1
|
Gao Y, Cheng A, Li LX, Parent N, Kichenadasse G, Karapetis CS, Rowland A, Hopkins AM, Sorich MJ. Evaluation of hyperprogressive disease with atezolizumab plus bevacizumab for hepatocellular carcinoma: A secondary analysis of the IMbrave150 trial. Int J Cancer 2025; 157:336-344. [PMID: 40079683 PMCID: PMC12079626 DOI: 10.1002/ijc.35407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
The use of Immune checkpoint inhibitors (ICIs) as monotherapy for patients with hepatocellular carcinoma (HCC) has been associated with an increased risk of hyperprogressive disease (HPD), the occurrence of which carries a poor prognosis. However, it is unknown whether contemporary frontline treatment with the combination of atezolizumab and bevacizumab causes significant HPD. This study conducted a secondary analysis of patient-level data from the IMbrave150 randomized controlled trial of atezolizumab plus bevacizumab versus sorafenib for frontline treatment of HCC. Multiple established definitions of early progression and treatment failure applicable to clinical trials were evaluated, including Response Evaluation Criteria in Solid Tumours (RECIST) HPD, HPD based on percent change of sum of longest diameter (SLD HPD), treatment failure HPD (TF HPD), and fast progression (FP). The incidence of these measures was compared between arms. The risk factors for and prognosis of TF HPD were evaluated. The risk of RECIST HPD and TF HPD was significantly lower with atezolizumab plus bevacizumab treatment than with sorafenib treatment-odds ratio for RECIST HPD: 0.29 (95% CI 0.01 to 0.82), TF HPD: 0.30 (0.17, 0.54). TF HPD was similarly associated with poor prognosis, irrespective of treatment arm. High blood alpha-fetoprotein and neutrophil-to-lymphocyte ratio were both associated with an increased risk of TF HPD. For all definitions of early progression/treatment failure, the risk was either significantly lower with atezolizumab plus bevacizumab than with sorafenib, or there were no differences. Atezolizumab plus bevacizumab treatment is unlikely to cause significant HPD.
Collapse
Affiliation(s)
- Yuan Gao
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ann‐Lii Cheng
- National Taiwan University Cancer CenterTaipeiTaiwan
| | - Lee X. Li
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Natalie Parent
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ganessan Kichenadasse
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
- Department of Medical OncologyFlinders Medical CentreAdelaideAustralia
| | - Christos S. Karapetis
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
- Department of Medical OncologyFlinders Medical CentreAdelaideAustralia
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Ashley M. Hopkins
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Michael J. Sorich
- College of Medicine and Public HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
2
|
Cabibbo G, Rimassa L, Lamarca A, Masi G, Daniele B, Pinato DJ, Casadei-Gardini A. The present and the future of immunotherapy in hepatocellular carcinoma and biliary tract cancers. Cancer Treat Rev 2025; 137:102955. [PMID: 40373702 DOI: 10.1016/j.ctrv.2025.102955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Hepatobiliary malignancies encompass a spectrum of invasive carcinomas arising in the liver [hepatocellular carcinoma (HCC), bile ducts [intrahepatic cholangiocarcinoma (ICC), and extrahepatic cholangiocarcinoma (EHC)] and the gallbladder. These malignancies represent a growing global health burden, with rising incidence and mortality rates and their overall prognosis remains poor because many patients present with advanced unresectable disease at diagnosis. In recent years, significant advancements in understanding HCC immunogenicity have reshaped the therapeutic scenario of advanced HCC with the immunotherapy revolutionizing the current HCC treatment landscape and patients' prognosis. Moreover, the addition of immunotherapy to chemotherapy has recently established a new standard of care first-line treatment for patients with biliary tract cancers (BTCs) who had historically few therapeutic options. Currently, immunotherapy and immune checkpoint inhibitor (ICI)-based regimens stand as a valuable and practice-changing options in both HCC and BTC management. The mounting recent evidence supporting immunotherapy's survival benefit demands clinicians to stay updated with a rapidly evolving treatment landscape as well as gain knowledge about patient selection, response rate compared with other systemic treatments and immune-mediated adverse events (imAEs) management. A panel of international Experts, comprising hepatologists and oncologists, gathered to explore the challenges in effectively integrating immunotherapy in routine clinical practice. The aim of this review is to present the Experts' insights to inform treatment choice in HCC and BTC with a special emphasis on the role of currently available ICI-based therapies in shifting treatment paradigms and potentially reversing the natural course of these two deadly malignancies.
Collapse
Affiliation(s)
- Giuseppe Cabibbo
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties PROMISE, University of Palermo, Piazza delle Cliniche n 2, 90127 Palermo, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via A. Manzoni 56, 20089 Rozzano, Milan, Italy.
| | - Angela Lamarca
- Department of Oncology - OncoHealth Institute, Fundación Jiménez Díaz University Hospital, Madrid, Spain; Department of Medical Oncology, The Christie NHS Foundation, Manchester, England, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gianluca Masi
- Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy; Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Bruno Daniele
- Medical Oncology Unit, Ospedale del Mare, Napoli, Italy
| | - David James Pinato
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, IRCCS San Raffaele Scientific Institute Hospital, Vita-Salute San Raffaele University, Milan, Italy; Department of Medical Oncology, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
3
|
Zheng C, Liu S, Fazel Modares N, St Paul M, Mak TW. Cholinergic T cells revitalize the tumor immune microenvironment: TIME to ChAT. Nat Immunol 2025; 26:665-677. [PMID: 40307453 DOI: 10.1038/s41590-025-02144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/06/2025] [Indexed: 05/02/2025]
Abstract
Crosstalk between the nervous system and the immune system shapes the tumor microenvironment. Cholinergic T cells, a unique population of T cell antigen receptor-induced acetylcholine-producing T cells, have emerged as an integrative interface between these two fundamental body systems. Here we review the distinct characteristics and functions of cholinergic T cells in cancer settings. We first outline the expression of choline acetyltransferase and the cholinergic machinery in T cells. We then describe the dysfunctional state of choline acetyltransferase-expressing T cells in cancer and delve into their modulatory effects on T cells, cancer cells and the tumor microenvironment, including its populations of immune cells, its vasculature and its nerves. We also discuss the clinical implications of harnessing the potential of cholinergic T cells and future directions for increasing our understanding of their importance and possible exploitation.
Collapse
Affiliation(s)
- Chunxing Zheng
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China
| | - Shaofeng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Michael St Paul
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tak W Mak
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Huang P, Rodriguez-Matos FJ, Qi J, Trehan R, Myojin Y, Zhu XB, Greten TF, Ma C. Hepatic immune environment differences among common mouse strains in models of MASH and liver cancer. JHEP Rep 2025; 7:101380. [PMID: 40342632 PMCID: PMC12060451 DOI: 10.1016/j.jhepr.2025.101380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 05/11/2025] Open
Abstract
Background & Aims Inbred mouse strains are critical tools for studying immune regulation of metabolic dysfunction-associated steatohepatitis (MASH) and hepatocellular carcinoma (HCC). Here, we profiled mouse strain-associated hepatic immune differences, and performed mice-human cross-species immune comparisons. Methods Immune landscapes of C57BL/6, BALB/c, and FVB/N mice were compared under healthy, MASH, or HCC state using high-dimensional spectral flow cytometry (n = 4 per condition). MASH was induced by feeding methionine- and choline-deficient or Western diet + carbon tetrachloride. HCC was caused by hydrodynamic plasmid injection of MYC/sg-p53. Public mouse and human scRNA-seq datasets were used for validation and cross-species comparisons. Results In healthy mice, liver CD4+ T (24% vs. 14% vs. 34%, p <0.05) and B cells (36.5% vs. 35% vs.18%, p <0.05) varied the most among three strains. C57BL/6 mice showed TH1 dominance, whereas BALB/c and FVB/N mice had TH2 dominance (log[TH1:TH2] = 0.17, -0.31, -0.17). In MASH mice, expansion of liver myeloid cells and innate lymphocytes were commonly found, but changes of B cells (log(fold-change) = -0.38, -0.28, -0.58, p <0.05) and T subsets (e.g. CD4+ T log(fold-change) = -0.21, -0.07, -0.15, p <0.05) varied greatly among strains. MYC/sg-p53 HCC induced a consistent expansion of liver Tregs and CD8+ T cells (p <0.05), but differential shifts of liver immune landscape were seen among strains. The flow cytometry data was supported by public scRNA-seq datasets matching C57BL/6 background. Further cross-species comparison in MASH condition confirmed shared changes of adaptive lymphocytes between mice and humans. In two MASH models, BALB/c or C57BL/6 mice were more consistent to recapture loss of CD4+ T or B cells, respectively (p <0.05). Conclusions Substantial liver immune differences exist among common mouse strains. Mice can recapitulate certain human liver immune changes with strain variations. Impact and implications Our immune cell profiling study revealed that the liver immune environment can be quite different among common mouse strains both under healthy and pathologic states, such as steatohepatitis or neoplastic processes. Our results serve as a data resource for studies investigating liver immunology and provide valuable insights for the design of studies on various immune cells in the livers of mice.
Collapse
Affiliation(s)
- Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco J. Rodriguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Qi
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuta Myojin
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao Bin Zhu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Anders MM, Mattos AZ, Debes JD, Beltran O, Coste P, Marín JI, Chagas AL, Menéndez J, Estupiñan EC, Ferrer JD, Mattos AA, Piñero F. Latin American expert opinion letter on the feasibility of systemic therapies in combination with locoregional therapies for hepatocellular carcinoma. Ann Hepatol 2025; 30:101905. [PMID: 40122521 DOI: 10.1016/j.aohep.2025.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 03/25/2025]
Abstract
Recent advances in the systemic treatment of advanced hepatocellular carcinoma (HCC) with immunotherapy have once again reignited discussion over the role of combined therapy in earlier stages. This year, different international meetings have presented recent results from clinical trials on adjuvant therapy alone (IMBrave-050) and combined with transarterial chemoembolization (EMERALD-1 and LEAP-12). Increased enthusiasm for the use of adjuvant and neoadjuvant therapy for liver transplantation, surgery, and local-regional treatment of HCC has been shown. However, the initial results from these trials should be interpreted cautiously as we wait for final analyses and effects on overall survival. In this position paper from the special interest group from the Latin American Association for the Study of Liver Diseases (ALEH), we underline the caveats of the applicability of these potential treatments in our region, explore points of agreement, and highlight areas of uncertainty. Moreover, we underscore the role of hepatologists in the clinical decision-making process and management of these patients.
Collapse
Affiliation(s)
| | - Angelo Z Mattos
- Graduate Program in Medicine: Hepatology. Federal University of Health Sciences of Porto Alegre, Brazil
| | - José D Debes
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Pablo Coste
- Programa Nacional de Trasplante Hepático, Hospital R.A. Calderón Guardia, Costa Rica
| | | | - Aline Lopes Chagas
- Division of Clinical Gastroenterology and Hepatology, Hospital das Clínicas, Department of Gastroenterology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Josemaría Menéndez
- Programa Nacional de Trasplante Hepático, Hospital Militar, Montevideo, Uruguay
| | - Enrique Carrera Estupiñan
- Hospital Eugenio Espejo, Departamento de Gastroenterología. Universidad San Francisco de Quito, Ecuador
| | | | - Angelo A Mattos
- Graduate Program in Medicine: Hepatology. Federal University of Health Sciences of Porto Alegre, Brazil
| | - Federico Piñero
- Hospital Universitario Austral, Austral University, School of Medicine, Buenos Aires, Argentina
| |
Collapse
|
6
|
Myojin Y, Babaei S, Trehan R, Hoffman C, Kedei N, Ruf B, Benmebarek MR, Bauer KC, Huang P, Ma C, Monge C, Xie C, Hrones D, Duffy AG, Armstrong P, Kocheise L, Desmond F, Buchalter J, Galligan M, Cantwell C, Ryan R, McCann J, Bourke M, Mac Nicholas R, McDermott R, Awosika J, Cam M, Krebs R, Budhu A, Revsine M, Figg WD, Kleiner DE, Redd B, Wood BJ, Wang XW, Korangy F, Claassen M, Greten TF. Multiomics analysis of immune correlatives in hepatocellular carcinoma patients treated with tremelimumab plus durvalumab. Gut 2025:gutjnl-2024-334026. [PMID: 39965889 DOI: 10.1136/gutjnl-2024-334026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality. The combination of tremelimumab and durvalumab is now a standard treatment option for advanced HCC. OBJECTIVE To study immune responses in HCC patients treated with tremelimumab and durvalumab. DESIGN We treated 28 HCC patients with durvalumab, tremelimumab and locoregional therapies. We performed a high-dimensional multiomics analysis including whole exome sequencing, single-cell RNA seq, CO-Detection by indEXing, flow cytometry and multiplex cytokine/chemokine analysis of patients' blood and tumour samples and integrated this data to elucidate immune correlatives and response mechanisms. Mice with syngeneic HCC were treated with anti-PD-L1 plus anti-CTLA4 for hepatic lymphocytes, tumour-infiltrating lymphocytes and peripheral blood mononuclear cell analysis. RESULTS The median overall survival was 19.2 months. Tumour tissue analysis revealed enhanced interferon responses, with stronger effects in responders. Gene set variation analysis indicated enhanced antigen presentation in responders. Spatial analysis revealed that non-responder tumours had higher numbers of Tregs located in neighbourhoods enriched with immune cells and expressed higher levels of ICOS and PD-1. Conversely, non-responder PD1+CD8+T in these Treg-enriched neighbourhoods expressed lower ICOS. Cell-communication analysis demonstrated that Treg-CD8+T interaction was enhanced in non-responder tissue. Peripheral blood analysis showed increased classical monocytes in responders and Tregs in non-responders. Treg-CD8+T interaction was confirmed in preclinical models. Finally, single-patient computational analysis from the all-across analysis was performed on 860 features, which led to the identification of multiomics feature sets including Treg features. CONCLUSION Our study provides a blueprint for in-depth analysis of immune correlates in immunotherapy studies and demonstrates the importance of Treg distribution in HCC. TRIAL REGISTRATION NUMBERS NCT02821754 and the EudraCT identifier: 2019-002767-98.
Collapse
Affiliation(s)
- Yuta Myojin
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sepideh Babaei
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Rajiv Trehan
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christoph Hoffman
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Noemi Kedei
- Collaborative Protein Technology Resources, Office of Science and Technology Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Mohamed-Reda Benmebarek
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kylynda C Bauer
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick Huang
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chi Ma
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Cecilia Monge
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Changqing Xie
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Donna Hrones
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Austin G Duffy
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Paul Armstrong
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Lorenz Kocheise
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Fiona Desmond
- Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - Marie Galligan
- Clinical Research Centre, University College Dublin, Dublin, Ireland
| | - Colin Cantwell
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ronan Ryan
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Jeff McCann
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Michele Bourke
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ross Mac Nicholas
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ray McDermott
- St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Joy Awosika
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maggie Cam
- Center for Collaborative Bioinformatics, National Institutes of Health, Bethesda, Maryland, USA
| | - Rosanna Krebs
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Anuradha Budhu
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahler Revsine
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - William D Figg
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David E Kleiner
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bernadette Redd
- Radiology and Imaging Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Bradford J Wood
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Radiology and Imaging Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Center for Interventional Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Manfred Claassen
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tubingen, Germany
- Department of Internal Medicine I (Gastroenterology, Gastrointestinal Oncology, Hepatology, Infectious Diseases and Geriatrics), University Hospital Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital Tübingen, Tübingen, Germany
| | - Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Liu X, Lei X, Huang S, Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2025; 28:185-201. [PMID: 38031784 DOI: 10.2174/0113862073255266231025111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.
Collapse
Affiliation(s)
- Xiaoyi Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
8
|
Bauer KC, Ghabra S, Ma C, Chedester L, Greten TF. Liver Cancer Neuroscience: Regulating Liver Tumors via Selective Hepatic Vagotomy. Methods Protoc 2024; 7:99. [PMID: 39728619 DOI: 10.3390/mps7060099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 12/28/2024] Open
Abstract
Both the prevalence and mortality of liver cancers continue to rise. Early surgical interventions, including liver transplantation or resection, remain the only curative treatment. Nerves in the periphery influence tumor growth within visceral organs. Emerging cancer neuroscience efforts linked parasympathetic vagus nerves with tumor pathology, underscoring the value of vagal nerve denervation methods within cancer mouse models. Here, we describe a selective hepatic vagotomy that largely maintains non-liver parasympathetic innervation in mice. To address vagal interactions in hepatic tumor pathology, we provide an adapted methodology utilizing an established liver metastatic model. We anticipate that this methodology will expand the burgeoning field of cancer neuroscience, enabling the study of the neuroimmune, neurometabolic, and/or nerve-microbiota interactions shaping liver cancer progression and treatment.
Collapse
Affiliation(s)
- Kylynda C Bauer
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Shadin Ghabra
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Surgical Oncology Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chi Ma
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Lee Chedester
- Division of Intramural Clinical and Biological Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Rockville, MD 20852, USA
| | - Tim F Greten
- Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
- Liver Cancer Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| |
Collapse
|
9
|
Du J, Han S, Zhou H, Wang J, Wang F, Zhao M, Song R, Li K, Zhu H, Zhang W, Yang Z, Liu Z. Targeted protein degradation combined with PET imaging reveals the role of host PD-L1 in determining anti-PD-1 therapy efficacy. Eur J Nucl Med Mol Imaging 2024; 51:3559-3571. [PMID: 38910165 DOI: 10.1007/s00259-024-06804-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE Immunohistochemical staining of programmed death-ligand 1 (PD-L1) in tumor biopsies acquired through invasive procedures is routinely employed in clinical practice to identify patients who are most likely to benefit from anti-programmed cell death protein 1 (PD-1) therapy. Nevertheless, PD-L1 expression is observed in various cellular subsets within tumors and their microenvironments, including tumor cells, dendritic cells, and macrophages. The impact of PD-L1 expression across these different cell types on the responsiveness to anti-PD-1 treatment is yet to be fully understood. METHODS We synthesized polymer-based lysosome-targeting chimeras (LYTACs) that incorporate both PD-L1-targeting motifs and liver cell-specific asialoglycoprotein receptor (ASGPR) recognition elements. Small-animal positron emission tomography (PET) imaging of PD-L1 expression was also conducted using a PD-L1-specific radiotracer 89Zr-αPD-L1/Fab. RESULTS The PD-L1 LYTAC platform was capable of specifically degrading PD-L1 expressed on liver cancer cells through the lysosomal degradation pathway via ASGPR without impacting the PD-L1 expression on host cells. When coupled with whole-body PD-L1 PET imaging, our studies revealed that host cell PD-L1, rather than tumor cell PD-L1, is pivotal in the antitumor response to anti-PD-1 therapy in a mouse model of liver cancer. CONCLUSION The LYTAC strategy, enhanced by PET imaging, has the potential to surmount the limitations of knockout mouse models and to provide a versatile approach for the selective degradation of target proteins in vivo. This could significantly aid in the investigation of the roles and mechanisms of protein functions associated with specific cell subsets in living subjects.
Collapse
Affiliation(s)
- Jinhong Du
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shu Han
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Haoyi Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jianze Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Feng Wang
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Meixin Zhao
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Rui Song
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Kui Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Hua Zhu
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weifang Zhang
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, China.
| | - Zhi Yang
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Zhaofei Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Department of Nuclear Medicine, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China.
| |
Collapse
|
10
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
11
|
Chen M, Li S, Jin G, Li R, Qi Z, He Y. Symptom clusters and network analysis of patients with intermediate and advanced liver cancer treated with targeted immunotherapy. Support Care Cancer 2024; 32:580. [PMID: 39115725 DOI: 10.1007/s00520-024-08784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND This study aims to identify symptom clusters in patients with intermediate and advanced liver cancer receiving targeted immunotherapy, focusing on core and bridge symptoms to establish a foundation for precise symptom management. METHODS This study used a cross-sectional survey and utilized convenience sampling from May 2023 to January 2024 at a third-class hospital in Shanghai, China. The severity of symptoms in liver cancer patients during treatment was evaluated using the Memorial Symptom Assessment Scale. Network analysis was employed to depict the interrelation of symptom clusters and identify core and bridge symptoms. RESULTS The symptoms were classified by severity into five clusters: oral, gastrointestinal, fatigue-related, body image, and pain-sleep. Within the symptom network, the core symptoms were pain, "I don't look like myself," and nausea, while the critical bridge symptoms included pain, itching, and feeling bloated. The strongest connections were observed between nausea and vomiting, followed by taste changes and dry mouth, as well as weight loss and "I don't look like myself." CONCLUSION In patients receiving targeted immunotherapy for intermediate and advanced liver cancer, multiple symptoms can emerge simultaneously, forming interconnected clusters. By identifying and intervening in core and bridge symptoms, personalized management strategies can be developed to relieve other symptoms and disrupt connections between symptom clusters, thereby enhancing symptom management efficacy. This study has significant clinical and research implications, offering new insights to improve patients' quality of life and treatment outcomes.
Collapse
Affiliation(s)
- Mei Chen
- Wuxi Medical College, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Shan Li
- The Third Affiliated Hospital of Naval Military Medical University, No. 700, Moyu North Road, Jiading District, Shanghai, 201805, China
| | - Guangzhi Jin
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 720 Xianxia Road, Changning District, Shanghai, 200336, China
| | - Rui Li
- Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai, 200336, China
| | - Zhi Qi
- The Third Affiliated Hospital of Naval Military Medical University, No. 700, Moyu North Road, Jiading District, Shanghai, 201805, China.
| | - Yalun He
- The Third Affiliated Hospital of Naval Military Medical University, No. 700, Moyu North Road, Jiading District, Shanghai, 201805, China.
| |
Collapse
|
12
|
Liu Q, Zhang Y, Zhang J, Chen L, Yang Y, Liu Y. Efficacy and safety of hepatic arterial infusion chemotherapy combined with tyrosine kinase inhibitors and immune checkpoint inhibitors in the treatment of advanced hepatocellular carcinoma with portal vein tumor thrombosis in the main trunk. Front Oncol 2024; 14:1374149. [PMID: 39077472 PMCID: PMC11284057 DOI: 10.3389/fonc.2024.1374149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Purpose To evaluate the efficacy and safety of mFOLFOX-based hepatic arterial infusion chemotherapy (HAIC) combined with tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) in the treatment of advanced hepatocellular carcinoma (HCC) with portal vein tumor thrombosis (PVTT). Methods This retrospective study included patients who received mFOLFOX-based HAIC combined with TKIs and ICIs from January 2021 to January 2023. The primary outcome was the objective response rate of PVTT response, and the secondary outcomes were 6-month, 1-year survival rate, overall survival (OS), and corresponding adverse events and complications were also evaluated. PVTT responses were assessed using ITK-SNAP software. Results A total of 37 patients were included in the analysis, 18.92% achieved a complete response and 56.76% achieved a partial response in PVTT response. The objective response rate (ORR) of PVTT was 75.68%. The 6-month survival rate was 89%, the 1-year survival rate was 66%, and the median OS was 15.8 months. In univariate analysis, Child-Pugh score (P=0.010) was important factor for predicting OS; in multivariate analysis, Child-Pugh score (P=0.015, HR= 3.089, 95%CI: 1.250-7.633) was the important factor for predicting OS. In terms of adverse reactions, the most common adverse reactions associated with HAIC are pain and thrombocytopenia associated with oxaliplatin. Conclusion FOLFOX-based HAIC combined with TKIs and ICIs induced an objective response rate of 75.68% in PVTT. Clinical signicance FOLFOX-based HAIC combined with TKIs and ICIs provides more treatment options for PVTT.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- Department of Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
13
|
Liu RJ, Yu XD, Yan SS, Guo ZW, Zao XB, Zhang YS. Ferroptosis, pyroptosis and necroptosis in hepatocellular carcinoma immunotherapy: Mechanisms and immunologic landscape (Review). Int J Oncol 2024; 64:63. [PMID: 38757345 PMCID: PMC11095606 DOI: 10.3892/ijo.2024.5651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 05/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer‑related mortality worldwide, is challenging to identify in its early stages and prone to metastasis, and the prognosis of patients with this disease is poor. Treatment options for HCC are limited, with even radical treatments being associated with a risk of recurrence or transformation in the short term. Furthermore, the multi‑tyrosine kinase inhibitors approved for first‑line therapy have marked drawbacks, including drug resistance and side effects. The rise and breakthrough of immune checkpoint inhibitors (ICIs) have provided a novel direction for HCC immunotherapy but these have the drawback of low response rates. Since avoiding apoptosis is a universal feature of cancer, the induction of non‑apoptotic regulatory cell death (NARCD) is a novel strategy for HCC immunotherapy. At present, NARCD pathways, including ferroptosis, pyroptosis and necroptosis, are novel potential forms of immunogenic cell death, which have synergistic effects with antitumor immunity, transforming immune 'cold' tumors into immune 'hot' tumors and exerting antitumor effects. Therefore, these pathways may be targeted as a novel treatment strategy for HCC. In the present review, the roles of ferroptosis, pyroptosis and necroptosis in antitumor immunity in HCC are discussed, and the relevant targets and signaling pathways, and the current status of combined therapy with ICIs are summarized. The prospects of targeting ferroptosis, pyroptosis and necroptosis in HCC immunotherapy are also considered.
Collapse
Affiliation(s)
- Rui-Jia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Xu-Dong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing 101121, P.R. China
| | - Shao-Shuai Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Zi-Wei Guo
- Guang'anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing 100053, P.R. China
| | - Xiao-Bin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Yao-Sheng Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
- Beijing Tumor Minimally Invasive Medical Center of Integrated Traditional Chinese and Western Medicine, Beijing 101121, P.R. China
| |
Collapse
|
14
|
Werner W, Kuzminskaya M, Lurje I, Tacke F, Hammerich L. Overcoming Resistance to Immune Checkpoint Blockade in Liver Cancer with Combination Therapy: Stronger Together? Semin Liver Dis 2024; 44:159-179. [PMID: 38806159 PMCID: PMC11245330 DOI: 10.1055/a-2334-8311] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Primary liver cancer, represented mainly by hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA), is one of the most common and deadliest tumors worldwide. While surgical resection or liver transplantation are the best option in early disease stages, these tumors often present in advanced stages and systemic treatment is required to improve survival time. The emergence of immune checkpoint inhibitor (ICI) therapy has had a positive impact especially on the treatment of advanced cancers, thereby establishing immunotherapy as part of first-line treatment in HCC and CCA. Nevertheless, low response rates reflect on the usually cold or immunosuppressed tumor microenvironment of primary liver cancer. In this review, we aim to summarize mechanisms of resistance leading to tumor immune escape with a special focus on the composition of tumor microenvironment in both HCC and CCA, also reflecting on recent important developments in ICI combination therapy. Furthermore, we discuss how combination of ICIs with established primary liver cancer treatments (e.g. multikinase inhibitors and chemotherapy) as well as more complex combinations with state-of-the-art therapeutic concepts may reshape the tumor microenvironment, leading to higher response rates and long-lasting antitumor immunity for primary liver cancer patients.
Collapse
Affiliation(s)
- Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Maria Kuzminskaya
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Auriol C, Raynal P, Cantisano N. Stigmatization of drinking patients with liver cancer: The role of socioeconomic status. Heliyon 2024; 10:e29105. [PMID: 38623242 PMCID: PMC11016613 DOI: 10.1016/j.heliyon.2024.e29105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Patients with liver cancer may face stigmatization due to cancer, alcohol consumption, or both. This study addresses gaps in the existing literature regarding stigmatization of alcohol-related liver cancer patients, particularly its connection with socioeconomic status (SES). The study explores whether the SES of a fictional character with alcohol addiction and liver cancer influences stigma levels reported by participants. Additionally, it investigates how participants' personal characteristics, such as alcohol consumption and healthcare professional status, impact stigmatization. This study aims to provide new insights regarding the role of stigmatization in liver cancer treatment and management, emphasizing in socioeconomic determinants. The method is based on three scenarios describing a woman character with alcohol abuse and liver cancer. The scenarios depicted a woman character with either low, medium or high SES. Each participant (N = 991) was randomly assigned to one of the three scenarios. After reading it, each participant answered questionnaires assessing negative attitudes towards the character. Four scales were used: "Negative attributions about people with health problems", "Causality of cancer", "Controllability of drinking" and "Reluctance to helping behavior". Data were analyzed using ANOVA and t-tests. The scenario describing a character with a low SES significantly received more "Negative attributions about people with health problems" than the character with medium or high SES. Participants having higher alcohol consumption themselves showed lower stigma scores for three out of four scales than participants with lower consumption. In addition, participants identified as health professionals had lower stigma scores regarding the scales "Negative attributions about people with health problems" and "Controllability of drinking", and higher scores for the subscale "Reluctance to helping behavior", compared with non-professionals. A character with low SES received more negative attributions than the one with higher SES. Participants' own alcohol consumption and professional status (being health professional or not), influenced their stigmatizing attitudes.
Collapse
Affiliation(s)
- Camille Auriol
- Laboratoire CERPPS, Université de Toulouse-Jean Jaurès, 5 allées Antonio Machado, 31058, Toulouse, France
| | - Patrick Raynal
- Laboratoire CERPPS, Université de Toulouse-Jean Jaurès, 5 allées Antonio Machado, 31058, Toulouse, France
| | - Nicole Cantisano
- Laboratoire CERPPS, Université de Toulouse-Jean Jaurès, 5 allées Antonio Machado, 31058, Toulouse, France
| |
Collapse
|
16
|
Zhang JX, Hua HJ, Cheng Y, Liu S, Shi HB, Zu QQ. Role of Transarterial Chemoembolization in the Era of Tyrosine Kinase Inhibitor and Immune Checkpoint Inhibitor Combination Therapy for Unresectable Hepatocellular Carcinoma: A Retrospective Propensity Score Matched Analysis. Acad Radiol 2024; 31:1304-1311. [PMID: 37775449 DOI: 10.1016/j.acra.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
RATIONALE AND OBJECTIVES: As an effective locoregional therapy, transarterial chemoembolization (TACE) can induce vascular endothelial growth factor and PD-1/PDL-1 upregulation, accompanied by a reduction in tumor burden. The present study aimed to compare the efficacy of TACE combined with tyrosine kinase inhibitors (TKIs) plus immune checkpoint inhibitors (ICIs) (TACE-TKI-ICIs) versus TKIs plus ICIs (TKI-ICIs) in patients with unresectable hepatocellular carcinoma (HCC). MATERIALS AND METHODS The clinical data of 198 patients diagnosed with unresectable HCC who received a TKI (lenvatinib or sorafenib) plus an ICI (sintilimab or camrelizumab) with or without TACE were retrospectively reviewed between October 2019 and April 2022. Baseline characteristics of the TACE-TKI-ICI group and the TKI-ICI group were matched by propensity score matching in a 1:1 ratio. The tumor response, progression-free survival (PFS), and overall survival (OS) were evaluated and compared between the two groups. RESULTS After matching, 54 patients were enrolled in each group. The objective response rate (ORR) and disease control rate (DCR) were higher in the TACE-TKI-ICI group (ORR: 63.0% vs. 29.6%, P < 0.001; DCR: 85.2% vs. 53.7%, P < 0.001). The median PFS was significantly longer in the TACE-TKI-ICI group (9.9 vs. 5.8 months; P = 0.026). The median OS between the two groups also reached a significant difference (not reached vs. 18.5 months; P = 0.003). CONCLUSION In this retrospective study, the results indicated that the addition of TACE to TKI-ICI therapy could contribute to better tumor control, PFS, and OS benefits in patients with unresectable HCC.
Collapse
Affiliation(s)
- Jin-Xing Zhang
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China (J.-X.Z., S.L., H.B.S., Q.Q.Z.)
| | - Hong-Jin Hua
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China (H.-j.H.)
| | - Yuan Cheng
- Department of Medicine Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China (Y.C.)
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China (J.-X.Z., S.L., H.B.S., Q.Q.Z.)
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China (J.-X.Z., S.L., H.B.S., Q.Q.Z.)
| | - Qing-Quan Zu
- Department of Interventional Radiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China (J.-X.Z., S.L., H.B.S., Q.Q.Z.).
| |
Collapse
|
17
|
Chew V, Chuang CH, Hsu C. Translational research on drug development and biomarker discovery for hepatocellular carcinoma. J Biomed Sci 2024; 31:22. [PMID: 38368324 PMCID: PMC10874078 DOI: 10.1186/s12929-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024] Open
Abstract
Translational research plays a key role in drug development and biomarker discovery for hepatocellular carcinoma (HCC). However, unique challenges exist in this field because of the limited availability of human tumor samples from surgery, the lack of homogenous oncogenic driver mutations, and the paucity of adequate experimental models. In this review, we provide insights into these challenges and review recent advancements, with a particular focus on the two main agents currently used as mainstream therapies for HCC: anti-angiogenic agents and immunotherapy. First, we examine the pre-clinical and clinical studies to highlight the challenges of determining the optimal therapeutic combinations with biologically effective dosage for HCC. Second, we discuss biomarker studies focusing on anti-PD1/anti-PD-L1-based combination therapy. Finally, we discuss the progress made in our collective understanding of tumor immunology and in multi-omics analysis technology, which enhance our understanding of the mechanisms underlying immunotherapy, characterize different patient subgroups, and facilitate the development of novel combination approaches to improve treatment efficacy. In summary, this review provides a comprehensive overview of efforts in translational research aiming at advancing our understanding of and improving the treatment of HCC.
Collapse
Affiliation(s)
- Valerie Chew
- Translational Immunology Institute, SingHealth-DukeNUS Academic Medical Centre, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Chien-Huai Chuang
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Chiun Hsu
- Department of Medical Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Li K, Lu E, Wang Q, Xu R, Yuan W, Wu R, Lu L, Li P. Serum vitamin D deficiency is associated with increased risk of γδ T cell exhaustion in HBV-infected patients. Immunology 2024; 171:31-44. [PMID: 37702282 DOI: 10.1111/imm.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Previous studies have demonstrated that T cell exhaustion is associated with poor clearance of Hepatitis B virus (HBV). However, whether the expression of exhaustion markers on innate-like circulating γδ T cells derived from patients with HBV infection correlates with the serum level of vitamin D is not completely understood. In this study, we found that the frequency of circulating Vδ2+ T cell and serum levels of vitamin 25(OH)D3 were significantly decreased in patients with HBV. And serum 25(OH)D3 levels in HBV-infected patients were negatively correlated with HBV DNA load and PD-1 expression on γδ T cells. Interestingly, 1α,25(OH)2 D3 alleviated the exhaustion phenotype of Vδ2 T cells in HBV-infected patients and promoted IFN-β expression in human cytotoxic Vδ2 T cells in vitro. Collectively, these findings demonstrate that vitamin D plays a pivotal role in reversing γδ T-cell exhaustion and is highly promising target for ameliorating HBV infection.
Collapse
Affiliation(s)
- Ke Li
- Department of Geriatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Eying Lu
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Qian Wang
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Ruirong Xu
- Department of Infectious Disease, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Wenhui Yuan
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Ruan Wu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| | - Peng Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, China
| |
Collapse
|
19
|
Yu J, Ling S, Hong J, Zhang L, Zhou W, Yin L, Xu S, Que Q, Wu Y, Zhan Q, Bao J, Xu N, Liu Y, Chen K, Wei X, Liu Z, Feng T, Zhou L, Xie H, Wang S, Liu J, Zheng S, Xu X. TP53/mTORC1-mediated bidirectional regulation of PD-L1 modulates immune evasion in hepatocellular carcinoma. J Immunother Cancer 2023; 11:e007479. [PMID: 38030304 PMCID: PMC10689408 DOI: 10.1136/jitc-2023-007479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Immunotherapy has facilitated great breakthroughs in the treatment of hepatocellular carcinoma (HCC). However, the efficacy and response rate of immunotherapy are limited and vary among different patients with HCC. TP53 mutation substantially affects the expression of immune checkpoint molecules in multiple cancers. However, the regulatory relationship between programmed death ligand 1 (PD-L1) and TP53 is poorly studied in HCC. We aimed to elucidate the regulatory mechanism of PD-L1 in HCC with different TP53 statuses and to assess its role in modulating immune evasion in HCC. METHODS HCC mouse models and cell lines with different TP53 statuses were constructed. PD-L1 levels were detected by PCR, western blotting and flow cytometry. RNA-seqencing, immunoprecipitation, chromatin immunoprecipitation and transmission electron microscopy were used to elucidate the regulatory mechanism in HCC with different TP53 status. HCC mouse models and patient with HCC samples were analyzed to demonstrate the preclinical and clinical significance of the findings. RESULTS We report that loss of p53 promoted PD-L1 expression and reduced CD8+ T-cell infiltration in patient with HCC samples and mouse models. Mammalian target of rapamycin (mTOR) pathway was activated in p53-loss-of-function HCC or after knocking down TP53. The transcription factor E2F1 was found to bind to the p53 protein in TP53 wild-type HCC cells, and inhibiting mammalian target of rapamycin complex 1 (mTORC1) disrupted this binding and enhanced E2F1 translocation to the nucleus, where it bound to the PD-L1 promoter and transcriptionally upregulated PD-L1. In p53-loss-of-function HCC cells, autophagosomes were activated after mTORC1 suppression, promoting the degradation of PD-L1 protein. The combination of mTOR inhibitor and anti-PD-L1 antibody enhanced CD8+ T-cell infiltration and tumor suppression in TP53 wild-type HCC mouse models, but no benefit was observed in p53-loss-of-function HCC mouse models. In patients with TP53 wild-type HCC, PD-L1 levels were significantly higher in the high E2F1 group than in the low E2F1 group, and the low E2F1 level group had significantly superior survival. CONCLUSION We revealed the bidirectional regulatory mechanism of PD-L1 mediated by TP53/mTORC1 in HCC. The combination of mTOR inhibitor and anti-PD-L1 antibody could be a novel precise immunotherapy scheme for TP53 wild-type HCC.
Collapse
Affiliation(s)
- Jiongjie Yu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Sunbin Ling
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | | | - Lincheng Zhang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Wei Zhou
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Lu Yin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Shengjun Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Qingyang Que
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Yongfeng Wu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Qifan Zhan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqi Bao
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Yuchen Liu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kangchen Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Xuyong Wei
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Zhikun Liu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Tingting Feng
- Department of Colorectal Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| |
Collapse
|
20
|
Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, Ruppin E, Wang XW. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol 2023; 20:780-798. [PMID: 37726418 DOI: 10.1038/s41571-023-00816-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
Immune-checkpoint inhibitors (ICIs) are now widely used for the treatment of patients with advanced-stage hepatocellular carcinoma (HCC). Two different ICI-containing regimens, atezolizumab plus bevacizumab and tremelimumab plus durvalumab, are now approved standard-of-care first-line therapies in this setting. However, and despite substantial improvements in survival outcomes relative to sorafenib, most patients with advanced-stage HCC do not derive durable benefit from these regimens. Advances in genome sequencing including the use of single-cell RNA sequencing (both of tumour material and blood samples), as well as immune cell identification strategies and other techniques such as radiomics and analysis of the microbiota, have created considerable potential for the identification of novel predictive biomarkers enabling the accurate selection of patients who are most likely to derive benefit from ICIs. In this Review, we summarize data on the immunology of HCC and the outcomes in patients receiving ICIs for the treatment of this disease. We then provide an overview of current biomarker use and developments in the past 5 years, including gene signatures, circulating tumour cells, high-dimensional flow cytometry, single-cell RNA sequencing as well as approaches involving the microbiome, radiomics and clinical markers. Novel concepts for further biomarker development in HCC are then discussed including biomarker-driven trials, spatial transcriptomics and integrated 'big data' analysis approaches. These concepts all have the potential to better identify patients who are most likely to benefit from ICIs and to promote the development of new treatment approaches.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Augusto Villanueva
- Divisions of Liver Disease and Hematology/Medical Oncology, Tisch Cancer Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Firouzeh Korangy
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark Yarchoan
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xin W Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
21
|
Liu Q, Song Q, Luo C, Wei J, Xu Y, Zhao L, Wang Y. A novel bispecific antibody as an immunotherapeutic agent in hepatocellular carcinoma. Mol Immunol 2023; 162:125-132. [PMID: 37677989 DOI: 10.1016/j.molimm.2023.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most common and highly fatal malignancies in humans worldwide with increasing prevalence and limited therapeutic options. For many decades, many researchers have attempted to find effective curative methods for HCC and great strides have been made. GPC3 is overexpressed in HCC, but not in normal liver, making it a rational immunotherapeutic target for HCC. GC33, a humanized mAb directed against GPC3, is a safe and well-tolerated therapy choice for patients with HCC, which tested in a phase I trial in advanced HCC patients. Phase II trials of GC33 to evaluate its efficacy and safety in advanced or metastatic HCC, showed no significant differences in overall survival and progression-free survival compared with the placebo. Retrospective analysis indicates that high drug exposure and high CD16 expression may contribute to the clinical efficacy of GC33. Chugai Pharmaceutical has restarted its Phase I trial of GC33, continuing to explore its clinical value targeting GPC3 in solid tumors. To enhance the antitumor potency of GC33, we designed a GPC3/CD16A bispecific antibody (QDEB). In this study, we obtained QDEB at high purity and assessed its effectiveness in the therapy of HCC compared with GC33. In vitro cytotoxicity assays and in vivo experiments demonstrated that QDEB could enhance anti-tumor efficacy compared with GC33. CD16A activation and increased cytokines release were associated with higher anti-tumor activity. In conclusion, this bispecific antibody may possibly help develop new therapeutic strategies for HCC and develop new treatment options in the future.
Collapse
Affiliation(s)
- Qingxia Liu
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Qifeng Song
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Cheng Luo
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Jian Wei
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yao Xu
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Liwen Zhao
- Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China
| | - Yong Wang
- Department of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Sanhome R&D Centre, Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing 221116, PR China.
| |
Collapse
|
22
|
Tojjari A, Saeed A, Singh M, Cavalcante L, Sahin IH, Saeed A. A Comprehensive Review on Cancer Vaccines and Vaccine Strategies in Hepatocellular Carcinoma. Vaccines (Basel) 2023; 11:1357. [PMID: 37631925 PMCID: PMC10459477 DOI: 10.3390/vaccines11081357] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
HCC, the most prevalent form of primary liver cancer, presents a substantial global health challenge due to its high mortality and limited therapeutic options. This review delves into the potential of cancer vaccines as a novel therapeutic avenue for HCC. We examine the various categories of cancer vaccines, including peptide-based, dendritic cell-based, viral vector-based, DNA, and mRNA vaccines, and their potential application in HCC management. This review also addresses the inherent challenges in vaccine development, such as tumor heterogeneity and the need for identifying tumor-specific antigens. We underscore the role of cancer vaccines in reshaping the immune environment within HCC, fostering durable immune memory, and their potential in combination therapies. The review also evaluates clinical trials and emphasizes the necessity for more extensive research to optimize vaccine design and patient selection criteria. We conclude with future perspectives, highlighting the significance of personalized therapies, innovative antigen delivery platforms, immune modulatory agents, and predictive biomarkers in revolutionizing HCC treatment. Simple Summary: This review explores the potential of cancer vaccines as a promising therapeutic strategy for hepatocellular carcinoma (HCC), a prevalent and deadly liver cancer. The authors discuss various types of cancer vaccines, their challenges, and their role in modulating the immune response within HCC. They also highlight clinical trials and future perspectives, emphasizing the importance of personalized therapies, novel antigen delivery platforms, and predictive biomarkers. The findings from this research could significantly impact the research community by providing a comprehensive understanding of the current state of cancer vaccines for HCC, thereby guiding future research and potentially transforming HCC treatment strategies.
Collapse
Affiliation(s)
- Alireza Tojjari
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.S.); (I.H.S.)
| | - Ahmed Saeed
- Sarah Cannon Cancer Institute, HCA Midwest Health, Kansas City, MO 64131, USA;
| | - Meghana Singh
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.S.); (I.H.S.)
| | | | - Ibrahim Halil Sahin
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.S.); (I.H.S.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15213, USA; (A.T.); (M.S.); (I.H.S.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
23
|
Greten TF. 'Invisible' immune checkpoint molecule causing resistance to anti-PD1 therapy in HCC. Gut 2023; 72:1440-1441. [PMID: 36627186 DOI: 10.1136/gutjnl-2022-329099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023]
Affiliation(s)
- Tim F Greten
- NCI, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Qu J, Sun F, Hou Y, Qi H, Sun X, Xing L. Characterization and clinical verification of immune-related genes in hepatocellular carcinoma to aid prognosis evaluation and immunotherapy. BMC Cancer 2023; 23:549. [PMID: 37322434 DOI: 10.1186/s12885-023-10900-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Immune-related genes (IRGs) have been confirmed to play an important role in tumorigenesis and tumor microenvironment formation in hepatocellular carcinoma (HCC). We investigated how IRGs regulates the HCC immunophenotype and thus affects the prognosis and response to immunotherapy. METHODS We investigated RNA expression of IRGs and developed an immune-related genes-based prognostic index (IRGPI) in HCC samples. Then, the influence of the IRGPI on the immune microenvironment was comprehensively analysed. RESULTS According to IRGPI, HCC patients are divided into two immune subtypes. A high IRGPI was characterized by an increased tumor mutation burden (TMB) and a poor prognosis. More CD8 + tumor infiltrating cells and expression of PD-L1 were observed in low IRGPI subtypes. Two immunotherapy cohorts confirmed patients with low IRGPI demonstrated significant therapeutic benefits. Multiplex immunofluorescence staining determined that there were more CD8 + T cells infiltrating into tumor microenvironment in IRGPI-low groups, and the survival time of these patients was longer. CONCLUSIONS This study demonstrated that the IRGPI serve as a predictive prognostic biomarker and potential indicator for immunotherapy.
Collapse
Affiliation(s)
- Jialin Qu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, 250117, Shandong, China
| | - Fenghao Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Yichen Hou
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, 250117, Shandong, China
| | - Haoran Qi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, 250117, Shandong, China
| | - Xiaorong Sun
- Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Ligang Xing
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Science, Jinan, 250117, Shandong, China.
| |
Collapse
|
25
|
Kelly RJ, Bever K, Chao J, Ciombor KK, Eng C, Fakih M, Goyal L, Hubbard J, Iyer R, Kemberling HT, Krishnamurthi S, Ku G, Mordecai MM, Morris VK, Paulson AS, Peterson V, Shah MA, Le DT. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of gastrointestinal cancer. J Immunother Cancer 2023; 11:e006658. [PMID: 37286304 PMCID: PMC10254964 DOI: 10.1136/jitc-2022-006658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2023] [Indexed: 06/09/2023] Open
Abstract
Gastrointestinal (GI) cancers, including esophageal, gastroesophageal junction, gastric, duodenal and distal small bowel, biliary tract, pancreatic, colon, rectal, and anal cancer, comprise a heterogeneous group of malignancies that impose a significant global burden. Immunotherapy has transformed the treatment landscape for several GI cancers, offering some patients durable responses and prolonged survival. Specifically, immune checkpoint inhibitors (ICIs) directed against programmed cell death protein 1 (PD-1), either as monotherapies or in combination regimens, have gained tissue site-specific regulatory approvals for the treatment of metastatic disease and in the resectable setting. Indications for ICIs in GI cancer, however, have differing biomarker and histology requirements depending on the anatomic site of origin. Furthermore, ICIs are associated with unique toxicity profiles compared with other systemic treatments that have long been the mainstay for GI cancer, such as chemotherapy. With the goal of improving patient care by providing guidance to the oncology community, the Society for Immunotherapy of Cancer (SITC) convened a panel of experts to develop this clinical practice guideline on immunotherapy for the treatment of GI cancer. Drawing from published data and clinical experience, the expert panel developed evidence- and consensus-based recommendations for healthcare professionals using ICIs to treat GI cancers, with topics including biomarker testing, therapy selection, and patient education and quality of life considerations, among others.
Collapse
Affiliation(s)
- Ronan J Kelly
- Charles A. Sammons Cancer Center, Baylor University Medical Center at Dallas, Dallas, Texas, USA
| | - Katherine Bever
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Chao
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Kristen K Ciombor
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Cathy Eng
- Department of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Marwan Fakih
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center Duarte, Duarte, California, USA
| | - Lipika Goyal
- Department of Medicine, Stanford University, Palo Alto, California, USA
| | - Joleen Hubbard
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Renuka Iyer
- Department of GI Medical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Holly T Kemberling
- Department of GI Immunology Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, USA
| | | | - Geoffrey Ku
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Van K Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center Division of Cancer Medicine, Houston, Texas, USA
| | - Andrew Scott Paulson
- Department of Medical Oncology, Texas Oncology-Baylor Charles A Sammons Cancer Center, Dallas, Texas, USA
| | - Valerie Peterson
- Department of Thoracic Medical Oncology, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, Maryland, USA
| | - Manish A Shah
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Dung T Le
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Kudo M. The Society for Immunotherapy of Cancer clinical practice guideline on immunotherapy for hepatocellular carcinoma. Hepatobiliary Surg Nutr 2023; 12:256-260. [PMID: 37124680 PMCID: PMC10129894 DOI: 10.21037/hbsn-23-122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
|
27
|
Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00754-7. [PMID: 36932227 DOI: 10.1038/s41575-023-00754-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 03/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), including its more severe manifestation, nonalcoholic steatohepatitis (NASH), has a global prevalence of 20-25% and is a major public health problem. Its incidence is increasing in parallel to the rise in obesity, diabetes and metabolic syndrome. Progression from NASH to NASH-related hepatocellular carcinoma (HCC) (~2% of cases per year) is influenced by many factors, including the tissue and immune microenvironment, germline mutations in PNPLA3, and the microbiome. NASH-HCC has unique molecular and immune traits compared with other aetiologies of HCC and is equally prevalent in men and women. Comorbidities associated with NASH, such as obesity and diabetes mellitus, can prevent the implementation of potentially curative therapies in certain patients; nonetheless, outcomes are similar in patients who receive treatment. NASH-HCC at the early to intermediate stages is managed with surgery and locoregional therapies, whereas advanced HCC is treated with systemic therapies, including anti-angiogenic therapies and immune-checkpoint inhibitors. In this Review, we present the latest knowledge of the pathogenic mechanisms and clinical management of NASH-HCC. We discuss data highlighting the controversy over varying responses to immune-checkpoint inhibitors according to underlying aetiology and suggest that the future of NASH-HCC management lies in improved surveillance, targeted combination therapies to overcome immune evasion, and identifying biomarkers to recognize treatment responders.
Collapse
|
28
|
Farasati Far B, Rabie D, Hemati P, Fooladpanjeh P, Faal Hamedanchi N, Broomand Lomer N, Karimi Rouzbahani A, Naimi-Jamal MR. Unresectable Hepatocellular Carcinoma: A Review of New Advances with Focus on Targeted Therapy and Immunotherapy. LIVERS 2023; 3:121-160. [DOI: 10.3390/livers3010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
With an expected incidence of more than 1 million cases by 2025, liver cancer remains a problem for world health. With over 90% of cases, hepatocellular carcinoma (HCC) is the most prevalent kind of liver cancer. In this review, we presented the range of experimental therapeutics for patients with advanced HCC, the successes and failures of new treatments, areas for future development, the evaluation of dose-limiting toxicity in different drugs, and the safety profile in patients with liver dysfunction related to the underlying chronic liver disease. In addition to the unmet demand for biomarkers to guide treatment decisions and the burgeoning fields of immunotherapy and systemic therapy in hepatocellular carcinoma, the development of old and new drugs, including their failures and current advancements, has been reviewed. This review aims to evaluate the updated optimal clinical treatment of unresectable hepatocellular carcinomas in clinical practice, mainly through targeted therapy. Although surgical treatment can significantly enhance the survival probability of early and intermediate-stage patients, it is unsuitable for most HCC patients due to a lack of donors. Due to their severe toxicity, the few first-line anti-HCC drugs, such as sorafenib, are often reserved for advanced HCC patients for whom other therapies have failed. The second-line drugs are usually alternatives for patients with intolerance or resistance. Consequently, the ongoing growth of possible preclinical drugs and studies on miRNAs, lncRNAs, and numerous other signaling pathway targets for developing novel drugs may introduce additional treatment prospects for HCC.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Dorsa Rabie
- Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran 193951495, Iran
| | - Parisa Hemati
- Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran 193951495, Iran
| | - Parastoo Fooladpanjeh
- Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran 193951495, Iran
| | - Neda Faal Hamedanchi
- Faculty of Medicine, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 193951495, Iran
| | - Nima Broomand Lomer
- Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4314637758, Iran
| | - Arian Karimi Rouzbahani
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
- USERN Office, Lorestan University of Medical Sciences, Khorramabad 6718773654, Iran
| | | |
Collapse
|
29
|
Myojin Y, Greten TF. The Microbiome and Liver Cancer. Cancer J 2023; 29:57-60. [PMID: 36957974 PMCID: PMC10168020 DOI: 10.1097/ppo.0000000000000646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT The gut microbiome and liver are anatomically and functionally connected. The impact of the gut microbiota or microbial metabolites on liver cancer progression via immune cells has been recently revealed across various preclinical models. Commensal gut microbes of liver cancer patients differ from control subjects, and their composition is affected by the etiology of the hepatocellular carcinoma. The gut microbiota represents a potential novel target for intervention as shown in patients with melanoma, but we still lack data in patients with hepatocellular carcinoma. Fecal microbiota transplantation and dietary approaches may improve immunotherapy efficacy, and a couple of clinical trials are ongoing. In liver cancer, the ongoing recognition of interactions between gut microbes and the tumor immune microenvironment provides an exciting therapeutic avenue to complement established immunotherapy.
Collapse
Affiliation(s)
- Yuta Myojin
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Tim F. Greten
- Gastrointestinal Malignancies Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
- NCI CCR Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| |
Collapse
|
30
|
Sun LY, Zhang KJ, Xie YM, Liu JW, Xiao ZQ. Immunotherapies for advanced hepatocellular carcinoma. Front Pharmacol 2023; 14:1138493. [PMID: 37025485 PMCID: PMC10070708 DOI: 10.3389/fphar.2023.1138493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/08/2023] Open
Abstract
Primary liver cancer is the second leading cause of tumor-related deaths in China, with hepatocellular carcinoma (HCC) accounting for 80%-90% of these. Since there is a lack of symptoms in the early stages of HCC, a large proportion of patients were identified with unresectable HCC when diagnosed. Due to the severe resistance to chemotherapy, patients with advanced HCC were traditionally treated with systematic therapy in the past decades, and the tyrosine kinase inhibitor (TKI) sorafenib has remained the only treatment option for advanced HCC since 2008. Immunotherapies, particularly immune checkpoint inhibitors (ICIs), have shown a strong anti-tumor effect and have been supported by several guidelines recently. ICIs, for example programmed cell death-1 (PD-1) inhibitors such as nivolumab and pembrolizumab, programmed cell death ligand 1 (PD-L1) inhibitors such as atezolizumab, and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors such as ipilimumab, the ICI-based combination with TKIs, and VEGF-neutralizing antibody or systematic or local anti-tumor therapies, are being further studied in clinical trials. However, immune-related adverse events (irAEs) including cutaneous toxicity, gastrointestinal toxicity, and hepatotoxicity may lead to the termination of ICI treatment or even threaten patients' lives. This review aims to summarize currently available immunotherapies and introduce the irAEs and their managements in order to provide references for clinical application and further research.
Collapse
Affiliation(s)
- Li-Yang Sun
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Center, General Surgery, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kang-Jun Zhang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Cancer Center, General Surgery, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya-Ming Xie
- Cancer Center, General Surgery, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jun-Wei Liu
- Cancer Center, General Surgery, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- *Correspondence: Jun-Wei Liu, ; Zun-Qiang Xiao,
| | - Zun-Qiang Xiao
- Cancer Center, General Surgery, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- *Correspondence: Jun-Wei Liu, ; Zun-Qiang Xiao,
| |
Collapse
|
31
|
Wang J, Wu R, Sun JY, Lei F, Tan H, Lu X. An overview: Management of patients with advanced hepatocellular carcinoma. Biosci Trends 2022; 16:405-425. [PMID: 36476621 DOI: 10.5582/bst.2022.01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has constituted a significant health burden worldwide, and patients with advanced HCC, which is stage C as defined by the Barcelona Clinic Liver Cancer staging system, have a poor overall survival of 6-8 months. Studies have indicated the significant survival benefit of treatment based on sorafenib, lenvatinib, or atezolizumab-bevacizumab with reliable safety. In addition, the combination of two or more molecularly targeted therapies (first- plus second-line) has become a hot topic recently and is now being extensively investigated in patients with advanced HCC. In addition, a few biomarkers have been investigated and found to predict drug susceptibility and prognosis, which provides an opportunity to evaluate the clinical benefits of current therapies. In addition, many therapies other than tyrosine kinase inhibitors that might have additional survival benefits when combined with other therapeutic modalities, including immunotherapy, transarterial chemoembolization, radiofrequency ablation, hepatectomy, and chemotherapy, have also been examined. This review provides an overview on the current understanding of disease management and summarizes current challenges with and future perspectives on advanced HCC.
Collapse
Affiliation(s)
- Jincheng Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.,Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Rui Wu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Yu Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Lei
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Gao L, Xiong DD, Yang X, Li JD, He RQ, Huang ZG, Lai ZF, Liu LM, Luo JY, Du XF, Zeng JH, Li MF, Li SH, Dang YW, Chen G. The expression characteristics and clinical significance of ACP6, a potential target of nitidine chloride, in hepatocellular carcinoma. BMC Cancer 2022; 22:1244. [PMID: 36456931 PMCID: PMC9714191 DOI: 10.1186/s12885-022-10292-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acid phosphatase type 6 (ACP6) is a mitochondrial lipid phosphate phosphatase that played a role in regulating lipid metabolism and there is still blank in the clinico-pathological significance and functional roles of ACP6 in human cancers. No investigations have been conducted on ACP6 in hepatocellular carcinoma (HCC) up to date. METHODS Herein, we appraised the clinico-pathological significance of ACP6 in HCC via organizing expression profiles from globally multi-center microarrays and RNA-seq datasets. The molecular basis of ACP6 in HCC was explored through multidimensional analysis. We also carried out in vitro and in vivo experiment on nude mice to investigate the effect of knocking down ACP6 expression on biological functions of HCC cells, and to evaluate the expression variance of ACP6 in xenograft of HCC tissues before and after the treatment of NC. RESULTS ACP6 displayed significant overexpression in HCC samples (standard mean difference (SMD) = 0.69, 95% confidence interval (CI) = 0.56-0.83) and up-regulated ACP6 performed well in screening HCC samples from non-cancer liver samples. ACP6 expression was also remarkably correlated with clinical progression and worse overall survival of HCC patients. There were close links between ACP6 expression and immune cells including B cells, CD8 + T cells and naive CD4 + T cells. Co-expressed genes of ACP6 mainly participated in pathways including cytokine-cytokine receptor interaction, glucocorticoid receptor pathway and NABA proteoglycans. The proliferation and migration rate of HCC cells transfected with ACP6 siRNA was significantly suppressed compared with those transfected with negative control siRNA. ACP6 expression was significantly inhibited by nitidine chloride (NC) in xenograft HCC tissues. CONCLUSIONS ACP6 expression may serve as novel clinical biomarker indicating the clinical development of HCC and ACP6 might be potential target of anti-cancer effect by NC in HCC.
Collapse
Affiliation(s)
- Li Gao
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Dan-Dan Xiong
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Xia Yang
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Jian-Di Li
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Rong-Quan He
- grid.412594.f0000 0004 1757 2961Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Zhi-Guang Huang
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Ze-Feng Lai
- grid.256607.00000 0004 1798 2653Department of Pharmacy, Guangxi Medical University Cancer Hospital, No.71 Hedi Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Li-Min Liu
- grid.256607.00000 0004 1798 2653Department of Toxicology, College of Pharmacy, Guangxi Medical University, No.22 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Jia-Yuan Luo
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Xiu-Fang Du
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Jiang-Hui Zeng
- grid.256607.00000 0004 1798 2653Department of Clinical Laboratory, The Third Affiliated Hospital of Guangxi Medical University/Nanning Second People’s Hospital, No. 13 Dancun Road, Guangxi Zhuang Autonomous Region, Nanning, 530031 People’s Republic of China
| | - Ming-Fen Li
- grid.411863.90000 0001 0067 3588Laboratory Department, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, No. 89-9 Dongge Road, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Sheng-Hua Li
- grid.412594.f0000 0004 1757 2961Department of Urology Surgery, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Yi-Wu Dang
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| | - Gang Chen
- grid.412594.f0000 0004 1757 2961Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Rd, Guangxi Zhuang Autonomous Region, Nanning, 530021 People’s Republic of China
| |
Collapse
|
33
|
Storandt MH, Mahipal A, Tella SH, Kommalapati A, Jin Z. Systemic Therapy in Advanced Hepatocellular Carcinoma: Patient Selection and Key Considerations. J Hepatocell Carcinoma 2022; 9:1187-1200. [PMID: 36471742 PMCID: PMC9719284 DOI: 10.2147/jhc.s365002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/04/2022] [Indexed: 08/30/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. Most patients with HCC have advanced disease at initial diagnosis, and sorafenib has been the only systemic treatment option for more than a decade in patients with advanced, unresectable HCC. However, there has been a dramatic change in the treatment algorithm in the last several years, given new drug approvals in the field. Most importantly, the combination of atezolizumab and bevacizumab has demonstrated clinically meaningful benefits in terms of response rate, progression-free survival, and overall survival compared to sorafenib in the first-line setting. Recently a phase III trial showed that the combination of durvalumab with a single dose of tremelimumab improved overall survival compared to sorafenib, while durvalumab monotherapy was found to be noninferior to sorafenib, making it an attractive alternative single agent in selected patient populations. As immunotherapy makes its way into the therapeutic landscape of HCC, other novel targeted therapies, such as lenvatinib, cabozantinib, ramucirumab, and regorafenib, have also been approved by regulatory authorities for treatment of advanced, unresectable HCC. This review article focuses on the first-line systemic treatment options for HCC while addressing some of the most important questions aimed at optimization of HCC treatment.
Collapse
Affiliation(s)
| | - Amit Mahipal
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Zhaohui Jin
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
34
|
Xiao Y, Yang J, Yang M, Len J, Yu Y. The prognosis of bladder cancer is affected by fatty acid metabolism, inflammation, and hypoxia. Front Oncol 2022; 12:916850. [DOI: 10.3389/fonc.2022.916850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
BackgroundThe prognosis of bladder cancer (BC) is poor, and there is no effective personalized management method for BC patients at present. Developing an accurate model is helpful to make treatment plan and prognosis analysis for BC patients. Endogenous fatty acid metabolism causes cancer cells to become hypoxic, and the coexistence of hypoxia and inflammation is often characteristic of cancer. All three together influence the tumor immune microenvironment, treatment, and prognosis of BC.MethodsWe used The Cancer Genome Atlas-Bladder Urothelial Carcinoma (TCGA-BLAC) cohorts as a train group to build a risk model based on fatty acid metabolism, hypoxia and inflammation-related gene signatures and performed external validation with GSE13507, GSE31684, and GSE39281 cohorts. We validated the model to correlate with the clinicopathological characteristics of patients, created an accuracy nomogram, and explored the differences in immune microenvironment and enrichment pathways.ResultsWe found significant differences in overall survival and progression-free survival between high- and low-risk groups, and patients in the low-risk group had a better prognosis than those in the high-risk group. In the train group, the AUCs for predicting overall survival at 1, 3, and 5 years were 0.745, 0.712, and 0.729, respectively. The 1-, 3-, and 5-year overall survival AUCs were 0.589, 0.672, and 0.666 in the external validation group, respectively. The risk score independently predicted the prognosis of BC patients with AUCs of 0.729. In addition, there was a significant correlation between risk scores and BC clinicopathological features and, in the GSE13507 cohort, we observed that BC progression and deeper invasion were associated with higher risk scores. Risk scores were highly correlated with coproptosis, pyroptosis, m7G, immune checkpoint-related genes, and immune microenvironment. In addition, we found that patients in the low-risk group responded better to immunotherapy, whereas patients in the high-risk group were more sensitive to commonly used chemotherapy drugs.ConclusionOur findings provide new treatment decisions for BC, and can effectively predict the prognosis of BC patients, which is helpful for the management of BC patients.
Collapse
|
35
|
Li L, Liu HT, Teng YX, Deng ZJ, Zhang GL, Su JY, Ma L, Zhong JH. Second-line treatment options for hepatocellular carcinoma: current state and challenges for the future. Expert Opin Investig Drugs 2022; 31:1151-1167. [PMID: 36437752 DOI: 10.1080/13543784.2022.2151891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Since the approval of sorafenib for systemic treatment of advanced hepatocellular carcinoma (HCC), many tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs) have shown efficacy and tolerability as first-line treatments. On the other hand, these first-line therapies are associated with low objective response and drug resistance. Many drugs have been successfully tested for second-line treatment of advanced HCC. While the rapid proliferation of second-line treatments for advanced HCC brings hope to patients, it also complicates clinical decision-making. AREAS COVERED This review aims to facilitate decisions by summarizing the latest guidelines for second-line treatment of HCC in various countries or regions. We then review existing second-line treatment options and discuss challenges that should be addressed in the future. A literature search was conducted in April 2022 of PubMed/Medline, Cochrane library, and abstracts of international cancer meetings. EXPERT OPINION There is no standard second-line treatment, especially for the case of sequential treatment after atezolizumab plus bevacizumab (atezo+bev) and further studies focused on sequential treatment are warranted in this setting. The design of clinical trials, different etiologies, and complications or quality of life (QoL) are interesting issues in the second-line setting.
Collapse
Affiliation(s)
- Le Li
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hao-Tian Liu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yu-Xian Teng
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhu-Jian Deng
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guan-Lan Zhang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jia-Yong Su
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Ma
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education; Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| |
Collapse
|
36
|
Wang MQ, Li YP, Xu M, Tian Y, Wu Y, Zhang X, Shi JJ, Dang SS, Jia XL. VCAN, expressed highly in hepatitis B virus-induced hepatocellular carcinoma, is a potential biomarker for immune checkpoint inhibitors. World J Gastrointest Oncol 2022; 14:1933-1948. [PMID: 36310697 PMCID: PMC9611428 DOI: 10.4251/wjgo.v14.i10.1933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/23/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND As a proteoglycan, VCAN exists in the tumor microenvironment and regulates tumor proliferation, invasion, and metastasis, but its role in hepatocellular carcinoma (HCC) has not yet been elucidated. AIM To investigate the expression and potential mechanism of action of VCAN in HCC. METHODS Based on The Cancer Genome Atlas Liver Hepatocellular Carcinoma dataset, we explored the correlation between VCAN expression and clinical features, and analyzed the prognosis of patients with high and low VCAN expression. The potential mechanism of action of VCAN was explored by Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and gene set enrichment analysis. We also explored immune cell infiltration, immune checkpoint gene expression, and sensitivity of immune checkpoint [programmed cell death protein 1 (PD-1)/cytotoxic T lymphocyte antigen 4 (CTLA4)] inhibitor therapy in patients with different VCAN expression. VCAN mRNA expression and VCAN methylation in peripheral blood were tested in 100 hepatitis B virus (HBV)-related patients (50 HCC and 50 liver cirrhosis). RESULTS VCAN was highly expressed in HCC tissues, which was associated with a poor prognosis in HCC patients. No significant difference was found in VCAN mRNA expression in blood between patients with HBV-related cirrhosis and those with HCC, but there was a significant difference in VCAN methylation between the two groups. The correlation between VCAN and infiltrations of several different tumor immune cell types (including B cells, CD8+ T cells, and eosinophils) was significantly different. VCAN was strongly related to immune checkpoint gene expression and tumor mutation burden, and could be a biomarker of sensitivity to immune checkpoint (PD1/CTLA4) inhibitors. In addition, VCAN mRNA expression was associated with hepatitis B e antigen, HBV DNA, white blood cells, platelets, cholesterol, and coagulation function. CONCLUSION High VCAN level could be a possible biomarker for poor prognosis of HCC, and its immunomodulatory mechanism in HCC warrants investigation.
Collapse
Affiliation(s)
- Mu-Qi Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Ya-Ping Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Yan Tian
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Yuan Wu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Xin Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Juan-Juan Shi
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| | - Xiao-Li Jia
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi Province, China
| |
Collapse
|
37
|
Yuan M, Liu L, Wang C, Zhang Y, Zhang J. The Complement System: A Potential Therapeutic Target in Liver Cancer. Life (Basel) 2022; 12:life12101532. [PMID: 36294966 PMCID: PMC9604633 DOI: 10.3390/life12101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Liver cancer is the sixth most common cancer and the fourth most fatal cancer in the world. Immunotherapy has already achieved modest results in the treatment of liver cancer. Meanwhile, the novel and optimal combinatorial strategies need further research. The complement system, which consists of mediators, receptors, cofactors and regulators, acts as the connection between innate and adaptive immunity. Recent studies demonstrate that complement system can influence tumor progression by regulating the tumor microenvironment, tumor cells, and cancer stem cells in liver cancer. Our review concentrates on the potential role of the complement system in cancer treatment, which is a promising strategy for killing tumor cells by the activation of complement components. Conclusions: Our review demonstrates that complement components and regulators might function as biomarkers and therapeutic targets for liver cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Li Liu
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| | - Jiandong Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
38
|
Wabitsch S, McCallen JD, Kamenyeva O, Ruf B, McVey JC, Kabat J, Walz JS, Rotman Y, Bauer KC, Craig AJ, Pouzolles M, Phadke I, Catania V, Green BL, Fu C, Diggs LP, Heinrich B, Wang XW, Ma C, Greten TF. Metformin treatment rescues CD8 + T-cell response to immune checkpoint inhibitor therapy in mice with NAFLD. J Hepatol 2022; 77:748-760. [PMID: 35378172 PMCID: PMC9391315 DOI: 10.1016/j.jhep.2022.03.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 03/03/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic steatohepatitis (NASH) represents the fastest growing underlying cause of hepatocellular carcinoma (HCC) and has been shown to impact immune effector cell function. The standard of care for the treatment of advanced HCC is immune checkpoint inhibitor (ICI) therapy, yet NASH may negatively affect the efficacy of ICI therapy in HCC. The immunologic mechanisms underlying the impact of NASH on ICI therapy remain unclear. METHODS Herein, using multiple murine NASH models, we analysed the influence of NASH on the CD8+ T-cell-dependent anti-PD-1 responses against liver cancer. We characterised CD8+ T cells' transcriptomic, functional, and motility changes in mice receiving a normal diet (ND) or a NASH diet. RESULTS NASH blunted the effect of anti-PD-1 therapy against liver cancers in multiple murine models. NASH caused a proinflammatory phenotypic change of hepatic CD8+ T cells. Transcriptomic analysis revealed changes related to NASH-dependent impairment of hepatic CD8+ T-cell metabolism. In vivo imaging analysis showed reduced motility of intratumoural CD8+ T cells. Metformin treatment rescued the efficacy of anti-PD-1 therapy against liver tumours in NASH. CONCLUSIONS We discovered that CD8+ T-cell metabolism is critically altered in the context of NASH-related liver cancer, impacting the effectiveness of ICI therapy - a finding which has therapeutic implications in patients with NASH-related liver cancer. LAY SUMMARY Non-alcoholic steatohepatitis represents the fastest growing cause of hepatocellular carcinoma. It is also associated with reduced efficacy of immunotherapy, which is the standard of care for advanced hepatocellular carcinoma. Herein, we show that non-alcoholic steatohepatitis is associated with impaired motility, metabolic function, and response to anti-PD-1 treatment in hepatic CD8+ T cells, which can be rescued by metformin treatment.
Collapse
Affiliation(s)
- Simon Wabitsch
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin D McCallen
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Benjamin Ruf
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John C McVey
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Juliane S Walz
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kylynda C Bauer
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marie Pouzolles
- Basic to Translation Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ira Phadke
- Basic to Translation Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vanessa Catania
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin L Green
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Claude Fu
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laurence P Diggs
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
39
|
Feng MY, Chan LL, Chan SL. Drug Treatment for Advanced Hepatocellular Carcinoma: First-Line and Beyond. Curr Oncol 2022; 29:5489-5507. [PMID: 36005172 PMCID: PMC9406660 DOI: 10.3390/curroncol29080434] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has high mortality. The option of systemic therapy has increased significantly over the past five years. Sorafenib was the first multikinase inhibitor, introduced in 2007, as a treatment option for HCC, and it was the only effective systemic treatment for more than ten years. It was not until 2017 that several breakthroughs were made in the development of systemic strategies. Lenvatinib, another multikinase inhibitor, stood out successfully after sorafenib, and has been applied to clinical use in the first-line setting. Other multikinase inhibitors such as regorafenib, ramucirumab and cabozantinib, were approved in quick succession as second-line therapies. Concurrently, immune checkpoint inhibitors (ICIs) have readily become established treatments for many solid tumors, including HCC. The most studied ICIs to date, target programmed cell death-1 (PD-1), its ligand PD-L1, and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). These ICIs have demonstrated efficacy in treating advanced HCC. More recently, combination of bevacizumab and atezolizumab (ICI targeting PD-L1) was approved as the gold-standard first-line therapy. Combination of ICIs with nivolumab and ipilimumab was also approved in the second-line setting for those who failed sorafenib. At the moment, numerous clinical trials in advanced HCC are underway, which will bring continuous change to the management, and increase the survival, for patients with advanced HCC. Our review article: (1) summarizes United States Food and Drug Administration (US FDA) approved systemic therapies in advanced HCC, (2) reports the evidence of currently approved treatments, (3) discusses potential drugs/drug combinations being currently tested in phase III clinical trials, and (4) proposes possible future directions in drug development for advanced HCC.
Collapse
Affiliation(s)
- Maple Ye Feng
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Landon L. Chan
- Department of Oncology, Princess Margaret Hospital, Hong Kong, China
| | - Stephen Lam Chan
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
40
|
Greten TF, Monge C. Two Milestone Studies in Liver Cancer Immunotherapy. NEJM EVIDENCE 2022; 1:EVIDe2200140. [PMID: 38319792 DOI: 10.1056/evide2200140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Immunotherapy has changed the playing field for multiple cancers, and prime time for unresectable liver cancers may be here now. This issue of NEJM Evidence includes two trials describing novel immunotherapy options for patients with biliary tract cancer and hepatocellular carcinoma. Oh et al.1 describe the results of the TOPAZ-1 trial, which resulted in improved overall survival for patients with biliary tract cancer in the frontline setting - the first real advance in more than a decade.2 Abou-Alfa et al.3 present results from the HIMALAYA study.
Collapse
Affiliation(s)
- Tim F Greten
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Bethesda, MD
- Liver Cancer Program, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Bethesda, MD
| | - Cecilia Monge
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Institutes of Health, National Cancer Institute, Bethesda, MD
| |
Collapse
|
41
|
Lansink Rotgerink L, Felchle H, Feuchtinger A, Nefzger SM, Walther CN, Gissibl J, Steiger K, Schmid TE, Heidegger S, Combs SE, Fischer JC. Experimental investigation of skin toxicity after immune checkpoint inhibition in combination with radiation therapy. J Pathol 2022; 258:189-198. [PMID: 35830288 DOI: 10.1002/path.5989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy. However, structured knowledge to mitigate a patient's specific risk of developing adverse events are limited. Nevertheless, there is an exponential growth of clinical studies combining conventional therapies such as radiation therapy (RT) with ICIs. Cutaneous reactions are amongst the most common adverse events after monotherapy with either ICIs or RT. So far, little is known about inter-individual differences in the risk of developing severe tissue toxicity after the combination of RT with ICIs, and the underlying biological mechanisms are ill defined. We used experimental models of RT-induced skin injury to analyze skin toxicity after simultaneous application of ICIs. We compared different RT regimens such as fractionated or stereotactic RT with varying dose intensity. Strikingly, we found that simultaneous application of RT and ICIs did not significantly aggravate acute skin injury in two different mouse strains. Detailed examination of long-term tissue damage of the skin revealed similar signs of epidermal hyperplasia, dermal fibrosis, and adnexal atrophy. In summary, we here present the first experimental study demonstrating excellent safety profiles of concurrent treatment with RT and ICIs. These findings will help to interpret the development of adverse events of the skin after radioimmunotherapy and guide the design of new clinical trials and clinical decision making in individual cases. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Laura Lansink Rotgerink
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany
| | - Hannah Felchle
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany
| | - Annette Feuchtinger
- Helmholtz Zentrum München - German Research Center for Environmental Health, Research Unit Analytical Pathology, Neuherberg, Germany
| | - Sophie M Nefzger
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany
| | - Caroline N Walther
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany
| | - Julia Gissibl
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany
| | - Katja Steiger
- Technical University of Munich, School of Medicine, Comparative Experimental Pathology, Munich, Germany.,Technical University of Munich, School of Medicine, Institute of Pathology, Munich, Germany.,German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas E Schmid
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany.,Helmholtz Zentrum München, Institute of Radiation Medicine, 85764, Neuherberg, Germany
| | - Simon Heidegger
- German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Technical University of Munich, School of Medicine, Department of Medicine III, Munich, Germany.,Technical University of Munich, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Munich, Germany
| | - Stephanie E Combs
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany.,German Cancer Consortium (DKTK), Partner-site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz Zentrum München, Institute of Radiation Medicine, 85764, Neuherberg, Germany
| | - Julius C Fischer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Radiation Oncology, Munich, Germany
| |
Collapse
|
42
|
Su YY, Liu YS, Hsiao CF, Hsu C, Chen LT. Trial Designs for Integrating Novel Therapeutics into the Management of Intermediate-Stage Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 9:517-536. [PMID: 35677350 PMCID: PMC9170176 DOI: 10.2147/jhc.s220978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/23/2022] [Indexed: 11/23/2022] Open
Abstract
Intermediate-stage hepatocellular carcinoma (HCC) consists of heterogeneous groups of patients in terms of tumor burden and organ function reserves. Although liver-directed therapy (LDT), including trans-catheter arterial chemoembolization, radiofrequency ablation or even surgical resection, is the recommended frontline treatment modality, intrahepatic and distant failures are common. The recent advances in systemic treatment, notably the introduction of immune checkpoint inhibitor (ICI)-based therapy, have significantly improved the objective tumor response rate, quality of response and overall survival in patients with recurrent and advanced HCC. Whether the combination of systemic treatment and LDT can further improve the outcome of patients with intermediate-stage HCC is currently being extensively evaluated. In this article, the recent clinical trials incorporating different ICI-based combinations with different LDT for intermediate-stage HCC were reviewed focusing on trial design issues, including patient selection, endpoint definition, and biomarker development. The strength and caveats of different combination strategies and novel biomarker development were discussed.
Collapse
Affiliation(s)
- Yung-Yeh Su
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Sheng Liu
- Department of Medical Imaging, National Cheng Kung University Hospital, College of Medical College, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chiun Hsu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
43
|
Bejjani AC, Finn RS. Hepatocellular Carcinoma: Pick the Winner-Tyrosine Kinase Inhibitor Versus Immuno-oncology Agent-Based Combinations. J Clin Oncol 2022; 40:2763-2773. [PMID: 35649192 DOI: 10.1200/jco.21.02605] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The treatment landscape for advanced hepatocellular carcinoma has changed dramatically over the past 4 years. We now have numerous options for patients in frontline, second-line, and beyond. The most significant impact has been the introduction of immunotherapy into our treatment paradigms. We now have regimens that induce consistent double-digit objective response rates and markedly improve overall survival (OS) with favorable side effect profiles. The combination of atezolizumab and bevacizumab has demonstrated that the combination of targeting programmed death-ligand 1 and the vascular endothelial growth factor axis can improve outcomes versus sorafenib in the IMBrave150 study. Results from the COSMIC-312 study evaluating the multikinase vascular endothelial growth factor receptor, hepatocyte growth factor receptor, and AXL tyrosine kinase receptor inhibitor cabozantinib in combination with atezolizumab improved progression-free survival versus sorafenib, but at this time, there is no improvement in OS and response rates were lower than expected. Additional data with similar combinations are awaited on the basis of encouraging early-phase data. In addition, the combination of cytotoxic T-lymphocyte-associated protein 4 and programmed cell death-1/programmed death-ligand 1 targeting is yielding similar promising early results, and the phase III HIMALAYA study met its primary end points of improving OS versus sorafenib for durvalumab plus tremelimumab and demonstrated noninferiority for single-agent durvalumab as well. However, this combination did not improve progression-free survival and objective response rates with this combination did not seem significantly different from that with single-agent durvalumab. Although there are still knowledge gaps in this rapidly changing landscape, we will address some of the important questions relevant to making therapeutic decisions in the management of advanced hepatocellular carcinoma in the modern era on the basis of our current knowledge of the safety and efficacy of these evolving regimens. The goal is to provide clinicians with the knowledge needed to optimize outcomes for their patients.
Collapse
Affiliation(s)
- Anthony C Bejjani
- Hematology-Oncology Division, Department of Medicine, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA
| | - Richard S Finn
- Division of Hematology/Oncology, Department of Medicine, Geffen School of Medicine at UCLA, Santa Monica, CA
| |
Collapse
|
44
|
Brown ZJ, Hewitt DB, Pawlik TM. Experimental drug treatments for hepatocellular carcinoma: Clinical trial failures 2015 to 2021. Expert Opin Investig Drugs 2022; 31:693-706. [PMID: 35580650 DOI: 10.1080/13543784.2022.2079491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a major health problem worldwide with limited systemic therapy options. Since the approval of sorafenib in 2008, no systemic therapy has provided a sustained/robust/survival benefit for patients with advanced HCC until recently. Many initially promising therapies have been trialed, but survival outcomes remained stagnant. As such, knowledge concerning previous treatment failures may help guide further areas of study, as well inform future therapeutic approaches. AREA COVERED This article reviews recent advances in the treatment of HCC. Despite some recent success, many systemic and locoregional therapies have failed to produce significant improvements in outcome. These treatment failures are examined and insight into pathways for future success are discussed. EXPERT OPINION Combination atezolizumab and bevacizumab has changed the landscape of systemic treatment for patients with HCC when it became the first therapy after demonstrating improve outcomes over sorafenib. Clinical trials in patients with advanced HCC have inherent difficulty with challenges to determine if a patient's declining liver function is secondary to disease progression, worsening cirrhosis, or drug toxicity, which may skew results. As we gain more knowledge of underlying genetic alterations behind the pathophysiology of the development of HCC, molecular markers may be identified to assist in predicting which patients would respond to a specific therapy.
Collapse
|
45
|
Immunotherapy-Based Treatments of Hepatocellular Carcinoma: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2022; 219:533-546. [PMID: 35506555 DOI: 10.2214/ajr.22.27633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The advent of immunotherapy for patients with hepatocellular carcinoma (HCC) has changed the treatment landscape and conferred survival benefit for patients with advanced HCC who typically have a very poor prognosis. The most pronounced improvements in response, as documented by standardized response criteria based on CT or MRI, have been achieved when immunotherapy is combined with other systemic or locoregional therapies. Immune checkpoint inhibitor treatments result in unique patterns on CT and MRI that challenge the application of conventional response criteria such as RECIST, modified RECIST, and European Association for the Study of the Liver criteria. Thus, newer criteria have been developed to gauge therapy response or disease progression for patients on immunotherapy, including immune-related RECIST (iRECIST) and immune-modified RECIST (imRECIST), though these remain unvalidated. In this review, we describe the current landscape of immunotherapeutic agents used for HCC, summarize results of published studies, review pathobiological mechanisms that provide a rationale for the use of these agents, and report on the status of response assessment for immunotherapy, either alone or in combination with other treatment options. Finally, consensus statements are provided to inform radiologists on essential considerations in the era of a rapidly changing treatment paradigm for patients with HCC.
Collapse
|
46
|
Sung PS, Park DJ, Roh PR, Mun KD, Cho SW, Lee GW, Jung ES, Lee SH, Jang JW, Bae SH, Choi JY, Choi J, Ahn J, Yoon SK. Intrahepatic inflammatory IgA +PD-L1 high monocytes in hepatocellular carcinoma development and immunotherapy. J Immunother Cancer 2022; 10:e003618. [PMID: 35577505 PMCID: PMC9114848 DOI: 10.1136/jitc-2021-003618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND IgA neutralizes pathogens to prevent infection at mucosal sites. However, emerging evidence shows that IgA contributes to aggravating inflammation or dismantling antitumor immunity in human diseased liver. The aim of this study was to elucidate the roles of inflammation-induced intrahepatic inflammatory IgA+ monocytes in the development of hepatocellular carcinoma (HCC). METHODS Patient cohorts including steatohepatitis cohort (n=61) and HCC cohort (n=271) were established. Patients' surgical and biopsy specimens were analyzed using immunohistochemistry. Multicolor flow cytometry was performed with a subset of patient samples. Single-cell RNA-Seq analysis was performed using Gene Expression Omnibus (GEO) datasets. Additionally, we performed in vitro differentiation of macrophages, stimulation with coated IgA, and RNA sequencing. Hepa1-6 cells and C57BL/6N mice were used to obtain HCC syngeneic mouse models. RESULTS Serum IgA levels were associated (p<0.001) with fibrosis progression and HCC development in patients with chronic liver diseases. Additionally, immunohistochemical staining of inflamed livers or HCC revealed IgA positivity in monocytes, with a correlation between IgA+ cell frequency and IgA serum levels. Compared with IgA- monocytes, intrahepatic IgA+ monocytes expressed higher levels of programmed death-ligand 1 (PD-L1) in inflamed livers and in HCC tumor microenvironment. Single-cell RNA sequencing using NCBI GEO database indicated an upregulation in inflammation-associated genes in the monocytes of patients whose plasma cell IGHA1 expression was greater than or equal to the median value. Bulk RNA sequencing demonstrated that in vitro stimulation of M2-polarized macrophages using coated IgA complex induced PD-L1 upregulation via YAP-mediated signaling. In vivo blockade of IgA signaling decreased the number of tumor-infiltrating IgA+PD-L1high macrophages and increased the number of CD69+CD8+ T cells to enhance antitumor effects in HCC mice models. CONCLUSIONS Overall, the findings of this study showed that serum IgA levels was correlated with intrahepatic and intratumoral infiltration of inflammatory IgA+PD-L1high monocytes in chronic liver diseases and HCC, providing potential therapeutic targets.
Collapse
Affiliation(s)
- Pil Soo Sung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, South Korea
| | - Dong Jun Park
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, South Korea
| | - Pu Reun Roh
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, South Korea
| | - Kyoung Do Mun
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, South Korea
| | - Sung Woo Cho
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, South Korea
| | - Gil Won Lee
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, South Korea
| | - Eun Sun Jung
- Department of Hospital Pathology, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Sung Hak Lee
- Department of Hospital Pathology, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Jang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Si Hyun Bae
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jonghwan Choi
- Department of Computer Science, Yonsei University, Seoul, South Korea
| | - Jaegyoon Ahn
- Department of Computer Science & Engineering, Incheon National University, Incheon, South Korea
| | - Seung Kew Yoon
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
- The Catholic University Liver Research Center, College of Medicine, Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
47
|
Interleukin-6 Is a Circulating Prognostic Biomarker for Hepatocellular Carcinoma Patients Treated with Combined Immunotherapy. Cancers (Basel) 2022; 14:cancers14040883. [PMID: 35205631 PMCID: PMC8870238 DOI: 10.3390/cancers14040883] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a major cause of cancer death worldwide. Due to its high recurrence rate, many HCC patients progress to an advanced stage and require systemic therapy. Among six available chemotherapy regimens for advanced HCC, atezolizumab/bevacizumab (Atezo/Bev) combination therapy is considered as a front-line therapy, but approximately 20% of patients are non-responders. Therefore, biomarker-driven prediction of non-responders facilitates precision medicine for HCC patients. To identify noninvasive circulating biomarkers predicting therapeutic response of Atezo/Bev, we performed simultaneous measurement of 34 plasma proteins and found that plasma IL-6 level was a significant predictor of non-responder for Atezo/Bev therapy. We subsequently confirmed that the progression-free survival and overall survival of the IL-6-high group were significantly shorter than those of the IL-6-low group. In conclusion, circulating IL-6 levels are a novel prognostic biomarker for advanced HCC patients who undergo combined immunotherapy. Abstract Atezolizumab/bevacizumab (Atezo/Bev) combination therapy has become a front-line therapy for advanced hepatocellular carcinoma (HCC), but approximately 20% of patients are nonresponders. We investigated circulating biomarkers to predict therapeutic outcomes. We performed simultaneous measurement of 34 proteins using a multiplex bead-based immunoassay in baseline plasma from 34 patients who underwent Atezo/Bev therapy as first- or second-line treatment. Logistic regression analysis showed that plasma IL-6 and interferon alpha (IFNα) levels were significant predictors of non-responders (odds ratio of 13.33 and FDR p = 0.021 for IL-6 and IFNα). The progression-free survival (PFS) and overall survival (OS) of patients with high IL-6 levels were significantly shorter than those of patients with low IL-6 levels. Next, we measured baseline plasma IL-6 levels in 64 HCC patients who underwent Atezo/Bev therapy by ELISA. The IL-6-high group showed higher female ratio, AST levels, tumor markers, Child–Pugh score, and vascular invasion ratio. The PFS and OS of the IL-6-high group were significantly shorter than those of the IL-6-low group. Multivariate Cox proportional hazards analysis showed that IL-6 level and age were independent risk factors for disease progression (hazard ratio of 2.785 and p = 0.015 for IL-6, and hazard ratio 0.306 and p = 0.03 for age). In conclusion, circulating IL-6 levels are a novel prognostic biomarker for advanced HCC patients who undergo combined immunotherapy.
Collapse
|
48
|
Ren Y, Guo Y, Chen L, Sun T, Zhang W, Sun B, Zhu L, Xiong F, Zheng C. Efficacy of Drug-Eluting Beads Transarterial Chemoembolization Plus Camrelizumab Compared With Conventional Transarterial Chemoembolization Plus Camrelizumab for Unresectable Hepatocellular Carcinoma. Cancer Control 2022; 29:10732748221076806. [PMID: 35343254 PMCID: PMC8958708 DOI: 10.1177/10732748221076806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objectives The purpose of this study was to compare the efficacy and safety of drug-eluting beads transarterial chemoembolization plus camrelizumab (D-TACE-C) with conventional transarterial chemoembolization plus camrelizumab (C-TACE-C) in the treatment of patients with unresectable hepatocellular carcinoma (HCC). Materials and Methods This was a retrospective study that evaluated the consecutive medical records of patients with unresectable HCC who had undergone D-TACE-C or C-TACE-C from April 2020 to August 2021. Efficacy of treatment was evaluated using tumor response, progression-free survival (PFS) and survival rates. The adverse events were recorded. Results A total of 54 patients were included in this study, including 27 patients who had received D-TACE-C treatment, and 27 patients who had received C-TACE-C treatment. The median PFS and DCR in the D-TACE-C group were significantly longer than those for the C-TACE-C group (PFS: 10 vs. 3 months, P=.017; DCR: 70.4% vs. 40.7%, P = .028). Cox regression analysis showed that D-TACE-C was the only protective factor for PFS. The 6-month and 12-month survival rates in D-TACE-C group and C-TACE-C group were 85.2% versus 79.4% (P = .646) and 65.2% versus 65.1% (P = .903), respectively. Reactive cutaneous capillary endothelial proliferation was the most common adverse event associated with the treatment. There was no significant difference in the adverse events related to TACE and camrelizumab between the two groups. No treatment-related deaths occurred in this study. Conclusions D-TACE-C is a safe and well-tolerated treatment, and may produce better PFS and tumor response in patients with unresectable HCC than C-TACE-C.
Collapse
Affiliation(s)
- Yanqiao Ren
- Department of Radiology, 36630Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yusheng Guo
- Department of Radiology, 36630Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lei Chen
- Department of Radiology, 36630Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tao Sun
- Department of Radiology, 36630Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Weihua Zhang
- Department of Radiology, 36630Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Bo Sun
- Department of Radiology, 36630Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Licheng Zhu
- Department of Radiology, 36630Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fu Xiong
- Department of Radiology, 36630Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, 36630Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
49
|
Brown ZJ, Hewitt DB, Pawlik TM. Combination therapies plus transarterial chemoembolization in hepatocellular carcinoma: a snapshot of clinical trial progress. Expert Opin Investig Drugs 2021; 31:379-391. [PMID: 34788184 DOI: 10.1080/13543784.2022.2008355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Unfortunately, some hepatocellular carcinoma (HCC) patients do not qualify for curative-intent treatments such as surgical resection or transplantation. Hence, locoregional treatments such as transarterial chemoembolization (TACE) remain instrumental in the treatment of HCC. Systemic therapy has improved over the past decade with the introduction of combination atezolizumab and bevacizumab as the new standard of care for advanced disease. These new therapies are currently under investigation in combination with TACE. AREA COVERED Combination therapies with TACE including systemic therapies, locoregional therapies, and immunotherapies are reviewed. EXPERT OPINION There has been limited progress in the management of advanced and intermediate HCC. Recent advances in the management of advanced disease with systemic therapy could be beneficial in combination with TACE for the treatment of intermediate stage disease. Immune based therapies are potentially beneficial in combination with TACE because TACE may produce increased antigen release and immune recognition.
Collapse
Affiliation(s)
- Zachary J Brown
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - D Brock Hewitt
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|