1
|
Halloran KM, Saadat N, Pallas B, Vyas AK, Padmanabhan V. Exploratory analysis of differences at the transcriptional interface between the maternal and fetal compartments of the sheep placenta and potential influence of fetal sex. Mol Cell Endocrinol 2025; 603:112546. [PMID: 40222550 PMCID: PMC12052457 DOI: 10.1016/j.mce.2025.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
An understanding of the inner workings of the placenta is imperative to elucidate how the maternal and fetal compartments coordinate to mediate fetal development. The two compartments can be separated and studied before term in sheep, a feat not possible in humans, thus providing a valuable translational model. This study investigated differential expression of gene signaling networks in the maternal and fetal compartments of the placenta and explored the potential influence of fetal sex. On approximately gestational day 120 (term: 147 days), ewes were euthanized and fetuses removed and sexed. Placentomes [n = 5 male, n = 3 female] were collected, and caruncles (maternal) and cotyledons (fetal) were separated and sequenced to assess RNA expression. Analysis revealed 2627 differentially expressed genes (FDR<0.01, abslog2FC ≥ 2) contributing to key transcriptional differences between maternal and fetal compartments, which suggested that the maternal compartment drives extracellular signaling at the interface whereas the fetal compartment controls internal mechanisms crucial for fetal-placental development. X-chromosome inactivation equalized expression of a vast majority of X-linked genes in the fetal compartment. Additionally, the female placenta had more fine-tuned regulation of key pathways for fetal-placental development, such as DNA replication, mRNA surveillance, and RNA transport, compared to males, which had enrichment of metabolic pathways including TCA cycle and galactose metabolism. These findings, in addition to supporting differences in expression in the maternal and fetal placental compartments and the possible influence of fetal sex, offer a transcriptional platform to compare placental perturbations that occur at the maternal-fetal interface that contribute to adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arpita K Vyas
- Department of Pediatrics, Washington University St. Louis, MO, USA
| | | |
Collapse
|
2
|
Bhoi R, Mitra T, Tejaswi K, Manoj V, Ghatak S. Role of Ion Channels in Alzheimer's Disease Pathophysiology. J Membr Biol 2025; 258:187-212. [PMID: 40310500 PMCID: PMC12081594 DOI: 10.1007/s00232-025-00341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/04/2025] [Indexed: 05/02/2025]
Abstract
Ion channels play an integral role in the normal functioning of the brain. They regulate neuronal electrical properties like synaptic activity, generation of action potentials, maintenance of resting membrane potential and neuronal plasticity, and modulate the physiology of non-neuronal cells like astrocytes and microglia. Dysregulation of ionic homeostasis and channelopathies are associated with various neurological disorders, including Alzheimer's disease (AD). Several families of ion channels are associated with AD pathophysiology and progression. In this review, we outline the current research centered around ion channel dysregulation during AD and discuss briefly the possibility of using ion channels as therapeutic targets.
Collapse
Affiliation(s)
- Ranjit Bhoi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Tuhina Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kallam Tejaswi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Vaishnav Manoj
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 752050, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Lee SJ. A new Kir channel player in Parkinson's disease. J Physiol 2025. [PMID: 40448959 DOI: 10.1113/jp289147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2025] [Accepted: 05/16/2025] [Indexed: 06/02/2025] Open
Affiliation(s)
- Sun-Joo Lee
- Center for the Investigation of Membrane Excitability Diseases, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Rousseau SL, Jonz MG. Seasonal regulation and PIP 2 dependence of inwardly rectifying potassium channels (K ir) in retinal horizontal cells of goldfish (Carassius auratus). Comp Biochem Physiol A Mol Integr Physiol 2025; 306:111877. [PMID: 40354874 DOI: 10.1016/j.cbpa.2025.111877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Many species face extreme changes in their environment throughout the year, during which time they must modify their neuronal activity to survive. Horizontal cells (HCs) are interneurons in the goldfish (Carassius auratus) retina that demonstrate seasonal changes in membrane structure and excitability. Excitability in neurons is strongly influenced by inwardly rectifying potassium channels (Kir), suggesting that Kir in HCs may be a candidate for modulating seasonal changes. Kir channel function depends on the plasma membrane phospholipid, PIP2, to which it is bound. However, it remains unclear whether the PIP2-Kir channel interaction contributes to regulation of Kir in goldfish HCs. Using perforated patch voltage-clamp recording, we identified Kir current by inhibition with cesium (Cs+) and compared peak inward Kir current density in goldfish HCs isolated during the summer and winter months. Significantly more current was inhibited by Cs+ in winter HCs, suggesting more open Kir channels. To examine the role of PIP2 in regulating Kir, tamoxifen or activation of phospholipase C by m-3M3FBS were used to disrupt the PIP2-Kir channel interaction and subsequently reduced Kir current. Spermine, through strengthening the PIP2-Kir interaction, reduced the inhibitory effects of tamoxifen. Additionally, in current-clamp recordings, HCs treated with m-3M3FBS displayed a depolarized membrane potential (Vm) and a decrease in spontaneous Ca2+-based action potentials. We demonstrate that Kir activity is seasonally regulated in goldfish HCs and that Kir is dependent upon PIP2. Our results suggest PIP2 as a potential target for coordinating seasonal changes in the activity of neurons in the goldfish retina.
Collapse
Affiliation(s)
- Shilo L Rousseau
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
5
|
Reddy HP, Keren-Raifman T, Tabak G, Dascal N, Yakubovich D. Loss of expression and function of Gβγ by GNB1 encephalopathy-associated L95P mutation of the Gβ 1 subunit. Front Pharmacol 2025; 16:1592012. [PMID: 40417225 PMCID: PMC12098346 DOI: 10.3389/fphar.2025.1592012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/11/2025] [Indexed: 05/27/2025] Open
Abstract
Background G-proteins areindispensable regulators of cellular signaling, with G-protein-gated inwardly rectifying potassium channels (GIRK) as key effectors. GNB1 encephalopathy (GNB1E) is a congenital neurological syndrome resulting from mutations in the GNB1 gene, encoding the Gβ1 subunit of G-proteins trimer (Gαβγ). GNB1E manifests as a global developmental delay, accompanied by tonus disturbances, ataxia, and epilepsy. Methods We utilized the Xenopus laevis oocyte heterologous expression system to investigate the impact of the L95P mutation in Gβ1 (Gβ1-L95P) on the activation of neuronal GIRK channels GIRK2 and GIRK1/2. Mutant and wild-type (WT) Gβ1 RNAs were co-injected with RNAs encoding the Gγ2 and GIRK channel subunits. The expression levels of both Gβ1 and the channel proteins, as well as the channel activity, were systematically monitored. Additionally, rigid-body docking was used to model the GIRK1/2-Gβγ complex, evaluating L95P's effect on channel-Gβγ interaction, Gβγ stability, and Gβγ-effector affinity. Results . Gβ1-L95P exhibited reduced protein expression compared to WT. Even after RNA adjustments to restore comparable membrane localization, the mutant failed to effectively activate GIRK2 and GIRK1/2. Structural analysis revealed that L95 was not consistent in the Gβγ-effector interface. Thermodynamic calculations suggested that the mutation primarily destabilized Gβ1 and Gβ1-effector complex. Conclusion Gβ1-L95P leads to both reduced protein expression and impaired function in the GIRK-Gβγ interaction system. The later effect can be attributed to the changes associated with protein misfolding.
Collapse
Affiliation(s)
| | | | - Galit Tabak
- School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Nathan Dascal
- School of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Daniel Yakubovich
- The Adelson School of Medicine, Ariel University, Ariel, Israel
- Neonatology Department, Laniado Hospital, Netanya, Israel
| |
Collapse
|
6
|
Foy BD, Dupont C, Walker PV, Denman K, Engisch KL, Rich MM. Mechanisms underlying the distinct K+ dependencies of periodic paralysis. J Gen Physiol 2025; 157:e202413610. [PMID: 39903205 PMCID: PMC11792889 DOI: 10.1085/jgp.202413610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 11/01/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Patients with periodic paralysis have attacks of weakness precipitated by depolarization of muscle. Each form of periodic paralysis is associated with unique changes in serum K+ during attacks of weakness. In hypokalemic periodic paralysis (hypoKPP), the mutation-induced gating pore current causes weakness associated with low serum K+. In hyperkalemic periodic paralysis (hyperKPP), mutations increase a non-inactivating Na+ current (Na persistent or NaP), which causes weakness associated with elevation of extracellular K+. In Andersen-Tawil syndrome, mutations causing loss of Kir channel function cause weakness associated with either low or high K+. We developed a computer model to address two questions: (1) What mechanisms are responsible for the distinct K+ dependencies of muscle depolarization-induced weakness in the three forms of periodic paralysis? (2) Why does extracellular K+ become elevated during attacks of weakness in hyperKPP, reduced in hypoKPP, and both elevated and reduced in Andersen-Tawil syndrome? We experimentally tested the model assumptions about resting potential in normal K+ solution in hyperKPP and hypoKPP. Recreating the distinct K+ dependence of all three forms of periodic paralysis required including the K+ and voltage dependence of current through Kir channels, the extracellular K+ and intracellular Na+ dependence of the Na/K ATPase activity, and the distinct voltage dependencies of the gating pore current and NaP. A key factor determining whether muscle would depolarize was the direction of small net K+ and net Na+ fluxes, which altered ion concentrations over hours. Our findings may aid in development of novel therapy for diseases with dysregulation of muscle excitability.
Collapse
Affiliation(s)
- Brent D. Foy
- Department of Physics, Wright State University, Dayton, OH, USA
| | - Chris Dupont
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Phillip V. Walker
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Kirsten Denman
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Kathrin L. Engisch
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| | - Mark M. Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH, USA
| |
Collapse
|
7
|
Aréchiga-Figueroa IA, Marmolejo-Murillo LG, Delgado-Ramírez M, Zamora-Cárdenas R, Moreno-Galindo EG, Ferrer T, Navarro-Polanco RA, Sánchez-Chapula JA, Rodríguez-Menchaca AA. Intracellular pH regulates the strength of the intrinsic inward rectification of Kir4.1/Kir5.1 channels. Pflugers Arch 2025; 477:741-752. [PMID: 40133722 DOI: 10.1007/s00424-025-03079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Kir4.1/Kir5.1 channels play a crucial role in important physiological functions, notably in the kidneys and brain. A hallmark of these channels is the coexistence of two mechanisms of inward rectification: the classical "extrinsic" inward rectification induced by polyamines and Mg2+ blocking the pore, and a novel "intrinsic" voltage-dependent mechanism driven by K+ flux. Previous studies have shown that Kir4.1/Kir5.1 channels are modulated by the intracellular pH in the physiological range. Here, we investigated the influence of the intracellular pH on the extent of the intrinsic inward rectification of Kir4.1/Kir5.1 channels expressed in HEK-293 cells and recorded using the inside-out configuration of the patch-clamp technique. We found that mutations that are known to modulate the pH sensitivity of Kir4.1/Kir5.1 channels attenuated inward rectification. The combination of these mutations in the triple mutant channel Kir4.1(K67M)/Kir5.1(N161E-R230E) virtually abolished inward rectification at pH 7.4; however, this property was re-established at acidic pH values. Consistently, the strong inward rectification of wild-type Kir4.1/Kir5.1 channels was reduced by intracellular alkalinization and further enhanced by acidification. Altogether, these experiments indicate that the intracellular pH strongly regulates the strength of the intrinsic inward rectification. Furthermore, triple mutant channels retained the extrinsic mechanism of inward rectification at pH 7.4, as can be blocked by spermine, but lost the ability to respond to elevated levels of PIP2, unlike wild-type channels. Interestingly, whole-cell recordings of wild-type and triple mutant channels imply that the mechanism of intrinsic inward rectification is an important contributor to the overall rectification of Kir4.1/Kir5.1 channels in basal conditions.
Collapse
Affiliation(s)
- Iván A Aréchiga-Figueroa
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Leticia G Marmolejo-Murillo
- Departamento de Medicina y Nutrición, Universidad de Guanajuato, División de Ciencias de La Salud, León, México
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Tania Ferrer
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | | | - José A Sánchez-Chapula
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
8
|
Pando MM, Debner EK, Jacobs BA, Jamshidi RJ, Jennings EM, Clarke WP, Berg KA. Activation of G protein gated inwardly rectifying potassium (GIRK) channels in keratinocytes mediates peripheral kappa opioid receptor-mediated antinociception. Neuropharmacology 2025; 268:110326. [PMID: 39880327 DOI: 10.1016/j.neuropharm.2025.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Kappa opioid receptors (KOR) expressed by peripheral pain-sensing neurons (nociceptors) are a promising target for development of effective and safer analgesics for inflammatory pain that are devoid of central nervous system adverse effects. Here we sought to delineate the signaling pathways that underlie peripheral KOR-mediated antinociception in adult male and female Sprague-Dawley rats. In an inflammatory model of pain, local intraplantar (i.pl.) injection of pertussis toxin prevented antinociception induced by the KOR agonist, U50488, indicating that members of the Gi/o family mediate the antinociceptive response. Furthermore, i.pl. injection of the G protein-coupled inward-rectifying potassium (GIRK) channel blocker, TPNQ, as well as GIRK2 subunit-targeted siRNA abolished U50488-mediated antinociceptive behavioral responses in both male and female rats. Consistent with these data, i.pl. injection of ML297, a direct activator of GIRK1 subunit-containing channels, elicited peripheral antinociceptive behavior. It is well known that intraepidermal nerve fibers (IENF) that innervate the hindpaw propagate nociceptive signals to the spinal cord. However, recent studies suggest that keratinocytes, the major cell type in the epidermis, also play an active role in pain and sensory processing. Results from RT-qPCR, RNAscope and immunohistochemistry experiments confirmed that both KOR and GIRK are expressed in keratinocytes in the epidermal layer of the rat hindpaw. Knockdown of either KOR or GIRK2 subunits selectively in keratinocytes by i.pl. injection of shRNA plasmids, prevented the antinociceptive response to U50488. Taken together, these data suggest that KOR-mediated activation of GIRK channels in keratinocytes is required for peripherally-mediated antinociception.
Collapse
Affiliation(s)
- Miryam M Pando
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Emily K Debner
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Blaine A Jacobs
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Raehannah J Jamshidi
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elaine M Jennings
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - William P Clarke
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kelly A Berg
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Geier B, Roy B, Reiter LT. Small molecule ion channel agonist/antagonist screen reveals seizure suppression via glial Irk2 activation in a Drosophila model of Dup15q syndrome. Neurobiol Dis 2025; 208:106882. [PMID: 40122181 PMCID: PMC12117380 DOI: 10.1016/j.nbd.2025.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025] Open
Abstract
The neurogenetic disorder duplication 15q syndrome (Dup15q) is characterized by a high incidence of autism spectrum disorder (ASD) and pharmacoresistant epilepsy. Standard-of-care broad-spectrum anti-seizure medications (ASM) often fail to control seizures in Dup15q, emphasizing the need for the identification of new therapeutic compounds. Previously, we generated a model of Dup15q in Drosophila melanogaster by overexpressing Dube3a in glial cells, instead of neurons. This model recapitulates the spontaneous seizures present in Dup15q patients. Here, we screened a set of FDA-approved compounds for their ability to suppress seizures in repo > Dube3a flies. We used 72 compounds from the Enzo SCREEN-WELL Ion Channel Library for primary screening of seizure suppression. Six compounds were identified that significantly reduced seizure duration. Furthermore, the compounds that passed the primary and secondary screenings were associated with K+ channels. Glial-specific knockdown of the inward rectifying potassium (Irk) 2 channel exacerbated the seizure phenotype in these animals indicating a mechanism of action for drugs that bind irk2, like minoxidil, and can suppress seizures through the rebalancing of K+ extracellularly. This pharmacological and molecular investigation further supports the role of extracellular K+ content in Dup15q seizure activation and provides a putative target for therapeutic intervention.
Collapse
Affiliation(s)
- Benjamin Geier
- Department of Physiology, Tulane University, New Orleans, LA, USA; Graduate Program in Neuroscience, Tulane University, New Orleans, LA, USA
| | - Bidisha Roy
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
10
|
Longden T, Isaacs D. Pericyte Electrical Signalling and Brain Haemodynamics. Basic Clin Pharmacol Toxicol 2025; 136:e70030. [PMID: 40159653 PMCID: PMC11955720 DOI: 10.1111/bcpt.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Dynamic control of membrane potential lies at the nexus of a wide spectrum of biological processes, ranging from the control of individual cell secretions to the orchestration of complex thought and behaviour. Electrical signals in all vascular cell types (smooth muscle cells, endothelial cells and pericytes) contribute to the control of haemodynamics and energy delivery across spatiotemporal scales and throughout all tissues. Here, our goal is to review and synthesize key studies of electrical signalling within the brain vasculature and integrate these with recent data illustrating an important electrical signalling role for pericytes, in doing so attempting to work towards a holistic description of blood flow control in the brain by vascular electrical signalling. We use this as a framework for generating further questions that we believe are important to pursue. Drawing parallels with electrical signal integration in the nervous system may facilitate deeper insights into how signalling is organized within the vasculature and how it controls blood flow at the network level.
Collapse
Affiliation(s)
- Thomas A. Longden
- Department of Pharmacology and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Dominic Isaacs
- Department of Pharmacology and PhysiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and TechnologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Program in NeuroscienceUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
11
|
Zhang H, Bai Z, Xi Y. The physiological characteristics of inward rectifying potassium channel Kir4.2 and its research progress in human diseases. Front Cell Dev Biol 2025; 13:1519080. [PMID: 40342929 PMCID: PMC12058739 DOI: 10.3389/fcell.2025.1519080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/10/2025] [Indexed: 05/11/2025] Open
Abstract
Kir4.2 is a member of the inward rectifying potassium channel family, encoded by the KCNJ15 gene. The Kir4.2 protein is expressed in various organs including the kidneys, liver, pancreas, bladder, stomach, and lungs. Kir4.2 not only forms functional homomeric channels, but also heteromeric channels with Kir5.1. An increasing number of studies indicate that the function of the Kir4.2 channel should not be underestimated. Kir4.2 participates in cell electrotaxis chemotaxis by sensing extracellular electric fields and functions as a K + sensor in the proximal tubules of the kidney, playing a crucial role in maintaining acid-base and potassium balance. This article provides a comprehensive review of the main physiological characteristics of the Kir4.2 channel, the various pathological processes it is involved in, and the human diseases resulting from Kir4.2 dysfunction.
Collapse
Affiliation(s)
- Hongling Zhang
- Pathology Department, The Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhongyuan Bai
- Colorectal Surgery, The First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yanfeng Xi
- Pathology Department, The Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- Pathology Department, Shanxi Cancer Hospital, Taiyuan, China
| |
Collapse
|
12
|
Zhao Q, Wei Z, Yang G, Wei L, Chen H, Cui Z, Liao N, Qin M, Cheng J. KCNJ2 Facilitates Clear Cell Renal Cell Carcinoma Progression and Glucose Metabolism. Int J Genomics 2025; 2025:2210652. [PMID: 40314029 PMCID: PMC12045686 DOI: 10.1155/ijog/2210652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/27/2025] [Indexed: 05/03/2025] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is marked by aggressive characteristics and a poor prognosis. The involvement of KCNJ2, an inward rectifying potassium channel, in the progression of ccRCC, along with its potential roles in immune modulation and metabolic pathways, remains unclear. Methods: The Cancer Genome Atlas (TCGA) database was utilized to analyze the gene expression, clinicopathological characteristics, and clinical relevance of KCNJ2. The prognostic value of KCNJ2 in ccRCC was evaluated with Kaplan-Meier survival analysis and receiver operating characteristic curve analyses. The TCGA-KIRC dataset was utilized to analyze tumor microenvironment (TME), focusing on tumor-infiltrating immune cells and immunomodulators. The biological functions of KCNJ2 were investigated in vitro using CCK-8, flow cytometry, wound healing, transwell, qRT-PCR, and Western blotting assays. Results: KCNJ2 expression was notably higher in ccRCC than in normal kidney tissues, with increased levels associated with advanced tumor stages. However, KCNJ2 did not exhibit obvious prognostic value. Coexpression analysis identified associations with genes implicated in energy metabolism. Analysis of the TME and immune profile indicated a link between KCNJ2 expression and immune cell infiltration, along with particular immune checkpoints. In vitro studies demonstrated that KCNJ2 overexpression enhanced cell proliferation, migration, invasion, glucose production, and ATP generation. Conclusion: KCNJ2 plays a crucial role in ccRCC progression through affecting glucose metabolism and immune responses. Our findings reveal the functional role of KCNJ2 in promoting tumor progression and metabolic reprogramming in ccRCC, highlighting its therapeutic potential as a novel target for ccRCC treatment. Further studies are essential to clarify the mechanisms by which KCNJ2 affects ccRCC biology and to evaluate its clinical relevance.
Collapse
Affiliation(s)
- Qiyue Zhao
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Urology, Liuzhou Workers' Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
| | - Zhengshu Wei
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Urology, Liuzhou Workers' Hospital, Guangxi Medical University, Liuzhou, Guangxi, China
| | - Guanglin Yang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Liwei Wei
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hao Chen
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zelin Cui
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Naikai Liao
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Min Qin
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiwen Cheng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- Department of Surgery, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Altinok FA, Petrella M, Masi A, Borruto AM, Ciccocioppo R, Ozturk Y. Exploring the supraspinal antihyperalgesic effects of levetiracetam in the rat model of chronic constriction injury. Can J Physiol Pharmacol 2025. [PMID: 40245838 DOI: 10.1139/cjpp-2024-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Neuropathic pain severely impacts quality of life and effective treatments are needed. To address this, the present study investigated the antihyperalgesic mechanisms of levetiracetam administered at the supraspinal level, together with its effects on ion channel activities. The ventral posterolateral nucleus of the thalamus was selected as the location for micro-injection. Thermal hyperalgesia and mechanical allodynia were assessed via in vivo experiments using the Hargreave's and e-Von Frey apparatus, respectively. Levetiracetam displayed statistically meaningful time and dose-dependent effects in the chronic constriction injury model, with statistical probability values less than 0.05. It was discovered that the antihyperalgesic effects were more pronounced in mechanical allodynia. Electrophysiological studies conducted through whole-cell patch clamp recordings indicated that levetiracetam tended to activate or increase the permeability of one or more channels for ion flow that are active only at hyperpolarized membrane potentials (-130 to -90 mV), suggesting the potential participation of hyperpolarization-activated cyclic nucleotide-gated, inwardly-rectifying K+, or G protein-gated inwardly-rectifying K+ channels. The findings could guide future drug development studies towards levetiracetam and its derivatives as effective treatments for neuropathic pain.
Collapse
Affiliation(s)
- Feyza Alyu Altinok
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Michele Petrella
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, 62032 Camerino, Italy
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-581 85, Linköping, Sweden
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child's Health, NEUROFARBA, Università di Firenze, 50139 Firenze, Italy
| | - Anna Maria Borruto
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, 62032 Camerino, Italy
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-581 85, Linköping, Sweden
| | - Roberto Ciccocioppo
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, 62032 Camerino, Italy
| | - Yusuf Ozturk
- Department of Pharmacology, Faculty of Pharmacy, Istanbul Aydin University, 34295 Istanbul, Turkey
| |
Collapse
|
14
|
Rivera-Arconada I, Baccei ML, López-García JA, Bardoni R. An electrophysiologist's guide to dorsal horn excitability and pain. Front Cell Neurosci 2025; 19:1548252. [PMID: 40241846 PMCID: PMC12001243 DOI: 10.3389/fncel.2025.1548252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
The dorsal horn of the spinal cord represents the first site in the central nervous system (CNS) where nociceptive signals are integrated. As a result, there has been a rapid growth in the number of studies investigating the ionic mechanisms regulating the excitability of dorsal horn neurons under normal and pathological conditions. We believe that it is time to look back and to critically examine what picture emerges from this wealth of studies. What are the actual types of neurons described in the literature based on electrophysiological criteria? Are these electrophysiologically-defined subpopulations strongly linked to specific morphological, functional, or molecular traits? Are these electrophysiological properties stable, or can they change during development or in response to peripheral injury? Here we provide an in-depth overview of both early and recent publications that explore the factors influencing dorsal horn neuronal excitability (including intrinsic membrane properties and synaptic transmission), how these factors vary across distinct subtypes of dorsal horn neurons, and how such factors are altered by peripheral nerve or tissue damage. The meta-research presented below leads to the conclusion that the dorsal horn is comprised of highly heterogeneous subpopulations in which the observed electrophysiological properties of a given neuron often fail to easily predict other properties such as biochemical phenotype or morphology. This highlights the need for future studies which can more fully interrogate the properties of dorsal horn neurons in a multi-modal manner.
Collapse
Affiliation(s)
| | - Mark L. Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Rita Bardoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
15
|
Lee SJ, Gao J, Thompson E, Mount J, Nichols CG. Dynein light chains 1 and 2 are auxiliary proteins of pH-sensitive Kir4.1 channels. J Biol Chem 2025; 301:108393. [PMID: 40074079 PMCID: PMC11999606 DOI: 10.1016/j.jbc.2025.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/31/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Inward rectifier Kir4.1 potassium channels are abundantly expressed in cells that are important for electrolyte homeostasis. Dysregulation of Kir4.1 underlies various neurological disorders. Here, through biochemical and structural studies of full-length Kir4.1, we show that dynein light chain 1 and 2 proteins, also as known as LC8, copurify with Kir4.1 at stoichiometric levels. Direct interaction between Kir4.1 and LC8 is supported by in vitro binding assays and reiterated with native Kir4.1 proteins from mouse brain. Notably, we identify a LC8 binding motif in the unstructured N terminus of Kir4.1. Among Kir subtypes, the motif is unique to Kir4.1 and is highly conserved between Kir4.1 orthologs. Deletion of the predicted anchoring sequence (ΔTQT) resulted in loss of LC8 interaction with Kir4.1 N-terminal peptides as well as with full-length Kir4.1, suggesting that the binding site is necessary and sufficient for the interaction. Purified Kir4.1-ΔTQT mutant proteins exhibited normal channel activity in vitro, whereas WT proteins lost phosphoinositide-(4,5)-phosphate activation. Single-particle cryo-EM analysis of the full-length proteins revealed extremely heterogeneous particles, indicating deformation from the typical fourfold symmetric conformation. Additional electron density attached to the Kir4.1 tetramer, ascribed to an LC8 dimer, further supports the direct interaction between the two proteins. While the biological implications of this interaction await further elucidation, the strong conservation of the LC8 binding motif suggests its potential importance in the regulation of Kir4.1 channels.
Collapse
Affiliation(s)
- Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri, USA.
| | - Jian Gao
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri, USA
| | - Ellen Thompson
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jonathan Mount
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
16
|
Shalomov B, Friesacher T, Yakubovich D, Combista JC, Reddy HP, Dabbah S, Bernsteiner H, Zangerl-Plessl EM, Stary-Weinzinger A, Dascal N. Ethosuximide: Subunit- and Gβγ-dependent blocker and reporter of allosteric changes in GIRK channels. Br J Pharmacol 2025; 182:1704-1718. [PMID: 39814556 DOI: 10.1111/bph.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND AND PURPOSE The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ1 protein, likely through the inhibition of G-protein gated K+ (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs. EXPERIMENTAL APPROACH We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ. ETX binding site and mode of action were analysed using molecular dynamic (MD) simulations and kinetic modelling, and the predictions were tested by mutagenesis and functional testing. KEY RESULTS We show that ETX is a subunit-selective, allosteric blocker of GIRKs. The potency of ETX block is increased by Gβγ, in parallel with channel activation. MD simulations and mutagenesis locate the ETX binding site in GIRK2 to a region associated with phosphatidylinositol-4,5-bisphosphate (PIP2) regulation, and suggest that ETX acts by closing the helix bundle crossing (HBC) gate and altering channel's interaction with PIP2. The apparent affinity of ETX block is highly sensitive to changes in channel gating caused by mutations in Gβ1 or GIRK subunits. CONCLUSION AND IMPLICATIONS ETX block of GIRKs is allosteric, subunit-specific, and enhanced by Gβγ through an intricate network of allosteric interactions within the channel molecule. Our findings pose GIRK as a potential therapeutic target for ETX and ETX as a potent allosteric GIRK blocker and a tool for probing gating-related conformational changes in GIRK.
Collapse
Affiliation(s)
- Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Theres Friesacher
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - J Carlo Combista
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haritha P Reddy
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shoham Dabbah
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Harald Bernsteiner
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Eva-Maria Zangerl-Plessl
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Kok M, Singh I, Aizenman E, Brodsky JL. Inefficient maturation of disease-linked mutant forms of the KCC2 potassium-chloride cotransporter correlates with predicted pathogenicity. J Biol Chem 2025; 301:108399. [PMID: 40074080 PMCID: PMC12001125 DOI: 10.1016/j.jbc.2025.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The potassium-chloride cotransporter 2 (KCC2) is required for neuronal development, and KCC2 dysregulation is implicated in several neurodevelopmental disorders, including schizophrenia, autism, and epilepsy. A dozen mutations in the KCC2-encoding gene, SLC12A5, are associated with these disorders, but few are fully characterized. To this end, we examined KCC2 biogenesis in a HEK293 cell model. While most of the examined disease-associated mutants matured efficiently, the L403P mutant was unable to traffic to the Golgi. Two other mutants, A191V and R857L, exhibited more subtle defects in maturation. Cell surface biotinylation assays showed that these mutants were also depleted from the cell surface. Another disease-associated variant, R952H, acquired Golgi-associated glycans yet was significantly depleted from the plasma membrane, consistent with loss of a plasma membrane-stabilizing phosphorylation site. To determine whether the ability of KCC2 to mature to the Golgi could be predicted, we employed a computational pathogenicity program, Rhapsody, which was shown in past work to predict endoplasmic reticulum-associated degradation-targeting of an unrelated ion channel. We discovered that the Rhapsody pathogenicity score correlated with relative defects in KCC2 maturation, and the algorithm outperformed two other commonly used programs. These data demonstrate the efficacy of a bioinformatic tool to predict the efficiency of KCC2 biogenesis. We also propose that Rhapsody can be used to develop hypotheses on defects associated with other disease-associated SLC12A5 alleles as they are identified.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ishika Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
18
|
Quilgars C, Boué-Grabot E, de Deurwaerdère P, Cazalets JR, Perrin FE, Bertrand SS. Brief early-life motor training induces behavioral changes and alters neuromuscular development in mice. PLoS Biol 2025; 23:e3003153. [PMID: 40258043 PMCID: PMC12052215 DOI: 10.1371/journal.pbio.3003153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 05/05/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025] Open
Abstract
In this study, we aimed to determine the impact of an increase in motor activity during the highly plastic period of development of the motor spinal cord and hindlimb muscles in newborn mice. A swim training regimen, consisting of two sessions per day for two days, was conducted in 1 and 2-day-old (P1, P2) pups. P3-trained pups showed a faster acquisition of a four-limb swimming pattern, accompanied by dysregulated gene expression in the lateral motor column, alterations in the intrinsic membrane properties of motoneurons (MNs) and synaptic plasticity, as well as increased axonal myelination in motor regions of the spinal cord. Network-level changes were also observed, as synaptic events in MNs and spinal noradrenaline and serotonin contents were modified by training. At the muscular level, slight changes in neuromuscular junction morphology and myosin subtype expression in hindlimb muscles were observed in trained animals. Furthermore, the temporal sequence of acquiring the adult-like swimming pattern and postural development in trained pups showed differences persisting until almost the second postnatal week. A very short motor training performed just after birth is thus able to induce functional adaptation in the developing neuromuscular system that could persist several days. This highlights the vulnerability of the neuromuscular apparatus during development and the need to evaluate carefully the impact of any given sensorimotor procedure when considering its application to improve motor development or in rehabilitation strategies.
Collapse
Affiliation(s)
| | - Eric Boué-Grabot
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | | | | | - Florence E. Perrin
- MMDN, Univ. Montpellier, EPHE, INSERM, Montpellier, France
- Institut Universitaire de France (IUF), Paris, France
| | | |
Collapse
|
19
|
Elia N, Quiñonez M, Wu F, Mokhonova E, DiFranco M, Spencer MJ, Cannon SC. Potassium-sensitive loss of muscle force in the setting of reduced inward rectifier K + current: Implications for Andersen-Tawil syndrome. Proc Natl Acad Sci U S A 2025; 122:e2418021122. [PMID: 40138348 PMCID: PMC12002197 DOI: 10.1073/pnas.2418021122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Andersen-Tawil syndrome (ATS) is an ion channelopathy with variable penetrance for the triad of periodic paralysis, arrhythmia, and dysmorphia. Dominant-negative mutations of KCNJ2 encoding the Kir2.1 potassium channel subunit are found in 60% of ATS families. As with most channelopathies, episodic attacks in ATS are frequently triggered by environmental stresses: exercise for periodic paralysis or stress with adrenergic stimulation for arrhythmia. Fluctuations in K+, either low or high, are potent triggers for attacks of weakness in other variants of periodic paralysis (hypokalemic periodic paralysis or hyperkalemic periodic paralysis). For ATS, the [K+] dependence is less clear; with reports describing weakness in high-K+ or low-K+. Patient trials with controlled K+ challenges are not possible, due to arrhythmias. We have developed two mouse models (genetic and pharmacologic) with reduced Kir currents, to address the question of K+-sensitive loss of force. These animal models and computational simulations both show K+-dependent weakness occurs only when Kir current is <30% of wildtype. As the Kir deficit becomes more severe, the phenotype shifts from high-K+-induced weakness to a combination where either high-K+ or low-K+ triggers weakness. A K+ channel agonist, retigabine, protects muscle from K+-sensitive weakness in our mouse models of the skeletal muscle involvement in ATS.
Collapse
Affiliation(s)
- Nathaniel Elia
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095-1751
| | - Marbella Quiñonez
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095-1751
| | - Fenfen Wu
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095-1751
| | - Ekaterina Mokhonova
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA90095-1751
| | - Marino DiFranco
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095-1751
| | - Melissa J. Spencer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA90095-1751
| | - Stephen C. Cannon
- Department of Physiology, David Geffen School of Medicine at University of California, Los Angeles, CA90095-1751
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles, CA90095-1751
| |
Collapse
|
20
|
Beverley KM, Ahn SJ, Levitan I. Flow-sensitive ion channels in vascular endothelial cells: Mechanisms of activation and roles in mechanotransduction. Biophys J 2025:S0006-3495(25)00193-6. [PMID: 40156185 DOI: 10.1016/j.bpj.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
The purpose of this review is to evaluate the current knowledge about the mechanisms by which mechanosensitive ion channels are activated by fluid shear stress in endothelial cells. We focus on three classes of endothelial ion channels that are most well studied for their sensitivity to flow and roles in mechanotransduction: inwardly rectifying K+ channels, Piezo channels, and TRPV channels. We also discuss the mechanisms by which these channels initiate and contribute to mechanosensitive signaling pathways. Three types of mechanisms have been described for flow-induced activation of ion channels: 1) through interaction with apical membrane flow sensors, such as glycocalyx, which is likely to be deformed by flow, 2) directly by sensing membrane stretch that is induced by shear stress, or 3) via flow-sensitive channel-channel or lipid channel interactions. We also demonstrate the physiological role of these channels and how they are related to cardiovascular and neurological diseases. Further studies are needed to determine how these channels function cooperatively to mediate the endothelial response to flow.
Collapse
Affiliation(s)
- Katie M Beverley
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| | - Sang Joon Ahn
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
21
|
Wang Y, Ma H, Liu Z, Zhao P, Liu J, Zhu H, Zhou Y, Man Y, Zhou X. The Elongation Factor 1 Alpha Promoter Drives the Functional Expression of Kir2A in Plutella xylostella Cells. Int J Mol Sci 2025; 26:3042. [PMID: 40243678 PMCID: PMC11989005 DOI: 10.3390/ijms26073042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cell lines and their corresponding expression plasmids are extensively utilized in the study of insect physiology and pathology. In this research, four single-cell cultured lines (Px4-1 to Px4-4) of Plutella xylostella were established from eggs. The promoter for the P. xylostella elongation factor 1α (PxEF1α), known for its high driving activity in cells, was cloned and used to construct expression plasmids. Dual-luciferase activity assays and EGFP expression analyses demonstrated that the PxEF1α promoter exhibited the strongest driving activity in Px4-2 cells, comparable to that of the immediate-early 1 promoter associated with the homologous region 5 enhancer (AcIE1hr5) from the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV). In contrast, the driving activity of PxEF1α in cells derived from Spodoptera frugiperda, Trichoplusia ni, and Helicoverpa armigera was lower. Furthermore, the PxEF1α promoter was successfully employed to drive inward rectifier potassium 2A (Kir2A) expression in Px4-2 cells. The electrophysiological properties of the insect Kir2A channel were successfully characterized for the first time. It was observed that the PxKir2A channel possesses typical inward rectifier potassium channel properties and can be inhibited by nanomolar concentrations of VU625 and VU590. This study offers a novel approach for the expression and investigation of foreign gene function in insect cells and provides a valuable tool for the in-depth study of key biomolecules in P. xylostella.
Collapse
Affiliation(s)
- Yinna Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China;
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haihao Ma
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China;
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Zheming Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Piao Zhao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Jia Liu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Hang Zhu
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yong Zhou
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Yilong Man
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (Z.L.); (P.Z.); (J.L.); (H.Z.); (Y.Z.); (Y.M.)
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| | - Xiaomao Zhou
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China;
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Provincial Key Laboratory of Pesticide Biology and Precise Use Technology, Changsha 410125, China
- Key Laboratory of Pesticide Assessment, Ministry of Agriculture and Rural Affairs, Changsha 410125, China
| |
Collapse
|
22
|
Li C, Wang K, Mao X, Liu X, Lu Y. Upregulated inwardly rectifying K + current-mediated hypoactivity of parvalbumin interneuron underlies autism-like deficits in Bod1-deficient mice. J Biomed Res 2025; 39:1-13. [PMID: 40164568 DOI: 10.7555/jbr.38.20240394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Parvalbumin-positive (PV +) interneuron dysfunction is believed to be linked to autism spectrum disorder (ASD), a neurodevelopmental disorder, characterized by social deficits and stereotypical behaviors. However, the underlying mechanisms of PV + interneuron dysfunction remain largely unclear. Here, we found that a deficiency of biorientation defective 1 ( Bod1) in PV + interneuron led to an ASD-like phenotype in Pvalb-Cre; Bod1 f/f mice. Mechanistically, we identified that Bod1 deficiency induced hypoactivity of PV + interneuron and hyperactivity of calcium/calmodulin-dependent protein kinase Ⅱ alpha (CaMKⅡα) neurons in the medial prefrontal cortex (mPFC), as determined by whole-cell patch-clamp recording. Additionally, it concurrently decreased the power of high gamma oscillation, as assessed by in vivo multi-channel electrophysiological recording. Furthermore, we found that Bod1 deficiency enhanced inwardly rectifying K + current, leading to an increase in the resting membrane potential of PV + interneurons. Importantly, the gain-of-function of Bod1 improved social deficits and stereotypical behaviors in Pvalb-Cre; Bod1 f/f mice. These findings provide mechanistic insights into the PV + interneuron dysfunction and suggest new strategies for developing PV + interneuron therapies for ASD.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Kerui Wang
- Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xingfeng Mao
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education; International Joint Laboratory for Drug Target of Critical Illnesses; Key Laboratory of Cardiovascular & Cerebrovascular Medicine; School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingmei Lu
- Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
23
|
Guo H, Gao Y, Sun D, Liu X, Qiao J, Liu T, Su J. Molecular Insights into Pharmacological Mechanism of Insect Kir Channels and the Toxicity of Kir Inhibitors on Hemipteran Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6522-6536. [PMID: 40062477 DOI: 10.1021/acs.jafc.4c12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Inwardly rectifying potassium channels (Kir) play a key role in regulating various physiological processes. However, the structural and pharmacological mechanisms of insect Kir channels remain unclear. In this study, we show that coexpression of different Kir subunits in the same tissue did not affect the rectification properties of strongly rectifying Kir. The Kir inhibitor VU041, along with the insecticide flonicamid and its metabolite flumetnicam, were tested for their inhibitory effects on the homotetrameric Kir1 and Kir2 channels. Both Kir1 and Kir2 channels from the two insect species showed similar pharmacological responses to VU041, flonicamid, and flumetnicam. However, VU041 demonstrated significantly higher inhibitory activity than both insecticides across all four Kir channels, while flumetnicam exhibited the weakest inhibition. Molecular docking analyses indicate that the binding site of VU041 is not the same as that of flonicamid, and flumetnicam. flonicamid, and flumetnicam have binding sites similar to the ATP binding sites in cytoplasmic region of human Kir6.2, whereas VU041 is located in the pore of the ion channel, and serves as a pore blocker that inhibits Kir channels. Mutation analysis confirmed the essential roles of these residues in channel function and binding affinity. Finally, the toxicities of the three inhibitors were evaluated in N. lugens and M. persicae. VU041, a potent inhibitor of the insect Kir channel, showed lower toxicity compared to the other two inhibitors, whereas flumethoxan, which is less active on the Kir1 channel, showed higher toxicity, probably related to the different bioavailability of the different compounds. These findings suggest that the potential of targeting Kir channels as insecticidal strategies requires further evaluation.
Collapse
Affiliation(s)
- Hailiang Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuying Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Sun
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jizu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfei Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianya Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Bazzazzadehgan S, Shariat-Madar Z, Mahdi F. Distinct Roles of Common Genetic Variants and Their Contributions to Diabetes: MODY and Uncontrolled T2DM. Biomolecules 2025; 15:414. [PMID: 40149950 PMCID: PMC11940602 DOI: 10.3390/biom15030414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) encompasses a range of clinical manifestations, with uncontrolled diabetes leading to progressive or irreversible damage to various organs. Numerous genes associated with monogenic diabetes, exhibiting classical patterns of inheritance (autosomal dominant or recessive), have been identified. Additionally, genes involved in complex diabetes, which interact with environmental factors to trigger the disease, have also been discovered. These genetic findings have raised hopes that genetic testing could enhance diagnostics, disease surveillance, treatment selection, and family counseling. However, the accurate interpretation of genetic data remains a significant challenge, as variants may not always be definitively classified as either benign or pathogenic. Research to date, however, indicates that periodic reevaluation of genetic variants in diabetes has led to more consistent findings, with biases being steadily eliminated. This has improved the interpretation of variants across diverse ethnicities. Clinical studies suggest that genetic risk information may motivate patients to adopt behaviors that promote the prevention or management of T2DM. Given that the clinical features of certain monogenic diabetes types overlap with T2DM, and considering the significant role of genetic variants in diabetes, healthcare providers caring for prediabetic patients should consider genetic testing as part of the diagnostic process. This review summarizes current knowledge of the most common genetic variants associated with T2DM, explores novel therapeutic targets, and discusses recent advancements in the pharmaceutical management of uncontrolled T2DM.
Collapse
Affiliation(s)
- Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
25
|
Wang T, Kim DH, Ding C, Wang D, Zhang W, Silic M, Cheng X, Shao K, Ku T, Zheng C, Xie J, Yuan C, Chubykin A, Staiger CJ, Zhang G, Deng Q. Inwardly rectifying potassium channels regulate membrane potential polarization and direction sensing during neutrophil chemotaxis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641746. [PMID: 40093039 PMCID: PMC11908270 DOI: 10.1101/2025.03.06.641746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Potassium channels regulate membrane potential and diverse physiological processes, including cell migration. However, the specific function of the inwardly rectifying potassium channels in immune cell chemotaxis is unknown. Here, we identified that the inwardly rectifying potassium channel Kir7.1 (KCNJ13) maintains the resting membrane potential and is required for directional sensing during neutrophil chemotaxis. Pharmacological or genetic inhibition of Kir7.1 in neutrophils impaired direction sensing toward various chemoattractants without affecting cell polarization in multiple neutrophil models. Using genetically encoded voltage indicators, we observed oscillating depolarization of the membrane potential in protrusions in zebrafish neutrophils, and Kir7.1 is required for polarized depolarization towards the chemokine source. Focal depolarization with optogenetic tools biases pseudopod selection and induces de novo protrusions. Global hyperpolarizing neutrophils stalled cell migration. Furthermore, Kir7.1 regulates GPCR signaling activation. This work adds membrane potential to the intricate feedforward mechanism, coupling the adaptive and excitable network required to steer immune cells in complex tissue environments.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel H Kim
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Chang Ding
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Dingxun Wang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Weiwei Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907, USA
| | - Martin Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Xi Cheng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Kunming Shao
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - TingHsuan Ku
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Conwy Zheng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN47907, USA
| | - Alexander Chubykin
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue Autism Research Center, West Lafayette, IN, 47907
| | - Christopher J Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN47907, USA
| | - Guangjun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
26
|
Gu J, Wang J, Fan H, Wei Y, Li Y, Ma C, Xing K, Wang P, Wu Z, Wu T, Li X, Zhang L, Han Y, Chen T, Qu J, Yan X. Decoding the mechanism of proanthocyanidins in central analgesia: redox regulation and KCNK3 blockade. Exp Mol Med 2025; 57:567-583. [PMID: 40025170 PMCID: PMC11958645 DOI: 10.1038/s12276-025-01412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 03/04/2025] Open
Abstract
Neuropathic pain causes enduring physical discomfort and emotional distress. Conventional pharmacological treatments often provide restricted relief and may result in undesirable side effects, posing a substantial clinical challenge. Peripheral and spinal redox homeostasis plays an important role in pain processing and perception. However, the roles of oxidative stress and antioxidants in pain and analgesia on the cortical region during chronic pain remains obscure. Here we focus on the ventrolateral orbital cortex (VLO), a brain region associated with pain severity and involved in pain inhibition. Using a spared nerve injury mouse model, we observed the notable reactive oxygen species (ROS)-mediated suppression of the excitability of pyramidal cells (PYRVLO) in the VLO. Nasal application or microinjection of the natural antioxidants proanthocyanidins (PACs) to the VLO specifically increased the activity of PYRVLO and induced a significant analgesic effect. Mechanistically, PACs activate PYRVLO by inhibiting distinct potassium channels in different ways: (1) by scavenging ROS to reduce ROS-sensitive voltage-gated potassium currents and (2) by acting as a channel blocker through direct binding to the cap structure of KCNK3 to inhibit the leak potassium current (Ileak). These results reveal the role of cortical oxidative stress in central hyperalgesia and elucidate the mechanism and potential translational significance of PACs in central analgesia. These findings suggest that the effects of PACs extend beyond their commonly assumed antioxidant or anti-inflammatory effects.
Collapse
Affiliation(s)
- Junxiang Gu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Jian Wang
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongwei Fan
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Wei
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
- School of Medicine, Northwest University, Xi'an, China
| | - Yan Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chengwen Ma
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Keke Xing
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Pan Wang
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Zhenyu Wu
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Teng Wu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunyun Han
- Department of Neurobiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Department of Human Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China.
| | - Jianqiang Qu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Xianxia Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
27
|
Bararia A, Maiti A, Ghosh G, Das D, Dastidar DG, Mukherjee S, Ghosh S, Chattopadhay BK, Banerjee S, Ghatak S, Sikdar N. Identification of KCNJ5 gene an adverse prognosis associated novel onco-ionchannel in Indian pancreatic cancer cohort. Discov Oncol 2025; 16:236. [PMID: 39998707 PMCID: PMC11861474 DOI: 10.1007/s12672-025-02001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PanCa) is one of the most lethal cancers (survival ~ 12%). As the conventional therapeutic interventions are mostly futile, a deep understanding of the disease pathophysiology is an urgent need. Ion channels, located on cell membrane, contribute significantly to cancer hallmarks, through dysregulation of various ion translocation; however, the fundamental mechanisms remain uncertain. METHODS To identify these oncochannels in Indian cohort of PanCa, we utilized 450 K data, published in our previous study, and identified potential pathways involved. Their expressions were evaluated using TCGA data and an independent Indian paired patient cohort (n = 20). The top genes were further validated using GEO and ScRNA seq dataset. Potential target ability of KCNJ5 was identified through molecular dynamic based drug designing. RESULTS A set of 7 differentially methylated and differentially expressed genes of ion-channel proteins namely KCNJ5, CACNB2, KCNA3, KCNA6, RASA3, GABBR2 and CLIC5 were identified in Indian PanCa cohort only. KCNJ5 was significantly upregulated and associated with worse survival in Indian cohort, whereas downregulated in TCGA and other Caucasians patient populations. Two TFs controlling the KCNJ5 expression are POU2F1 and POU3F1. Few predicted small molecules targeting Kcnj5 are, Amiloride, Vernakalant hydrochloride, Dalfampridine, Glyburide and Levcromakalim. It also showed notable interactions with a steroidal anticancer agent, protodioscin. CONCLUSION An onco-channel gene, KCNJ5 significantly upregulated, and showing adverse survival in highly expressed KCNJ5 group in Indian cohort of PanCa, can be targeted with Amiloride, Vernakalant hydrochloride, Dalfampridine, Glyburide Levcromakalim and protodioscin. This understanding can lead to novel target identification for PanCa therapy development.
Collapse
Affiliation(s)
- Akash Bararia
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
| | - Arunima Maiti
- Suraksha Diagnostics Pvt Ltd, Newtown, Rajarhat, Kolkata, India
| | - Gourav Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, Kolkata, India
| | - Deepyaman Das
- Department of Zoology, Raiganj University, Raiganj, WB, India
| | | | - Sumit Mukherjee
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
| | | | | | | | | | - Nilabja Sikdar
- Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India.
- Estuarine and Costal Studies Foundation, Howrah, WB, 711101, India.
| |
Collapse
|
28
|
Zhuang W, Mun SY, Park WS. Direct effects of antipsychotics on potassium channels. Biochem Biophys Res Commun 2025; 749:151344. [PMID: 39842331 DOI: 10.1016/j.bbrc.2025.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) and are severe psychiatric conditions that contribute to disability and increased healthcare costs globally. Although first-, second-, and third-generation antipsychotics are available for treating BD and SCZ, most have various side effects unrelated to their unique functions. Many antipsychotics affect K+ channels (Kv, KCa, Kir, K2P, and other channels), which change the functions of various organs. This review summarizes the biological actions of antipsychotics, including off-target side effects involving K+ channels.
Collapse
Affiliation(s)
- Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Seo-Yeong Mun
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
29
|
Zhai Z, Yang C, Yin W, Liu Y, Li S, Ye Z, Xie M, Song X. Engineered Strategies to Interfere with Macrophage Fate in Myocardial Infarction. ACS Biomater Sci Eng 2025; 11:784-805. [PMID: 39884780 DOI: 10.1021/acsbiomaterials.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Myocardial infarction (MI), a severe cardiovascular condition, is typically triggered by coronary artery disease, resulting in ischemic damage and the subsequent necrosis of the myocardium. Macrophages, known for their remarkable plasticity, are capable of exhibiting a range of phenotypes and functions as they react to diverse stimuli within their local microenvironment. In recent years, there has been an increasing number of studies on the regulation of macrophage behavior based on tissue engineering strategies, and its regulatory mechanisms deserve further investigation. This review first summarizes the effects of key regulatory factors of engineered biomaterials (including bioactive molecules, conductivity, and some microenvironmental factors) on macrophage behavior, then explores specific methods for inducing macrophage behavior through tissue engineering materials to promote myocardial repair, and summarizes the role of macrophage-host cell crosstalk in regulating inflammation, vascularization, and tissue remodeling. Finally, we propose some future challenges in regulating macrophage-material interactions and tailoring personalized biomaterials to guide macrophage phenotypes.
Collapse
Affiliation(s)
- Zitong Zhai
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Chang Yang
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Wenming Yin
- Department of Neurology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Yali Liu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China
| | - Shimin Li
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Ziyi Ye
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Mingxiang Xie
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
| | - Xiaoping Song
- Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510910, China
- Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
30
|
Tang D, Xu J, Bao W, Xu F, Qi J, Tan Z, Li C, Luo X, You X, Rong M, Liu Z, Tang C. Pore blocking mechanisms of centipede toxin SsTx-4 on the inwardly rectifying potassium channels. Eur J Pharmacol 2025; 988:177213. [PMID: 39706465 DOI: 10.1016/j.ejphar.2024.177213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The peptide toxin SsTx-4 derived from venom of centipede Scolopendra subspinipes mutilans was characterized as a potent antagonist of the inwardly rectifying potassium (Kir) channel subtypes Kir1.1, Kir4.1, and Kir6.2 in our previous study. Alanine-scanning mutagenesis analysis identified key molecular determinants on the SsTx-4 toxin interacting with these Kir channels, as well as those on the Kir6.2 channel interacting with the toxin. However, the key residues on Kir1.1 and Kir4.1 channels responsible for binding SsTx-4 remain unclear. Here, using a combination of site-directed mutagenesis, patch-clamp analysis, molecular docking with AlphaFold 3, and molecular dynamic simulations, we revealed that SsTx-4 acted on the Kir channels as a pore blocker, with K13 on toxin serving as the functional pore-blocking residue and other residues on it contributing to stabilize the toxin-channel complex by binding to multiple residues on the wall of the channels' outer vestibule, involving E104 on Kir1.1; D100, L115, and F133 on Kir4.1; and E108, S113, H115, and M137 on Kir6.2. Collectively, these findings advanced our understanding on the interaction between Kir channels and this prototype Kir antagonist, providing insights that could inspire the development of more potent and specific Kir subtype blockers in the future.
Collapse
Affiliation(s)
- Dongfang Tang
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China; The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China
| | - Jiahui Xu
- Center for Genetics and Developmental Systems Biology, Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhu Bao
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Fanping Xu
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jieqiong Qi
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zheni Tan
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Chuanli Li
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xiaofang Luo
- Hunan Engineering Technology Research Center for Comprehensive Development and Utilization of Biomass Resources, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Xia You
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China
| | - Mingqiang Rong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of life Sciences, Hunan Normal University, Changsha, China.
| |
Collapse
|
31
|
Delgado‐Bermúdez A, Yeste M, Bonet S, Pinart E. Physiological role of potassium channels in mammalian germ cell differentiation, maturation, and capacitation. Andrology 2025; 13:184-201. [PMID: 38436215 PMCID: PMC11815548 DOI: 10.1111/andr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Ion channels are essential for differentiation and maturation of germ cells, and even for fertilization in mammals. Different types of potassium channels have been identified, which are grouped into voltage-gated channels (Kv), ligand-gated channels (Kligand), inwardly rectifying channels (Kir), and tandem pore domain channels (K2P). MATERIAL-METHODS The present review includes recent findings on the role of potassium channels in sperm physiology of mammals. RESULTS-DISCUSSION While most studies conducted thus far have been focused on the physiological role of voltage- (Kv1, Kv3, and Kv7) and calcium-gated channels (SLO1 and SLO3) during sperm capacitation, especially in humans and rodents, little data about the types of potassium channels present in the plasma membrane of differentiating germ cells exist. In spite of this, recent evidence suggests that the content and regulation mechanisms of these channels vary throughout spermatogenesis. Potassium channels are also essential for the regulation of sperm cell volume during epididymal maturation and for preventing premature membrane hyperpolarization. It is important to highlight that the nature, biochemical properties, localization, and regulation mechanisms of potassium channels are species-specific. In effect, while SLO3 is the main potassium channel involved in the K+ current during sperm capacitation in rodents, different potassium channels are implicated in the K+ outflow and, thus, plasma membrane hyperpolarization during sperm capacitation in other mammalian species, such as humans and pigs. CONCLUSIONS Potassium conductance is essential for male fertility, not only during sperm capacitation but throughout the spermiogenesis and epididymal maturation.
Collapse
Affiliation(s)
- Ariadna Delgado‐Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm)Institute of Food and Agricultural TechnologyUniversity of GironaGironaSpain
- Department of BiologyFaculty of SciencesUnit of Cell BiologyUniversity of GironaGironaSpain
| |
Collapse
|
32
|
Li E, Boujeddaine N, Houtman MJC, Maas RGC, Sluijter JPG, Ecker GF, Stary-Weinzinger A, van Ham WB, van der Heyden MAG. Development of new K ir2.1 channel openers from propafenone analogues. Br J Pharmacol 2025; 182:633-650. [PMID: 39419581 DOI: 10.1111/bph.17377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSES Reduced inward rectifier potassium channel (Kir2.1) functioning is associated with heart failure and may cause Andersen-Tawil Syndrome, among others characterized by ventricular arrhythmias. Most heart failure or Andersen-Tawil Syndrome patients are treated with β-adrenoceptor antagonists (β-blockers) or sodium channel blockers; however, these do not specifically address the inward rectifier current (IK1) nor aim to improve resting membrane potential stability. Consequently, additional pharmacotherapy for heart failure and Andersen-Tawil Syndrome treatment would be highly desirable. Acute propafenone treatment at low concentrations enhances IK1 current, but it also exerts many off-target effects. Therefore, discovering and exploring new IK1-channel openers is necessary. EXPERIMENTAL APPROACH Effects of propafenone and 10 additional propafenone analogues were analysed. Currents were measured by single-cell patch-clamp electrophysiology. Kir2.1 protein expression levels were determined by western blot analysis and action potential characteristics were further validated in human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMCs). Molecular docking was performed to obtain detailed information on drug-channel interactions. KEY RESULTS Analogues GPV0019, GPV0057 and GPV0576 strongly increased the outward component of IK1 while not affecting the Kir2.1 channel expression levels. GPV0057 did not block IKr at concentrations below 0.5 μmol L-1 nor NaV1.5 current below 1 μmol L-1. Moreover, hiPSC-CMC action potential duration was also not affected by GPV0057 at 0.5 and 1 μmol L-1. Structure analysis indicates a mechanism by which GPV0057 might enhance Kir2.1 channel activation. CONCLUSION AND IMPLICATIONS GPV0057 has a strong efficiency towards increasing IK1, which makes it a good candidate to address IK1 deficiency-associated diseases.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Najla Boujeddaine
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Renee G C Maas
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
- Circulatory Health Research Center, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | | | - Willem B van Ham
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Chen HQ, Wang N, Zeng Y, Shi Y, Zhang Z, Li JY, Li YW, Deng SW, Zhou ZY, Liu WB. KCNJ15 inhibits chemical-induced lung carcinogenesis and progression through GNB1 mediated Hippo pathway. Toxicology 2025; 511:154034. [PMID: 39725264 DOI: 10.1016/j.tox.2024.154034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are important environmental carcinogens that can cause lung cancer. However, the underlying epigenetic mechanism during PAHs-induced lung carcinogenesis has remained largely unknown. Previously, we screened some novel epigenetic regulatory genes during 3-methylcholanthrene (3-MCA)-induced lung carcinogenesis, including the potassium inwardly rectifying channel subfamily J member 15 (KCNJ15) gene. This study aimed to investigate the expression regulation, function, and mechanism of KCNJ15 through database analysis, malignant transformed cell model, and xenograft tumor models. We found that KCNJ15 was remarkably under-expressed during lung carcinogenesis and progression. High levels of DNA methylation led to low KCNJ15 expression in 3-MCA-induced malignantly transformed HBE cells. High expression of KCNJ15 was positively correlated with good survival prognosis in lung cancer patients. KCNJ15 overexpression significantly inhibited the growth, invasion, and migration of lung cancer cells both in vitro and in vivo. Knockdown of KCNJ15 resulted in an opposite phenotype. KCNJ15 regulated the Hippo pathway by activating YAP phosphorylation and inhibiting YAP expression. There was a significant protein-protein interaction between KCNJ15 and the G protein subunit beta 1 (GNB1). GNB1 overexpression effectively reduced the effect of KCNJ15 on Hippo pathway. Our data demonstrated that KCNJ15, as a novel epigenetic silencing tumor suppressor, regulates cell growth, invasion, and migration by interaction with GNB1 protein mediating the Hippo-YAP signaling pathway during chemical-induced lung carcinogenesis and progression. It provides novel insights into epigenetic regulation mechanism during carcinogenesis induced by environmental pollutants.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Yong Zeng
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Shi
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jiang-Ying Li
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Ya-Wen Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang-Wu Deng
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Zi-Yuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wen-Bin Liu
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China; Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
34
|
Bysack A, Jash C, Raghuraman H. Structural Dynamics of the Slide Helix of Inactive/Closed Conformation of KirBac1.1 in Micelles and Membranes: A Fluorescence Approach. J Membr Biol 2025; 258:97-112. [PMID: 39789244 PMCID: PMC11779782 DOI: 10.1007/s00232-024-00335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state. Similar to micelles, KirBac1.1 is reported to be in the inactive/closed conformation in POPC membranes. The slide helix of KirBac1.1 is an important structural motif that regulates channel gating. Despite the importance of slide helix in lipid-dependent gating, conflicting models have emerged for the location of slide helix and its structural dynamics in membrane mimetics is poorly understood. Here, we monitored the structural dynamics of the slide helix (residues 46-57) of KirBac1.1 in both DM micelles and POPC membranes utilizing various site-directed fluorescence approaches. We show, using ACMA-based liposome-flux assay, the cysteine mutants of the slide helix are not functional, ensuring the inactive/closed conformation in POPC membranes similar to wild-type channel. Time-resolved fluorescence and water accessibility measurements of NBD-labeled single-cysteine mutants of slide-helix residues suggest that the location of the slide helix at the interfacial region might be shallower in membranes compared to micelles. Interestingly, the slide helix of KirBac1.1 is more dynamic in the physiologically relevant membrane environment, which is accompanied by a differential hydration dynamics throughout the slide helix. Further, REES and lifetime distribution analyses suggest significant changes in conformational heterogeneity of the slide helix in membrane mimetics. Overall, our results give an insight into how membrane mimetics affect the organization and dynamics of slide helix of the closed state of KirBac1.1, and highlight the importance of lipid-protein interactions in membranes.
Collapse
Affiliation(s)
- Arpan Bysack
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Chandrima Jash
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - H Raghuraman
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.
- Homi Bhabha National Institute, Training School Complex, Mumbai, India.
| |
Collapse
|
35
|
Zha T, Fang X, Wan J, Chen X, Lin J, Chen Q. Preclinical Insights into the Role of Kir4.1 in Chronic Pain and Depression: Mechanisms and Therapeutic Potential. Biomolecules 2025; 15:165. [PMID: 40001468 PMCID: PMC11852603 DOI: 10.3390/biom15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic pain and mental health disorders, such as depression and anxiety, frequently co-occur and share underlying mechanisms involving neuronal excitability and synaptic transmission. The inwardly rectifying potassium channel 4.1 (Kir4.1), predominantly expressed in glial cells, is crucial for maintaining extracellular potassium and glutamate homeostasis. Dysregulation of Kir4.1 leads to altered neuronal activity, contributing to both chronic pain and mental health disorders. In chronic pain, downregulation of Kir4.1 impairs potassium buffering and glutamate clearance, increasing neuronal excitability and enhancing pain signaling through peripheral and central sensitization. In mental health disorders, impaired Kir4.1 function disrupts neurotrophic factor secretion and neuroinflammatory pathways, leading to mood disturbances. This review primarily summarizes findings from preclinical studies to examine the relationship between Kir4.1 and the pathogenesis of chronic pain and mental health disorders, discussing its molecular structure, expression patterns, and functional roles. Furthermore, we explore therapeutic strategies targeting Kir4.1, including pharmacological modulators and gene therapy approaches, emphasizing its potential as a novel therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Jiu Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China; (T.Z.); (X.F.); (J.W.); (X.C.)
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310006, China; (T.Z.); (X.F.); (J.W.); (X.C.)
| |
Collapse
|
36
|
Tikhonov DB, Korkosh VS, Zhorov BS. 3D-aligned tetrameric ion channels with universal residue labels for comparative structural analysis. Biophys J 2025; 124:458-470. [PMID: 39696821 PMCID: PMC11788486 DOI: 10.1016/j.bpj.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024] Open
Abstract
Despite their large functional diversity and poor sequence similarity, tetrameric and pseudotetrameric potassium, sodium, calcium, and cyclic-nucleotide gated channels, as well as two-pore channels, transient receptor potential channels, and ionotropic glutamate receptor channels, share a common folding pattern of the transmembrane (TM) helices in the pore domain. In each subunit or repeat, two TM helices connected by a membrane-reentering P-loop contribute a quarter to the pore domain. The P-loop includes a membrane-descending helix, P1, which is structurally the most conserved element of these channels, and residues that contribute to the selectivity-filter region at the constriction of the ion-permeating pathway. In 24-TM channels, the pore domain is surrounded by four voltage-sensing domains, each with conserved folding of four TM helices. Hundreds of atomic-scale structures of these channels, referred to as "P-loop channels," have been obtained through x-ray crystallography or cryoelectron microscopy. The number of experimental structures of P-loop channels deposited in the PDB is rapidly increasing. AlphaFold3, RoseTTAFold, and other computational tools can be used to generate three-dimensional (3D) models of P-loop channels that lack experimental structures. While comparative structural analysis of P-loop channels is desirable, it is hindered by variations in residue numbers and 3D orientations of the channels. To address this problem, we have developed a universal residue-labeling scheme for TM helices and P-loops. We further created a database of P-loop ion channels, PLIC: www.plic3da.com, which currently includes over 400 3D-aligned structures with relabeled residues. We use this database to compare multiple 3D structures of channels from different subfamilies. The comparison, which for the first time employs statistical methods, highlights conserved and variable elements in the channels' folding, reveals irregularities, and identifies outliers that warrant further analysis.
Collapse
Affiliation(s)
- Denis B Tikhonov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia.
| | - Vyacheslav S Korkosh
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia
| | - Boris S Zhorov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry Russian Academy of Sciences, St. Petersburg, Russia; Department of Biochemistry and Biomedical Sciences, Master University, Hamilton, Ontario, Canada.
| |
Collapse
|
37
|
Das S, Samaddar S. Recent Advances in the Clinical Translation of Small-Cell Lung Cancer Therapeutics. Cancers (Basel) 2025; 17:255. [PMID: 39858036 PMCID: PMC11764476 DOI: 10.3390/cancers17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant form of cancer, representing 15% of lung cancer cases globally. SCLC is classified within the range of neuroendocrine pulmonary neoplasms, exhibiting shared morphologic, ultrastructural, immunohistochemical, and molecular genomic features. It is marked by rapid proliferation, a propensity for early metastasis, and an overall poor prognosis. The current conventional therapies involve platinum-etoposide-based chemotherapy in combination with immunotherapy. Nonetheless, the rapid emergence of therapeutic resistance continues to pose substantial difficulties. The genomic profiling of SCLC uncovers significant chromosomal rearrangements along with a considerable mutation burden, typically involving the functional inactivation of the tumor suppressor genes TP53 and RB1. Identifying biomarkers and evaluating new treatments is crucial for enhancing outcomes in patients with SCLC. Targeted therapies such as topoisomerase inhibitors, DLL3 inhibitors, HDAC inhibitors, PARP inhibitors, Chk1 inhibitors, etc., have introduced new therapeutic options for future applications. In this current review, we will attempt to outline the key molecular pathways that play a role in the development and progression of SCLC, together with a comprehensive overview of the most recent advancements in the development of novel targeted treatment strategies, as well as some ongoing clinical trials against SCLC, with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
38
|
Liu X, Gao Y, Liu T, Guo H, Qiao J, Su J. Involvement of Inwardly Rectifying Potassium (Kir) Channels in the Toxicity of Flonicamid to Drosophila melanogaster. INSECTS 2025; 16:69. [PMID: 39859650 PMCID: PMC11766345 DOI: 10.3390/insects16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025]
Abstract
Inwardly rectifying potassium (Kir) channels regulate essential physiological processes in insects and have been identified as potential targets for developing new insecticides. Flonicamid has been reported to inhibit Kir channels, disrupting the functions of salivary glands and renal tubules. However, the precise molecular target of flonicamid remains debated. It is unclear whether flonicamid directly targets Kir channels or acts on other sites involved in the activation of transient receptor potential vanilloid (TRPV) channels. In this study, we observed that flonicamid is more toxic to flies than its metabolite, flumetnicam. This higher toxicity is difficult to reconcile if nicotinamidase is the active target, as flonicamid does not inhibit nicotinamidase. An alternative explanation is that flonicamid and flumetnicam may have distinct targets or act on multiple targets. Furthermore, reducing the expression of three individual Kir genes in the salivary glands of D. melanogaster significantly decreased the flies' susceptibility to both flonicamid and flumetnicam. The double knockdown of Kir1 with Kir3 or Kir2 with Kir3 further reduced the flies' sensitivity to both compounds. These findings confirm the involvement of Kir channels in mediating the toxic effects of flonicamid on flies. Overall, this study offers new insights into the physiological roles of insect Kir channels and flonicamid toxicity.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianya Su
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; (X.L.); (Y.G.); (T.L.); (H.G.); (J.Q.)
| |
Collapse
|
39
|
Hong H, Trussell LO. Noise-induced hearing loss enhances Ca 2+-dependent spontaneous bursting activity in lateral cochlear efferents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631771. [PMID: 39829915 PMCID: PMC11741279 DOI: 10.1101/2025.01.07.631771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Exposure to loud and/or prolonged noise damages cochlear hair cells and triggers downstream changes in synaptic and electrical activity in multiple brain regions, resulting in hearing loss and altered speech comprehension. It remains unclear however whether or not noise exposure also compromises the cochlear efferent system, a feedback pathway in the brain that fine-tunes hearing sensitivity in the cochlea. We examined the effects of noise-induced hearing loss on the spontaneous action potential (AP) firing pattern in mouse lateral olivocochlear (LOC) neurons. This spontaneous firing exhibits a characteristic burst pattern dependent on Ca2+ channels, and we therefore also examined the effects of noise-induced hearing loss on the function of these and other ion channels. The burst pattern was sustained by an interaction between inactivating Ca2+ currents contributed largely by L-type channels, and steady outward currents mediated by Ba2+-sensitive inwardly-rectifying and two-pore domain K+ channels. One week following exposure to loud broadband noise, hearing thresholds were significantly elevated, and the duration of AP bursts was increased, likely as a result of an enhanced Ca2+ current. Additional effects of noise-induced hearing loss included alteration of Ca2+-dependent inactivation of Ca2+ currents and a small elevation of outward K+ currents. We propose that noise-induced hearing loss enhances efferent activity and may thus amplify the release of neurotransmitters and neuromodulators (i.e., neuropeptides), potentially altering sensory coding within the damaged cochlea.
Collapse
Affiliation(s)
- Hui Hong
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
- Bellucci Translational Hearing Center, Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, 68178
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, Oregon, 97239
| |
Collapse
|
40
|
Coll-Díez C, Giudici AM, Potenza A, González-Ros JM, Poveda JA. pH-induced conformational changes in the selectivity filter of a potassium channel lead to alterations in its selectivity and permeation properties. Front Pharmacol 2025; 15:1499383. [PMID: 39834826 PMCID: PMC11743430 DOI: 10.3389/fphar.2024.1499383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The Selectivity Filter (SF) in tetrameric K+ channels, has a highly conserved sequence, TVGYG, at the extracellular entry to the channel pore region. There, the backbone carbonyl oxygens from the SF residues, create a stack of K+ binding sites where dehydrated K+ binds to induce a conductive conformation of the SF. This increases intersubunit interactions and confers a higher stability to the channel against thermal denaturation. Indeed, the fit of dehydrated K+ to its binding sites is fundamental to define K+ selectivity, an important feature of these channels. Nonetheless, the SF conformation can be modified by different effector molecules. Such conformational plasticity opposes selectivity, as the SF departs from the "induced-fit" conformation required for K+ recognition. Here we studied the KirBac1.1 channel, a prokaryotic analog of inwardly rectifying K+ channels, confronted to permeant (K+) and non-permeant (Na+) cations. This channel is pH-dependent and transits from the open state at neutral pH to the closed state at acidic pH. KirBac1.1 has the orthodox TVGYG sequence at the SF and thus, its behavior should resemble that of K+-selective channels. However, we found that when at neutral pH, KirBac1.1 is only partly K+ selective and permeates this ion causing the characteristic "induced-fit" phenomenon in the SF conformation. However, it also conducts Na+ with a mechanism of ion passage reminiscent of Na+ channels, i.e., through a wide-open pore, without increasing intersubunit interactions within the tetrameric channel. Conversely, when at acidic pH, the channel completely loses selectivity and conducts both K+ and Na+ similarly, increasing intersubunit interactions through an apparent "induced-fit"-like mechanism for the two ions. These observations underline that KirBac1.1 SF is able to adopt different conformations leading to changes in selectivity and in the mechanism of ion passage.
Collapse
Affiliation(s)
| | | | | | - José Manuel González-Ros
- IDiBE—Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| | - José Antonio Poveda
- IDiBE—Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
41
|
Shukla S, Comerci CJ, Süel GM, Jahed Z. Bioelectronic tools for understanding the universal language of electrical signaling across species and kingdoms. Biosens Bioelectron 2025; 267:116843. [PMID: 39426280 DOI: 10.1016/j.bios.2024.116843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Modern bioelectronic tools are rapidly advancing to detect electric potentials within networks of electrogenic cells, such as cardiomyocytes, neurons, and pancreatic beta cells. However, it is becoming evident that electrical signaling is not limited to the animal kingdom but may be a universal form of cell-cell communication. In this review, we discuss the existing evidence of, and tools used to collect, subcellular, single-cell and network-level electrical signals across kingdoms, including bacteria, plants, fungi, and even viruses. We discuss how cellular networks employ altered electrical "circuitry" and intercellular mechanisms across kingdoms, and we assess the functionality and scalability of cutting-edge nanobioelectronics to collect electrical signatures regardless of cell size, shape, or function. Researchers today aim to design micro- and nano-topographic structures which harness mechanosensitive membrane and cytoskeletal pathways that enable tight electrical coupling to subcellular compartments within high-throughput recording systems. Finally, we identify gaps in current knowledge of inter-species and inter-kingdom electrical signaling and propose critical milestones needed to create a central theory of electrical signaling across kingdoms. Our discussion demonstrates the need for high resolution, high throughput tools which can probe multiple, diverse cell types at once in their native or experimentally-modeled environments. These advancements will not only reveal the underlying biophysical laws governing the universal language of electrical communication, but can enable bidirectional electrical communication and manipulation of biological systems.
Collapse
Affiliation(s)
- Shivani Shukla
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States
| | - Colin J Comerci
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Gürol M Süel
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, United States
| | - Zeinab Jahed
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, United States; Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
42
|
Giunta R, Cheli G, Rispoli G, Russo G, Masetto S. Pimozide Inhibits Type II but Not Type I Hair Cells in Chicken Embryo and Adult Mouse Vestibular Organs. Biomedicines 2024; 12:2879. [PMID: 39767785 PMCID: PMC11673355 DOI: 10.3390/biomedicines12122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Pimozide is a conventional antipsychotic drug of the diphenylbutylpiperidine class, widely used for treating schizophrenia and delusional disorders and for managing motor and phonic tics in Tourette's syndrome. Pimozide is known to block dopaminergic D2 receptors and various types of voltage-gated ion channels. Among its side effects, dizziness and imbalance are the most frequently observed, which may imply an effect of the drug on the vestibular sensory receptors, the hair cells. Amniotes possess two classes of vestibular hair cells, named type I and type II hair cells, which differ in terms of signal processing and transmission. We previously reported that Pimozide [3 μM] significantly increased a delayed outward rectifying K+ current (IK,V). METHODS AND RESULTS In the present study, using the whole-cell patch-clamp technique we additionally show that Pimozide decreases the inward rectifying K+ current (IK,1) and the mixed Na+/K+ current (Ih) of chicken embryo type II hair cells, whereas it does not affect type I hair cells' ionic currents. Since ion channels' expression can vary depending on age and animal species, in the present study, we also tested Pimozide in adult mouse vestibular hair cells. We found that, like in the chicken embryo, Pimozide significantly increases IK,V and decreases IK,1 and Ih in type II hair cells. However, in the adult mouse, Pimozide also slightly increased the outward rectifying K+ current in type I hair cells. CONCLUSIONS While providing a possible explanation for the vestibular side effects of Pimozide in humans, its inhibitory action on mammalian hair cells might be of interest for the local treatment of vestibular disorders characterized by altered vestibular input, like Ménière's disease.
Collapse
Affiliation(s)
- Roberta Giunta
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (R.G.); (G.C.); (G.R.)
| | - Giulia Cheli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (R.G.); (G.C.); (G.R.)
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Giancarlo Russo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (R.G.); (G.C.); (G.R.)
| | - Sergio Masetto
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (R.G.); (G.C.); (G.R.)
| |
Collapse
|
43
|
Nandre RM, Newman AH, Terse PS. In vitro safety evaluation of dopamine D3R antagonist, R-VK4-116, as a potential medication for the treatment of opioid use disorder. PLoS One 2024; 19:e0315569. [PMID: 39680602 DOI: 10.1371/journal.pone.0315569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
R-VK4-116 is currently being developed as a medication to treat opioid use disorder (OUD). To characterize in vitro safety properties of R-VK4-116, metabolic stability in hepatocytes or liver microsomes, metabolite identification, metabolism/transporter-mediated drug interactions, lysosomal perturbation, mitochondrial toxicity, off-target enzyme effects, cellular and nuclear receptor functional assays, electrophysiological assays, CiPA, KINOMEscanTM, plasma protein binding, phospholipidosis and steatosis assays were performed. Overall, R-VK4-116 was metabolically stable in hepatocytes and microsomes. Four major metabolites were detected: two mono-oxidation products, one di-oxidation product, and one demethylated plus di-oxidation product. CYP2D6 and CYP3A4 were major contributors in R-VK4-116 metabolism. Further, R-VK4-116 did not induce/inhibit CYP enzymes. However, R-VK4-116 inhibited BCRP/P-gp, and showed antagonist effects on α1A(h), H1(h) and agonist effect on hGABAA∞1β2γ2 at 10 μM. R-VK4-116 inhibited hERG and Kir2.1 at a high concentration of 100 μM. KINOMEscanTM provided 5 hits (CHEK2, HPK1, MARK3, SRPK2 and TNK1) with Kds of >10 μM. Further, R-VK4-116 was bound to human, rat and dog plasma proteins (~83-93%). R-VK4-116 did not induce lysosome perturbation, mitochondrial toxicity, phospholipidosis, or steatosis at ≤10 μM. These results demonstrated that R-VK4-116 possesses favorable in vitro safety properties and supports further development as a potential medication for OUD.
Collapse
Affiliation(s)
- Rahul M Nandre
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institute of Health, Baltimore, Maryland, United States of America
| | - Pramod S Terse
- Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America
| |
Collapse
|
44
|
Pham DL, Cox K, Ko ML, Ko GYP. Peptide Lv and Angiogenesis: A Newly Discovered Angiogenic Peptide. Biomedicines 2024; 12:2851. [PMID: 39767758 PMCID: PMC11672992 DOI: 10.3390/biomedicines12122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Peptide Lv is a small endogenous secretory peptide with ~40 amino acids and is highly conserved among certain several species. While it was first discovered that it augments L-type voltage-gated calcium channels (LTCCs) in neurons, thus it was named peptide "Lv", it can bind to vascular endothelial growth factor receptor 2 (VEGFR2) and has VEGF-like activities, including eliciting vasodilation and promoting angiogenesis. Not only does peptide Lv augment LTCCs in neurons and cardiomyocytes, but it also promotes the expression of intermediate-conductance KCa channels (KCa3.1) in vascular endothelial cells. Peptide Lv is upregulated in the retinas of patients with early proliferative diabetic retinopathy, a disease involving pathological angiogenesis. This review will provide an overview of peptide Lv, its known bioactivities in vitro and in vivo, and its clinical relevance, with a focus on its role in angiogenesis. As there is more about peptide Lv to be explored, this article serves as a foundation for possible future developments of peptide Lv-related therapeutics to treat or prevent diseases.
Collapse
Affiliation(s)
- Dylan L. Pham
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Medical Physiology, School of Medicine, Texas A&M University, Bryan, TX 77807, USA
| | - Kelsey Cox
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Department of Biology, Division of Natural and Physical Sciences, Blinn College, Bryan, TX 77802, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
45
|
Wilders R. Alleviating the Effects of Short QT Syndrome Type 3 by Allele-Specific Suppression of the KCNJ2 Mutant Allele. Int J Mol Sci 2024; 25:13351. [PMID: 39769116 PMCID: PMC11676537 DOI: 10.3390/ijms252413351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Short QT syndrome type 3 (SQTS3 or SQT3), which is associated with life-threatening cardiac arrhythmias, is caused by heterozygous gain-of-function mutations in the KCNJ2 gene. This gene encodes the pore-forming α-subunit of the ion channel that carries the cardiac inward rectifier potassium current (IK1). These gain-of-function mutations either increase the amplitude of IK1 or attenuate its rectification. The aim of the present in silico study is to test to which extent allele-specific suppression of the KCNJ2 mutant allele can alleviate the effects of SQT3, as recently demonstrated in in vitro studies on specific heterozygous mutations associated with long QT syndrome type 1 and 2 and short QT syndrome type 1. To this end, simulations were carried out with the two most recent comprehensive models of a single human ventricular cardiomyocyte. These simulations showed that suppression of the mutant allele can, at least partially, counteract the effects of the mutation on IK1 and restore the action potential duration for each of the four SQT3 mutations that are known by now. We conclude that allele-specific suppression of the KCNJ2 mutant allele is a promising technique in the treatment of SQT3 that should be evaluated in in vitro and in vivo studies.
Collapse
Affiliation(s)
- Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
46
|
Cruz FM, Moreno-Manuel AI, Pérez PS, Ruiz-Robles JM, Socuellamos PG, Gutiérrez LK, Vera-Pedrosa ML, Gutierrez AT, Mondéjar Parreño G, Macías Á, Martínez-Carrascoso I, Bermúdez-Jiménez FJ, Arias Santiago S, Martínez de Benito F, Braza-Boils A, Valenzuela C, Morillo CA, Zorio E, Jiménez-Jaimez J, Jalife J. Kir2.1 mutations differentially increase the risk of flecainide proarrhythmia in Andersen Tawil Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.10.24318629. [PMID: 39711719 PMCID: PMC11661358 DOI: 10.1101/2024.12.10.24318629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background Flecainide and other class-Ic antiarrhythmic drugs (AADs) are widely used in Andersen-Tawil syndrome type 1 (ATS1) patients. However, class-Ic drugs might be proarrhythmic in some cases. We investigated the molecular mechanisms of class-I AADs proarrhythmia and whether they might increase the risk of death in ATS1 patients with structurally normal hearts. Methods and Results Of 53 ATS1 patients reviewed from the literature, 54% responded partially to flecainide, with ventricular arrhythmia (VA) reduction in only 23%. Of the latter patients, VA persisted in 20-50%. Flecainide was ineffective in 23%, and surprisingly, 13.5% suffered a non-fatal cardiac arrest. In five cardiac-specific ATS1 mouse models (Kir2.1Δ314-315, Kir2.1C122Y, Kir2.1G215D and Kir2.1R67W and Kir2.1S136F), flecainide or propafenone (40 mg/Kg i.p.) differentially prolonged the P wave, and the PR, QRS and QTc intervals compared to Kir2.1WT; Kir2.1S136F had milder effects. Flecainide increased VA inducibility in all mutant mice except Kir2.1S136F, which exhibited significant VA reduction. At baseline, Kir2.1G215D cardiomyocytes had the lowest inward rectifier K+ channel (IK1) reduction, followed by Kir2.1C122Y, Kir2.1R67W and Kir2.1S136F. Kir2.1C122Y cardiomyocytes had a significant decrease in sodium inward current (INa). Flecainide (10 μM) slightly increased IK1 density in Kir2.1WT and Kir2.1S136F, while it decreased both IK1 and INa in Kir2.1C122Y and Kir2.1R67W, despite normal trafficking of mutant channels. Optical mapping in ATS1 patient-specific iPSC-CM monolayers expressing Kir2.1C122Y, Kir2.1G215D and Kir2.1R67W showed an increase in rotor incidence at baseline and under flecainide, confirming the drugś proarrhythmic effect. Lastly, in-silico molecular docking predicts that the Kir2.1-Cys311 pharmacophore-binding site is altered in Kir2.1C122Y heterotetramers, reducing flecainide accessibility and leading to channel closure and arrhythmias. Conclusions Class-Ic AADs are only partially effective and might be proarrhythmic in some ATS1 patients. Kir2.1 mutations impacting the resting membrane potential and cellular excitability create a substrate for life-threatening arrhythmias, raising significant concern about using these drugs in some ATS1 patients.
Collapse
Affiliation(s)
- Francisco M. Cruz
- Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | | | | | | | | | | | | | | | | | - Álvaro Macías
- Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | | | - Francisco J Bermúdez-Jiménez
- Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
- Cardiology Service, Virgen de las Nieves University Hospital, Granada, Spain
- Institute of Biosanitary Research of Granada (IBS), Spain
| | | | - Fernando Martínez de Benito
- Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
- Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Aitana Braza-Boils
- Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - CA Morillo
- Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
- Department of Cardiac Sciences, Libin CVI, University of Calgary, Canada
| | - Esther Zorio
- Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Inherited Cardiac Disease Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
- Medicine Department, University of Valencia, Spain
| | - Juan Jiménez-Jaimez
- Cardiology Service, Virgen de las Nieves University Hospital, Granada, Spain
- Institute of Biosanitary Research of Granada (IBS), Spain
| | - José Jalife
- Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
- Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Yu Y, Liao P, Jiang R. Ion Channels in Odor Information Processing of Neural Circuits of the Vertebrate Olfactory Bulb. Int J Mol Sci 2024; 25:13259. [PMID: 39769024 PMCID: PMC11675640 DOI: 10.3390/ijms252413259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Olfactory disorders and their associated complications present a considerable challenge to an individual's quality of life and emotional wellbeing. The current range of treatments, including surgical procedures, pharmacological interventions, and behavioral training, frequently proves ineffective in restoring olfactory function. The olfactory bulb (OB) is essential for odor processing and plays a pivotal role in the development of these disorders. Despite the acknowledged significance of ion channels in sensory functions and related pathologies, their specific involvement in OB remains unexplored. This review presents an overview of the functions of various ion channel families in regulating neuronal excitability, synaptic transmission, and the complex processes of olfactory perception. The objective of this review was to elucidate the role of ion channels in olfactory function, providing new insights into the diagnosis and treatment of olfactory dysfunction.
Collapse
Affiliation(s)
- Yunqing Yu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Ren W, Ma X, Yu D, Wu X, La Y, Guo X, Chu M, Yan P, Lan X, Liang C. Polymorphisms of KCNJ6 Gene and Their Correlation with Immune Indicators in Yaks ( Bos grunniens). Biomolecules 2024; 14:1576. [PMID: 39766283 PMCID: PMC11673729 DOI: 10.3390/biom14121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Yaks are crucial to local herders' economy and agriculture. However, several diseases pose a significant threat to the health of yaks and cause substantial economic losses for herders. Therefore, studying the immune indicators and breeding of yaks has become an important task. This study aimed to investigate the association between single nucleotide polymorphisms (SNPs) of the G protein-activated inwardly rectifying K+ channel 2 (KCNJ6, GIRK2) gene and yak immune indicators, with the goal of identifying potential candidate molecular markers for yak breeding. In this study, we genotyped 192 healthy adult yaks and detected three SNPs (g163684421 C > T, g163688148 C > T, and g163690745 T > C) in the yak KCNJ6 gene. These SNPs were found to be distributed in the yak population. Subsequently, we performed a linkage disequilibrium analysis and found that the linkage disequilibrium levels of g163684421 C > T and g163690745 T > C were relatively high. Through a correlation analysis of yak KCNJ6 gene SNPs and immune indicators, we found that g163684421 C > T and g163690745 T > C were significantly associated with IgA, IgG, IgM, CRP, HP, IL-2, IL-4, IFN-γ, and TNF-α (p < 0.05), and the mutation of these SNPs leads to a decrease in yak immune indicators. On the other hand, g163688148 C > T was significantly associated with IgG, IL-4, IFN-γ, TNF-α, IgA, CRP, and HP (p < 0.05), and the mutation of this SNP leads to an increase in yak immune indicators. In conclusion, we identified SNPs associated with yak immune indicators and found that KCNJ6 gene polymorphisms can serve as candidate molecular markers for yak immune indicators. This study provides valuable genetic resources for marker-assisted selection in yak breeding. The results of this study are of great importance for the research on yak immune indicators and marker-assisted selection in yak breeding.
Collapse
Affiliation(s)
- Wenwen Ren
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (X.M.); (X.W.); (Y.L.); (X.G.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (X.M.); (X.W.); (Y.L.); (X.G.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Daoning Yu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (X.M.); (X.W.); (Y.L.); (X.G.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (X.M.); (X.W.); (Y.L.); (X.G.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (X.M.); (X.W.); (Y.L.); (X.G.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (X.M.); (X.W.); (Y.L.); (X.G.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (X.M.); (X.W.); (Y.L.); (X.G.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (X.M.); (X.W.); (Y.L.); (X.G.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (X.M.); (X.W.); (Y.L.); (X.G.); (M.C.); (P.Y.)
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
49
|
Nordentoft MS, Takahashi N, Heltberg MS, Jensen MH, Rasmussen RN, Papoutsi A. Local changes in potassium ions regulate input integration in active dendrites. PLoS Biol 2024; 22:e3002935. [PMID: 39630876 DOI: 10.1371/journal.pbio.3002935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 12/16/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
During neuronal activity, the extracellular concentration of potassium ions ([K+]o) increases substantially above resting levels, yet it remains unclear what role these [K+]o changes play in the dendritic integration of synaptic inputs. We here used mathematical formulations and biophysical modeling to explore the role of synaptic activity-dependent K+ changes in dendritic segments of a visual cortex pyramidal neuron, receiving inputs tuned to stimulus orientation. We found that the spatial arrangement of inputs dictates the magnitude of [K+]o changes in the dendrites: Dendritic segments receiving similarly tuned inputs can attain substantially higher [K+]o increases than segments receiving diversely tuned inputs. These [K+]o elevations in turn increase dendritic excitability, leading to more robust and prolonged dendritic spikes. Ultimately, these local effects amplify the gain of neuronal input-output transformations, causing higher orientation-tuned somatic firing rates without compromising orientation selectivity. Our results suggest that local, activity-dependent [K+]o changes in dendrites may act as a "volume knob" that determines the impact of synaptic inputs on feature-tuned neuronal firing.
Collapse
Affiliation(s)
| | - Naoya Takahashi
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience (IINS), UMR 5297, Bordeaux, France
| | | | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rune N Rasmussen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Athanasia Papoutsi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| |
Collapse
|
50
|
Lebedeva EA, Gonotkov MA, Furman AA, Velegzhaninov IO. Voltage-gated ion channel's gene expression in the myocardium of embryo and adult chickens. Dev Biol 2024; 516:130-137. [PMID: 39127438 DOI: 10.1016/j.ydbio.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
The functioning of the cardiovascular system is critical for embryo survival. Cardiac contractions depend on the sequential activation of different classes of voltage-gated ion channels. Understanding the fundamental features of these interactions is important for identifying the mechanisms of pathologies development in the myocardium. However, at present there is no consensus on which ion channels are involved in the formation of automaticity in the early embryonic stages. The aim of this study was to elucidate the expression of genes encoding various types of ion channels that are involved in the generation of electrical activity chicken heart at different stages of ontogenesis. We analyzed the expression of 14 genes from different families of ion channels. It was revealed that the expression profiles of ion channel genes change depending on the stages of ontogenesis. The HCN4, CACNA1D, SCN1A, SCN5A, KCNA1 genes have maximum expression at the tubular heart stage. In adult, a switch occurs to the higher expression of CACNA1C, KCNH6, RYR and SLC8A1 genes. This data correlated with the results obtained by the microelectrode method. It can be assumed that the automaticity of the tubular heart is mainly due to the mechanism of the «membrane-clock» (hyperpolarization-activated current (If), Ca2+-current L-type (ICaL), Na+-current (INa) and the slow component of the delayed rectifier K+-current (IKs)). Whereas in adult birds, the mechanism for generating electrical impulses is determined by both « membrane- clock» and «Ca2+-clock».
Collapse
Affiliation(s)
- E A Lebedeva
- Institute of Physiology Komi Science Center, Ural Branch Russian Academy of Sciences, GSP-2, 50 st. Pervomayskaya, 167982, Syktyvkar, Komi Republic, Russia.
| | - M A Gonotkov
- Institute of Physiology Komi Science Center, Ural Branch Russian Academy of Sciences, GSP-2, 50 st. Pervomayskaya, 167982, Syktyvkar, Komi Republic, Russia
| | - A A Furman
- Institute of Physiology Komi Science Center, Ural Branch Russian Academy of Sciences, GSP-2, 50 st. Pervomayskaya, 167982, Syktyvkar, Komi Republic, Russia
| | - I O Velegzhaninov
- Institute of Biology, Komi Science Center of Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982, Syktyvkar, Komi Republic, Russia
| |
Collapse
|