1
|
Samak DH, Abd-Ellatieff HA, Khalil RH, Saleh NA, Saleh HM. Mitigation of cadmium toxicity in African catfish using biological Nano chitosan: insights into biochemical, genotoxic, and histopathological effects. BMC Vet Res 2025; 21:278. [PMID: 40241168 PMCID: PMC12004861 DOI: 10.1186/s12917-025-04673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Cadmium is a highly toxicant heavy metal that poses serious risks to aquatic organisms, animals, and humans. Recent studies have investigated using biological chitosan nanoparticles (Bio-CHNPs) as a potential solution to alleviate the harmful effects of Cd exposure, particularly in aquaculture. Bio-CHNPs have gained attention for their applications in drug delivery and biomedical research, indicating their potential utility in addressing environmental toxicity. OBJECTIVE This research aims to explore the effectiveness of Bio-CHNPs in mitigating cadmium chloride (CdCL2) toxicity in African catfish (Clarias gariepinus). METHODS One hundred and twenty (n = 120) catfish were divided into 4 groups; G1 (control); G2, intoxicated with 10% LC50 of CdCL2; G3 received 3 g/kg of Bio-CNPs; G4, treated with 10% LC50 of CdCL2 and Bio-CNPs 3 g/kg feed. RESULTS CdCl2 exposure resulted in severe liver, intestine, and kidney damage, which was evidenced by alterations in biochemical parameters, hormonal imbalance, DNA damage, and micronucleus formation. Antioxidant defense mechanisms were compromised, as the activities of Superoxide Dismutase (SOD), Total Antioxidant Capacity (TAC), and Catalase (CAT) were reduced. mRNA expression levels of inflammatory cytokines such as IL-1β, IL-8, and LBP were also significantly elevated following CdCl2 exposure. Conversely, Bio-CHNPs treatment showed antioxidant and anti-inflammatory effects, greatly lowering the biochemical, genotoxic, and histopathological effects induced by CdCl2. CONCLUSION The outcomes of this study are indicative of the potential of Bio-CHNPs as a promising aquaculture feed supplement, with a dual advantage of antagonizing the toxicity of environmental pollutants like Cd and imparting antioxidant and immunomodulatory effects. Bio-CHNP supplementation can be a viable strategy for remedying aquatic environmental heavy metal pollution, with the ultimate safeguarding of human health and ecosystem balance.
Collapse
Affiliation(s)
- Dalia H Samak
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| | - Hoda A Abd-Ellatieff
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt.
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Nehad A Saleh
- Department of Animal Hygiene, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| | - Hamida M Saleh
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, El-Beheira, Egypt
| |
Collapse
|
2
|
Akinmolayan A, Papacosta AO, Lennon LT, Ellins EA, Halcox JPJ, Whincup PH, Wannamethee SG. Carotid Intima-Media Thickness, Carotid Distensibility, and Incident Heart Failure in Older Men: The British Regional Heart Study. J Am Heart Assoc 2025; 14:e037167. [PMID: 40118794 DOI: 10.1161/jaha.124.037167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/05/2024] [Indexed: 03/23/2025]
Abstract
BACKGROUND Carotid intima-media thickness (CIMT) and carotid distensibility are markers of arterial change; however, little is known of the association with incident heart failure (HF). We aimed to assess this. METHODS This was a longitudinal analysis of data from the British Regional Heart Study, a prospective cohort study. A total of 1631 men aged 71 to 92 years, without a diagnosis of HF at baseline, were included. Between 2010 and 2012, participants completed a questionnaire, underwent a physical examination, and provided a fasting blood sample. CIMT and carotid artery distension were measured, and carotid distensibility was calculated. Cox proportional hazards modeling was used to assess the multivariate-adjusted hazard ratios (HRs) of incident HF by quartiles of CIMT and distensibility, excluding men with prevalent myocardial infarction. RESULTS The values used in the analysis were adjusted for age, social class, smoking, physical activity, alcohol status, body mass index, use of statins and antihypertensives, prevalent diabetes and stroke, pulse pressure, and presence of atrial arrhythmias. Lower carotid distensibility (bottom quartile) and higher CIMT (top quartile) were associated with increased risk of incident HF (HR, 2.55 [95% CI, 1.24-5.24]; P=0.01; and HR, 2.20 [95% CI, 1.14-4.23]; P=0.02, respectively). CIMT but not carotid distensibility was associated with incident myocardial infarction. The association between carotid distensibility and incident HF persisted after adjustment for incident myocardial infarction and CIMT (HR, 2.53 [95% CI, 1.23-5.22]; P=0.01); however, the association between CIMT and incident HF was attenuated after this adjustment (HR, 1.64 [95% CI, 0.84-3.21]; P=0.15). CONCLUSIONS Lower carotid distensibility and higher CIMT were associated with an increased risk of incident HF, despite adjustment for incident myocardial infarction.
Collapse
Affiliation(s)
- Atinuke Akinmolayan
- Department of Primary Care and Population Health University College London London United Kingdom
| | - A Olia Papacosta
- Department of Primary Care and Population Health University College London London United Kingdom
| | - Lucy T Lennon
- Department of Primary Care and Population Health University College London London United Kingdom
| | | | - Julian P J Halcox
- Institute of Life Science, Swansea University Swansea United Kingdom
| | - Peter H Whincup
- Population Health Research Institute, St George's University of London London United Kingdom
| | - S Goya Wannamethee
- Department of Primary Care and Population Health University College London London United Kingdom
| |
Collapse
|
3
|
Ibrahim RE, Abdelwarith AA, Younis EM, Mohamed AAR, Khamis T, Osman A, Metwally MMM, Davies SJ, Abd-Elhakim YM. Carbonate alkalinity induces stress responses and renal and metabolic disorders in Nile tilapia: mitigation by camel whey protein hydrolysate diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:66. [PMID: 40080194 DOI: 10.1007/s10695-024-01442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/27/2024] [Indexed: 03/15/2025]
Abstract
Alkaline stress is a major concern in aquaculture that badly affects the aquatic species' health and hemostasis. This research investigated the effect of carbonate alkalinity exposure on the gills and kidney organs as important organs for hemostasis, as well as the ameliorative role of camel protein hydrolysates (CPH) as dietary additives against alkaline stress detrimental impacts in Nile tilapia (Oreochromis niloticus). The fish (n = 160) were divided into four groups (G1, G2, G3, and G4), with the control (G1) fed a basal diet, while G2 was fed a basal diet supplemented with 75 g CPH/kg and was reared in freshwater (carbonate alkalinity of 1.4 µmol/L, pH = 7.19). The G3 and G4 were reared in alkaline water (carbonate alkalinity of 23.8 µmol/L, pH = 8.65) and fed the same diets as G1 and G2 for 30 days, respectively. The fish were stocked under a water temperature of 26.4 ± 1.5 °C, and the diets were introduced to the fish three times daily at a rate of 4% of their body weight. The results of this research showed that alkaline exposure increased kidney function parameters (creatinine, urea, and uric acid), glucose, and cortisol levels in the exposed fish. Alkaline exposure reduced the blood electrolytes level (calcium, magnesium, sodium, potassium, and chloride) and branchial antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, and reduced glutathione) and elevated malondialdehyde level in the exposed fish. Significant downregulation of the branchial expression of Na+/K+ ATPase α-3 subunit (0.17-fold), calcium/calmodulin-dependant protein kinase 1 β (0.23 fold), chloride channel protein 2 (0.38-fold), solute carrier family 12 a 2 (0.33-fold), and solute carrier family 4 a 4 (0.21-fold) was in the fish-reared under carbonate alkalinity stress. Alkaline exposure induced severe histopathological changes in the gills and kidney tissue architecture including inflammatory, circulatory, degenerative, and progressive responses. Supplementation of the Nile tilapia diet with 75 g CPH/kg ameliorated renal function and balanced the blood electrolytes, glucose, and cortisol levels in the alkaline-exposed fish. Modulation of the branchial gene expression profile and improving the gills and kidney microstructure were consequences of feeding on CPH diets during alkaline stress situations. Overall, fortifying the Nile tilapia diets with 75 g CPH/kg helps the fish restore their hemostasis and metabolic status during alkaline stress exposure which enables the sustainable culture of this species in such conditions.
Collapse
Affiliation(s)
- Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, H91V8Y1, Ireland
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
4
|
Shaalan M, Mahboub HH, Abdelgawad AH, Abdelwarith AA, Younis EM, Elnegiry AA, Basher AW, El-Houseiny W, Shawky SM, Orabi SH, Davies SJ, Mahmoud YK. Dietary tea tree (Melaleucae Aetheroleum) oil fortifies growth, biochemical, immune-antioxidant trait, gene function, tissue reaction, and Aeromonas sobria resistance in Nile tilapia (Oreochromis niloticus). BMC Vet Res 2025; 21:1. [PMID: 39748405 PMCID: PMC11694458 DOI: 10.1186/s12917-024-04369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025] Open
Abstract
The current study had aimed to assess the long-term dietary supplementation with Melaleucae aetheroleum, tea tree essential oil (TTO). The impact on growth performance, biochemical indices, immune function, oxidant/antioxidant activity, gene expression, histopathology, and resistance against Aeromonas sobria in Nile tilapia (Oreochromis niloticus) was investigated. Four groups (with five replicates; G1 (control group, G2, G3, and G4) of Nile tilapia received diets enriched with TTO (doses of 0.0, 0.5, 1.0, and 2.0 mL/kg diet) for 60 days, then fish were challenged by A. sobria. Outcomes indicated an extensive elevation in growth metrics (final body weight, weight gain, SGR, feed intake and fish body protein). Similarly, the total blood protein, albumin, total globulin levels, Serum complement-3 levels, lysozyme activity, immunoglobulin M (IgM), nitric oxide, and phagocytic activity were significantly enhanced in all treatments, notably in the 2.0 mL TTO/kg fed groups compared to the control. Lower levels of urea, creatinine, AST, ALP, ALT, cortisol, glucose, triglycerides, cholesterol and body crude lipids were observed in the fish that were fed a 2.0 mL TTO/kg diet. Supplementing TTO at 2.0-mL /kg diet revealed the best results for elevating CAT, SOD, and GSH activities plus declining MDA value in hepatic homogenate. Additionally, dietary 2.0-mL TTO/kg showed the best outcomes for the intestinal morphometry plus maintaining the histological picture in spleen and liver. Concurrently, fish that were fed a 2.0 mL TTO/kg diet exhibited a substantial upregulation of TNF-α, IL-1β, IL-10, TFG-β, IFN-γ and BCL-2 genes in the liver, while, caspase-3, and BAX were downregulated. Furthermore, TTO-enriched diets enhanced the relative percentage survival post-A. sobria challenge plus enhanced the clinical picture in a dose-dependent manner. Taken together, the findings revealed that long-term exposure to dietary TTO fortified the physiological performance, oxidant/anti-oxidant stability, immune function, gene expression, histological picture, and resistance of Nile tilapia against A. sobria.
Collapse
Affiliation(s)
- Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia.
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Ahmed Hosny Abdelgawad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Aswan University, 81528, Aswan, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed A Elnegiry
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Aswan University, 81528, Aswan, Egypt
| | - Asmaa W Basher
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Sherif M Shawky
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Menofia, Egypt
| | - Sahar H Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897, Menofia, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Ryan Institute, College of Science and Engineering, Carna Research Station, University of Galway, Galway, Ireland
| | - Yasmina K Mahmoud
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
5
|
Mahboub HH, Yousefi M, Abdelgawad HA, Abdelwarith AA, Younis EM, Sakr E, Khamis T, Ismail SH, Abdel Rahman AN. Expression profiling of antimicrobial peptides and immune-related genes in Nile tilapia following Pseudomonas putida infection and nano-titanium dioxide gel exposure. FISH & SHELLFISH IMMUNOLOGY 2025; 156:110037. [PMID: 39577786 DOI: 10.1016/j.fsi.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Pseudomonas putida is a virulent bacterium that prompts major losses in fish. Recently, there has been a noticeable direction for utilizing nanomaterials in the aquaculture industry for sustaining fish health and performance. Hence, the present study is the first trial to investigate the antibacterial influence of nano titanium dioxide gel (NTG) as a watery addition for combating P. putida infection in Nile tilapia (Oreochromis niloticus). Further, antioxidant-immune capacity, and gene expression in the spleen including antimicrobial peptides and immune-related genes are assessed. Fish (n = 200; 47.50 ± 1.32 g of body weight) were assigned into four groups for 10 days [control, NTG (0.9 mg/L), P. putida, and NTG + P. putida]. Findings demonstrated that the infection by P. putida induced a decline in antioxidant immune indicators including catalase, glutathione peroxidase, and nitric oxide. Furthermore, a noteworthy rise in lipid peroxide (malondialdehyde), tumor necrosis factor-alpha (TNF-α), and stress indicator (glucose) levels was noticed. P. putida infection induced remarkable alterations in the expression of antimicrobial peptides genes [tilapia piscidin (TP3 and TP4), colony-stimulating factor 1 receptor, hepcidin-2, beta-defensin1, and neutrophil cytosolic factor 4] and immune-relevant genes [transforming growth factor beta, tumor necrosis factor receptor-associated factor 6, TNF-α, interleukins (IL-10 and IL-11)]. Notably, applying NTG regenerated all the negative consequences of P. putida infection. Inclusive, this study underscores the crucial role of NTG as a potent antibacterial and immune-antioxidant agent, highlighting its potential in protecting O. niloticus from P. putida infection and improving immune-antioxidant response.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, Miklukho-Maklaya St, Moscow, 117198, Russia.
| | - Hosny Ahmed Abdelgawad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Emad Sakr
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO Box 12588, Egypt
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
6
|
Nasr MM, Wahdan SA, El-Naga RN, Salama RM. Neuroprotective effect of empagliflozin against doxorubicin-induced chemobrain in rats: Interplay between SIRT-1/MuRF-1/PARP-1/NLRP3 signaling pathways and enhanced expression of miRNA-34a and LncRNA HOTAIR. Neurotoxicology 2024; 105:216-230. [PMID: 39426736 DOI: 10.1016/j.neuro.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Chemobrain, a challenging side effect of doxorubicin (DOX)-based chemotherapy, impairs cognitive abilities in cancer survivors. DOX triggers chemobrain via oxidative stress, leading to inflammation and apoptosis. Empagliflozin (EMPA), a sodium glucose co-transporter-2 inhibitor, demonstrated neuroprotective effects by reducing reactive oxygen species (ROS) and inflammation, but its protective mechanisms against DOX-induced chemobrain is not fully known. Thus, this study aimed to investigate EMPA's neuroprotective effects on DOX-induced chemobrain in rats and to uncover the underlying protective mechanisms. Fifty male Wistar rats were divided into control, EMPA, DOX (2 mg/kg, IP, once/week for 4 weeks), and two treated groups (DOX+ EMPA 5 and 10 mg/kg/day, PO, for 4 weeks). Behavioral tests showed improved memory, motor performance, and reduced anxiety in EMPA-treated groups compared to DOX, with superior results at the higher dose. Histopathological analysis revealed increased intact neurons in the cortex and hippocampus in EMPA-treated groups, with 346.4 % increase in CA3 (p < 0.0001), 19.1 % in dentate gyrus (p = 0.0006), and 362.6 % in cortex (p < 0.0001) in the high-dose EMPA group. Biochemical investigations of the high-dose EMPA group revealed significant decreases in inflammatory and apoptotic markers (JNK/PARP-1/NLRP3/MuRF-1/FOXO-1), increased SIRT-1 protein expression by 389.9 % (p < 0.0001), and reduced miRNA-34a and LncRNA HOTAIR gene expression (50.4 % and 53.4 % respectively, p < 0.0001) relative to DOX group. Conclusively, EMPA demonstrated superior behavioral and histopathological outcomes particularly at higher dose, positioning it as a promising neuroprotective candidate against DOX-induced chemobrain, possibly through modulating SIRT-1, NF-κb, NLRP3, and oxidative stress pathways.
Collapse
Affiliation(s)
- Merihane M Nasr
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
7
|
Adeshina I, Paray BA, Bhat EA, Sherzada S, Fawole OO, Bawa DJ, da Cruz TP, Tiamiyu LO. Dietary β-Mannanase Affects the Growth, Antioxidant, and Immunes Responses of African Catfish, Clarias gariepinus, and Its Challenge Against Aeromonas hydrophila Infection. AQUACULTURE NUTRITION 2024; 2024:5263495. [PMID: 39555532 PMCID: PMC11535281 DOI: 10.1155/2024/5263495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024]
Abstract
One of the most farmed fishes is the African catfish, Clarias gariepinus. Its production has increased by 20% annually on average during the last 20 years, but the occurrence of fish diseases, especially bacterial such as Aeromonas hydrophila infections, is hindering its activities. Also, the incorporation of plant-derived substances in aquafeeds is limited since they frequently contain different antinutritional factors, like nonstarch polysaccharides (NSPs). However, supplementing fish diets with β-mannanase could increase growth, antioxidants, and immunity. Despite the advantage of β-mannanase, its effects on growth, digestive enzymes, antioxidants, and immunity in African catfish need to be elucidated. This study examined the effects of dietary β-mannanase on the growth performance, liver enzymes, antioxidant profiles, immunity, and protection of African catfish, C. gariepinus, against A. hydrophila infection. Five isonitrogenous diets were prepared to have 400 g/kg crude protein and supplemented with β-mannanase at 0, 1500, 3000, 4500, or 6000 thermostable endo, 1,4-β-mannanase units (TMUs)/kg diet and fed to 300 juveniles of the African catfish, C. gariepinus (mean weight 12.1 ± 0.1 g) for 12 weeks. Then, 10 fish from each tank received an intraperitoneal injection of 0.1 mL of A. hydrophila (5.0 × 105 CFU/mL) and observed for 14 days. Results showed dietary β-mannanase levels considerably improved growth performance but did not affect fish survival. Also, amylase, protease, and lipase levels were significantly promoted in the fish fed with β-mannanase-fortified diets than the control group (p < 0.05). Enhanced gut villi and intestinal absorption areas, haematlogical profiles, and liver enzymes but reduced gut viscosity were observed in fish-fed β-mannanase-fortified diets (p < 0.05). In a dose-dependent order, including β-mannanase in the meals of African catfish raised the levels of glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutamate cysteine ligase (GCL) activities and decreased the malondialdehyde (MDA) values in African catfish (p < 0.05). Also, fish immunity was greatly (p < 0.05) enhanced due to supplementation of the diet with β-mannanase. In addition, fish-fed diets comprising 6000 TMU β-mannanase/kg diet showed the lowest rates of fish mortality (7.5%) (p < 0.05). Therefore, feeding African catfish, Clarias gariepinus, β-mannanase enhanced growth performance, increased activity of digestive enzymes, gut morphology, enhanced generation of short-chain fatty acids, digesta potential of hydrogen (pH), and improved antioxidant profiles and immunity at the optimum dose of 5800 TMU/kg diet. Additionally, β-mannanase protected African catfish against A. hydrophila infection.
Collapse
Affiliation(s)
- Ibrahim Adeshina
- School of Aquaculture, National University of Agriculture, Port Nove, Benin
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Eijaz Ahmed Bhat
- Microbiology/Molecular Physiology of Prokaryotes, Institute of Biology II, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - Shahid Sherzada
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Olaolu O. Fawole
- Department of Fisheries and Aquaculture, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Dalhatu J. Bawa
- Department of Forestry and Fisheries, Kebbi State University of Science and Technology Aliero, Lagos, Nigeria
| | - Thais Pereira da Cruz
- Animal Science Graduate Degree Program, State University of Maringa, Maringa, PR, Brazil
| | - Lateef O. Tiamiyu
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
8
|
Chauhan S, Kaur H, Aggarwal R, Kaur P, Bains K. Exploring the impact of cooking techniques and storage conditions on resistant starch levels in mung beans and its effect upon blood glucose level and lipid profile in vivo. Front Nutr 2024; 11:1424112. [PMID: 39385790 PMCID: PMC11462625 DOI: 10.3389/fnut.2024.1424112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Mung beans contain various antinutritional components. Processing and cooking methods can reduce these antinutritional factors and increase the availability and digestibility of nutrients. Resistant starch is also known as dietary fiber, which helps to reduce the cholesterol and glucose level in blood. It is formed during cooking and storage of food at low temperature. Objectives This study aimed to assess the effects of cooking and storage temperature on the formation of resistant starch in processed mung bean, as well as its effect on blood glucose levels and lipid profile in humans and rats. Methods The common cooking methods namely boiling, steaming after germination, roasting, and pressure cooking were chosen. The cooked samples were stored at different temperatures including freshly prepared within 1 h (T1), stored for 24 h at room temperature (20-22°C) (T2), kept at 4°C for 24 h (T3), and reheated after storing at 4°C for 24 h (T4). Results The study revealed that germinated-steamed mung beans had significantly higher levels of resistant starch (27.63 ± 0.76), and lower level of glycemic index (26.28 ± 3.08) and amylose (40.91 ± 0.06) when stored at 4°C for 24 h (T3) followed by (T2), (T4), and (T1) as compared to other cooking methods (boiling, pressure cooking, and roasting). The germinated-steamed mung beans (T1) resulted in 96% decline in blood glucose parameters of rats (36 Wistar albino rats aged 2 to 3 months were selected) than the control group as observed in 28 days diet intervention (100 mg/kg resistant starch orally). Conclusion There is a need to make people aware about the selection of appropriate cooking (steamed after germination) and storage methods (T3) to increase the RS content and to lower the glycemic index of food at domestic level.
Collapse
Affiliation(s)
| | | | | | - Prabhjot Kaur
- Department of Food and Nutrition, Punjab Agricultural University, Ludhiana, Punjab, India
| | | |
Collapse
|
9
|
El-Houseiny W, Abdelaziz R, Mansour AT, Alqhtani HA, Bin-Jumah MN, Bayoumi Y, Arisha AH, Al-Sagheer AA, El-Murr AE. Effects of α-sitosterol on growth, hematobiochemical profiles, immune-antioxidant resilience, histopathological features and expression of immune apoptotic genes of Nile tilapia, Oreochromis niloticus, challenged with Candida albicans. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111035. [PMID: 39313020 DOI: 10.1016/j.cbpb.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
In this study, the effect of the Streptomyces misakiensis metabolite (α- sitosterol, 0, 20, 40, 60, and 80 mg/kg) dietary supplementation on growth performance, antioxidant-immune stability and Candida albicans resistance of Nile tilapia was evaluated. The results revealed that the incorporation of α-sitosterol at doses of 60 and 80 mg/kg into the diet significantly improved the growth rate of Nile tilapia. The fish receiving 80 mg/kg showed an increased level of high-density lipoprotein, total protein, globulin, and albumin, and significantly reduced levels of indicators of hepato-renal damage, glucose, triglycerides, low-density lipoprotein, and total cholesterol. Dietary α-sitosterol induced a considerable increase in hepatopancreas glutathione peroxidase, superoxide dismutase and catalase activities and a significant drop in malondialdehyde levels. Supplementing the diet with 80 mg/kg of α-sitosterol increased nitric oxide, complement-3, nitro blue tetrazolium levels, lysozyme, and phagocytic activities. In particular, supplementing with α-sitosterol at 60-80 mg/kg of diet significantly enhanced the expression of pro/anti-inflammatory markers (il1b, il10, tgfb, ifng, tnfa and il8) after the C. albicans challenge. Also, there was a decrease in cumulative mortality percent, pro-apoptotic markers (casp3, bax and hsp70) and an increase in anti-apoptotic indicators (bcl2). Interestingly, following the C. albicans challenge, fish that received 0 and 20 mg α-sitosterol/kg exhibited significant inflammation in the hepatopancreas, spleen, and intestine. On the other hand, inflammation could be alleviated by feeding 60-80 mg α-sitosterol/kg. Due to these findings, α-sitosterol could be an innovative option to enhance growth, general physiological status, immune service, and antifungal resistance of Nile tilapia against C. albicans.
Collapse
Affiliation(s)
- Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and FoodSciences, King Faisal University, Al-Ahsa, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha, Alexandria University, Alexandria, Egypt.
| | - Haifa A Alqhtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - May Nasser Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia; Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Yasmin Bayoumi
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University Zagazig, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Adham A Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Abd Elhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Reda RM, El-Murr A, Abdel-Basset NA, Metwally MMM, Ibrahim RE. Implications of ammonia stress for the pathogenicity of Shewanella spp. in Oreochromis niloticus: effects on hematological, biochemical, immunological, and histopathological parameters. BMC Vet Res 2024; 20:324. [PMID: 39026304 PMCID: PMC11256577 DOI: 10.1186/s12917-024-04175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Environmental stressors (such as ammonia) in aquaculture could increase the risk of pathogenicity, posing a more severe threat to farmed fish. The aim of this study was to investigate the effects of ammonia stress on the pathogenicity of Shewanella spp. in Oreochromis niloticus. First, a 96-hour static test was used to determine the median lethal concentration (LC50) of unionized ammonia to Nile tilapia. After 96 h of exposure, the Un-ionized ammonia (UIA) LC50 was estimated to be 4.26 mg/L. Second, an experiment was conducted to test the effect of unionized ammonia stress on the pathogenicity of Shewanella spp. in O. niloticus for 30 days. A study involved 180 fish divided into six groups, with the first group serving as a control. The second group (AMN1/10) and the third group (AMN1/20) were not challenged and were exposed to 1/10 (0.42 mg/L) and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. Then 0.2 mL (0.14 × 105) of Shewanella spp. was intraperitoneally injected into the fourth (SH), fifth (SH + AMN1/10), and sixth (SH + AMN1/20) groups, which were subjected to 0, 1/10 (0.42 mg/L), and 1/20 (0.21 mg/L) of the 96-hour LC50 of UIA, respectively. The survival rate, hematological indices, immunological parameters, and antioxidant activity of the fish significantly decreased when they were exposed to ammonia and Shewanella infection separately or together. Histopathological changes were also observed in the kidney and liver. Furthermore, both individual and combined exposures significantly altered renal and hepatic function, with notable increases in glucose and cortisol levels, as well as in the expression of proinflammatory cytokine genes (TNF-α and IL-1ß). However, the detrimental effects of co-exposure to ammonia stress and Shewanella infection were greater than those of separate exposures. As a result, we may say that increased ammonia concentrations enhance the infection of Shewanella spp. These findings could contribute to a better understanding of Shewanella infection in Nile tilapia.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Nehal A Abdel-Basset
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
11
|
Shaalan M, Elbealy MA, Darwish MIM, Younis EM, Abdelwarith AA, Abdelaty AI, Davies SJ, Ibrahim RE, Rahman ANA. Toxicological insight of metiram: immuno-oxidative, neuro-behavioral, and hemato-biochemical changes during acute exposure of Nile tilapia (Oreochromis niloticus). BMC Vet Res 2024; 20:303. [PMID: 38982442 PMCID: PMC11232312 DOI: 10.1186/s12917-024-04126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND The inappropriate use of pesticides including fungicides creates severe biological hazards that can endanger fish health and impede sustainable aquaculture. OBJECTIVE This study investigated the negative impacts of metiram (MET), a fungicide on the health status of Nile tilapia (Oreochromis niloticus) for a 96-hour duration as an acute exposure in a static renewal system. METHODS Three hundred fish (average body weight: 37.50 ± 0.22 g) were assigned into six groups (50 fish/group) with five replicates (10 fish/replicate). Fish were exposed to various six concentrations (0, 1.5, 3, 4.5, 6, and 7.5 mg/L) of MET as a water exposure to for 96-hour without water exchange. The fish's behavior, clinical signs, and mortalities were documented every day of the exposure period. Additionally, MET's impact on blood profile, stress biomarkers, hepato-renal functions, immune-antioxidant status, and brain biomarker were closely monitored. RESULTS The lethal concentration (LC50) of MET estimated using Finney's probit technique was 3.77 mg/L. The fish's behavior was severely impacted by acute MET exposure, as clear by an increase in surfacing, loss of equilibrium, unusual swimming, laterality, abnormal movement, and a decline in aggressive behaviors. The survivability and hematological indices (white and red blood cell count, differential white blood cell count, hematocrit value, and hemoglobin) were significantly reduced in a concentration-dependent manner following MET exposure. Acute exposure to MET (1.5-7.5 mg/L) incrementally increased stress biomarkers (nor-epinephrine, cortisol, and glucose), lipid peroxides (malondialdehyde), and brain oxidative DNA damage biomarker (8-hydroxy-2-deoxyguanosine). A hepato-renal dysfunction by MET exposure (4.5-7.5 mg/L) was evidenced by the significant increase in the alanine and aspartate aminotransferases and creatinine values. Moreover, a substantial decline in the immune parameters (lysozyme, complement 3, serum bactericidal activity, and antiprotease activity) and antioxidant variables (total antioxidant capacity, superoxide dismutase, and glutathione peroxidase) resulted from acute MET exposure. CONCLUSION According to these findings, the 96-hour LC50 of MET in Nile tilapia was 3.77 mg/L. MET exposure triggered toxicity in Nile tilapia, as seen by alterations in fish neuro-behaviors, immune-antioxidant status, hepato-renal functioning, and signifying physiological disturbances. This study emphasizes the potential ecological dangers provoked by MET as an environmental contaminant to aquatic systems. However, the long-term MET exposure is still needed to be investigated.
Collapse
Affiliation(s)
- Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
- Polymer Institute, Slovak academy of sciences, Dúbravská cesta 9, Bratislava, 84541, Slovakia.
| | - Mohamed A Elbealy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Mahmoud I M Darwish
- Department of Biochemistry and Molecular Biology, Medicine Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Asmaa I Abdelaty
- Department of Behaviour and Management of Animal, Poultry and Aquatics, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Ryan Institute, College of Science and Engineering, Carna Research Station, University of Galway, Galway, H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
12
|
Reda RM, El-Murr A, Abdel-Basset NA, Metwally MMM, Ibrahim RE. Infection dynamics of Shewanella spp. in Nile tilapia under varied water temperatures: A hematological, biochemical, antioxidant-immune analysis, and histopathological alterations. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109588. [PMID: 38677630 DOI: 10.1016/j.fsi.2024.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
In aquaculture, fluctuating water temperatures can act as a potent stressor, influencing the virulence and transmission dynamics of pathogenic bacteria, potentially triggering outbreaks and impacting fish health. The purpose of this work was to examine the impact of Shewanella spp. infection on hematological, biochemical, and antioxidant-immune parameters of Nile tilapia (Oreochromis niloticus) under different water temperatures. For this purpose, 180 fish were divided into 6 groups in triplicate (30 fish per group; 10 fish per replicate). Group 1 (G1), G2, and G3 were reared at varying water temperatures (22 °C, 28 °C, and 31 °C, respectively) without infection. While G4, G5, and G6 were IP-injected with 0.2 mL of Shewanella spp. (0.14 × 105) and reared at 22 °C, 28 °C, and 31 °C, respectively. Shewanella spp. infection induced significant lowering (p < 0.05) in hematological parameters (red and white blood cells, hemoglobin, and packed cell volume%) and immune-antioxidant responses (phagocytic activity%, phagocytic index, lysozyme, nitric oxide), total antioxidant capacity, catalase, and reduced glutathione, especially at 22 °C. Moreover, a significant increase (p < 0.05) in the hepato-renal function indicators (alanine aminotransferase, aspartate aminotransferase, urea, and creatinine), stress biomarkers (glucose and cortisol), malondialdehyde, and pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) were the consequences of the Shewanella spp. infection, especially at 22 °C. The Shewanella spp. infection exhibited marked histopathological changes in the hepatic and renal tissues. Worthily, Shewanella spp. can cause detrimental alterations in Nile tilapia's hematological, biochemical, and antioxidant-immune parameters at various water temperatures, but the major detrimental changes were observed at a water temperature of 22 °C. Consequently, we can conclude that the infection dynamics of Shewanella spp. are exaggerated at 22 °C. These outcomes could help in understanding the nature of such an infection in Nile tilapia.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Abdelhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Nehal A Abdel-Basset
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt; Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sidr, Egypt
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| |
Collapse
|
13
|
Abdelaziz R, Elsheshtawy HM, El-Houseiny W, Aloufi AS, Alwutayd KM, Mansour AT, Hadad G, Arisha AH, El-Murr AE, M Yassin A. A novel metabolite of Streptomyces coeruleorubidus exhibits antibacterial activity against Streptococcus agalactiae through modulation of physiological performance, inflammatory cytokines, apoptosis, and oxidative stress-correlated gene expressions in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109496. [PMID: 38461875 DOI: 10.1016/j.fsi.2024.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Using the unique structures found in natural materials to produce new antibacterial drugs is crucial. Actinobacteria is well-known for its ability to produce naturally occurring chemicals with a variety of structural features that can be used as weapons against infectious bacteria. In the present study, the Streptomyces coeruleorubidus metabolites were characterized and their efficacy in suppressing Streptococcus agalactiae growth was carried out both in vitro and in vivo. The metabolites of S. coeruleorubidus were purified and identified as octasiloxane-hexadecamethyl (OHM). In vivo antibacterial activity of OHM revealed an inhibitory minimum concentration value of 0.5 μg/ml against S. agalactiae and induced ultrastructural cell changes revealed by scanning electron microscope. The safe concentration of OHM was determined as 0.8 mg/L for Nile tilapia. Four in vivo treatments were treated with 0 and 0.8 mg/L OHM and with or without challenge by S. agalactiae (1 × 107 CFU/mL) named control, OHM, S. agalactiae, and S. agalactiae + OHM groups. The OHM treatment improved the survival of Nile tilapia by 33.33% than S. agalactiae challenge group. Waterborne OHM treatment significantly mitigated the deleterious effects of S. agalactiae on hematological, hepato-renal functions, stress indicators, and antioxidant balance. OHM significantly alleviated nitric oxide levels, complement 3, IgM, and lysozyme activity, downregulation of liver antioxidant genes expression in S. agalactiae group. Furthermore, the addition of OHM to challenged fish with S. agalactiae-significantly reversed dramatic negative regulation of inflammatory, apoptosis, and immune related gene expression (caspase-3, bax, pcna, tnf-α, ifn-γ, il-8 il-1β, il-10, tgf-β, and bcl-2 in the Nile tilapia spleen. Additionally, the damaged hepatic and splenic structure induced by bacterial infection was restored with OHM treatment. Finally, S. coeruleorubidus metabolites (mainly OHM) revealed in vitro and in vivo antibacterial activity and showed alleviated effects on the physiological status of S. agalactiae infected tilapia.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassnaa Mahmoud Elsheshtawy
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ghada Hadad
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abd Elhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany M Yassin
- Laboratories Unit, Microbiology Department, Zagazig Univeristy Hospiltals, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Anand K, Walia GK, Mandal S, Menon JS, Gupta R, Tandon N, Narayan KMV, Ali MK, Mohan V, Schwartz JD, Prabhakaran D. Longitudinal associations between ambient PM 2.5 exposure and lipid levels in two Indian cities. Environ Epidemiol 2024; 8:e295. [PMID: 38617424 PMCID: PMC11008625 DOI: 10.1097/ee9.0000000000000295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/10/2024] [Indexed: 04/16/2024] Open
Abstract
Background Exposure to ambient PM2.5 is known to affect lipid metabolism through systemic inflammation and oxidative stress. Evidence from developing countries, such as India with high levels of ambient PM2.5 and distinct lipid profiles, is sparse. Methods Longitudinal nonlinear mixed-effects analysis was conducted on >10,000 participants of Centre for cArdiometabolic Risk Reduction in South Asia (CARRS) cohort in Chennai and Delhi, India. We examined associations between 1-month and 1-year average ambient PM2.5 exposure derived from the spatiotemporal model and lipid levels (total cholesterol [TC], triglycerides [TRIG], high-density lipoprotein cholesterol [HDL-C], and low-density lipoprotein cholesterol [LDL-C]) measured longitudinally, adjusting for residential and neighborhood-level confounders. Results The mean annual exposure in Chennai and Delhi was 40 and 102 μg/m3 respectively. Elevated ambient PM2.5 levels were associated with an increase in LDL-C and TC at levels up to 100 µg/m3 in both cities and beyond 125 µg/m3 in Delhi. TRIG levels in Chennai increased until 40 µg/m3 for both short- and long-term exposures, then stabilized or declined, while in Delhi, there was a consistent rise with increasing annual exposures. HDL-C showed an increase in both cities against monthly average exposure. HDL-C decreased slightly in Chennai with an increase in long-term exposure, whereas it decreased beyond 130 µg/m3 in Delhi. Conclusion These findings demonstrate diverse associations between a wide range of ambient PM2.5 and lipid levels in an understudied South Asian population. Further research is needed to establish causality and develop targeted interventions to mitigate the impact of air pollution on lipid metabolism and cardiovascular health.
Collapse
Affiliation(s)
- Kritika Anand
- Centre for Chronic Disease Control, New Delhi, India
| | | | | | - Jyothi S. Menon
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, Gurugram, India
| | - Ruby Gupta
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, Gurugram, India
| | - Nikhil Tandon
- All India Institute of Medical Sciences, New Delhi, India
| | - K. M. Venkat Narayan
- Emory Global Diabetes Research Center of the Woodruff Health Sciences Center, Atlanta, Georgia
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Mohammed K. Ali
- Emory Global Diabetes Research Center of the Woodruff Health Sciences Center, Atlanta, Georgia
- Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Joel D. Schwartz
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Dorairaj Prabhakaran
- Centre for Chronic Disease Control, New Delhi, India
- Public Health Foundation of India, Gurugram, India
| |
Collapse
|
15
|
Rahman ANA, Altohamy DE, Elshopakey GE, Abdelwarith AA, Younis EM, Elseddawy NM, Elgamal A, Bazeed SM, Khamis T, Davies SJ, Ibrahim RE. Potential role of dietary Boswellia serrata resin against mancozeb fungicide-induced immune-antioxidant suppression, histopathological alterations, and genotoxicity in Nile tilapia, Oreochromis niloticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106738. [PMID: 37922777 DOI: 10.1016/j.aquatox.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/14/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κβ), transforming growth factor-beta (TGF-β), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1β and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, PO Box 35516, Mansoura, Dakahlia, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Nora M Elseddawy
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Aya Elgamal
- Department of Animal Histology and Anatomy, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Shefaa M Bazeed
- Department of Biochemistry and Animal Physiology, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway H91V8Y1, Ireland
| | - Rowida E Ibrahim
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Egypt.
| |
Collapse
|
16
|
Mansour AT, Amen RM, Mahboub HH, Shawky SM, Orabi SH, Ramah A, Hamed HS. Exposure to oxyfluorfen-induced hematobiochemical alterations, oxidative stress, genotoxicity, and disruption of sex hormones in male African catfish and the potential to confront by Chlorella vulgaris. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109583. [PMID: 36828347 DOI: 10.1016/j.cbpc.2023.109583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
The present study evaluated the effect of chronic exposure to oxyfluorfen (OXY) on different physiological responses of male African catfish, Clarias gariepinus, and the ameliorative effect of Chlorella vulgaris. The fish (160 ± 5.10 g) were exposed to 1/20 LC50 of OXY (0.58 mg/L) for 60 consecutive days with or without co-administration of C. vulgaris (25 g/kg diet) in triplicate groups. The results revealed that chronic exposure to a sublethal level of OXY induced severe anemia and leukopenia. OXY-exposed fish experienced hypoproteinemia, marked lower AchE levels, and a significant increase in glucose, liver, and kidney function biomarkers. The DNA fragmentation of the liver increased by 15 % in fish compared to the control. On the other hand, lipid peroxidation, superoxide dismutase, and catalase activities were markedly increased in the liver and testes homogenates of the OXY-exposed fish. Meanwhile, total antioxidant capacity and glutathione S-transferase levels declined in the same tissues. Exposure to OXY induced a significant reduction in testosterone and luteinizing hormone levels and a significant increase in follicle stimulating hormone and estradiol. Meanwhile, C. vulgaris dietary supplementation succeeded in alleviating the negative impact of OXY on hematobiochemical parameters and restoring the antioxidant balance in the liver and testes. Furthermore, it ameliorated endocrine disruption and repaired sex hormone levels. In conclusion, exposure to OXY could induce systemic stress, oxidative stress, and endocrine disruption in male C. gariepinus. The dietary supplementation of C. vulgaris could be a potential protective strategy against the toxicity of OXY.
Collapse
Affiliation(s)
- Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt.
| | - Rehab M Amen
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sherif M Shawky
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt
| | - Sahar H Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt
| | - Amany Ramah
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192, Japan; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia 13518, Egypt
| | - Heba S Hamed
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt..
| |
Collapse
|
17
|
Adeshina I, Akpoilih BU, Tiamiyu LO, Badmos AA, Emikpe BO, Abdel-Tawwab M. Effects of dietary supplementation with microbial phytase on the growth, bone minerals, antioxidant status, innate immunity and disease resistance of African catfish fed on high soybean meal-based diets. J Anim Physiol Anim Nutr (Berl) 2023; 107:733-745. [PMID: 35979610 DOI: 10.1111/jpn.13765] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/30/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Abstract
The microbial phytase, derived from Buttiauxella gaviniae, Yersinia mollarettiv and Hafnia spp., is proven to be safe for avian and porcine feeding and promotes their overall growth performance. Here, we have evaluated microbial phytase's effects on the growth, bone mineral content, antioxidant status, immune responses and the resistance of African catfish (Clarias gariepinus) fed with high soybean meal-based diets against Aeromonas hydrophila infection. Five isonitrogenous diets (40% protein) were supplemented with different levels of microbial phytase ranging from 0 as a control to 250, 500, 750 and 1000 FTU/kg diet. African catfish (n = 300; 8.5 ± 0.3 g) were allocated in 15 50-L tanks (in triplicates) and were fed on the prepared tested diets for 12 weeks. After the end of the feeding period of 12 weeks, 10 fish from each replicate was intraperitoneally infected with A. hydrophila (0.5 × 105 CFU/ml) and monitored for 14 days. Dietary phytase levels linearly and quadratically improved the growth performance of African catfish and stimulated feed intake. Bone levels of calcium, phosphorus, magnesium and zinc were also positively modulated in phytase-fed fish, especially at 750-1000 FTU/kg diet. Similarly, counts of red and white blood cells as well as haemoglobin, packed cells volume, platelets, lymphocytes and heterocytes were significantly modulated in all fish fed with phytase-supplemented diets. Higher levels of serum total protein, albumin and globulin were also observed in fish fed with a 750-1000 FTU/kg diet of phytase. Conversely, aspartate and alanine aminotransferase activities were lower in fish fed with a 750-1000 FTU/kg diet of phytase, compared to those fed the control diet. Moreover, antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), reduced glutathione levels and immune responses (lysozyme, respiratory burst, protease and alkaline phosphatase activities) biomarkers were linearly and quadratically elevated, while malondialdehyde values were linearly and quadratically decreased in fish groups fed with phytase-based diets. After administering A. hydrophila, 60.0% of the fish fed the control diet perished, while no mortalities were observed in fish fed with 750-1000 FTU/kg diets. Taken together, the current study reveals that dietary phytase could improve the growth performance, blood profile, bone mineralization, antioxidant activities, immunity and overall protection of African catfish against A. hydrophila infection. Dietary phytase may be efficiently used in the feeding of African catfish to enhance their overall performance and mitigate health conditions with optimum level of 900 FTU/kg diet.
Collapse
Affiliation(s)
- Ibrahim Adeshina
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | - Benjamin U Akpoilih
- Department of Fisheries, University of Port Harcourt, Port Harcourt, Nigeria
| | - Lateef O Tiamiyu
- Department of Aquaculture and Fisheries, University of Ilorin, Ilorin, Nigeria
| | | | - Benjamin O Emikpe
- Department of Veterinary Pathology, University of Ibadan, Ibadan, Nigeria
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| |
Collapse
|
18
|
Antioxidant, Immunostimulant, and Growth-Promoting Effects of Dietary Annona squamosa Leaf Extract on Nile Tilapia, Oreochromis niloticus, and Its Tolerance to Thermal Stress and Aeromonas sobria Infection. Animals (Basel) 2023; 13:ani13040746. [PMID: 36830534 PMCID: PMC9952179 DOI: 10.3390/ani13040746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Plant extracts are a phytochemically-rich alternative to antibiotic and synthetic feed additives, with high systemic bioactivity in animals. The present study aimed to evaluate the effect of a hydroalcoholic extract of custard apple (Annona squamosa) leaf (ASLE) on the growth, hematobiochemical parameters, digestive enzyme activities, redox status, nonspecific immune response, and cold and bacterial infection tolerance in Nile tilapia (Oreochromis niloticus). A total of 300 Nile tilapia fingerlings (11.87 ± 0.48 g) were fed ASLE-supplemented diets at increasing levels of 0, 5, 10, 15, and 20 g/kg for 60 days. At the end of the feeding period, the fish were experimentally challenged with cold water stress or Aeromonas sobria, and mortalities were recorded for 10 days. The results revealed that the growth performance and feed conversion ratio were significantly improved with an increasing level of ASLE supplementation. The hematologic profile and hepato-renal functions were retained within a healthy range in the various groups supplemented with an ASLE diet. Antioxidant status was significantly improved in the serum of fish fed ASLE-supplemented diets, in terms of superoxide dismutase (SOD), catalase (CAT) activities, reduced glutathione, and total antioxidant capacity. Meanwhile, the myeloperoxidase (MPO) and malondialdehyde (MDA) levels decreased significantly. Similarly, there was a noticeable improvement in the hepatic CAT and SOD activities and a reduction of hepatic MDA. Marked improvements in lysozyme activity, nitric oxide production, complement3 level, and phagocytic activity were recorded in groups fed ASLE-supplemented diets, which peaked with the 20 g ASLE/kg diet. Moreover, the serum glucose and cortisol levels significantly declined in groups fed ASLE at levels of 15-20 g/kg compared to the other groups. Supplementation with ASLE increased the activities of protease, lipase, and α-amylase. ASLE supplementation at a concentration of 10-20 g/kg diet enhanced the resistance of Nile tilapia to A. sobria infection. According to this study, ASLE supplementation enhanced the antioxidant balance, non-specific immune response, physiological status, resistance against infection, and growth performance of Nile tilapia at supplementation levels of 10-20 g/kg diet.
Collapse
|
19
|
Salama RM, Ahmed RH, Farid AA, AbdElSattar BA, AbdelBaset RM, Youssef ME, El Wakeel SA. Gastroprotective effect of dapagliflozin in ethanol-induced gastric lesions in rats: Crosstalk between HMGB1/RAGE/PTX3 and TLR4/MyD88/VEGF/PDGF signaling pathways. Int Immunopharmacol 2023; 115:109686. [PMID: 36623411 DOI: 10.1016/j.intimp.2023.109686] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Alcohol abuse may lead to the development of gastric mucosal lesions. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 inhibitor, is clinically used to treat type 2 diabetes mellitus. However, studies showed protective effect of DAPA under various experimental conditions by alleviating oxidative stress and inflammation. The effect of DAPA on experimental gastric ulcer has not been studied yet. Therefore, we attempted to investigate DAPA's protective effect against ethanol (EtOH)-induced gastric lesions. Fifty-six (8-week-old) male Wistar rats were divided into seven groups. DAPA (1, 5, and 10 mg/kg/day; p.o.) was given for seven days, plus a single dose of absolute EtOH (5 ml/kg) on day 8. According to hematoxylin and eosin, and Alcian blue staining of gastric tissue sections, titratable acidity, and macroscopic assessments, DAPA high dose (10 mg/kg) was the most protective, with lesser ulcerations, and higher mucin, relative to the lower two doses and the standard treatment omeprazole (OME). In rats pre-treated with DAPA high dose, colorimetric and ELISA analyses revealed significantly decreased oxidative stress, pro-inflammatory, and apoptosis indices and increased levels of platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). Western blot analysis revealed reduced pentraxin-3 (PTX3), high-mobility group box 1 (HMGB1), receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), and myeloid differentiation factor 88 (MyD88) expression. These results were comparable in DAPA (10 mg/kg) and OME pre-treated groups. Overall, DAPA exerted a dose-dependent protective effect against EtOH-induced gastric injury. Gastroprotective effects of DAPA (10 mg/kg) may be associated with influencing HMGB1/RAGE/PTX3 and TLR4/MyD88/VEGF/PDGF pathways.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Rodaina H Ahmed
- Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Alaa A Farid
- Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | | | | | - Merna E Youssef
- Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
20
|
Abdel Rahman AN, Elshopakey GE, Behairy A, Altohamy DE, Ahmed AI, Farroh KY, Alkafafy M, Shahin SA, Ibrahim RE. Chitosan-Ocimum basilicum nanocomposite as a dietary additive in Oreochromis niloticus: Effects on immune-antioxidant response, head kidney gene expression, intestinal architecture, and growth. FISH & SHELLFISH IMMUNOLOGY 2022; 128:425-435. [PMID: 35985625 DOI: 10.1016/j.fsi.2022.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Several studies have looked into the use of basil, Ocimum basilicum (L.) in aquaculture as a dietary additive; however, more research is needed to see the possibility of it's including in nanocarriers in aquafeeds. An experiment was undertaken to highlight the efficacy chitosan-Ocimum basilicum nanocomposite (COBN), for the first time, on Nile tilapia (Oreochromis niloticus) growth, stress and antioxidant status, immune-related parameters, and gene expression. For 60 days, fish (average weight: 23.55 ± 0.08 g) were fed diets provided with different concentrations of COBN (g/kg): 0 g [COBN0], 1 g [COBN1], 2 g [COBN2], and 3 g [COBN3], where COBN0 was kept as control diet. Following the trial, the fish were challenged with pathogenic bacteria (Aeromonas sobria) and yeast (Candida albicans) infection. In comparison to the control (COBN0), a notable increase in growth parameters (weight gain, feed intake, and specific growth rate) and intestinal morphometric indices (average intestinal goblet cells count, villous width, and length) in all COBN groups was observed, where COBN2 and COBN3 groups had the highest values. The COBN diets significantly (p < 0.05) declined levels of serum triglycerides, glucose, cholesterol, and hepatic malondialdehyde. Moreover, the higher levels of serum biochemical biomarkers (growth hormone, total protein, globulin, and albumin), immunological parameters (phagocytic activity%, nitric oxide, and lysozyme), and hepatic antioxidant parameters (superoxide dismutase, total antioxidant capacity, and glutathione peroxidase) were obvious in the COBN2 and COBN3 groups followed by COBN1. The immune-antioxidant genes (TNF-α, IL-10, IL-1β, TGF-β, GPx, and SOD) were found to be considerably up-regulated in all COBN groups (COBN2 and COBN3 followed by COBN1). Fifteen days post-challenge with A. sobria and C. albicans, the highest survival rate was recorded in the COBN2 group (83.33 and 91.67%) followed by the COBN3 group (75 and 83.33%), respectively. The findings showed that a dietary intervention with COBN can promote growth, intestinal architecture, immunity, and antioxidant markers as well as protect O. niloticus against A. sobria and C. albicans infection. As a result, the COBN at a dose of 2 g/kg could be used as a food additive for the sustainable aquaculture industry.
Collapse
Affiliation(s)
- Afaf N Abdel Rahman
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, P.O. Box 35516, Mansoura, Dakahlia, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Dalia E Altohamy
- Department of Pharmacology, Central Laboratory, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Amany I Ahmed
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center (ARC), P.O. Box 12619, Giza, Egypt
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Shimaa A Shahin
- Animal and Fish Production Department, Faculty of Agriculture- Saba Basha, Alexandria University, Egypt
| | - Rowida E Ibrahim
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Sharkia, Egypt.
| |
Collapse
|
21
|
Essola NN, Takuissu GRN, Fonkoua M, Youovop Fotso JA, Mandob D, Ngondi JL, Gouado I. Effectiveness of 3 Polyherbal Formulations (EcXaPu, EcXa, and EcPu) on the Management of Oxidative Stress and Hyperglycemia. Nutr Metab Insights 2022; 15:11786388221118875. [PMID: 36003153 PMCID: PMC9393582 DOI: 10.1177/11786388221118875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress and hyperglycemia are major disorders involved in the occurrence and severity not only of chronic non-communicable diseases but also of infectious pathologies. This study aimed to evaluate the in vitro antioxidant and antihyperglycemic properties of EcXaPu, EcXa, and EcPu. The antioxidant properties were evaluated using 3 mechanisms: radical scavenging; reducing property, and metal chelating. Finally, the antihyperglycemic properties were evaluated by 2 mechanisms: glucose adsorption and cellular glucose capture. The different formulations showed their ability to scavenge DPPH, ABTS, and NO radicals with SC50 ranging from 2.75 to 3.51 mg/ml, from 2.6 to 2.76 mg/ml, and from 2.59 to 3.3 mg/ml, respectively. All the formulations also reduced MoO4 2+ and Fe3+ and chelated Cu2+ and Fe2+. The different formulations adsorbed the glucose with glucose adsorption rates ranging from 72.83% to 87.01%. The different formulations also stimulated cellular glucose uptake, with uptake rates ranging from 31.9% to 50.71% in yeast cells and from 21.81% to 39.45% in muscle cells. These formulations could be potential agents to prevent and/or protect against biological disorders associated with oxidative stress and hyperglycemia.
Collapse
Affiliation(s)
- Nadine Ndoe Essola
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Guy Roussel Nguemto Takuissu
- Centre for Food, Food Security and Nutrition Research (CRASAN), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Cameroon
| | - Martin Fonkoua
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | | | - Damaris Mandob
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Judith Laure Ngondi
- Centre for Food, Food Security and Nutrition Research (CRASAN), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Cameroon
| | - Innocent Gouado
- Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| |
Collapse
|
22
|
Nickles KR, Relling AE, Garcia-Guerra A, Fluharty FL, Parker AJ. Short communication: A comparison between two glucose measurement methods in beef steers during a glucose tolerance test. PLoS One 2022; 17:e0271673. [PMID: 35853033 PMCID: PMC9491837 DOI: 10.1371/journal.pone.0271673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Glucose tolerance tests (GTT) are commonly performed in beef cattle to evaluate
the glucose-insulin signaling pathway. Blood samples are obtained via a catheter
and then transferred back to the laboratory for further analysis. A hand-held
glucometer used chute-side can make performing GTT’s and quantifying blood
glucose concentration much easier and faster for research purposes. The purpose
of this study was to evaluate the agreement between a hand-held electronic
glucometer (Precision Xtra; Abbott Diabetes Care Inc., Mississauga, ON, Canada)
for chute-side use in beef cattle compared with a colorimetric assay in the
laboratory (Stanbio Glucose LiquiColor; Stanbio Laboratory, Boerne, TX, USA). A
GTT was performed on 13 Simmental × Angus steers during the growing phase. Blood
samples were obtained via a jugular catheter. Glucometer readings were taken
immediately after blood was sampled from the jugular with no preservative, and
laboratory measurements were conducted on plasma preserved with sodium fluoride.
A paired t-test (P = 0.40), Pearson’s correlation
(P < 0.001; r = 0.95), Bland-Altman plot, and Lin’s
concordance correlation coefficient (LCCC = 0.90) were completed to evaluate the
performance of the glucometer relative to the results from the laboratory assay.
Based on the results, we conclude that the glucometer is an acceptable method
for measuring blood glucose concentration in beef cattle under field
conditions.
Collapse
Affiliation(s)
- Kirsten R. Nickles
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio,
United States of America
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio,
United States of America
| | - Alvaro Garcia-Guerra
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio,
United States of America
| | - Francis L. Fluharty
- Department of Animal and Dairy Science, University of Georgia, Athens,
Georgia, United States of America
| | - Anthony J. Parker
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio,
United States of America
- * E-mail:
| |
Collapse
|
23
|
Elfowiris A, Banigesh A. Evaluation of Antioxidant Therapeutic Value of ACE Inhibitor as Adjunct Therapy on Type 2 Diabetes Mellitus Patients with Cardiovascular Disease. ACS Pharmacol Transl Sci 2022; 5:413-418. [PMID: 35711816 PMCID: PMC9194932 DOI: 10.1021/acsptsci.1c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus (DM) is believed to promote oxidative stress, which potentially provokes and accelerates complications in conditions such as atherosclerotic cardiovascular, peripheral arterial, and cerebrovascular diseases. In this study, we evaluated the antioxidant therapeutic value of adding an angiotensin-converting enzyme (ACE) inhibitor-a low dose of captopril-as adjunct therapy to the treatment regimen of Type 2 diabetes mellitus (T2DM). Participants were distributed among two different groups: control and treated. T2DM patients in the treated group (group 2) were given a supplement of the ACE inhibitor capotopril, 12.5 mg/day, in addition to standard treatment. All subjects were interviewed for clinical examination. All patients in group 2 were re-examined monthly for 3 months to evaluate FBS, HbA1c, MDA, total GSH, reduced GSH, GSSG, and ox-LDL. All parameters were repeated for patients in group 2 after 1 and 3 months. The study showed improvements in the glycemic and oxidative stress status with the addition of a low dose of captopril-not very prominent but statistically significant. Reduced GSH decreased by 73.6% (P = 0.016) and the TBARS level was decreased by 58.3% (P = 0.018) after 3 months of treatment, while ox-LDL was decreased by 26.4% (P = 0.036) at the end of treatment. In summary, the clinical improvements in the disease indices toward normal levels make the use of low doses of ACE inhibitors as adjunct therapy in T2DM worth pursuing. Thus, investigations directed at preventing or protecting against oxidative damage may open a new window for treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Abdulsalam Elfowiris
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Omar Al-Mukhtar University, Al-Bayda, Libya
| | - Ali Banigesh
- Department of Pharmacology, Faculty of Pharmacy, University of Benghazi, Benghazi, Libya
| |
Collapse
|
24
|
Abdel-Tawwab M, Eissa ESH, Tawfik WA, Abd Elnabi HE, Saadony S, Bazina WK, Ahmed RA. Dietary curcumin nanoparticles promoted the performance, antioxidant activity, and humoral immunity, and modulated the hepatic and intestinal histology of Nile tilapia fingerlings. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:585-601. [PMID: 35380335 PMCID: PMC9156469 DOI: 10.1007/s10695-022-01066-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/20/2022] [Indexed: 05/13/2023]
Abstract
The current study investigated the effects of dietary curcumin nanoparticles (C-NPs) on the performance, hemato-biochemical profile, digestive enzymes activities, antioxidant status, humoral immunity, and liver and intestinal histology of Nile tilapia (Oreochromis niloticus). Fish (4.3 ± 0.5 g) were fed with diets enriched with 0.0 (control), 15, 30, 45, and 60 mg C-NPs/kg diet up to apparent satiety thrice a day for 60 days. The growth-stimulating effects of dietary C-NPs were significantly observed in terms of final weight, weight gain %, specific growth rate, and feed intake. Compared with the control group, serum amylase, lipase, and proteases activities of Nile tilapia significantly (P < 0.05) increased alongside the increase in dietary levels of C-NPs in a dose-dependent manner. The counts of red blood cells and white blood cells as well as hemoglobin and hematocrit levels of Nile tilapia fed with 30-60 mg C-NPs/kg diet were statistically (P < 0.05) higher than fish in the control group with no significant differences among them (P > 0.05). Moreover, lymphocytes and monocytes significantly (P > 0.05) increased; meanwhile neutrophils significantly (P > 0.05) decreased as C-NPs levels in diets increased. In a similar trend, antioxidant (malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase) and humoral immunity (lysozyme and total immunoglobulin) biomarkers were significantly higher in C-NPs-fed fish. Liver histology showed improvements in the cell architecture of fish fed with C-NPs containing diets up to 45 mg/kg diet. Compared with the control diet, feeding Nile tilapia with C-NPs diets resulted in a higher villi length/width and absorption area. According to the regression curves, the current study recommends using the dietary C-NP with optimum values of 45-55 mg/kg diet to improve the performance, digestive enzymes, antioxidant activities, and immunity response of Nile tilapia.
Collapse
Affiliation(s)
- Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | | | - Wesam A. Tawfik
- Holding Co. for Biological Products and Vaccines, Giza, Egypt
- Naqaa Nanotechnology Network NNN, Giza, Egypt
| | - Heba E. Abd Elnabi
- Department of Fish Resources and Aquaculture, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Saadea Saadony
- Department of Animal Production and Fish Resources, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt
| | - Walaa K. Bazina
- National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Ragaa A. Ahmed
- Department of Aquaculture, Faculty of Fish and Fisheries Technology, Aswan University, Aswan, Egypt
| |
Collapse
|
25
|
Alsemeh AE, Abdullah DM. Protective effect of alogliptin against cyclophosphamide-induced lung toxicity in rats: Impact on PI3K/Akt/FoxO1 pathway and downstream inflammatory cascades. Cell Tissue Res 2022; 388:417-438. [PMID: 35107620 PMCID: PMC9035424 DOI: 10.1007/s00441-022-03593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Cyclophosphamide (CP)-induced lung toxicity is a remaining obstacle against the beneficial use of this chemotherapeutic agent. More considerations were given to the role of Alogliptin (ALO) in ameliorating CP-induced toxicities in many tissues. We designed this study to clarify the protective potential of ALO against CP-induced lung toxicity in rats. ALO was administered for 7 days. Single-dose CP was injected on the 2nd day (200 mg/kg: i.p.) to induce lung toxicity. Rats were divided into four groups: control, ALO-treated, CP-treated and ALO + CP-treated group. Leucocytic count, total proteins, LDH activity, TNF-α, and IL-6 were estimated in the bronchoalveolar lavage fluid (BALF). The oxidative/antioxidants (MDA, Nrf2, TAO and GSH), inflammatory (NFκB), fibrotic (TGF-β1) and apoptotic (PI3K/Akt/FoxO1) markers in pulmonary homogenates were biochemically evaluated. Rat lung sections were examined histologically (light and electron microscopic examination) and immunohistochemically (for iNOS and CD68 positive alveolar macrophages). CP significantly increased oxidative stress, inflammation, fibrosis, and apoptosis markers as well as deteriorated the histopathological pulmonary architecture. These hazardous effects were significantly ameliorated by ALO treatment. ALO protected against CP-induced lung toxicity by mitigating the oxidative, inflammatory and fibrotic impacts making it a promising pharmacological therapy for mitigating CP-induced lung toxicity.
Collapse
Affiliation(s)
- Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Doaa M Abdullah
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
26
|
Oxidation of dobutamine and dopamine by horseradish peroxidase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Tarasek D, Wojtasek H, Benarous K, Yousfi M. In vitro oxidation of hispidin and gallic acid by horseradish peroxidase. J Biomol Struct Dyn 2022; 41:2321-2325. [PMID: 35067200 DOI: 10.1080/07391102.2022.2029569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Gallic acid and hispidin have been previously described by us as inhibitors of horseradish peroxidase (Benarous, K., Benali, F. Z., Bekhaoua, I. C., and Yousfi, M. Journal of Biomolecular Structure & Dynamics, (2021) 39(18), 7168-7180). However, additional experiments have demonstrated that under the applied assay conditions both compounds are rapidly oxidized by this enzyme. After oxidation, the components of the reaction mixture undergo complex reactions giving products with much weaker absorption at the detection wavelength. This was interpreted by us as enzyme inhibition, which, however, is only apparent. In fact, the activity of horseradish peroxidase is not affected by these compounds, which was demonstrated by measurements of hydrogen peroxide consumption.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Khedidja Benarous
- Laboratoire des sciences fondamentales, faculté des sciences, Université Amar Telidji-Laghouat, Laghouat, Algérie
| | - Mohamed Yousfi
- Laboratoire des sciences fondamentales, faculté des sciences, Université Amar Telidji-Laghouat, Laghouat, Algérie
| |
Collapse
|
28
|
Saleh N, Seif AA, Bahaa I, Abdel-Hady EA. Comparative Effect of Vitamin D3 and Carbenoxolone Treatments in Metabolic Syndrome Rats. Can J Physiol Pharmacol 2021; 100:412-421. [PMID: 34855519 DOI: 10.1139/cjpp-2021-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of cardiovascular risk factors including central obesity, hypertension, insulin resistance, dyslipidemia, and hyperglyemia. MetS is found to be a positive predictor of cardiovascular morbidity and mortality. The present study was planned to test the efficacy of vitamin D3 supplementation as compared to cortisol inhibition on MetS parameters. Wistar rats were allocated into four groups: controls, untreated MetS, and MetS treated with either vitamin D3 (10 μg/kg), or carbenoxolone (50 mg/kg). MetS was induced by combination of high fat diet and oral fructose. After the induction period (8 weeks), MetS was confirmed and treatment modalities started for a further 4 weeks. Compared to untreated MetS, vitamin D3 and carbenoxolone treated rats showed significant reduction in blood pressure, body mass index, lee index, waist circumference, retroperitoneal fat, and improvement of dyslipidemia. Meanwhile, treatment with carbenoxolone significantly lowered the elevated liver enzymes, vitamin D3 resulted in improved insulin sensitivity, enhanced glucose uptake by muscles and replenished glycogen content in the liver and muscles near control levels. In conclusion, although treatment with vitamin D3 or carbenoxolone reduced the risk factors associated with MetS, vitamin D3 was effective in ameliorating insulin resistance which is the hallmark of MetS.
Collapse
Affiliation(s)
- Nermine Saleh
- Ain Shams University Faculty of Medicine, 68792, Physiology Department, Cairo, Egypt;
| | - Ansam Aly Seif
- Ain Shams University Faculty of Medicine, 68792, Physiology Department, Cairo, Egypt;
| | - Ienass Bahaa
- Ain Shams University Faculty of Medicine, 68792, Physiology Department, Cairo, Egypt;
| | - Enas A Abdel-Hady
- Ain Shams University Faculty of Medicine, 68792, Physiology Department, Cairo, Egypt;
| |
Collapse
|
29
|
Basyouni WM, Abbas SY, El-Bayouki KAM, Younis EA, Ali SA, Aly HF. Synthesis and hyperglycemic, biochemical and histopathological evaluation of novel sulfonylbiguanide and sulfonylurea derivatives as potent anti-diabetic agents. Bioorg Chem 2021; 117:105418. [PMID: 34736133 DOI: 10.1016/j.bioorg.2021.105418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
New sulfonylbiguanide hydrochloride salts and sulfonylurea derivatives containing two sulfonyl groups were synthesized through the reaction of arylsulfonohydrazides with cyanoguanidine and p-tolylsulfonylisocyanate, respectively. Oral treatment of hyperglycemic rats with the synthesized sulfonylbiguanide derivatives 2 and sulfonylurea derivatives 3 revealed that sulfonylurea derivatives 3a and 3c possessed significant decrease of the elevated glucose in compression with the anti-diabetic standard drugs. Effects of the synthesized sulfonylurea derivatives 3a and 3c on the diabetic properties towards α-amylase, liver function enzyme levels (AST, ALT, ALP, TB and γ-GT), kidney functions (urea and creatinine), lipids profiles (TG, TL, TC and HDL-C) were studied. Also, the effect of sulfonylurea derivatives 3a and 3c as antioxidants (reduced glutathione and lipid peroxide) was evaluated. Histopathological examination of hepatic and pancreatic tissues was investigated. The obtained results suggested that the most potent sulfonylurea derivatives 3a and 3c might be possible used as novel diabetic inhibitor agents.
Collapse
Affiliation(s)
- Wahid M Basyouni
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt.
| | - Samir Y Abbas
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt.
| | - Khairy A M El-Bayouki
- Organometallic and Organometalloid Chemistry Department, National Research Centre, Cairo, Egypt
| | - Eman A Younis
- Therapeutic Chemistry Department, National Research Centre, Cairo, Egypt
| | - Sanaa A Ali
- Therapeutic Chemistry Department, National Research Centre, Cairo, Egypt
| | - Hanan F Aly
- Therapeutic Chemistry Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
30
|
Obydah WO, Shaker GA, Samir SM, El Bassiony SF, Abd El Moneim HA. Effect of vanillic acid and exercise training on fatty liver and insulin resistance in rats: Possible role of fibroblast growth factor 21 and autophagy. Physiol Int 2021; 108:412-426. [PMID: 34813496 DOI: 10.1556/2060.2021.00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/22/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS The prevalence of non-alcoholic fatty liver disease has been alarmingly increased with no lines of effective treatment. Vanillic acid is a naturally occurring polyphenol with promising therapeutic effects. Exercise is well known to be an effective tool against obesity and its consequences. Thus, we aim to study the effect of vanillic acid alone and along with exercise on fatty liver induced by a high-fat diet in a rat model and to investigate possible novel mechanisms involved in their action. METHODS In this study, 40 male rats were divided equally into five groups: control (standard chow diet), HFD (high-fat diet), HFD+VA (HFD+ vanillic acid (50 mg/kg/day orally), HFD+EX (HFD+ swimming exercise 5 days/week), HFD+VA+EX (HFD+ vanillic acid+ swimming exercise) for eight weeks. RESULTS Body mass, liver weight, liver enzymes, cholesterol, and triglycerides were significantly decreased in the combined VA+EX group, with marked improvement in hyperglycemia, hyperinsulinemia, and consequently HOMA-IR index compared to the HFD group. These improvements were also reflected in the pathological view. VA and swimming, either solely or in combination, markedly increased hepatic and circulating fibroblast growth factor 21. Additionally, VA and swimming increased the immunohistochemical expression of the autophagosomal marker LC3 and decreased the expression of P62, which is selectively degraded during autophagy. CONCLUSIONS These results suggest the hepatoprotective effect of VA and swimming exercise against fatty liver and the involvement of FGF21 and autophagy in their effect.
Collapse
Affiliation(s)
- Walaa O Obydah
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Gehan A Shaker
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Shereen M Samir
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
| | - Soheir F El Bassiony
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Egypt
| | | |
Collapse
|
31
|
Mohamed NA, Hashem MAM, Alzahrani AM, Abdel-Moneim AM, Abdou HM. Hepatoprotective effect of Spirulina platensis against carbon tetrachloride-induced liver injury in male rats. J Pharm Pharmacol 2021; 73:1562-1570. [PMID: 34387320 DOI: 10.1093/jpp/rgab107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Spirulina platensis (SP) is an edible Cyanobacterium with ethnomedicinal significance. This study aims at evaluating the beneficial effect of SP against carbon tetrachloride (CCl4)-induced liver toxicity in male rats. METHODS Rats received intraperitoneal injections of CCl4 (2 ml/kg body weight [b.w.] per every other day) for 40 days, alone or in combination with oral treatments of SP (400 mg/kg b.w. per day). KEY FINDINGS SP attenuated haematological disturbances, serum liver markers, hepatic necrosis and inflammation, and dyslipidemia in CCl4-intoxicated rats. SP also reduced CCl4-induced oxidative stress by increasing the activities of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase and glutathione content, and inhibiting lipid peroxidation products and nitric oxide levels in the rat liver. Further investigations revealed that SP counteracted CCl4-induced increased hepatic levels of Ki-67 (a parameter of cell proliferation), interleukin-6, and tumour necrosis factor-alpha and cyclooxygenase-2 messenger RNA expression. Noticeably, the supplementation of SP restored the decrease of proapoptotic p53 protein levels in the liver of rats treated with CCl4. CONCLUSIONS SP prevented liver damage in CCl4-treated rats via augmentation of antioxidant defense mechanisms and inhibition of inflammatory cytokines/mediators and antiproliferative effects.
Collapse
Affiliation(s)
- Nema A Mohamed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A M Hashem
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Silva VAO, André ND, E Sousa TA, Alves VM, Do Carmo Kettelhut I, De Lucca FL. Nuclear PKR in retinal neurons in the early stage of diabetic retinopathy in streptozotocin‑induced diabetic rats. Mol Med Rep 2021; 24:614. [PMID: 34184090 PMCID: PMC8258468 DOI: 10.3892/mmr.2021.12253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
Retinal neuron apoptosis is a key component of diabetic retinopathy (DR), one of the most common complications of diabetes. Stress due to persistent hyperglycaemia and corresponding glucotoxicity represents one of the primary pathogenic mechanisms of diabetes and its complications. Apoptosis of retinal neurons serves a critical role in the pathogenesis of DR observed in patients with diabetes and streptozotocin (STZ)‑induced diabetic rats. Retinal neuron apoptosis occurs one month after STZ injection, which is considered the early stage of DR. The molecular mechanism involved in the suppression of retinal neuron apoptosis during the early stage of DR remains unclear. RNA‑dependent protein kinase (PKR) is a stress‑sensitive pro‑apoptotic kinase. Our previous study indicated that PKR‑associated protein X, a stress‑sensitive activator of PKR, is upregulated in the early stage of STZ‑induced diabetes. In order to assess the role of PKR in DR prior to apoptosis of retinal neurons, immunofluorescence and western blotting were performed to investigate the cellular localization and expression of PKR in the retina in the early stage of STZ‑induced diabetes in rats. PKR activity was indirectly assessed by expression levels of phosphorylated eukaryotic translation initiation factor 2α (p‑eIF2‑α) and the presence of apoptotic cells in the retina was investigated by TUNEL assay. The findings revealed that PKR was localized in the nucleus of retinal ganglion and inner nuclear layer cells from normal and diabetic rats. To the best of our knowledge, the present study is the first to demonstrate nuclear localization of PKR in retinal neurons. Immunofluorescence analysis demonstrated that PKR was expressed in the nuclei of retinal neurons at 3 and 6 days and its expression was decreased at 15 days after STZ treatment. In addition, p‑eIF2‑α expression and cellular localization followed the trend of PKR, suggesting that this pro‑apoptotic kinase was active in the nuclei of retinal neurons. These findings are consistent with the hypothesis that nuclear translocation of PKR may be a mechanism to sequester active PKR, thus preventing upregulation of cytosolic signalling pathways that induce apoptosis in retinal neurons. Apoptotic cells were not detected in the retina in the early stage of DR. A model was proposed to explain the mechanism by which apoptosis of retinal neurons by PKR is suppressed in the early stage of DR. The possible role of mitochondrial RNA (mtRNA) and Alu RNA in this phenomenon is also discussed since it was demonstrated that the cellular stress due to prolonged hyperglycaemia induces the release of mtRNA and transcription of Alu RNA. Moreover, it mtRNA activates PKR, whereas Alu RNA inhibits the activation of this protein kinase.
Collapse
Affiliation(s)
| | | | - Thaís Amaral E Sousa
- Federal Institute of Education, Science and Technology of Goiás, Formosa, Goiás 73813-816, Brazil
| | - Vâni Maria Alves
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Isis Do Carmo Kettelhut
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fernando Luiz De Lucca
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
33
|
Dbar S, Akhmadullina O, Sabelnikova E, Belostotskiy N, Parfenov A, Bykova S, Bakharev S, Baulo E, Babanova A, Indeykina L, Kuzmina T, Kosacheva T, Spasenov A, Makarova A. Patients with functional bowel disorder have disaccharidase deficiency: A single-center study from Russia. World J Clin Cases 2021; 9:4178-4187. [PMID: 34141780 PMCID: PMC8173401 DOI: 10.12998/wjcc.v9.i17.4178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/12/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Functional bowel disorder (FBD) may be caused by a decrease in disaccharidase activity. Thus, the timely diagnosis of disaccharidase deficiency could lead to a better prognosis in patients with this condition.
AIM To determine the potential value of intestinal disaccharidases glucoamylase, maltase, sucrase, and lactase in understanding the etiology and pathogenesis of FBD.
METHODS A total of 82 FBD patients were examined. According to the Rome IV criteria (2016), 23 patients had diarrhea-predominant irritable bowel syndrome (IBS), 33 had functional diarrhea, 10 had constipation-predominant IBS, 4 had functional constipation, and 12 had mixed IBS. The Dahlqvist method was used to measure disaccharidase activity in the brush-border membrane of mature enterocytes of the small intestine, in duodenal biopsies obtained during esophagogastroduodenoscopy.
RESULTS Lactase deficiency was detected in 86.5% of patients, maltase deficiency in 48.7%, sucrase deficiency in 50%, and glucoamylase deficiency in 84.1%. The activities of all enzymes were reduced in 31.7% of patients, and carbohydrase deficiency was detected in 63.5% of patients. The low activity of enzymes involved in membrane digestion in the small intestine was found in 95.2% of patients.
CONCLUSION In 78 of the 82 patients with FBD, gastrointestinal symptoms were associated with disaccharidase deficiency.
Collapse
Affiliation(s)
- Saria Dbar
- Non-inflammatory Bowel Diseases, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Olga Akhmadullina
- Non-inflammatory Bowel Diseases, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Elena Sabelnikova
- Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Nikolai Belostotskiy
- Pre-Clinical Research Laboratory, Moscow Clinical Scientific Center Named after A.S. Loginov MHD, Moscow 111123, Russia
| | - Asfold Parfenov
- Department of Bowel Pathology, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Svetlana Bykova
- Non-inflammatory Bowel Diseases, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Sergey Bakharev
- Non-inflammatory Bowel Diseases, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Elena Baulo
- Non-inflammatory Bowel Diseases, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Alexandra Babanova
- Non-inflammatory Bowel Diseases, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Lilia Indeykina
- Laboratory of Functional Diagnostics of Intestinal Diseases, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Tatyana Kuzmina
- Nutraceuticals Laboratory, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Tatiana Kosacheva
- Non-inflammatory Bowel Diseases, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Aleksey Spasenov
- Department of Medical Statistics, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| | - Alina Makarova
- Laboratory of Functional Diagnostics of Intestinal Diseases, Moscow Health Department, Moscow Clinical Scientific Center n.a. A.S. Loginov, Moscow 111123, Russia
| |
Collapse
|
34
|
Farhadi Javid S, Moravej H, Ghaffarzadeh M, Esfahani MB. Comparison of Zinc Sulfate and Zinc Threonine Based on Zn Bioavailability and Performance of Broiler Chicks. Biol Trace Elem Res 2021; 199:2303-2311. [PMID: 32856251 DOI: 10.1007/s12011-020-02354-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/23/2020] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to compare zinc sulfate and zinc threonine chelate based on Zn bioavailability and performance of broiler chicks. The study was conducted in a completely randomized design with 256 day-old Ross 308 chicks and eight treatments including control treatment (no zinc supplementation), three levels of zinc sulfate and zinc threonine chelate (40, 80, and 120 mg zinc per kg feed), and a common commercial chelate (Bioplex Zn®) supply 40 mg zinc per kg feed. The results of total period showed that threonine chelate group had the highest live weight compared with other treatments and lowest feed conversion ratio belonged to 80 and 120 ppm of zinc threonine chelate (p < 0.05). Zinc threonine chelate and commercial chelate treatments had the lowest cholesterol and LDL levels compared with other treatments (p < 0.05). Zinc chelate threonine which contains 80 and 120 ppm of zinc had the highest HDL and superoxide dismutase enzymes and the lowest heterophile to lymphocyte ratio compared with other treatments (p < 0.05). Relative bioavailability of zinc threonine to zinc sulfate based on body weight, feed conversion ratio, cholesterol, LDL, HDL, superoxide dismutase enzyme, ash, and zinc content in tibia were 418.75, 173.91, 131.38, 159.43, 278.63, 193.45, 156.46, and 117.65%, respectively. According to the results of broiler performance and other traits measured in this study, it seems that the use of 80 ppm of zinc threonine chelate in the broiler diet is recommended in comparison with zinc sulfate levels and other threonine chelate levels.
Collapse
Affiliation(s)
- Siavash Farhadi Javid
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Hossein Moravej
- Department of Animal Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Mohammad Ghaffarzadeh
- Chemistry and Chemical Engineering Research Center of Iran, Po Box 14335-186, Tehran, Iran
| | | |
Collapse
|
35
|
Gadallah SH, Ghanem HM, Abdel-Ghaffar A, Metwaly FG, Hanafy LK, Ahmed EK. 4-Phenylbutyric acid and rapamycin improved diabetic status in high fat diet/streptozotocin-induced type 2 diabetes through activation of autophagy. Arch Physiol Biochem 2021; 127:235-244. [PMID: 31215250 DOI: 10.1080/13813455.2019.1628069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
An accumulating body of evidence supports the role of autophagy in the pathophysiology of T2DM. Also, abnormal endoplasmic reticulum (ER) stress response that has been implicated as a cause of insulin resistance (IR) could also be affected by the autophagic status in β-cells. The present study was designed to investigate whether autophagy is regulated in T2DM as well as to investigate the modulatory effect of the ER stress inhibitor 4-phenylbutyric acid (4-PBA) and the autophagy inducer rapamycin (Rapa) on the autophagic and diabetic status using type 2 diabetic animal model with IR. Treatment of diabetic rats with either 4-PBA or Rapa improved significantly the states of hyperglycaemia and dyslipidaemia, increased the antioxidant capacity, reduced the levels of lipid peroxidation and ER stress and increased the autophagic flux. The obtained improvements were attributed mainly to the induction of autophagy with subsequent regulation of ER stress-oxidative activation and prevention of β-cell apoptosis.
Collapse
Affiliation(s)
- Shaimaa H Gadallah
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hala M Ghanem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amany Abdel-Ghaffar
- Department of Biochemistry and Pharmacology, Research Institute of Ophthalmology, Giza, Egypt
| | - Fatma G Metwaly
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Laila K Hanafy
- Department of Histology, Research Institute of Ophthalmology, Giza, Egypt
| | - Emad K Ahmed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
36
|
Synbiotic Effects of Saccharomycescerevisiae, Mannan Oligosaccharides, and β-Glucan on Innate Immunity, Antioxidant Status, and Disease Resistance of Nile Tilapia, Oreochromis niloticus. Antibiotics (Basel) 2021; 10:antibiotics10050567. [PMID: 34065896 PMCID: PMC8150918 DOI: 10.3390/antibiotics10050567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 12/15/2022] Open
Abstract
Synbiotic (SYN) additives were assessed as an antibiotic alternative on the effects on the nonspecific immune response and disease resistance of O. niloticus to P. aeruginosa. Healthy fish (n = 120, average initial weight 18 ± 2 g) were allotted randomly into four experimental groups (3 replicates for each); 1) a control group with no additives (CON), 2) basal diet complemented with 0.1 g kg-1 diets of norfloxacin, NFLX, 3) basal diet fortified with 1 mL kg-1 diet of SYN, and 4) basal diet complemented with a mixture of NFLX and SYN, which was carried out for eight weeks. Results showed a significant increase (p < 0.01) in the serum immune parameters (total protein, globulin and albumin, nitric oxide (NO), and lysozyme activity) in the SYN group and the NFLX+SYN group compared with the CON and NFLX groups. The serum glucose, cholesterol, and triglycerides were higher in NFLX and NFLX+SYN groups than the CON and SYN groups. The catalase (CAT), superoxide dismutase, glutathione peroxidase (GPX) activities were significantly augmented in the NFLX+SYN group, followed by the SYN group compared with CON and NFLX groups. The cumulative mortality rate (CMR) of O. niloticus following the P. aeruginosa challenge was decreased in the SYN group compared to other groups. The results emphasize that synbiotic could be used as a norfloxacin alternative to enhance the related immunological parameters, including antioxidant activity and disease resistance against P. aeruginosa infection of O. niloticus.
Collapse
|
37
|
Boswellia serrata Resin Extract in Diets of Nile Tilapia, Oreochromis niloticus: Effects on the Growth, Health, Immune Response, and Disease Resistance to Staphylococcus aureus. Animals (Basel) 2021; 11:ani11020446. [PMID: 33567795 PMCID: PMC7914940 DOI: 10.3390/ani11020446] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary The current study evaluated the effects of Boswellia serrata resin extract (BSRE) as a feed additive on the growth performance, immune response, antioxidant status, and disease resistance of Nile tilapia, Oreochromis niloticus. Fish were fed on four basal diets complemented with four levels of BSRE 0, 5, 10, or 15 g kg−1. The results of this study proposed that BSRE addition can enhance the antioxidant activity, immune status, and disease resistance of O. niloticus to S. aureus infection. The level of 5 g kg−1 BSRE can improve fish growth without causing harmful effects on fish health. Higher levels of BSRE are not recommended as they badly affected the histoarchitecture of many vital organs. Abstract The influences of Boswellia serrata resin extract (BSRE) as a feed additive on the growth performance, immune response, antioxidant status, and disease resistance of Nile tilapia, Oreochromis niloticus L. were assessed. One hundred-forty four fingerlings (initial weight: 21.82 ± 0.48 g) were randomly allotted into four groups with three replicates where they were fed on one of four treatments with four levels of Boswellia serrata resin extract 0, 5, 10, or 15 g kg−1, BSRE0, BSRE5, BSRE10, BSRE15, respectively for eight weeks. After the end of the feeding trial, the fish were challenged with Staphylococcus aureus, and mortalities were noted. The final body weight, total body weight gain, and the total feed intake were quadratically increased in BSRE5 treatment (p < 0.01). The protein productive efficiency (PPE) was linearly and quadratically increased in all BSRE supplemented treatments (p < 0.01). Dietary addition of BSRE raised the fish crude protein content and reduced the fat content in a level-dependent manner (p < 0.01). The ash content was raised in the BSRE15 group (p < 0.01). Dietary BSRE supplementation decreased the serum levels of glucose, total cholesterol, triglycerides, and nitric oxide. It increased the serum levels of total protein, albumin, total globulins, α1 globulin, α2 globulin, ß globulin, ɣ globulin, Catalase, and SOD (superoxide dismutase) activity, GSH (reduced glutathione), lysozyme activity, and MPO (myeloperoxidase) in a level-dependent manner (p < 0.05). The BSRE15 diet increased the serum level of ALT (alanine aminotransferase) and decreased creatinine serum level (p < 0.05). Dietary BSRE supplementation increased the relative percentage of survival % (RPS) of S. aureus challenged fish. The histoarchitecture of the gills and kidney was normal in the BSRE5 treatment and moderately changed in BSRE10 and BSRE15 treatments. The splenic lymphoid elements were more prevalent, and the melano-macrophage centers (MMC) were mild to somewhat activated in BSRE supplemented treatments. Dietary BSRE supplementation improved the intestinal histomorphology. It can be concluded that BSRE addition can enhance the antioxidant activity, immune status, and disease resistance of O. niloticus to S. aureus infection. The level of 5 g kg−1 BSRE can improve fish growth without causing harmful effects on fish health. The highest levels of BSRE are not recommended as they badly affected the histoarchitecture of many vital organs.
Collapse
|
38
|
Hamed HS, Ismal SM, Faggio C. Effect of allicin on antioxidant defense system, and immune response after carbofuran exposure in Nile tilapia, Oreochromis niloticus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108919. [PMID: 33122135 DOI: 10.1016/j.cbpc.2020.108919] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/10/2020] [Accepted: 10/18/2020] [Indexed: 01/11/2023]
Abstract
In this work, allicin was evaluated as an immunostimulant and antioxidant agent preventing Nile tilapia; Oreochromis niloticus against carbofuran toxicity. Fish (60 ± 8 g) were allocated to five groups; the first group (control), the second group was fed 1 g/kg allicin-supplemented diets without carbofuran intoxication, the third group exposed to 1/10 LC50 carbofuran (0.246 mg/L). While the fourth, and fifth groups were fed allicin supplemented diet at concentration of 0.5 and 1 g/kg diet, respectively, and exposed to carbofuran at the same concentration similar to the one of the third group. After 30 days, fish exposed to carbofuran showed high ALT, AST, ALP, cholesterol, glucose, cortisol, uric acid, and creatinine levels. However, serum AChE, total proteins, immunoglobulins, and lysozyme activity were markedly (P ≤ 0.05) reduced in carbofuran exposed tilapia fish. Moreover, malondialdehyde (MDA) level was significantly increased in liver, and kidneys tissues of carbofuran exposed fish. Whereas, catalase (CAT) activity, superoxide dismutase (SOD), and total antioxidant capacity (TAC) were decreased (P ≤ 0.05) significantly in both liver, and kidneys tissues after exposure to carbofuran. Interestingly, tilapia fish treated with carbofuran (0.246 mg/L) and fed (0.5 and 1 g/kg diet) allicin in both the 4th & 5th groups, respectively, decreased serum biochemical parameters; and hepatorenal (MDA) levels, as well as increased AChE, immunological profile, and oxidative stress biomarkers. The results suggested that co- administration of allicin at the high dose is more capable of improving the biochemical, and immunological parameters, and tissue antioxidant responses of carbofuran treated fish.
Collapse
Affiliation(s)
- Heba S Hamed
- Department of Zoology, Faculty of Women for Arts, Science & Education, Ain Shams University, Cairo 11757, Egypt.
| | - Somaya M Ismal
- Department of Zoology, Faculty of Science, Cairo University, Egypt; Department of Biology, Faculty of Science, University of Bisha, 61922, P.O.551, Saudi Arabia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
39
|
Star L, Tesseraud S, van Tol M, Minussi I, Corrent E, Lambert W. Production performance and plasma metabolite concentrations of broiler chickens fed low crude protein diets differing in Thr and Gly. ACTA ACUST UNITED AC 2021; 7:472-480. [PMID: 34258435 PMCID: PMC8245817 DOI: 10.1016/j.aninu.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/26/2020] [Accepted: 09/08/2020] [Indexed: 11/25/2022]
Abstract
The aim of the study was to test the interaction between Thr and Gly in low crude protein (CP) diets in 7 to 28 d broilers on production performance and plasma metabolites. A total of 2,040 broilers were allocated to 17 treatments. A positive control (PC) diet (20.5% CP) was formulated to be adequate in dietary Thr and Gly. A negative control (NC) diet (18.5% CP, deficient in Thr and Gly) was supplemented with crystalline l-Thr and Gly to obtain a 4 Thr × 4 Gly design. Dietary Thr was tested at an apparent faecal digestibility (AFD) Thr-to-Lys ratio, which was 55%, 58%, 61% or 64%, and dietary Gly was tested at an AFD (Gly + Ser)-to-Lys ratio, which was 135%, 142%, 149% or 156%. Plasma samples were collected at 28 d. The low CP diet, formulated at 64% Thr and 156% Gly, resulted in a higher body weight gain (BWG) (P < 0.01) and similar feed conversion ratio (FCR) as the high CP treatment (PC). FCR was improved (P < 0.001) by l-Thr supplementation. Quadratic response to dietary Thr was significant for feed intake (FI), BWG and FCR (P < 0.01). A near-significant interaction for Thr × Gly was observed for FI and BWG (Plinear = 0.091 and P = 0.074, respectively). Gly did not affect production performance. An interaction between Thr × Gly on plasma free AA level was observed (P < 0.05). Free AA concentration in plasma linearly decreased with increase in AFD Thr-to-Lys ratio, and increased with increase in AFD (Gly + Ser)-to-Lys ratio. Plasma uric acid concentration was higher in PC than in all of the other diets, and plasma triglyceride concentration was decreased by l-Thr supplementation, but not by Gly. In conclusion, Gly was not limiting for growth at low dietary CP level unless Thr was deficient, showing that adequate amounts of Thr in broiler diets can overcome marginal supply of Gly and Ser and allow reduction of dietary CP from 20.5% to 18.5% for broilers from 7 to 28 d of age.
Collapse
Affiliation(s)
- Laura Star
- Schothorst Feed Research, Meerkoetenweg 26, 8218 NA Lelystad, the Netherlands
| | | | - Marije van Tol
- Orffa Additives B.V., Vierlinghstraat 51, 4251 LC Werkendam, the Netherlands
| | - Ilaria Minussi
- Ajinomoto Animal Nutrition Europe, 32 rue Guersant, 75017 Paris, France
| | - Etienne Corrent
- Ajinomoto Animal Nutrition Europe, 32 rue Guersant, 75017 Paris, France
| | - William Lambert
- Ajinomoto Animal Nutrition Europe, 32 rue Guersant, 75017 Paris, France
| |
Collapse
|
40
|
Shourbela RM, Khatab SA, Hassan MM, Van Doan H, Dawood MAO. The Effect of Stocking Density and Carbon Sources on the Oxidative Status, and Nonspecific Immunity of Nile tilapia ( Oreochromis niloticus) Reared under Biofloc Conditions. Animals (Basel) 2021; 11:ani11010184. [PMID: 33466791 PMCID: PMC7829823 DOI: 10.3390/ani11010184] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary The present study investigated the effect of stocking density and dietary carbon sources on the water quality, oxidative status and immune-related of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions (BFT). Eight groups were established at two levels of stocking densities (140 fish per m3: low stocking density, LSD) and (280 fish per m3: high stocking density, HSD) (5.15 ± 1.12 g) and kept in eight biofloc units containing water without carbon sources (control groups) or with glycerol, molasses, or starch. Overall, this study has reported that immune response gene expression is better in LSD than HSD and improved by carbon addition. More specifically, based on the overall performances of tilapia reared under LSD or HSD, using molasses is recommended as a carbon source to promote the performances and health status of Nile tilapia cultured in a biofloc system. Abstract The present study investigated the effect of stocking density and dietary carbon sources on the water quality, oxidative status, and immune-related genes of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions (BFT). Eight groups were established at two levels of stocking densities (140 fish per m3: low stocking density, LSD) and (280 fish per m3: high stocking density, HSD) (5.15 ± 1.12 g) and kept in eight biofloc units containing water without carbon sources (control groups) or with glycerol, molasses, or starch. Red blood cells count, hemoglobin, and hematocrit values were reduced in fish stocked in control groups at LSD and HSD than biofloc groups. Control fish groups reared at both LSD and HSD have the highest significant (p < 0.05) white blood cells number than other fish groups. Meanwhile, fish groups that received glycerol, molasses, and starch maintained in both LSD and HSD presented a higher significant (p < 0.05) monocyte % than in the control group reared at both LSD and HSD. The fish group reared in biofloc conditions (BFT) using starch carbon source and reared at the HSD presented a significantly higher (p < 0.05) increase in total serum protein and albumin levels as well as globulin value than the control fish group reared at both LSD and HSD. The highest glucose and cortisol levels were showed in the control fish group reared at both LSD and HSD. Fish maintained in glycerol-based biofloc at LSD attained the highest (p < 0.05) serum superoxide dismutase (SOD), glutathione reductase (GR), and catalase than other experimental groups. Regarding the nonspecific immune status, significantly increased expression of CC-chemokines, CXC-chemokines, TLR7 and IL-8 genes was found in molasses based biofloc groups. The data of the present study revealed that using molasses promotes health status of Nile tilapia cultured in a biofloc system.
Collapse
Affiliation(s)
- Ramy M. Shourbela
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Shymaa A. Khatab
- Genetics and Genetic Engineering, Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Department of Genetics, Faculty of Agriculture, Menoufia University, Sheben El-Kom 51132, Egypt
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Innoviative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (H.V.D.); (M.A.O.D.)
| | - Mahmoud A. O. Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Center for Applied Research on the Environment and Sustainability, The American University in Cairo, New Cairo 11835, Egypt
- Correspondence: (H.V.D.); (M.A.O.D.)
| |
Collapse
|
41
|
Fouad MR, Salama RM, Zaki HF, El-Sahar AE. Vildagliptin attenuates acetic acid-induced colitis in rats via targeting PI3K/Akt/NFκB, Nrf2 and CREB signaling pathways and the expression of lncRNA IFNG-AS1 and miR-146a. Int Immunopharmacol 2021; 92:107354. [PMID: 33434756 DOI: 10.1016/j.intimp.2020.107354] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022]
Abstract
Inflammatory processes, including ulcerative colitis (UC), are associated with the increase in synthesis and release of pro-inflammatory cytokines. The release of these cytokines is regulated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor-kappa B (NFκB) and cAMP response element-binding protein (CREB) signaling pathways as well as over expression of microRNA 146a (miR-146a) and long non-coding RNA interferon gamma antisense 1 (lncRNA IFNG-AS1). Vildagliptin (Vilda), a dipeptidyl peptidase IV (DPP-IV) inhibitor, has an anti-inflammatory, antioxidant and anti-apoptotic effects which were established in various models. However, its possible protective effect in UC has not been clarified. Hence, the current study aimed to explore the possible prophylactic effect of different doses of Vilda against acetic acid (AA)-induced colitis in rats. Forty-eight adult Wistar rats were divided into six groups: control, Vilda (10 mg/kg/day; p.o.), AA, AA + Vilda (5 mg/kg/day; p.o.), AA + Vilda (10 mg/kg/day; p.o.) and AA + sulfasalazine (Sulfa) (100 mg/kg/day; p.o.).Low- and high-dose Vilda showed significant improvement in the disease activity index (DAI) and macroscopic assessment markers. Vilda has markedly inhibited the expression of lncRNA IFNG-AS1 and miR-146a, as well as PI3K/Akt/NFκB pathway, while activated CREB and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, and this was reflected in alleviated oxidative stress, inflammation and apoptosis. Such outcomes were more prominent with the high-dose Vilda versus low-dose Vilda and Sulfa. Moreover, the histological examination showed almost intact histological features in Vilda-treated groups when compared to AA group treated with saline. In conclusion, Vilda can be regarded as a new promising therapeutic alternative against UC.
Collapse
Affiliation(s)
- Marina R Fouad
- Pharmacy Practice and Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt; Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ayman E El-Sahar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
42
|
Aly RH, Ahmed AE, Hozayen WG, Rabea AM, Ali TM, El Askary A, Ahmed OM. Patterns of Toll-Like Receptor Expressions and Inflammatory Cytokine Levels and Their Implications in the Progress of Insulin Resistance and Diabetic Nephropathy in Type 2 Diabetic Patients. Front Physiol 2020; 11:609223. [PMID: 33442388 PMCID: PMC7798354 DOI: 10.3389/fphys.2020.609223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Diabetic nephropathy (DNP) is a type 2 diabetes mellitus (T2DM) chronic complication, which is the largest single cause of end-stage kidney disease. There is an increasing evidence of the role of inflammation and Toll-like receptors (TLRs) as part of innate immune system in its development and progression. In addition, Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4) downward signaling causes the production of proinflammatory cytokines, which can induce insulin (INS) resistance in T2DM. Objective: The goal of this study was to estimate the expression of TLRs (TLR2 and TLR4) in relation to inflammation and INS resistance in nephrotic type 2 diabetic patients with or without renal failure and to discuss the role of these TLRs in DNP progression. Patients and Methods: In this study, blood samples were obtained from type 2 diabetic patients with or without renal failure, and patients with non-diabetic renal failure were compared to healthy controls. All participants were tested for analysis of fasting plasma glucose and serum insulin, kidney function tests, C-reactive protein (CRP), and proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), and interleukin 6 (IL-6) as well as expression of TLR2 and TLR4 in peripheral blood (PB). Statistical analysis of data was done by using SPSS. Results: Diabetic patients with renal failure exhibited significant increase in TLR2, TLR4 mRNA expression in PB in comparison with normal subjects, diabetic patients without renal failure and non-diabetic patients with renal failure. Both diabetic patients with or without kidney failure and non-diabetic patients with renal failure had increased TLR2 and TLR4 mRNA expression in association with increased levels of proinflammatory cytokines (TNF-α, IFN-γ, and IL-6) compared to normal subjects. The diabetic patients with kidney failure exhibited the highest elevation of TLRs, Th1 cytokines and CRP in association the highest record of insulin resistance. Conclusion: Toll-like receptor 2 and Toll-like receptor 4 increased expression and Th2 cytokines may have an important role in the progression of DNP and deteriorations in insulin resistance in type 2 diabetic patients. Therefore, TLR2 and TLR4 may be a promising therapeutic target to prevent or retard DNP in type 2 diabetic patients.
Collapse
Affiliation(s)
- Rofyda H. Aly
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Amr E. Ahmed
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Walaa G. Hozayen
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Alaa Mohamed Rabea
- Internal Medicine Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmad El Askary
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine (New Damietta), Al Azhar University, Cairo, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
43
|
Nawaz MA, Pervez S, Rehman HU, Jamal M, Jan T, Hazrat A, Attaullah M, Khan W, Qader SAU. Utilization of different polymers for the improvement of catalytic properties and recycling efficiency of bacterial maltase. Int J Biol Macromol 2020; 163:1344-1352. [PMID: 32698068 DOI: 10.1016/j.ijbiomac.2020.07.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022]
Abstract
Current study deals with the comparative study related to immobilization of maltase using synthetic (polyacrylamide) and non-synthetic (calcium alginate, agar-agar and agarose) polymers via entrapment technique. Polyacrylamide beads were formed by cross-linking of monomers, agar-agar and agarose through solidification while alginate beads were prepared by simple gelation. Results showed that the efficiency of enzyme significantly improved after immobilization and among all tested supports agar-agar was found to be the most promising and biocompatible for maltase in terms of immobilization yield (82.77%). The catalytic behavior of maltase was slightly shifted in terms of reaction time (free enzyme, agarose and polyacrylamide: 5.0 min; agar-agar and alginate: 10.0 min), pH (free enzyme, alginate and polyacrylamide: 6.5; agar-agar, agarose: 7.0) and temperature (free enzyme: 45 °C; alginate: 50 °C; polyacrylamide: 55 °C; agarose: 60 °C; agar-agar: 65 °C). Stability profile of immobilized maltase also revealed that all the supports utilized have significantly enhanced the activity of maltase at higher temperatures then its free counterpart. However, recycling data showed that agar-agar entrapped maltase retained 20.0% of its initial activity even after 10 cycles followed by agarose (10.0%) while polyacrylamide and alginate showed no activity after 8 and 6 cycles respectively.
Collapse
Affiliation(s)
- Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir (Upper), Pakistan; The Karachi Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi 75270, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan.
| | - Haneef Ur Rehman
- Department of Chemistry, University of Turbat, Kech, Balochistan, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, KPK, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdara, KPK, Pakistan
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara, KPK, Pakistan
| | | | - Wali Khan
- Department of Zoology, University of Malakand, Chakdara, KPK, Pakistan
| | - Shah Ali Ul Qader
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
44
|
Hamza RZ, Al-Salmi FA, El-Shenawy NS. Zinc oxide nanoparticles with green tea extract complex in the pancreas of rats against monosodium glutamate toxicity. J Basic Clin Physiol Pharmacol 2020; 32:979-985. [PMID: 33180034 DOI: 10.1515/jbcpp-2020-0164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 09/10/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Nanotechnology is an exciting field for investigators. Green zinc oxide nanoparticles (ZnO NPs) with Camellia sinensis extract complex are proved to be used in the treatment of the toxicity of monosodium glutamate (MSG) in the liver, kidney, and testis of rats. Therefore, the synthesized complex of green nanoparticles using green tea extract (GTE) was tested against the toxicity of MSG on the pancreas. METHODS The glucose and insulin levels were estimated as well as some biochemical parameters for evaluating the antioxidant status of the pancreas tissue. The histopathological change of the pancreas also has been determined. RESULTS It indicates the biomedical capability of ZnO NPs/GTE to act as potent antidiabetic through decreasing blood glucose and increasing serum insulin also, inhibition of lipid peroxidation and enhancement of the antioxidant parameters. CONCLUSIONS The ZnO NPs/GTE enhanced the pancreatic cell and Langerhans islets as well lowered the sugar levels and stimulated insulin.
Collapse
Affiliation(s)
- Reham Z Hamza
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia.,Department of Zoology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Fawziah A Al-Salmi
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Nahla S El-Shenawy
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
45
|
Mohammed SAA, Khan RA, El-Readi MZ, Emwas AH, Sioud S, Poulson BG, Jaremko M, Eldeeb HM, Al-Omar MS, Mohammed HA. Suaeda vermiculata Aqueous-Ethanolic Extract-Based Mitigation of CCl 4-Induced Hepatotoxicity in Rats, and HepG-2 and HepG-2/ADR Cell-Lines-Based Cytotoxicity Evaluations. PLANTS 2020; 9:plants9101291. [PMID: 33003604 PMCID: PMC7601535 DOI: 10.3390/plants9101291] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022]
Abstract
Suaeda vermiculata, an edible halophytic plant, used by desert nomads to treat jaundice, was investigated for its hepatoprotective bioactivity and safety profile on its mother liquor aqueous-ethanolic extract. Upon LC-MS (Liquid Chromatography-Mass Spectrometry) analysis, the presence of several constituents including three major flavonoids, namely quercetin, quercetin-3-O-rutinoside, and kaempferol-O-(acetyl)-hexoside-pentoside were confirmed. The aqueous-ethanolic extract, rich in antioxidants, quenched the DPPH (1,1-diphenyl-2-picrylhydrazyl) radicals, and also showed noticeable levels of radical scavenging capacity in ABTS (2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) assay. For the hepatoprotective activity confirmation, the male rat groups were fed daily, for 7 days (n = 8/group, p.o.), either carboxyl methylcellulose (CMC) 0.5%, silymarin 200 mg/kg, the aqueous-ethanolic extract of the plant Suaeda vermiculata (100, 250, and 500 mg/kg extract), or quercetin (100 mg/kg) alone, and on day 7 of the administrations, all the animal groups, excluding a naïve (250 mg/kg aqueous-ethanolic extract-fed), and an intact animal group were induced hepatotoxicity by intraperitoneally administering carbon tetrachloride (CCl4). All the animals were sacrificed after 24 h, and aspartate transaminase and alanine transaminase serum levels were observed, which were noted to be significantly decreased for the aqueous-ethanolic extract, silymarin, and quercetin-fed groups in comparison to the CMC-fed group (p < 0.0001). No noticeable adverse effects were observed on the liver, kidney, or heart's functions of the naïve (250 mg/kg) group. The aqueous-ethanolic extract was found to be safe in the acute toxicity (5 g/kg) test and showed hepatoprotection and safety at higher doses. Further upon, the cytotoxicity testings in HepG-2 and HepG-2/ADR (Adriamycin resistant) cell-lines were also investigated, and the IC50 values were recorded at 56.19±2.55 µg/mL, and 78.40±0.32 µg/mL (p < 0.001, Relative Resistance RR 1.39), respectively, while the doxorubicin (Adriamycin) IC50 values were found to be 1.3±0.064, and 4.77±1.05 µg/mL (p < 0.001, RR 3.67), respectively. The HepG-2/ADR cell-lines when tested in a combination of the aqueous-ethanolic extract with doxorubicin, a significant reversal in the doxorubicin's IC50 value by 2.77 folds (p < 0.001, CI = 0.56) was noted as compared to the cytotoxicity test where the extract was absent. The mode of action for the reversal was determined to be synergistic in nature indicating the role of the aqueous-ethanolic extract.
Collapse
Affiliation(s)
- Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Correspondence: (S.A.A.M.); (R.A.K.); (H.A.M.); Tel.: +966-(0)530309899 (S.A.A.M.); +966-(0)508384296 (R.A.K.); +966-(0)566176074 (H.A.M.)
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Correspondence: (S.A.A.M.); (R.A.K.); (H.A.M.); Tel.: +966-(0)530309899 (S.A.A.M.); +966-(0)508384296 (R.A.K.); +966-(0)566176074 (H.A.M.)
| | - Mahmoud Z. El-Readi
- Department of Clinical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia; (A.-H.E.); (S.S.)
| | - Salim Sioud
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia; (A.-H.E.); (S.S.)
| | - Benjamin G. Poulson
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia; (B.G.P); (M.J.)
| | - Mariusz Jaremko
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia; (B.G.P); (M.J.)
| | - Hussein M. Eldeeb
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut, 71524, Egypt
| | - Mohsen S. Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, JUST, Irbid 22110, Jordan
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
- Correspondence: (S.A.A.M.); (R.A.K.); (H.A.M.); Tel.: +966-(0)530309899 (S.A.A.M.); +966-(0)508384296 (R.A.K.); +966-(0)566176074 (H.A.M.)
| |
Collapse
|
46
|
Salama RM, Nasr MM, Abdelhakeem JI, Roshdy OK, ElGamal MA. Alogliptin attenuates cyclophosphamide-induced nephrotoxicity: a novel therapeutic approach through modulating MAP3K/JNK/SMAD3 signaling cascade. Drug Chem Toxicol 2020; 45:1254-1263. [PMID: 32869669 DOI: 10.1080/01480545.2020.1814319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclophosphamide (CP) is widely used as a chemotherapy against various types of cancers. However, CP is accompanied with multiple organ toxicity due to production of reactive oxygen species (ROS), induction of inflammation and consequently apoptosis. Alogliptin (Alo) is a dipeptidyl peptidase 4 (DPP-IV) inhibitor, which is booming as an antidiabetic agent. Interestingly, gliptins are currently studied for their counter-regulatory effects against oxidative stress and inflammation via multiple pathways, among which is the mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinase (JNK) pathway. This cascade can reduce inflammation via mitigating the activity of mothers against decapentaplegic homolog 3 (SMAD3) and c-Jun. However, Alo effect against CP-induced kidney injury has not been previously elucidated. This tempted us to investigate the possible beneficial effect of Alo against CP-induced kidney injury via modulating the MAP3K/JNK/SMAD3 signaling cascade. Thirty-two male Wistar rats were randomly allocated into four groups. CP-treated group received a single dose of CP (200 mg/kg; i.p.). Alo-treated group received Alo (20 mg/kg/day; p.o.) for 7 days with single CP injection on day 2. Marked decrease in renal injury was observed upon Alo treatment, as evidenced through declined serum kidney function markers, oxidative stress and apoptosis markers, MAP3K expression, phospho (p)-SMAD3, p-JNK, and p-c-Jun levels. These cellular effects were reflected in reduced transforming growth factor beta (TGF-β) and tumor necrosis factor alpha (TNF-α) fibrotic and inflammatory mediators, coinciding with improved histopathological portrait. In conclusion, the current study provides novel application of Alo as a therapeutic modality against CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.,Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Merihane M Nasr
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.,Pharmacy Practice and Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Jannatullah I Abdelhakeem
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Omar K Roshdy
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Mohamed A ElGamal
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|
47
|
Effects of Dietary Doum Palm Fruit Powder on Growth, Antioxidant Capacity, Immune Response, and Disease Resistance of African Catfish, Clarias gariepinus (B.). Animals (Basel) 2020; 10:ani10081407. [PMID: 32823515 PMCID: PMC7460004 DOI: 10.3390/ani10081407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/21/2022] Open
Abstract
Application of herbal immune-stimulants for modulation of fish growth and immune response has received great interest during the past decades. With several pharmacological properties, Doum palm, Hyphaene thebaica (Mart.) is known to be a beneficial medicinal plant. The objective of this study was to investigate the effects of the dietary addition of doum palm fruit powder (DPFP) on growth performance, non-specific immune response, and antioxidant parameters of African catfish, Clarias gariepinus (B.). A total of 120 fish (average initial weight 60.50 ± 0.04 g) were randomly allocated to four groups (three replicates/group, 10 fish/aquarium); a basal diet without DPFP supplementation was used as a control, and three other diets were prepared by supplementing 5, 10, or 15 g kg-1 DPFP for a ten-week feeding period. Following ten weeks of feeding, the fish were challenged with Aeromonas hydrophila (as an immune challenge test), and mortalities were recorded. In comparison to the control diet, dietary DPFP significantly improved growth parameters, including final body weight, body weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER), along with an increase in the content of dry matter of the whole body, in a concentration-dependent manner. Moreover, the heights of intestinal villi, numbers of goblet cells, and intraepithelial lymphocytes (IEL) exhibited marked escalation in all parts of the intestine by increasing the level of DPFP, except for numbers of IEL in the proximal part. The decline in serum glucose, cholesterol, and triglyceride levels was prominent in DPFP10 and DPFP15 groups respective to the DPFP0 group. Furthermore, DPFP boosted the hepatic level of catalase (CAT) in the fish, in a dose-dependent manner; meanwhile, the activity of superoxide dismutase (SOD) and reduced glutathione (GSH) content were also augmented in DPFP10 and DPFP15 groups respective to the DPFP0 group. Dietary DPFP (DPFP15 followed by DPFP10 then DPFP5) led to a pronounced enhancement in the innate immune response (phagocytic percent and index, lysozyme activity, nitric oxide (NO) production, and sialoglycans, namely α 2,3-sialyltransferase and α 2,6-sialyltransferase content); however, the myeloperoxidase (MPO) activity was reduced. Significantly higher relative percentage survival (RPS, 88.56%) of the fish, following the A. hydrophila challenge, was observed for the DPFP15 group. We can suggest that DPFP can beneficially influence fish growth, intestinal histomorphology, hepatic levels of catalase (CAT), superoxide dismutase (SOD) activity and glutathione (GSH) content, immune response, and disease resistance against A. hydrophila challenge.
Collapse
|
48
|
Adeshina I, Abdel-Tawwab M. Dietary taurine incorporation to high plant protein-based diets improved growth, biochemical, immunity, and antioxidants biomarkers of African catfish, Clarias gariepinus (B.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1323-1335. [PMID: 32185568 DOI: 10.1007/s10695-020-00791-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/08/2020] [Indexed: 05/20/2023]
Abstract
Plant protein (PP) sources are generally used in high levels in fish diets. Mostly, PP sources are deficient in taurine; hence, there is a need for its supplementation to fish fed high PP diets. Therefore, effects of dietary taurine were examined on growth performance, feed utilization, immunity, and antioxidant parameters of African catfish, Clarias gariepinus (B.). Fish (10.3 ± 0.4 g) were fed on diets (40% crude protein) containing different taurine levels of 0 (control), 10, 20, 30, or 40 g/kg diet for 12 weeks. Fish fed a taurine-free diet (the control) with high PP sources showed poor growth as compared with these fed taurine-enriched diets where taurine stimulatory effects were observed on fish growth and feed intake. Feed conversion ratio and fish survival rate were not significantly differed among different treatments. Fish fed taurine-enriched diets showed also higher levels of serum glucose, cholesterol, total protein, albumin, globulin, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, urea, and creatinine over that fed the control diet. Furthermore, lysozyme and respiratory burst activities as well as superoxide dismutase and catalase activities were significantly elevated in fish fed taurine-enriched diets (P < 0.05) and their highest levels were observed in fish fed 30 g/kg diet. Additionally, taurine deposition in fish muscles was positively correlated with dietary taurine levels (P < 0.05). The present study concludes that taurine is a limiting factor for growth, immunity, and antioxidants responses of African catfish fed high PP-based diets and it should be incorporated in its diets with an optimum level of 20 g/kg diet.
Collapse
Affiliation(s)
- Ibrahim Adeshina
- Department of Aquaculture and Fisheries Management, University of Ilorin, Ilorin, Nigeria
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt.
| |
Collapse
|
49
|
Vilhena RO, Figueiredo ID, Baviera AM, Silva DB, Marson BM, Oliveira JA, Peccinini RG, Borges IK, Pontarolo R. Antidiabetic activity of Musa x paradisiaca extracts in streptozotocin-induced diabetic rats and chemical characterization by HPLC-DAD-MS. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112666. [PMID: 32084552 DOI: 10.1016/j.jep.2020.112666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/09/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Musa x paradisiaca L. inflorescence, known as banana blossom or banana heart, is used in traditional medicine for the treatment of diabetes mellitus. AIM OF THE STUDY The aim of the study was to investigate the antidiabetic activity of aqueous extracts and fractions prepared from the bracts and flowers of Musa x paradisiaca in streptozotocin (STZ)-induced diabetic rats and to chemically characterize the extracts. MATERIALS AND METHODS Standard aqueous extracts of the flowers, bracts, and their fractions were prepared and their chemical composition was determined tentatively by high-performance liquid chromatography coupled to diode-array detection and mass spectrometry (HPLC-DAD-MS). Changes in fasting glycemia and oral glucose tolerance were evaluated in STZ-induced diabetic rats (n = 8) treated with aqueous extracts of Musa x paradisiaca (200 mg/kg) for 20 days. RESULTS Chemical analyses detected 21 compounds and 17 metabolites were identified, among which were glycosylated and acetylated phenylpropanoids of p-coumaric acid and caffeic acid, as well as a glycosylated flavonol and anthocyanins. Following 15 days of treatment, the bract aqueous extracts and the methanolic fraction of the flower had significant effects on the glycemic profile after glucose load in diabetic rats as compared with the untreated diabetic group. CONCLUSIONS The results of the present study show the antidiabetic potential of extracts of the flowers and bracts of M. x paradisiaca.
Collapse
Affiliation(s)
- R O Vilhena
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - I D Figueiredo
- Departamento de Análises Clínicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, SP, Brazil.
| | - A M Baviera
- Departamento de Análises Clínicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, SP, Brazil.
| | - D B Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, Brazil.
| | - B M Marson
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - J A Oliveira
- Departamento de Análises Clínicas, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, SP, Brazil.
| | - R G Peccinini
- Departamento de Princípios Ativos Naturais e Toxicologia, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, SP, Brazil.
| | - I K Borges
- Departamento de Ciências Patológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | - R Pontarolo
- Departamento de Farmácia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
50
|
Abdel Rahman AN, Mohamed AAR, Mohammed HH, Elseddawy NM, Salem GA, El-Ghareeb WR. The ameliorative role of geranium (Pelargonium graveolens) essential oil against hepato-renal toxicity, immunosuppression, and oxidative stress of profenofos in common carp, Cyprinus carpio (L.). AQUACULTURE 2020; 517:734777. [DOI: 10.1016/j.aquaculture.2019.734777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|