PLTP and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) in mouse myocardial tissue and expression of PLTP, apoptosis associated speck like protein containing a CARD (ASC), NLRP3, caspase-1, interleukin (IL)-1β, and Gasdermin D (GSDMD) were detected. PLTP ameliorated the cecal ligation and puncture-induced mouse survival rate decrease and cardiac dysfunction, inhibited the IL-1β, IL-18, and tumor necrosis factor (TNF)-α release, and blocked the NLRP3 inflammasome/GSDMD signaling pathway in septic mice. In vitro, PLTP reversed the lipopolysaccharide-induced cardiomyocyte pyroptosis, expression of IL-1β, IL-6, TNF-α, and activation of the NLRP3 inflammasome/GSDMD signal pathway. Moreover, PLTP could bind to NLRP3 and negatively regulate the activity of the NLRP3 inflammasome/GSDMD signal pathway. This study demonstrated that PLTP can ameliorate SICD by inhibiting inflammatory responses and cardiomyocyte pyroptosis by blocking the activation of the NLRP3 inflammasome/GSDMD signaling pathway.
Collapse
Affiliation(s)
- Jian Wang
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| | - Jing Hou
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| | - Chaohua Peng
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| |
Collapse
|
45
|
Chen B, Li YF, Fang Z, Cai WY, Tian ZQ, Li D, Wang ZM. Epigallocatechin-3-gallate protects sepsis-induced myocardial dysfunction by inhibiting the nuclear factor-κB signaling pathway. Heliyon 2024; 10:e27163. [PMID: 38449632 PMCID: PMC10915574 DOI: 10.1016/j.heliyon.2024.e27163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) has become one of the most lethal complications of sepsis, while the treatment was limited by a shortage of pertinent drugs. Epigallocatechin-3-gallate (EGCG) is the highest content of active substances in green tea, and its application in cardiovascular diseases has broad prospects. This study was conducted to test the hypothesis that EGCG was able to inhibit lipopolysaccharide (LPS) induced myocardial dysfunction and investigate the underlying molecular mechanisms. The cardiac systolic function was assessed by echocardiography. The cardiomyocyte apoptosis was determined by TUNEL staining. The expression of inflammatory factors and apoptosis-related protein, cardiac markers were examined by Western Blot and qRT-PCR. EGCG effectively improve LPS-induced cardiac function damage, enhance left ventricular systolic function, and restore myocardial cell vitality. It can effectively inhibit the upregulation of TLR4 expression induced by LPS and inhibit IκB α/NF- κB/p65 signaling pathway, thereby inhibiting cardiomyocyte apoptosis and improving myocarditis. In conclusion, EGCG protects against SIMD through anti-inflammatory and anti-apoptosis effects; it was mediated by the inhibition of the TLR4/NF-κB signal pathway. Our results demonstrated that EGCG might be a possible medicine for SIMD prevention and treatment.
Collapse
Affiliation(s)
- Bei Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ya-Fei Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, Jiangsu Province, China
| | - Zhang Fang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wen-Yi Cai
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhi-Qiang Tian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Dianfu Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Ze-Mu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| |
Collapse
|
46
|
Tiwari A, Haj N, Elgrably B, Berihu M, Laskov V, Barash S, Zigron S, Sason H, Shamay Y, Karni-Ashkenazi S, Holdengreber M, Saar G, Vandoorne K. Cross-Modal Imaging Reveals Nanoparticle Uptake Dynamics in Hematopoietic Bone Marrow during Inflammation. ACS NANO 2024; 18:7098-7113. [PMID: 38343099 PMCID: PMC10919094 DOI: 10.1021/acsnano.3c11201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 03/06/2024]
Abstract
Nanoparticles have been employed to elucidate the innate immune cell biology and trace cells accumulating at inflammation sites. Inflammation prompts innate immune cells, the initial responders, to undergo rapid turnover and replenishment within the hematopoietic bone marrow. Yet, we currently lack a precise understanding of how inflammation affects cellular nanoparticle uptake at the level of progenitors of innate immune cells in the hematopoietic marrow. To bridge this gap, we aimed to develop imaging tools to explore the uptake dynamics of fluorescently labeled cross-linked iron oxide nanoparticles in the bone marrow niche under varying degrees of inflammation. The inflammatory models included mice that received intramuscular lipopolysaccharide injections to induce moderate inflammation and streptozotocin-induced diabetic mice with additional intramuscular lipopolysaccharide injections to intensify inflammation. In vivo magnetic resonance imaging (MRI) and fluorescence imaging revealed an elevated level of nanoparticle uptake at the bone marrow as the levels of inflammation increased. The heightened uptake of nanoparticles within the inflamed marrow was attributed to enhanced permeability and retention with increased nanoparticle intake by hematopoietic progenitor cells. Moreover, intravital microscopy showed increased colocalization of nanoparticles within slowly patrolling monocytes in these inflamed hematopoietic marrow niches. Our discoveries unveil a previously unknown role of the inflamed hematopoietic marrow in enhanced storage and rapid deployment of nanoparticles, which can specifically target innate immune cells at their production site during inflammation. These insights underscore the critical function of the hematopoietic bone marrow in distributing iron nanoparticles to innate immune cells during inflammation. Our findings offer diagnostic and prognostic value, identifying the hematopoietic bone marrow as an imaging biomarker for early detection in inflammation imaging, advancing personalized clinical care.
Collapse
Affiliation(s)
- Ashish Tiwari
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Narmeen Haj
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Betsalel Elgrably
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Maria Berihu
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Viktor Laskov
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
- Third
Faculty of Medicine, Charles University, Prague 100 00, Czech Republic
| | - Sivan Barash
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Shachar Zigron
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Hagit Sason
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Yosi Shamay
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Shiri Karni-Ashkenazi
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| | - Maya Holdengreber
- Biomedical
Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Galit Saar
- Biomedical
Core Facility, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Katrien Vandoorne
- Faculty
of Biomedical Engineering, Technion-Israel
Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
47
|
Dao L, Liu H, Xiu R, Yao T, Tong R, Xu L. Gramine improves sepsis-induced myocardial dysfunction by binding to NF-κB p105 and inhibiting its ubiquitination. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155325. [PMID: 38295663 DOI: 10.1016/j.phymed.2023.155325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Sepsis and its associated heart failure are among the leading causes of death. Gramine, a natural indole alkaloid, can be extracted from a wide variety of raw plants, and it exhibits therapeutic potential in pathological cardiac hypertrophy. However, the effect of gramine on inflammatory cardiomyopathy, particularly sepsis-induced myocardial injury, remains an unexplored area. PURPOSE To determine the role of gramine in sepsis-induced myocardial dysfunction and explore its underlying mechanism. STUDY DESIGN AND METHODS In mice, sepsis was established by intraperitoneally injecting lipopolysaccharide (LPS, 10 mg/kg). Subsequently, the effects of gramine administration (50 or 100 mg/kg) on LPS-triggered cardiac dysfunction in mice were investigated. For in vitro studies, isolated primary cardiomyocytes were used to assess the effect of gramine (25 or 50 µM) on LPS-induced apoptosis and inflammation. Additionally, molecular docking, co-immunoprecipitation and ubiquitination analyzes were conducted to explore the underlying mechanisms. RESULTS Gramine visibly ameliorated sepsis-induced cardiac dysfunction, inflammatory response, and mortality in vivo. Moreover, it significantly alleviated LPS-induced apoptotic and inflammatory responses in vitro. Furthermore, target prediction for gramine using the SuperPred website indicated that the nuclear factor NF-κB p105 subunit was one of the molecules ranked in priority order with a high model accuracy and a high probability score. Molecular docking studies demonstrated that gramine effectively docked to the death domain of NF-κB p105. Mechanistic studies revealed that gramine suppressed the processing of NF-κB p105 to p50 by inhibiting NF-κB p105 ubiquitination. Additionally, the protective effect of gramine on cardiac injury was almost abolished by overexpressing NF-κB p105. CONCLUSION Gramine is a promising bioactive small molecule for treating sepsis-induced myocardial dysfunction, which acts by docking to NF-κB p105 and inhibiting NF-κB p105 ubiquitination, thus preventing its processing to NF-κB p50. Therefore, gramine holds potential as a clinical drug for treating myocardial depression during sepsis.
Collapse
Affiliation(s)
- Ling Dao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Hengdao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Ruizhen Xiu
- Department of Radiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Tianbao Yao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Renyang Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongtinan Road, Beijing 100020, China.
| | - Longwei Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China.
| |
Collapse
|
48
|
Lei W, Xu X, Li N, Zhang Y, Tang R, Li X, Tang J, Wu X, Lu C, Bai Y, Yao Y, Qiu Z, Yang Y, Zheng X. Isopropyl 3-(3,4-dihydroxyphenyl) 2-hydroxypropanoate protects septic myocardial injury via regulating GAS6/Axl-AMPK signaling pathway. Biochem Pharmacol 2024; 221:116035. [PMID: 38301968 DOI: 10.1016/j.bcp.2024.116035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
In a previous study, we used metabolomic techniques to identify a new metabolite of Danshen Dripping Pills called isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate (IDHP), which has potential as a drug candidate for cardiovascular diseases. This study aimed to explore the protective effects of IDHP against septic myocardial injury, as well as its molecular mechanism. Wild type or GAS6 knockout mice injured by cecal ligation and puncture (CLP) were used to observe the effect of IDHP. Here, we found that a specific concentration of IDHP (60 mg/kg) significantly increased the survival rate of septic mice to about 75 % at 72 h post CLP, and showed improvements in sepsis score, blood biochemistry parameters, cardiac function, and myocardial tissue damage. Furthermore, IDHP inhibited myocardial oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. Molecularly, we discovered that IDHP treatment reversed the CLP-induced downregulation of GAS6, Axl, and p-AMPK/AMPK expression. In addition, GAS6 knockout reversed the positive effect of IDHP in septic mice, indicated by more severe myocardial tissue damage, oxidative stress, inflammatory response, and mitochondrial dysfunction. GAS6 knockout also resulted in decreased levels of GAS6, Axl, and p-AMPK/AMPK. Taken together, our study provides evidence that IDHP has significant cardioprotective effects against sepsis by regulating the GAS6/Axl-AMPK signaling pathway. This finding has important therapeutic potential for treating sepsis.
Collapse
Affiliation(s)
- Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yan Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Ran Tang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Xiaoru Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Chenxi Lu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yajun Bai
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yu Yao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Zhenye Qiu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| | - Xiaohui Zheng
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an 710021, China.
| |
Collapse
|
49
|
Cao Z, Li W, Shao Z, Liu X, Zeng Y, Lin P, Lin C, Zhao Y, Li T, Zhao Z, Li X, Zhang Y, Hu B. Apelin ameliorates sepsis-induced myocardial dysfunction via inhibition of NLRP3-mediated pyroptosis of cardiomyocytes. Heliyon 2024; 10:e24568. [PMID: 38356599 PMCID: PMC10864914 DOI: 10.1016/j.heliyon.2024.e24568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SMD) is the major cause of death in sepsis. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3)-mediated pyroptosis contributes to the occurrence and development of SMD. Although Apelin confers direct protection against SMD, the potential mechanisms remain unclear. This study aimed to determine whether Apelin protects against SMD via regulation of NLRP3-mediated pyroptosis of cardiomyocytes. Experimental SMD was induced in wild-type (WT) control mice and Apelin knockout (Apelin-/-) mice by cecal ligation and puncture (CLP). Neonatal mouse cardiomyocytes (NMCs) were treated with lipopolysaccharide (LPS) to simulate the physiological environment of SMD in vitro. The expression of Apelin was greatly decreased in the plasma from septic patients and septic mouse heart. Knockout of Apelin aggravated SMD, evidenced by decreased cardiac function, and increased cardiac fibrosis and NLRP3 inflammasome and pyroptosis levels in CLP-treated Apelin-/- mice compared with WT mice. Overexpression of Apelin activated the AMPK pathway and thereby inhibited NLRP3 inflammasome-mediated pyroptosis of NMCs induced by LPS in vitro These protective effects were partially abrogated by AMPK inhibitor. In conclusion, Apelin attenuated SMD by inhibiting NLRP3-mediated pyroptosis via activation of the AMPK pathway. Apelin may serve as a promising therapeutic target for SMD.
Collapse
Affiliation(s)
- Zhi Cao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Weifeng Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuang Shao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xinqiang Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Zeng
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Peijun Lin
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Chuangqiang Lin
- Medical College, Shantou University, Shantou, Guangdong, China
| | - Yuechu Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zichao Zhao
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Bei Hu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Medical College, Shantou University, Shantou, Guangdong, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
50
|
Ford VJ, Applefeld WN, Wang J, Sun J, Solomon SB, Sidenko S, Feng J, Sheffield C, Klein HG, Yu ZX, Torabi-Parizi P, Danner RL, Sachdev V, Solomon MA, Chen MY, Natanson C. Cardiac Magnetic Resonance Studies in a Large Animal Model that Simulates the Cardiac Abnormalities of Human Septic Shock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578971. [PMID: 38903100 PMCID: PMC11188083 DOI: 10.1101/2024.02.05.578971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Septic shock, in humans and in our well-established animal model, is associated with increases in biventricular end diastolic volume (EDV) and decreases in ejection fraction (EF). These abnormalities occur over 2 days and reverse within 10 days. Septic non-survivors do not develop an increase in EDV. The mechanism for this cardiac dysfunction and EDV differences is unknown. Methods Purpose-bred beagles randomized to receive intrabronchial Staphylococcus aureus (n=27) or saline (n=6) were provided standard ICU care including sedation, mechanical ventilation, and fluid resuscitation to a pulmonary arterial occlusion pressure of over 10mmHg. No catecholamines were administered. Over 96h, cardiac magnetic resonance imaging, echocardiograms, and invasive hemodynamics were serially performed, and laboratory data was collected. Tissue was obtained at 66h from six septic animals. Results From 0-96h after bacterial challenge, septic animals vs. controls had significantly increased left ventricular wall edema (6%) and wall thinning with loss of mass (15%) which was more pronounced at 48h in non-survivors than survivors. On histology, edema was located predominantly in myocytes, the interstitium, and endothelial cells. Edema was associated with significantly worse biventricular function (lower EFs), ventricular-arterial coupling, and circumferential strain. In septic animals, from 0-24h, the EDV decreased from baseline and, despite cardiac filling pressures being similar, decreased significantly more in non-survivors. From 24-48h, all septic animals had increases in biventricular chamber sizes. Survivors biventricular EDVs were significantly greater than baseline and in non-survivors, where biventricular EDVs were not different from baseline. Preload, afterload, or HR differences did not explain these differential serial changes in chamber size. Conclusion Systolic and diastolic cardiac dysfunction during sepsis is associated with ventricular wall edema. Rather than differences in preload, afterload, or heart rate, structural alterations to the ventricular wall best account for the volume changes associated with outcome during sepsis. In non-survivors, from 0-24h, sepsis induces a more severe diastolic dysfunction, further decreasing chamber size. The loss of left ventricular mass with wall thinning in septic survivors may, in part explain, the EDV increases from 24-48h. However, these changes continued and even accelerated into the recovery phase consistent with a reparative process rather than ongoing injury.
Collapse
Affiliation(s)
- Verity J. Ford
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Willard N. Applefeld
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey Wang
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
- Emory, 100 Woodruff Circle, Atlanta, GA 30322
| | - Junfeng Sun
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Steven B. Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Stanislav Sidenko
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Jing Feng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | | | - Harvey G. Klein
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Zu-Xi Yu
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Parizad Torabi-Parizi
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Robert L. Danner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
| | - Vandana Sachdev
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Michael A. Solomon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Marcus Y. Chen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Charles Natanson
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, (NIH, CC) Bethesda, Maryland 20892 USA
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892 USA
| |
Collapse
|