1
|
Jia W, Li Y, Cheung KCP, Zheng X. Bile acid signaling in the regulation of whole body metabolic and immunological homeostasis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:865-878. [PMID: 37515688 DOI: 10.1007/s11427-023-2353-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/23/2023] [Indexed: 07/31/2023]
Abstract
Bile acids (BAs) play a crucial role in nutrient absorption and act as key regulators of lipid and glucose metabolism and immune homeostasis. Through the enterohepatic circulation, BAs are synthesized, metabolized, and reabsorbed, with a portion entering the vascular circulation and distributing systemically. This allows BAs to interact with receptors in all major organs, leading to organ-organ interactions that regulate both local and global metabolic processes, as well as the immune system. This review focuses on the whole-body effects of BA-mediated metabolic and immunological regulation, including in the brain, heart, liver, intestine, eyes, skin, adipose tissue, and muscle. Targeting BA synthesis and receptor signaling is a promising strategy for the development of novel therapies for various diseases throughout the body.
Collapse
Affiliation(s)
- Wei Jia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.
| | - Yitao Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Kenneth C P Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
Song Y, Wei H, Zhou Z, Wang H, Hang W, Wu J, Wang DW. Gut microbiota-dependent phenylacetylglutamine in cardiovascular disease: current knowledge and new insights. Front Med 2024; 18:31-45. [PMID: 38424375 DOI: 10.1007/s11684-024-1055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/04/2023] [Indexed: 03/02/2024]
Abstract
Phenylacetylglutamine (PAGln) is an amino acid derivate that comes from the amino acid phenylalanine. There are increasing studies showing that the level of PAGln is associated with the risk of different cardiovascular diseases. In this review, we discussed the metabolic pathway of PAGln production and the quantitative measurement methods of PAGln. We summarized the epidemiological evidence to show the role of PAGln in diagnostic and prognostic value in several cardiovascular diseases, such as heart failure, coronary heart disease/atherosclerosis, and cardiac arrhythmia. The underlying mechanism of PAGln is now considered to be related to the thrombotic potential of platelets via adrenergic receptors. Besides, other possible mechanisms such as inflammatory response and oxidative stress could also be induced by PAGln. Moreover, since PAGln is produced across different organs including the intestine, liver, and kidney, the cross-talk among multiple organs focused on the function of this uremic toxic metabolite. Finally, the prognostic value of PAGln compared to the classical biomarker was discussed and we also highlighted important gaps in knowledge and areas requiring future investigation of PAGln in cardiovascular diseases.
Collapse
Affiliation(s)
- Yaonan Song
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Zhitong Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huiqing Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| |
Collapse
|
3
|
Ahmad AF, Caparrós-Martin JA, Gray N, Lodge S, Wist J, Lee S, O'Gara F, Dwivedi G, Ward NC. Gut microbiota and metabolomics profiles in patients with chronic stable angina and acute coronary syndrome. Physiol Genomics 2024; 56:48-64. [PMID: 37811721 DOI: 10.1152/physiolgenomics.00072.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The gut microbiota and its associated metabolites may be involved in the development and progression of CVD, although the mechanisms and impact on clinical outcomes are not fully understood. This study investigated the gut microbiome profile and associated metabolites in patients with chronic stable angina (CSA) and acute coronary syndrome (ACS) compared with healthy controls. Bacterial alpha diversity in stool from patients with ACS or CSA was comparable to healthy controls at both baseline and follow-up visits. Differential abundance analysis identified operational taxonomic units (OTUs) assigned to commensal taxa differentiating patients with ACS from healthy controls at both baseline and follow-up. Patients with CSA and ACS had significantly higher levels of trimethylamine N-oxide compared with healthy controls (CSA: 0.032 ± 0.023 mmol/L, P < 0.01 vs. healthy, and ACS: 0.032 ± 0.023 mmol/L, P = 0.02 vs. healthy, respectively). Patients with ACS had reduced levels of propionate and butyrate (119 ± 4 vs. 139 ± 5.1 µM, P = 0.001, and 14 ± 4.3 vs. 23.5 ± 8.1 µM, P < 0.001, respectively), as well as elevated serum sCD14 (2245 ± 75.1 vs. 1834 ± 45.8 ng/mL, P < 0.0001) and sCD163 levels (457.3 ± 31.8 vs. 326.8 ± 20.7 ng/mL, P = 0.001), compared with healthy controls at baseline. Furthermore, a modified small molecule metabolomic and lipidomic signature was observed in patients with CSA and ACS compared with healthy controls. These findings provide evidence of a link between gut microbiome composition and gut bacterial metabolites with CVD. Future time course studies in patients to observe temporal changes and subsequent associations with gut microbiome composition are required to provide insight into how these are affected by transient changes following an acute coronary event.NEW & NOTEWORTHY The study found discriminative microorganisms differentiating patients with acute coronary syndrome (ACS) from healthy controls. In addition, reduced levels of certain bacterial metabolites and elevated sCD14 and sCD163 were observed in patients with ACS compared with healthy controls. Furthermore, modified small molecule metabolomic and lipidomic signatures were found in both patient groups. Although it is not known whether these differences in profiles are associated with disease development and/or progression, the findings provide exciting options for potential new disease-related mechanism(s) and associated therapeutic target(s).
Collapse
Affiliation(s)
- Adilah F Ahmad
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Jose A Caparrós-Martin
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Nicola Gray
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Samantha Lodge
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Julien Wist
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, Western Australia, Australia
| | - Silvia Lee
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Fergal O'Gara
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Girish Dwivedi
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Medical School, The University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Natalie C Ward
- Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Wei H, Wu J, Wang H, Huang J, Li C, Zhang Y, Song Y, Zhou Z, Sun Y, Xiao L, Peng L, Chen C, Zhao C, Wang DW. Increased circulating phenylacetylglutamine concentration elevates the predictive value of cardiovascular event risk in heart failure patients. J Intern Med 2023; 294:515-530. [PMID: 37184278 DOI: 10.1111/joim.13653] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Phenylacetylglutamine (PAGln)-a newly discovered microbial metabolite produced by phenylalanine metabolism-is reportedly associated with cardiovascular events via adrenergic receptors. Nonetheless, its association with cardiovascular outcomes in heart failure (HF) patients remains unknown. OBJECTIVES This study aimed to prospectively investigate the prognostic value of PAGln for HF. METHODS Plasma PAGln levels were quantified by liquid chromatography-tandem mass spectrometry. We first assessed the association between plasma PAGln levels and the incidence of adverse cardiovascular events in 3152 HF patients (including HF with preserved and reduced ejection fraction) over a median follow-up period of 2 years. The primary endpoint was the composite of cardiovascular death or heart transplantation. We then assessed the prognostic role of PAGln in addition to the classic biomarker N-terminal pro-B-type natriuretic peptide (NT-proBNP). The correlation between PAGln levels and β-blocker use was also investigated. RESULTS In total, 520 cardiovascular deaths or heart transplantations occurred in the HF cohort. Elevated PAGln levels were independently associated with a higher risk of the primary endpoint in a dose-response manner, regardless of HF subtype. Concurrent assessment of PAGln and NT-proBNP levels enhanced risk stratification among HF patients. PAGln further showed prognostic value at low NT-proBNP levels. Additionally, the interaction effects between PAGln and β-blocker use were not significant. CONCLUSIONS Plasma PAGln levels are an independent predictor of an increased risk of adverse cardiovascular events in HF. Our work could provide joint and complementary prognostic value to NT-proBNP levels in HF patients.
Collapse
Affiliation(s)
- Haoran Wei
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiqing Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jin Huang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yuxuan Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yaonan Song
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zhitong Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Lei Xiao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Liyuan Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chunxia Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
5
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Sanni O, Butrous G, Maarman G. Gut microbiota crosstalk mechanisms are key in pulmonary hypertension: The involvement of melatonin is instrumental too. Pulm Circ 2023; 13:e12277. [PMID: 37583483 PMCID: PMC10423855 DOI: 10.1002/pul2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
The microbiota refers to a plethora of microorganisms with a gene pool of approximately three million, which inhabits the human gastrointestinal tract or gut. The latter, not only promotes the transport of nutrients, ions, and fluids from the lumen to the internal environment but is linked with the development of diseases including coronary artery disease, heart failure, and lung diseases. The exact mechanism of how the microbiota achieves crosstalk between itself and distant organs/tissues is not clear, but factors released to other organs may play a role, like inflammatory and genetic factors, and now we highlight melatonin as a novel mediator of the gut-lung crosstalk. Melatonin is present in high concentrations in the gut and the lung and has recently been linked to the pathogenesis of pulmonary hypertension (PH). In this comprehensive review of the literature, we suggest that melatonin is an important link between the gut microbiota and the development of PH (where suppressed melatonin-crosstalk between the gut and lungs could promote the development of PH). More studies are needed to investigate the link between the gut microbiota, melatonin and PH. Studies could also investigate whether microbiota genes play a role in the epigenetic aspects of PH. This is relevant because, for example, dysbiosis (caused by epigenetic factors) could reduce melatonin signaling between the gut and lungs, reduce subcellular melatonin concentrations in the gut/lungs, or reduce melatonin serum levels secondary to epigenetic factors. This area of research is largely unexplored and further studies are warranted.
Collapse
Affiliation(s)
- Steve Jacobs
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Carmen Payne
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sara Shaboodien
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Thato Kgatla
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Amy Pretorius
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Chrisstoffel Jumaar
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Olakunle Sanni
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Ghazwan Butrous
- School of Pharmacy, Imperial College of LondonUniversity of KentCanterburyUK
| | - Gerald Maarman
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
6
|
Sun C, Wang Z, Hu L, Zhang X, Chen J, Yu Z, Liu L, Wu M. Targets of statins intervention in LDL-C metabolism: Gut microbiota. Front Cardiovasc Med 2022; 9:972603. [PMID: 36158845 PMCID: PMC9492915 DOI: 10.3389/fcvm.2022.972603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing researches have considered gut microbiota as a new “metabolic organ,” which mediates the occurrence and development of metabolic diseases. In addition, the liver is an important organ of lipid metabolism, and abnormal lipid metabolism can cause the elevation of blood lipids. Among them, elevated low-density lipoprotein cholesterol (LDL-C) is related with ectopic lipid deposition and metabolic diseases, and statins are widely used to lower LDL-C. In recent years, the gut microbiota has been shown to mediate statins efficacy, both in animals and humans. The effect of statins on microbiota abundance has been deeply explored, and the pathways through which statins reduce the LDL-C levels by affecting the abundance of microbiota have gradually been explored. In this review, we discussed the interaction between gut microbiota and cholesterol metabolism, especially the cholesterol-lowering effect of statins mediated by gut microbiota, via AMPK-PPARγ-SREBP1C/2, FXR and PXR-related, and LPS-TLR4-Myd88 pathways, which may help to explain the individual differences in statins efficacy.
Collapse
Affiliation(s)
- ChangXin Sun
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - ZePing Wang
- Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - LanQing Hu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoNan Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JiYe Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - ZongLiang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - LongTao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: LongTao Liu
| | - Min Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Min Wu
| |
Collapse
|
7
|
Polyphenols–Gut–Heart: An Impactful Relationship to Improve Cardiovascular Diseases. Antioxidants (Basel) 2022; 11:antiox11091700. [PMID: 36139775 PMCID: PMC9495581 DOI: 10.3390/antiox11091700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
A healthy gut provides the perfect habitat for trillions of bacteria, called the intestinal microbiota, which is greatly responsive to the long-term diet; it exists in a symbiotic relationship with the host and provides circulating metabolites, hormones, and cytokines necessary for human metabolism. The gut–heart axis is a novel emerging concept based on the accumulating evidence that a perturbed gut microbiota, called dysbiosis, plays a role as a risk factor in the pathogenesis of cardiovascular disease. Consequently, recovery of the gut microbiota composition and function could represent a potential new avenue for improving patient outcomes. Despite their low absorption, preclinical evidence indicates that polyphenols and their metabolites are transformed by intestinal bacteria and halt detrimental microbes’ colonization in the host. Moreover, their metabolites are potentially effective in human health due to antioxidant, anti-inflammatory, and anti-cancer effects. The aim of this review is to provide an overview of the causal role of gut dysbiosis in the pathogenesis of atherosclerosis, hypertension, and heart failure; to discuss the beneficial effects of polyphenols on the intestinal microbiota, and to hypothesize polyphenols or their derivatives as an opportunity to prevent and treat cardiovascular diseases by shaping gut eubiosis.
Collapse
|
8
|
Kumar T, Dutta RR, Velagala VR, Ghosh B, Mudey A. Analyzing the Complicated Connection Between Intestinal Microbiota and Cardiovascular Diseases. Cureus 2022; 14:e28165. [PMID: 36148181 PMCID: PMC9482761 DOI: 10.7759/cureus.28165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022] Open
Abstract
Relentless human curiosity to understand the basis of every aspect of medical science has led humanity to unlock the deepest secrets about the physiology of human existence and, in the process, has reached milestones that a century ago could only be imagined. Recent ground-breaking breakthroughs have helped scientists and physicians all over the world to update the scientific basis of diseases and hence further improve treatment outcomes. According to recent studies, scientists have found a link between intestinal flora and the pathogenesis of diseases, including cardiovascular diseases. Any change in the typical habitat of gut microbiota has been shown to result in the culmination of various metabolic and cardiac diseases. Therefore, gut microbiota can be credited for influencing the course of the development of a disease. Any change in the composition and function of bacterial species living in the gut can result in both beneficial and harmful effects on the body. Gut microbiota achieves this role by numerous mechanisms. Generations of various metabolites like TMAO (trimethylamine N-oxide), increased receptibility of various bacterial antigens, and disruption of the enzyme action in various metabolic pathways like the bile acids pathway may result in the development of metabolic as well as cardiovascular diseases. Even if they may not be the only etiological factor in the pathogenesis of a disease, they may very well serve as a contributing factor in worsening the outcome of the condition. Studies have shown that they actively play a role in the progression of cardiovascular diseases like atherosclerotic plaque formation and rising blood pressure. The focus of this review article is to establish a relation between various cardiovascular diseases and gut microbiota. This could prove beneficial for clinicians, health care providers, and scientists to develop novel therapeutic algorithms while treating cardiac patients.
Collapse
|
9
|
Shulpekova Y, Zharkova M, Tkachenko P, Tikhonov I, Stepanov A, Synitsyna A, Izotov A, Butkova T, Shulpekova N, Lapina N, Nechaev V, Kardasheva S, Okhlobystin A, Ivashkin V. The Role of Bile Acids in the Human Body and in the Development of Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113401. [PMID: 35684337 PMCID: PMC9182388 DOI: 10.3390/molecules27113401] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Bile acids are specific and quantitatively important organic components of bile, which are synthesized by hepatocytes from cholesterol and are involved in the osmotic process that ensures the outflow of bile. Bile acids include many varieties of amphipathic acid steroids. These are molecules that play a major role in the digestion of fats and the intestinal absorption of hydrophobic compounds and are also involved in the regulation of many functions of the liver, cholangiocytes, and extrahepatic tissues, acting essentially as hormones. The biological effects are realized through variable membrane or nuclear receptors. Hepatic synthesis, intestinal modifications, intestinal peristalsis and permeability, and receptor activity can affect the quantitative and qualitative bile acids composition significantly leading to extrahepatic pathologies. The complexity of bile acids receptors and the effects of cross-activations makes interpretation of the results of the studies rather difficult. In spite, this is a very perspective direction for pharmacology.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Maria Zharkova
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Pyotr Tkachenko
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Igor Tikhonov
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexander Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Alexandra Synitsyna
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
- Correspondence: ; Tel.: +7-499-764-98-78
| | - Alexander Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | - Tatyana Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119435 Moscow, Russia; (A.S.); (A.I.); (T.B.)
| | | | - Natalia Lapina
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Nechaev
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Svetlana Kardasheva
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Alexey Okhlobystin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| | - Vladimir Ivashkin
- Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia; (Y.S.); (M.Z.); (P.T.); (I.T.); (N.L.); (V.N.); (S.K.); (A.O.); (V.I.)
| |
Collapse
|
10
|
Huang L, Xu G, Zhang R, Wang Y, Ji J, Long F, Sun Y. Increased admission serum total bile acids can be associated with decreased 3-month mortality in patients with acute ischemic stroke. Lipids Health Dis 2022; 21:15. [PMID: 35065639 PMCID: PMC8783998 DOI: 10.1186/s12944-021-01620-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bile acids (BAs) not only play an important role in lipid metabolism and atherosclerosis but also have antiapoptotic and neuroprotective effects. However, few studies have focused on the relationship of the total bile acid (TBA) levels with the severity and prognosis of acute ischemic stroke (AIS). OBJECTIVES The aim of this study was to investigate the potential associations of the fasting serum TBA levels on admission with the stroke severity, in-hospital complication incidence and 3 -month all-cause mortality in patients with AIS. METHODS A total of 777 consecutive AIS patients were enrolled in this study and were divided into four groups according to the quartiles of the serum TBA levels on admission. Univariate and multivariate logistic regression analyses were used to explore the relationship between the fasting TBA levels and the stroke severity, in-hospital complications, and 3-month mortality in AIS patients. RESULTS Patients in group Q3 had the lowest risk of severe AIS (NIHSS > 10) regardless of the adjustments for confounders (P < 0.05). During hospitalization, 115 patients (14.8%) had stroke progression (NIHSS score increased by ≥ 2), and 222 patients (28.6%) developed at least one complication, with no significant difference among the four groups (P > 0.05). There was no significant difference in the incidence of pneumonia, urinary tract infection (UTI), hemorrhagic transformation (HT), gastrointestinal bleeding (GIB), seizures or renal insufficiency (RI) among the four groups (P > 0.05). A total of 114 patients (14.7%) died from various causes (including in-hospital deaths) at the 3-month follow-up, including 42 (21.3%), 26 (13.3%), 19 (9.9%) and 27 (13.9%) patients in groups Q1, Q2, Q3 and Q4 respectively, with significant differences (P = 0.013). After adjusting for confounding factors, the risk of death decreased (P -trend < 0.05) in groups Q2, Q3, and Q4 when compared with group Q1, and the OR values were 0.36 (0.16-0.80), 0.30 (0.13-0.70), and 0.29 (0.13-0.65), respectively. CONCLUSIONS TBA levels were inversely associated with the 3-month mortality of AIS patients but were not significantly associated with the severity of stroke or the incidence of complications.
Collapse
Affiliation(s)
- Lingling Huang
- Department of Neurology, Zhangjiagang TCM Hospital, Nanjing University of Chinese Medicine in China, 215600, Suzhou, China
| | - Ge Xu
- Department of Neurology, Zhangjiagang TCM Hospital, Nanjing University of Chinese Medicine in China, 215600, Suzhou, China
| | - Rong Zhang
- Department of Neurology, Zhangjiagang TCM Hospital, Nanjing University of Chinese Medicine in China, 215600, Suzhou, China
| | - Yadong Wang
- Department of Neurology, Zhangjiagang TCM Hospital, Nanjing University of Chinese Medicine in China, 215600, Suzhou, China
| | - Jiahui Ji
- Department of Neurology, Zhangjiagang TCM Hospital, Nanjing University of Chinese Medicine in China, 215600, Suzhou, China
| | - Fengdan Long
- Department of Neurology, Zhangjiagang TCM Hospital, Nanjing University of Chinese Medicine in China, 215600, Suzhou, China
| | - Yaming Sun
- Department of Neurology, Zhangjiagang TCM Hospital, Nanjing University of Chinese Medicine in China, 215600, Suzhou, China.
| |
Collapse
|
11
|
Song J, Huang M, Shi X, Li X, Chen X, He Z, Li J, Xu G, Zheng J. T329S Mutation in the FMO3 Gene Alleviates Lipid Metabolic Diseases in Chickens in the Late Laying Period. Animals (Basel) 2021; 12:ani12010048. [PMID: 35011153 PMCID: PMC8749748 DOI: 10.3390/ani12010048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary The lipid deposition and health status of egg-laying hens is crucial to the development of the poultry industry. This study aimed to evaluate the effects of genetic variations in the flavin-containing monooxygenase 3 (FMO3) on the lipid metabolic diseases of laying hens during the late laying period. The results showed that the T329S mutation in FMO3 moderated the lipid parameters and decreased the atherosclerotic lesions and hepatic steatosis in laying hens with homozygous T329S mutation. In conclusion, the T329S mutation in FMO3 is closely associated with the improvement of lipid metabolic diseases in laying hens during the late laying period. The results of this study may contribute to overcoming the challenge of lipid metabolic diseases in laying hens during the late laying period. Abstract The T329S mutation in flavin-containing monooxygenase 3 (FMO3) impairs the trimethylamine (TMA) metabolism in laying hens. The TMA metabolic pathway is closely linked to lipid metabolic diseases, such as atherosclerosis and fatty liver disease. We aimed to evaluate the effects of the T329S mutation in FMO3 on lipid metabolism in chickens during the late laying period. We selected 18 FMO3 genotyped individuals (consisting of six AA, six AT, and six TT hens) with similar body weight and production performance. The lipid metabolism and deposition characteristics of the laying hens with different genotypes were compared. The T329S mutation moderated the serum-lipid parameters in TT hens compared to those in AA and AT hens from 49 to 62 weeks. Furthermore, it reduced the serum trimethylamine N-oxide concentrations and increased the serum total bile acid (p < 0.05) and related lipid transporter levels in TT hens. Moreover, it significantly (p < 0.01) decreased atherosclerotic lesions and hepatic steatosis in TT hens compared to those in the AA and AT hens. Our findings may help improve the health status in laying hens during the late laying period.
Collapse
Affiliation(s)
- Jianlou Song
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Mingyi Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Xuefeng Shi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Xianyu Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China;
| | - Zhaoxiang He
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Junying Li
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Guiyun Xu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
| | - Jiangxia Zheng
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.S.); (M.H.); (X.S.); (X.L.); (Z.H.); (J.L.); (G.X.)
- Correspondence: ; Tel.: +86-10-6273-2741; Fax: +86-10-6273-1080
| |
Collapse
|
12
|
Chong Nguyen C, Duboc D, Rainteau D, Sokol H, Humbert L, Seksik P, Bellino A, Abdoul H, Bouazza N, Treluyer JM, Saadi M, Wahbi K, Soliman H, Coffin B, Bado A, Le Gall M, Varenne O, Duboc H. Circulating bile acids concentration is predictive of coronary artery disease in human. Sci Rep 2021; 11:22661. [PMID: 34811445 PMCID: PMC8608912 DOI: 10.1038/s41598-021-02144-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Synthetized by the liver and metabolized by the gut microbiota, BA are involved in metabolic liver diseases that are associated with cardiovascular disorders. Animal models of atheroma documented a powerful anti-atherosclerotic effect of bile acids (BA). This prospective study examined whether variations in circulating BA are predictive of coronary artery disease (CAD) in human. Consecutive patients undergoing coronary angiography were enrolled. Circulating and fecal BA were measured by high pressure liquid chromatography and tandem mass spectrometry. Of 406 screened patients, 80 were prospectively included and divided in two groups with (n = 45) and without (n = 35) CAD. The mean serum concentration of total BA was twice lower in patients with, versus without CAD (P = 0.005). Adjusted for gender and age, this decrease was an independent predictor of CAD. In a subgroup of 17 patients, statin therapy doubled the serum BA concentration. Decreased serum concentrations of BA were predictors of CAD in humans. A subgroup analysis showed a possible correction by statins. With respect to the anti-atherosclerotic effect of BA in animal models, and their role in human lipid metabolism, this study describe a new metabolic disturbance associated to CAD in human.
Collapse
Affiliation(s)
- Caroline Chong Nguyen
- Centre de Recherche Sur I'inflammation, Inserm, UMR 1149, Université de Paris, 75018, Paris, France.,Cardiology Department, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75014, Paris, France.,Department of Hepato Gastro Enterology and University of Paris, Louis Mourier Hospital, APHP, 92700, Colombes, France.,Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroentérologie, Sorbonne Université, 75012, Paris, France
| | - Denis Duboc
- Cardiology Department, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75014, Paris, France
| | - Dominique Rainteau
- Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroentérologie, Sorbonne Université, 75012, Paris, France
| | - Harry Sokol
- Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroentérologie, Sorbonne Université, 75012, Paris, France
| | - Lydie Humbert
- Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroentérologie, Sorbonne Université, 75012, Paris, France
| | - Philippe Seksik
- Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Service de Gastroentérologie, Sorbonne Université, 75012, Paris, France
| | - Adèle Bellino
- Unite de Recherche Clinique-Centre Dinvestigation Clinique Necker/Cochin, Hôpital Tarnier, Université de Paris, 75006, Paris, France
| | - Hendy Abdoul
- Unite de Recherche Clinique-Centre Dinvestigation Clinique Necker/Cochin, Hôpital Tarnier, Université de Paris, 75006, Paris, France
| | - Naïm Bouazza
- Unite de Recherche Clinique-Centre Dinvestigation Clinique Necker/Cochin, Hôpital Tarnier, Université de Paris, 75006, Paris, France
| | - Jean-Marc Treluyer
- Unite de Recherche Clinique-Centre Dinvestigation Clinique Necker/Cochin, Hôpital Tarnier, Université de Paris, 75006, Paris, France
| | - Malika Saadi
- Cardiology Department, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75014, Paris, France
| | - Karim Wahbi
- Cardiology Department, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75014, Paris, France
| | - Heithem Soliman
- Department of Hepato Gastro Enterology and University of Paris, Louis Mourier Hospital, APHP, 92700, Colombes, France
| | - Benoit Coffin
- Centre de Recherche Sur I'inflammation, Inserm, UMR 1149, Université de Paris, 75018, Paris, France.,Department of Hepato Gastro Enterology and University of Paris, Louis Mourier Hospital, APHP, 92700, Colombes, France
| | - André Bado
- Centre de Recherche Sur I'inflammation, Inserm, UMR 1149, Université de Paris, 75018, Paris, France
| | - Maude Le Gall
- Centre de Recherche Sur I'inflammation, Inserm, UMR 1149, Université de Paris, 75018, Paris, France
| | - Olivier Varenne
- Cardiology Department, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75014, Paris, France
| | - Henri Duboc
- Centre de Recherche Sur I'inflammation, Inserm, UMR 1149, Université de Paris, 75018, Paris, France. .,Cardiology Department, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75014, Paris, France. .,Department of Hepato Gastro Enterology and University of Paris, Louis Mourier Hospital, APHP, 92700, Colombes, France. .,INSERM UMRS 1149, Université de Paris, 16 rue Henri Huchard, 75890, Paris Cedex 18, France.
| |
Collapse
|
13
|
Mehmood K, Moin A, Hussain T, Rizvi SMD, Gowda DV, Shakil S, Kamal MA. Can manipulation of gut microbiota really be transformed into an intervention strategy for cardiovascular disease management? Folia Microbiol (Praha) 2021; 66:897-916. [PMID: 34699042 DOI: 10.1007/s12223-021-00926-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/03/2021] [Indexed: 02/08/2023]
Abstract
Recent advancement in manipulation techniques of gut microbiota either ex vivo or in situ has broadened its plausible applicability for treating various diseases including cardiovascular disease. Several reports suggested that altering gut microbiota composition is an effective way to deal with issues associated with managing cardiovascular diseases. However, actual translation of gut microbiota manipulation-based techniques into cardiovascular-therapeutic approach is still questionable. This review summarized the evidence on challenges, opportunities, recent development, and future prospects of gut microbiota manipulation for targeting cardiovascular diseases. Initially, issues associated with current cardiovascular diseases treatment strategy, association of gut microbiota with cardiovascular disease, and its influence on cardiovascular drugs were discussed, followed by applicability of gut microbiota manipulation as a cardiovascular disease intervention strategy along with its challenges and future prospects. Despite the fact that the gut microbiota is rugged, interventions like probiotics, prebiotics, synbiotics, fecal microbiota transplantation, fecal virome transplantation, antibiotics, diet changes, and exercises could manipulate it. Advanced techniques like administration of engineered bacteriophages and bacteria could also be employed. Intensive exploration revealed that if sufficiently controlled approach and proper monitoring were applied, gut microbiota could provide a compelling answer for cardiovascular therapy.
Collapse
Affiliation(s)
- Khalid Mehmood
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia.,Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Pakistan
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA, Saudi Arabia.
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shazi Shakil
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - M A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics 7 Peterlee Place, NSW, 2770, Hebersham, Australia.,Novel Global Community, Educational Foundation, Hebersham, Australia
| |
Collapse
|
14
|
Zheng Y, He JQ. Pathogenic Mechanisms of Trimethylamine N-Oxide-induced Atherosclerosis and Cardiomyopathy. Curr Vasc Pharmacol 2021; 20:29-36. [PMID: 34387163 DOI: 10.2174/1570161119666210812152802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/24/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) is a gut microbiota metabolite derived from trimethylamine-containing nutrient precursors such as choline, L-carnitine, and betaine, which are rich in many vegetables, fruits, nuts, dairy products, and meats. An increasing number of clinical studies have demonstrated a strong relationship between elevated plasma TMAO levels and adverse cardiovascular events. It is commonly agreed that TMAO acts as both an independent risk factor and a prognostic index for patients with cardiovascular disease. Although most animal (mainly rodent) data support the clinical findings, the mechanisms by which TMAO modulates the cardiovascular system are still not well understood. In this context, we provide an overview of the potential mechanisms underlying TMAO-induced cardiovascular disease at the cellular and molecular levels, with a focus on atherosclerosis. We also address the direct effects of TMAO on cardiomyocytes (a new and under-researched area) and finally propose TMAO as a potential biomarker and/or therapeutic target for diagnosis and treatment of patients with cardiovascular disease.
Collapse
Affiliation(s)
- Youjing Zheng
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061. United States
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061. United States
| |
Collapse
|
15
|
Zhang R, Ma WQ, Fu MJ, Li J, Hu CH, Chen Y, Zhou MM, Gao ZJ, He YL. Overview of bile acid signaling in the cardiovascular system. World J Clin Cases 2021; 9:308-320. [PMID: 33521099 PMCID: PMC7812903 DOI: 10.12998/wjcc.v9.i2.308] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are classically known to play a vital role in the metabolism of lipids and in absorption. It is now well established that BAs act as signaling molecules, activating different receptors (such as farnesoid X receptor, vitamin D receptor, Takeda G-protein-coupled receptor 5, sphingosine-1-phosphate, muscarinic receptors, and big potassium channels) and participating in the regulation of energy homeostasis and lipid and glucose metabolism. In addition, increased BAs can impair cardiovascular function in liver cirrhosis. Approximately 50% of patients with cirrhosis develop cirrhotic cardiomyopathy. Exposure to high concentrations of hydrophobic BAs has been shown to be related to adverse effects with respect to vascular tension, endothelial function, arrhythmias, coronary atherosclerotic heart disease, and heart failure. The BAs in the serum BA pool have relevant through their hydrophobicity, and the lipophilic BAs are more harmful to the heart. Interestingly, ursodeoxycholic acid is a hydrophilic BA, and it is used as a therapeutic drug to reverse and protect the harmful cardiac effects caused by hydrophobic elevated BAs. In order to elucidate the mechanism of BAs and cardiovascular function, abundant experiments have been conducted in vitro and in vivo. The aim of this review was to explore the mechanism of BAs in the cardiovascular system.
Collapse
Affiliation(s)
- Rou Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Wen-Qi Ma
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Meng-Jun Fu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Chun-Hua Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi Chen
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Mi-Mi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zhi-Jie Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ying-Li He
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
16
|
Proffitt C, Bidkhori G, Moyes D, Shoaie S. Disease, Drugs and Dysbiosis: Understanding Microbial Signatures in Metabolic Disease and Medical Interventions. Microorganisms 2020; 8:microorganisms8091381. [PMID: 32916966 PMCID: PMC7565856 DOI: 10.3390/microorganisms8091381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of the potential role for the gut microbiota in health and disease, many studies have gone on to report its impact in various pathologies. These studies have fuelled interest in the microbiome as a potential new target for treating disease Here, we reviewed the key metabolic diseases, obesity, type 2 diabetes and atherosclerosis and the role of the microbiome in their pathogenesis. In particular, we will discuss disease associated microbial dysbiosis; the shift in the microbiome caused by medical interventions and the altered metabolite levels between diseases and interventions. The microbial dysbiosis seen was compared between diseases including Crohn’s disease and ulcerative colitis, non-alcoholic fatty liver disease, liver cirrhosis and neurodegenerative diseases, Alzheimer’s and Parkinson’s. This review highlights the commonalities and differences in dysbiosis of the gut between diseases, along with metabolite levels in metabolic disease vs. the levels reported after an intervention. We identify the need for further analysis using systems biology approaches and discuss the potential need for treatments to consider their impact on the microbiome.
Collapse
Affiliation(s)
- Ceri Proffitt
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (G.B.); (D.M.)
- Correspondence: (C.P.); (S.S.)
| | - Gholamreza Bidkhori
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (G.B.); (D.M.)
| | - David Moyes
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (G.B.); (D.M.)
| | - Saeed Shoaie
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (G.B.); (D.M.)
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 114 17 Stockholm, Sweden
- Correspondence: (C.P.); (S.S.)
| |
Collapse
|
17
|
Plasma Choline as a Diagnostic Biomarker in Slow Coronary Flow. Cardiol Res Pract 2020; 2020:7361434. [PMID: 32411450 PMCID: PMC7204336 DOI: 10.1155/2020/7361434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022] Open
Abstract
Aim The slow coronary flow (SCF) phenomenon was characterized by delayed perfusion of epicardial arteries, and no obvious coronary artery lesion in coronary angiography. The prognosis of patients with slow coronary flow was poor. However, there is lack of rapid, simple, and accurate method for SCF diagnosis. This study aimed to explore the utility of plasma choline as a diagnostic biomarker for SCF. Methods Patients with coronary artery stenosis <40% evaluated by the coronary angiogram method were recruited in this study and were grouped into normal coronary flow (NCF) and SCF by thrombolysis in myocardial infarction frame count (TFC). Plasma choline concentrations of patients with NCF and SCF were quantified by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry. Correlation analysis was performed between plasma choline concentration and TFC. Receiver operating characteristic (ROC) curve analysis with or without confounding factor adjustment was applied to predict the diagnostic power of plasma choline in SCF. Results Forty-four patients with SCF and 21 patients with NCF were included in this study. TFC in LAD, LCX, and RCA and mean TFC were significantly higher in patients with SCF in comparison with patients with NCF (32.67 ± 8.37 vs. 20.66 ± 3.41, P < 0.01). Plasma choline level was obviously higher in patients with SCF when compared with patients with NCF (754.65 ± 238.18 vs. 635.79 ± 108.25, P=0.007). Plasma choline level had significantly positive correlation with Mean TFC (r = 0.364, P=0.002). Receiver operating characteristic (ROC) analysis showed that choline with or without confounding factor adjustment had an AUC score of 0.65 and 0.77, respectively. Conclusions TFC were closely related with plasma choline level, and plasma choline can be a suitable and stable diagnostic biomarker for SCF.
Collapse
|
18
|
Zhang BC, Chen JH, Xiang CH, Su MY, Zhang XS, Ma YF. Increased serum bile acid level is associated with high-risk coronary artery plaques in an asymptomatic population detected by coronary computed tomography angiography. J Thorac Dis 2019; 11:5063-5070. [PMID: 32030222 DOI: 10.21037/jtd.2019.12.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background There are limited data on the association between serum total bile acid level and coronary plaque characteristics. This study investigated the relationship between serum total bile acid level and the severity of coronary stenosis and coronary plaque features in an asymptomatic population using coronary computed tomography angiography (CTA). Methods A total of 1,137 consecutive participants with no known coronary artery disease (CAD) undergoing CTA as part of a general routine health evaluation were recruited. Serum total bile acid level and clinical parameters were assayed. Coronary stenosis and high-risk plaques features (napkin-ring sign, low-attenuation plaque, spotty calcification, positive remodelling) were evaluated. Associations between serum total bile acid concentration and high-risk coronary plaques was tested through univariate and multivariate analyses. Results A total of 101 high-risk coronary plaques subjects and 93 controls were eligible for study inclusion. The severity of coronary artery stenosis and high-risk coronary plaques increased with serum total bile acid level quartiles (all P<0.001). The independent predictor of high-risk coronary plaques in multivariate analysis was serum total bile acid level (P<0.001). Receiver operating characteristic (ROC) confirmed that serum total bile acid concentration significantly differentiated high-risk coronary plaques [the area under the curve (AUC) =0.876; P<0.001, with a sensitivity of 87.13% and a specificity of 86.02%]. Conclusions Higher serum total bile acid level was associated with the severity of coronary artery stenosis and high-risk coronary artery plaques detected by CTA in asymptomatic populations.
Collapse
Affiliation(s)
- Bu-Chun Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Jun-Hong Chen
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Chu-Han Xiang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Ming-Yu Su
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Xue-Shan Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| | - Yan-Feng Ma
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
19
|
Jin M, Qian Z, Yin J, Xu W, Zhou X. The role of intestinal microbiota in cardiovascular disease. J Cell Mol Med 2019; 23:2343-2350. [PMID: 30712327 PMCID: PMC6433673 DOI: 10.1111/jcmm.14195] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/01/2019] [Accepted: 01/10/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence has indicated that intestinal microbiota is involved in the development of various human diseases, including cardiovascular diseases (CVDs). In the recent years, both human and animal experiments have revealed that alterations in the composition and function of intestinal flora, recognized as gut microflora dysbiosis, can accelerate the progression of CVDs. Moreover, intestinal flora metabolizes the diet ingested by the host into a series of metabolites, including trimethylamine N-oxide, short chain fatty acids, secondary bile acid and indoxyl sulfate, which affects the host physiological processes by activation of numerous signalling pathways. The aim of this review was to summarize the role of gut microbiota in the pathogenesis of CVDs, including coronary artery disease, hypertension and heart failure, which may provide valuable insights into potential therapeutic strategies for CVD that involve interfering with the composition, function and metabolites of the intestinal flora.
Collapse
Affiliation(s)
- Mengchao Jin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiting Xu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Canyelles M, Tondo M, Cedó L, Farràs M, Escolà-Gil JC, Blanco-Vaca F. Trimethylamine N-Oxide: A Link among Diet, Gut Microbiota, Gene Regulation of Liver and Intestine Cholesterol Homeostasis and HDL Function. Int J Mol Sci 2018; 19:ijms19103228. [PMID: 30347638 PMCID: PMC6214130 DOI: 10.3390/ijms19103228] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022] Open
Abstract
Recent evidence, including massive gene-expression analysis and a wide-variety of other multi-omics approaches, demonstrates an interplay between gut microbiota and the regulation of plasma lipids. Gut microbial metabolism of choline and l-carnitine results in the formation of trimethylamine (TMA) and concomitant conversion into trimethylamine-N-oxide (TMAO) by liver flavin monooxygenase 3 (FMO3). The plasma level of TMAO is determined by the genetic variation, diet and composition of gut microbiota. Multiple studies have demonstrated an association between TMAO plasma levels and the risk of atherothrombotic cardiovascular disease (CVD). We aimed to review the molecular pathways by which TMAO production and FMO3 exert their proatherogenic effects. TMAO may promote foam cell formation by upregulating macrophage scavenger receptors, deregulating enterohepatic cholesterol and bile acid metabolism and impairing macrophage reverse cholesterol transport (RCT). Furthermore, FMO3 may promote dyslipidemia by regulating multiple genes involved in hepatic lipogenesis and gluconeogenesis. FMO3 also impairs multiple aspects of cholesterol homeostasis, including transintestinal cholesterol export and macrophage-specific RCT. At least part of these FMO3-mediated effects on lipid metabolism and atherogenesis seem to be independent of the TMA/TMAO formation. Overall, these findings have the potential to open a new era for the therapeutic manipulation of the gut microbiota to improve CVD risk.
Collapse
Affiliation(s)
- Marina Canyelles
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Mireia Tondo
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
| | - Lídia Cedó
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Marta Farràs
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 08003 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital Santa Creu i Sant Pau-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08025 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
| | - Francisco Blanco-Vaca
- Hospital de la Santa Creu i Sant Pau, Servei de Bioquímica-Institut d'Investigacions Biomèdiques (IIB) Sant Pau, 08041 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08907 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
21
|
Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018; 10:nu10101398. [PMID: 30275434 PMCID: PMC6213249 DOI: 10.3390/nu10101398] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
Trimethylamine N-oxide (TMAO) is a molecule generated from choline, betaine, and carnitine via gut microbial metabolism. The plasma level of TMAO is determined by several factors including diet, gut microbial flora, drug administration and liver flavin monooxygenase activity. In humans, recent clinical studies evidence a positive correlation between elevated plasma levels of TMAO and an increased risk for major adverse cardiovascular events. A direct correlation between increased TMAO levels and neurological disorders has been also hypothesized. Several therapeutic strategies are being explored to reduce TMAO levels, including use of oral broad spectrum antibiotics, promoting the growth of bacteria that use TMAO as substrate and the development of target-specific molecules. Despite the accumulating evidence, it is questioned whether TMAO is the mediator of a bystander in the disease process. Thus, it is important to undertake studies to establish the role of TMAO in human health and disease. In this article, we reviewed dietary sources and metabolic pathways of TMAO, as well as screened the studies suggesting possible involvement of TMAO in the etiology of cardiovascular and neurological disorders, underlying the importance of TMAO mediating inflammatory processes. Finally, the potential utility of TMAO as therapeutic target is also analyzed.
Collapse
|
22
|
Wang PS, Kuo CH, Yang HC, Liang YJ, Huang CJ, Sheen LY, Pan WH. Postprandial Metabolomics Response to Various Cooking Oils in Humans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4977-4984. [PMID: 29716192 DOI: 10.1021/acs.jafc.8b00530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Lipids account for a high proportion of dietary calories, which greatly affect human health. As a result of differences in composition of fatty acid of individual cooking oils, certain biological effects of these oils may vary. This study aimed to compare postprandial metabolomic profiles of six commonly consumed cooking oils/fats. Adopting a switch-over experimental design ( n = 15), we carried out a human feeding study with six groups (control without oils, soybean oil, olive oil, palm oil, camellia oil, and tallow) and collected fasting and postprandial serum samples. The metabolomic profile was measured by ultra-high-pressure liquid chromatography-quadrupole time of flight. We observed significant differences between the control group and experimental groups for 33 serum metabolites (false discovery rate; p < 0.05), which take part in lipid digestion, fatty acid metabolism, metabolism of pyrimidines and pyrimidine nucleosides, amino acid metabolism, neurobiology, and antioxidation. Sparse partial least squares discriminant analysis revealed distinct metabolomics patterns between monounsaturated fatty acid (MUFA) and saturated fatty acid oils, between soybean oil, olive oil, and palm oil, and between two MUFA-rich oils (olive and camellia oils). The present metabolomics study suggests shared and distinct metabolisms of various cooking oils/fats.
Collapse
Affiliation(s)
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine , National Taiwan University , 33 Linsen South Road , Zhongzheng District, Taipei 10055 , Taiwan
- The Metabolomics Core Laboratory, Center of Genomic Medicine , National Taiwan University , 2 Syu-jhou Road , Taipei 10055 , Taiwan
| | | | | | | | | | | |
Collapse
|
23
|
Bronzato S, Durante A. A Contemporary Review of the Relationship between Red Meat Consumption and Cardiovascular Risk. Int J Prev Med 2017; 8:40. [PMID: 28656096 PMCID: PMC5474906 DOI: 10.4103/ijpvm.ijpvm_206_16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 02/25/2017] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular diseases burden is increasing due to aging populations and represents one of the major health issues worldwide. Dietary habits have been extensively studied in the cardiovascular field despite the difficulty in the quantification of the assumption of each single food and the observation that several foods affect cardiovascular risk with opposite effects. Moreover, some older findings have been reverted by more recent studies. Red meat has been widely studied in this context, and it has been suggested to increase cardiovascular risk primarily by causing dyslipidemia. Our aim is to review the relationship between red meat assumption and cardiovascular risk and to present novel findings regarding their link.
Collapse
|
24
|
Lim DW, Bose S, Wang JH, Choi HS, Kim YM, Chin YW, Jeon SH, Kim JE, Kim H. Modified SJH alleviates FFAs-induced hepatic steatosis through leptin signaling pathways. Sci Rep 2017; 7:45425. [PMID: 28358008 PMCID: PMC5371820 DOI: 10.1038/srep45425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/01/2017] [Indexed: 02/06/2023] Open
Abstract
Samjunghwan (SJH) is an herbal formula used in traditional Korean medicine. This prescription has long been used in treatment of aging and lifestyle diseases. The current study showed the effect and mechanisms of anti-hepatic steatosis action of modified SJH (mSJH) in vitro and in vivo. Treatment with mSJH resulted in significantly decreased intracellular lipid accumulation in steatosis-induced cells. Furthermore, mSJH triggered the phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase as well as increased the expression of leptin at both protein and gene levels. In addition, C57BL6 mice fed high-fat diet (HFD) showed significant improvements in body, liver weights and fat weights; and serum, hepatic and fecal lipid parameters in response to the treatment with mSJH. Furthermore, mSJH showed favorable effects on the hepatic expression of several genes related to lipid metabolism. Betaine, one of constituents of mSJH exerted fundamental beneficial impact on FFAs-induced cells. However, the beneficial effects of mSJH were diminished upon blocking of leptin signaling by dexamethasone, suggesting the leptin signaling as a key component in mSJH-mediated modulation of lipid homeostasis. Our results suggest that mSJH exerts an anti-hepatic steatosis effect via activation of leptin and associated signaling cascades related to lipid metabolism.
Collapse
Affiliation(s)
- Dong-Woo Lim
- Department of Pathology, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
- Departments of Rehabilitation Medicine, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| | - Shambhunath Bose
- Applied Surface Technology Inc., 11th Floor, Bldg. A, Advance Institutes of Convergence Technology, Suwon, 16229, Republic of Korea
| | - Jing-Hua Wang
- Departments of Rehabilitation Medicine, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| | - Han Seok Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Song-Hee Jeon
- Research Institute of Biotechnology, Dongguk University, Goyang, Republic of Korea
| | - Jai-Eun Kim
- Department of Pathology, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| | - Hojun Kim
- Departments of Rehabilitation Medicine, College of Oriental Medicine, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
25
|
CYP7A1 gene polymorphism located in the 5' upstream region modifies the risk of coronary artery disease. DISEASE MARKERS 2015; 2015:185969. [PMID: 25944972 PMCID: PMC4402502 DOI: 10.1155/2015/185969] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 01/04/2023]
Abstract
Background. 7-Alpha cholesterol hydroxylase (CYP7A1), the first enzyme of classic conversion pathway leading from cholesterol to bile acids synthesis, is encoded by CYP7A1 gene. Its single nucleotide polymorphisms (SNPs) influence serum lipid levels and may be related to impaired lipid profile leading to coronary artery disease (CAD). The aim of the present study was to analyze the possible association between the rs7833904 CYP7A1 polymorphism and premature CAD. Material and Methods. Serum lipid levels and rs7833904 SNP were determined in 419 subjects: 200 patients with premature CAD and 219 age and sex matched controls. Results. The A allele carrier state was associated with CAD (OR = 1.76, 95% CI; 1.14–2.71, P = 0.014). The effect was even stronger in the male subgroups (OR = 2.16, 95% CI; 1.28–3.65, P = 0.003). There was no effect in the females. Risk factors of CAD and clinical phenotype of atherosclerosis were not associated with genotype variants of the rs7833904 SNP. Lipid profiles also did not differ significantly between individual genotypes. Conclusion. The CYP7A1 rs7833904 polymorphism may modify the risk of CAD. This effect is especially strong in male subjects. The studied polymorphism does not significantly influence serum lipid levels, in the present study.
Collapse
|
26
|
Lee BH, Carr TP, Weller CL, Cuppett S, Dweikat IM, Schlegel V. Grain sorghum whole kernel oil lowers plasma and liver cholesterol in male hamsters with minimal wax involvement. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
27
|
Guo C, Li J. Hypocholesterolaemic action of Lactobacillus casei F0822 in rats fed a cholesterol-enriched diet. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2013.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WHW, Bushman FD, Lusis AJ, Hazen SL. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19:576-85. [PMID: 23563705 PMCID: PMC3650111 DOI: 10.1038/nm.3145] [Citation(s) in RCA: 3092] [Impact Index Per Article: 257.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
Abstract
Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.
Collapse
Affiliation(s)
- Robert A. Koeth
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Zeneng Wang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Bruce S. Levison
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jennifer A. Buffa
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Elin Org
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Brendan T. Sheehy
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Earl B. Britt
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Xiaoming Fu
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Lin Li
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jonathan D. Smith
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Joseph A. DiDonato
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Jun Chen
- Department of Microbiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongzhe Li
- Department of Microbiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gary D. Wu
- Division of Gastroenterology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James D. Lewis
- Department of Microbiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manya Warrier
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - J. Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Ronald M. Krauss
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - W. H. Wilson Tang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Frederic D. Bushman
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Aldons J. Lusis
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles 90095, USA
| | - Stanley L. Hazen
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Center for Cardiovascular Diagnostics and Prevention, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|