1
|
Fan Q, Wang H, Yuan S, Quan Y, Li R, Yi L, Jia A, Wang Y, Wang Y. Pyruvate formate lyase regulates fermentation metabolism and virulence of Streptococcus suis. Virulence 2025; 16:2467156. [PMID: 39977342 PMCID: PMC11845055 DOI: 10.1080/21505594.2025.2467156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Streptococcus suis, a zoonotic pathogen, is commonly found as a commensal bacterium in the respiratory tracts of pigs. Under specific conditions, it becomes invasive and enters the blood, causing severe systemic infections. For S. suis, effective acquisition of carbon sources in different host niches is necessary for its survival. However, as of now, our understanding of the metabolism of S. suis within the host is highly restricted. Pyruvate formate lyase (PFL) plays a crucial role in bacterial survival of in glucose-limited and hypoxic host tissues. Here, we investigated the physiological and metabolic functions of PFL PflB in S. suis and elucidated its pivotal role in regulating virulence within the mucosal and blood niches. We demonstrate that PflB is a key enzyme for S. suis to support mixed-acid fermentation under glucose-limited and hypoxic conditions. Additionally, PflB is involved in regulating S. suis morphology and stress tolerance, and its regulation of capsular polysaccharide content depends on dynamic carbon availability. We also found that PflB is associated with the capacity of S. suis to cause bacteremia and persist in the upper respiratory tract to induce persistent infection. Our results provide highly persuasive evidence for the relationship between metabolic regulation and the virulence of S. suis.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Shuo Yuan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yingying Quan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Rishun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Aiqing Jia
- Guangdong Haid Institute of Animal Husbandry and Veterinary, Guangzhou, P.R. China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, Henan, China
| |
Collapse
|
2
|
Li Y, Li J, Jia X, Yang J, Cai L, Wu Y, Pei W, Le G, Chen J. A lipoprotein complex conjugated mesoporous silica as potent antibiotic adjuvant for synergistic antibacterial therapy of MRSA. Colloids Surf B Biointerfaces 2025; 251:114602. [PMID: 40048969 DOI: 10.1016/j.colsurfb.2025.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
Nowadays, the emergence of antibiotic-resistant bacteria has posed a global threat to public health. However, the deployment of alternative antibiotics is lagging far behind the fast evolving antibiotic resistance, which demands effective strategies to restore drug-resistance sensitivity to available antibiotics. Here, a well-known antitumor lipoprotein complex consisted of bovine α-lactalbumin and oleic acid (BAMLET) was electrostatically adsorbed on the surface of mesoporous silica nanomaterials (MSN), forming an antibiotic adjuvant to re-sensitize methicillin-resistant Staphylococcus aureus (MRSA) to aminoglycoside antibiotics. It was found MSN of distinctive particle size may cause conformational changes of bound lipoprotein complex affecting the bactericidal performance of formed BAMLET@MSN conjugates (BMSN). Moreover, MSN was loaded with curcumin to endow obtained BMSN improved bioavailability and antioxidant capacity. The mechanistic studies revealed that antibacterial activities of BMSN originated from bacterial cell membrane disruption and biofilm inhibition, which promoted antibiotic entry and restored antibiotic bactericidal efficacy in the cell. Finally, transcriptomic analysis of MRSA indicated that BMSN interfered with bacterial amino acid metabolism, carbohydrate synthesis, and ATP translocation in bacteria. Therefore, the constructed BMSN/curcumin as potent antibiotic adjuvant provided a manipulable nanoplatform to tackle the antibiotic resistance crisis.
Collapse
Affiliation(s)
- Yuqing Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jinhuan Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoyu Jia
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yixian Wu
- Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Pei
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guannan Le
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Sze CW, Lynch MJ, Zhang K, Neau DB, Ealick SE, Crane BR, Li C. Lactate dehydrogenase is the Achilles' heel of Lyme disease bacterium Borreliella burgdorferi. mBio 2025; 16:e0372824. [PMID: 40111021 PMCID: PMC11980376 DOI: 10.1128/mbio.03728-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/11/2025] [Indexed: 03/22/2025] Open
Abstract
As a zoonotic pathogen, the Lyme disease bacterium Borreliella burgdorferi has evolved unique metabolic pathways, some of which are specific and essential for its survival and thus present as ideal targets for developing new therapeutics. B. burgdorferi dispenses with the use of thiamin as a cofactor and relies on lactate dehydrogenase (BbLDH) to convert pyruvate to lactate for balancing NADH/NAD+ ratios. This report first demonstrates that BbLDH is a canonical LDH with some unique biochemical and structural features. A loss-of-function study then reveals that BbLDH is essential for B. burgdorferi survival and infectivity, highlighting its therapeutic potential. Drug screening identifies four previously unknown LDH inhibitors with minimal cytotoxicity, two of which inhibit B. burgdorferi growth. This study provides mechanistic insights into the function of BbLDH in the pathophysiology of B. burgdorferi and lays the groundwork for developing genus-specific metabolic inhibitors against B. burgdorferi and potentially other tick-borne pathogens as well. IMPORTANCE Lyme disease (LD) is the most commonly reported tick-borne illness in the U.S. and Europe, and its geographic distribution is continuously expanding worldwide. Though early LD can be treated with antibiotics, chronic LD is recalcitrant to antibiotic treatments and thus requires multiple courses of antibiotic therapy. Currently, there are no human vaccines nor prophylactic antibiotics to prevent LD. As the causative agent of LD, Borreliella burgdorferi has evolved unique metabolic pathways, some of which are specific and essential for its survival and thus present as ideal targets for developing new therapeutics. By using an approach of genetics, biochemistry, structural biology, drug screening, and animal models, this report provides evidence that lactate dehydrogenase can be a potential target for developing genus-specific metabolic inhibitors against B. burgdorferi and potentially other tick-borne pathogens as well.
Collapse
Affiliation(s)
- Ching Wooen Sze
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michael J. Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Kai Zhang
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - David B. Neau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
4
|
Xu J, Chen J, Xia H, Gong Y, Xiong F. Integrated Approaches for Discovery of Staphylococcus aureus Antimicrobial Agents: Virtual Screening, Molecular Docking, Molecular Dynamics Simulations, and Density Functional Theory. Chem Biodivers 2025:e202403449. [PMID: 40192570 DOI: 10.1002/cbdv.202403449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
Due to the excessive use of antibiotics, Staphylococcus aureus has developed resistance to conventional antibiotics. This study primarily employs virtual screening methods to explore the binding mode, biological stability, electronic properties, and antimicrobial activity of the drugs. Lactate dehydrogenase (LDH) was chosen as the primary target, and virtual screening of approximately 3180 FDA-approved drugs was performed. On the basis of binding affinity scores, the top 12 molecules were shortlisted for further analysis through precise docking and MMGBSA calculations. Molecular docking simulations revealed that these compounds exhibit a strong affinity for the target protein 6BAZ, with Gliquidone demonstrating the highest binding affinity at -76.25 kcal/mol. The top three hit molecules were subjected to 100 ns molecular dynamics simulations, which confirmed the stability of the ligand-protein complexes through hydrophobic and hydrogen bonding interactions, corroborating the docking and MMGBSA findings. Density functional theory (B3LYP level, 6-31 + G (d, p) basis set) was applied to evaluate molecular geometry optimization and vibrational frequencies, offering valuable insights into the structure and stability of the drug molecules, which further supports their potential as lead compounds for LDH inhibition and establishes a strong basis for future drug development and optimization.
Collapse
Affiliation(s)
- Jie Xu
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Jiawei Chen
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Heping Xia
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Yi Gong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Fei Xiong
- Department of Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Wise AD, TenBarge EG, Mendonça JDC, Mennen EC, McDaniel SR, Reber CP, Holder BE, Bunch ML, Belevska E, Marshall MG, Vaccaro NM, Blakely CR, Wellawa DH, Ferris J, Sheldon JR, Bieber JD, Johnson JG, Burcham LR, Monteith AJ. Mitochondria sense bacterial lactate and drive release of neutrophil extracellular traps. Cell Host Microbe 2025; 33:341-357.e9. [PMID: 40020664 PMCID: PMC11955204 DOI: 10.1016/j.chom.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025]
Abstract
Neutrophils induce oxidative stress, creating a harsh phagosomal environment. However, Staphylococcus aureus can survive these conditions, requiring neutrophils to deploy mechanisms that sense bacterial persistence. We find that staphylococcal lactate is a metabolic danger signal that triggers neutrophil extracellular trap release (NETosis). Neutrophils coordinate mitochondria in proximity to S. aureus-containing phagosomes, allowing transfer of staphylococcal lactate to mitochondria where it is rapidly converted into pyruvate and causes mitochondrial reactive oxygen species, a precursor to NETosis. Similar results were observed in response to phylogenetically distinct bacteria, implicating lactate accumulation as a broad signal triggering NETosis. Furthermore, patients with systemic lupus erythematosus (SLE) are more susceptible to bacterial infections. We find that SLE neutrophils cannot sense bacterial lactate impairing their capacity to undergo NETosis upon S. aureus infection but initiate aberrant NETosis triggered by apoptotic debris. Thus, neutrophils adapt mitochondria as sensory organelles that detect bacterial metabolic activity and dictate downstream antibacterial processes.
Collapse
Affiliation(s)
- Ashley D Wise
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Eden G TenBarge
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Ellie C Mennen
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Sarah R McDaniel
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Callista P Reber
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Bailey E Holder
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Madison L Bunch
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Eva Belevska
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Nicole M Vaccaro
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | | | - Dinesh H Wellawa
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jennifer Ferris
- Division of Rheumatology, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Jessica R Sheldon
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada; Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jeffry D Bieber
- Division of Rheumatology, University of Tennessee Medical Center, Knoxville, TN, USA
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Lindsey R Burcham
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Andrew J Monteith
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA; Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
6
|
Llibre A, Kucuk S, Gope A, Certo M, Mauro C. Lactate: A key regulator of the immune response. Immunity 2025; 58:535-554. [PMID: 40073846 DOI: 10.1016/j.immuni.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Lactate, the end product of both anaerobic and aerobic glycolysis in proliferating and growing cells-with the latter process known as the Warburg effect-is historically considered a mere waste product of cell and tissue metabolism. However, research over the past ten years has unveiled multifaceted functions of lactate that critically shape and impact cellular biology. Beyond serving as a fuel source, lactate is now known to influence gene expression through histone modification and to function as a signaling molecule that impacts a wide range of cellular activities. These properties have been particularly studied in the context of both adaptive and innate immune responses. Here, we review the diverse roles of lactate in the regulation of the immune system during homeostasis and disease pathogenesis (including cancer, infection, cardiovascular diseases, and autoimmunity). Furthermore, we describe recently proposed therapeutic interventions for manipulating lactate metabolism in human diseases.
Collapse
Affiliation(s)
- Alba Llibre
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Salih Kucuk
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Atrayee Gope
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Michelangelo Certo
- College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Claudio Mauro
- College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Sze CW, Lynch MJ, Zhang K, Neau DB, Ealick SE, Crane BR, Li C. Lactate dehydrogenase is the Achilles' heel of Lyme disease bacterium Borreliella burgdorferi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637162. [PMID: 39974897 PMCID: PMC11839043 DOI: 10.1101/2025.02.07.637162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
As a zoonotic pathogen, the Lyme disease bacterium Borreliella burgdorferi has evolved unique metabolic pathways, some of which are specific and essential for its survival and thus present as ideal targets for developing new therapeutics. B. burgdorferi dispenses with the use of thiamin as a cofactor and relies on lactate dehydrogenase (BbLDH) to convert pyruvate to lactate for balancing NADH/NAD + ratios. This report first demonstrates that BbLDH is a canonical LDH with some unique biochemical and structural features. A loss-of-function study then reveals that BbLDH is essential for B. burgdorferi survival and infectivity, highlighting its therapeutic potential. Drug screening identifies four previously unknown LDH inhibitors with minimal cytotoxicity, two of which inhibit B. burgdorferi growth. This study provides mechanistic insights into the function of BbLDH in the pathophysiology of B. burgdorferi and lays the groundwork for developing genus-specific metabolic inhibitors against B. burgdorferi and potentially other tick-borne pathogens as well.
Collapse
|
8
|
Fatykhova D, Fritsch VN, Siebert K, Methling K, Lalk M, Busche T, Kalinowski J, Weiner J, Beule D, Bertrams W, Kohler TP, Hammerschmidt S, Löwa A, Fischer M, Mieth M, Hellwig K, Frey D, Neudecker J, Rueckert JC, Toennies M, Bauer TT, Graff M, Tran HL, Eggeling S, Gruber AD, Antelmann H, Hippenstiel S, Hocke AC. Microenvironmental acidification by pneumococcal sugar consumption fosters barrier disruption and immune suppression in the human alveolus. Eur Respir J 2024; 64:2301983. [PMID: 39231629 PMCID: PMC11635383 DOI: 10.1183/13993003.01983-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
Streptococcus pneumoniae is the most common causative agent of community-acquired pneumonia worldwide. A key pathogenic mechanism that exacerbates severity of disease is the disruption of the alveolar-capillary barrier. However, the specific virulence mechanisms responsible for this in the human lung are not yet fully understood. In this study, we infected living human lung tissue with Strep. pneumoniae and observed a significant degradation of the central junctional proteins occludin and vascular endothelial cadherin, indicating barrier disruption. Surprisingly, neither pneumolysin, bacterial hydrogen peroxide nor pro-inflammatory activation were sufficient to cause this junctional degradation. Instead, pneumococcal infection led to a significant decrease of pH (∼6), resulting in the acidification of the alveolar microenvironment, which was linked to junctional degradation. Stabilising the pH at physiological levels during infection reversed this effect, even in a therapeutic-like approach. Further analysis of bacterial metabolites and RNA sequencing revealed that sugar consumption and subsequent lactate production were the major factors contributing to bacterially induced alveolar acidification, which also hindered the release of critical immune factors. Our findings highlight bacterial metabolite-induced acidification as an independent virulence mechanism for barrier disruption and inflammatory dysregulation in pneumonia. Thus, our data suggest that strictly monitoring and buffering alveolar pH during infections caused by fermentative bacteria could serve as an adjunctive therapeutic strategy for sustaining barrier integrity and immune response.
Collapse
Affiliation(s)
- Diana Fatykhova
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Verena N Fritsch
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Keerthana Siebert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Karen Methling
- University of Greifswald, Institute of Biochemistry, Metabolomics, Greifswald, Germany
| | - Michael Lalk
- University of Greifswald, Institute of Biochemistry, Metabolomics, Greifswald, Germany
| | - Tobias Busche
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
- NGS Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
| | - January Weiner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Unit Bioinformatics, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Anna Löwa
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Mara Fischer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Maren Mieth
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Katharina Hellwig
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Doris Frey
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
| | - Jens Neudecker
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jens C Rueckert
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Toennies
- HELIOS Clinic Emil von Behring, Department of Pneumology and Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Torsten T Bauer
- HELIOS Clinic Emil von Behring, Department of Pneumology and Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Mareike Graff
- Department of Thoracic Surgery, DRK Clinics, Berlin, Germany
| | - Hong-Linh Tran
- Department of Thoracic Surgery, Vivantes Clinics Neukölln, Berlin, Germany
| | - Stephan Eggeling
- Department of Thoracic Surgery, Vivantes Clinics Neukölln, Berlin, Germany
| | - Achim D Gruber
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Stefan Hippenstiel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
- Contributed equally
| | - Andreas C Hocke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany
- Contributed equally
| |
Collapse
|
9
|
Peng L, Chen Z, Hei Y, Wei W, Chen D. The Antibacterial Efficacy and Mechanism of Tea Polyphenol Against Drug-Resistant Aeromonas veronii TH0426 In Vitro. Foodborne Pathog Dis 2024. [PMID: 39383012 DOI: 10.1089/fpd.2024.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
The emergence of Motile Aeromonas Septicemia (MAS) caused by Aeromonas veronii in sturgeon farming has become a significant concern due to its high mortality impact on the aquaculture industry. The threat posed by MAS highlights the urgent need for effective control measures to combat bacterial infections in sturgeon populations. Tea polyphenol (TP) has demonstrated promising antibacterial properties against livestock and poultry bacterial infections. However, its antibacterial efficacy and mechanism in bacterial diseases of aquatic animals remain largely unexplored. This study aimed to investigate the in vitro antibacterial effect and mechanism of TP on fish-borne drug-resistant A. veronii TH0426 by assessing the impact of TP on TH0426 cell growth, antibiofilm activity, morphology, as well as measuring electrical conductivity, DNA extravasation, lactate dehydrogenase (LDH) activity, protein, and DNA contents. Results demonstrated that the minimum inhibitory concentration and the minimum bactericidal concentration of TP on TH0426 were 1024 and 2048 μg/mL, respectively. After a 4 h treatment, the growth of TH0426 was completely inhibited at the concentration of 1024 and 2048 μg/mL of TP. Meanwhile, TP exhibited a significant antibiofilm activity. Both scanning electron microscope and transmission electron microscope analyses revealed disrupted cell membrane structure, irregular cell morphology, and loss of intracellular contents following TP treatment. Moreover, increased cell membrane permeability induced by TP led to intracellular ion and DNA leakage, resulting in elevated electrical conductivity and DNA extravasation. Furthermore, TP decreased LDH activity, protein concentration and content, DNA fluorescence intensity, and density in a time-dependent manner, indicating inhibition of protein metabolism and DNA synthesis. In conclusion, TP exhibits potent antibacterial properties by inhibiting biofilm formation, disrupting cell membrane integrity, and interfering with protein metabolism and DNA synthesis in drug-resistant A. veronii TH0426 in vitro.
Collapse
Affiliation(s)
- Liying Peng
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zongtao Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yanting Hei
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenyan Wei
- Institute of Fisheries Research, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Kareem BO, Gazioglu O, Mueller Brown K, Habtom M, Glanville DG, Oggioni MR, Andrew PW, Ulijasz AT, Hiller NL, Yesilkaya H. Environmental and genetic regulation of Streptococcus pneumoniae galactose catabolic pathways. Nat Commun 2024; 15:5171. [PMID: 38886409 PMCID: PMC11183247 DOI: 10.1038/s41467-024-49619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Efficient utilization of nutrients is crucial for microbial survival and virulence. The same nutrient may be utilized by multiple catabolic pathways, indicating that the physical and chemical environments for induction as well as their functional roles may differ. Here, we study the tagatose and Leloir pathways for galactose catabolism of the human pathogen Streptococcus pneumoniae. We show that galactose utilization potentiates pneumococcal virulence, the induction of galactose catabolic pathways is influenced differentially by the concentration of galactose and temperature, and sialic acid downregulates galactose catabolism. Furthermore, the genetic regulation and in vivo induction of each pathway differ, and both galactose catabolic pathways can be turned off with a galactose analogue in a substrate-specific manner, indicating that galactose catabolic pathways can be potential drug targets.
Collapse
Affiliation(s)
- Banaz O Kareem
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Karina Mueller Brown
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - David G Glanville
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Marco R Oggioni
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Andrew T Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
11
|
Wang JX, Zhang PL, Gopala L, Lv JS, Lin JM, Zhou CH. A Unique Hybridization Route to Access Hydrazylnaphthalimidols as Novel Structural Scaffolds of Multitargeting Broad-Spectrum Antifungal Candidates. J Med Chem 2024; 67:8932-8961. [PMID: 38814290 DOI: 10.1021/acs.jmedchem.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This study developed a class of novel structural antifungal hydrazylnaphthalimidols (HNs) with multitargeting broad-spectrum potential via multicomponent hybridization to confront increasingly severe fungal invasion. Some prepared HNs exhibited considerable antifungal potency; especially nitrofuryl HN 4a (MIC = 0.001 mM) exhibited a potent antifungal activity against Candida albicans, which is 13-fold higher than that of fluconazole. Furthermore, nitrofuryl HN 4a displayed low cytotoxicity, hemolysis and resistance, as well as a rapid fungicidal efficacy. Preliminary mechanistic investigations revealed that nitrofuryl HN 4a could inhibit lactate dehydrogenase to decrease metabolic activity and promote the accumulation of reactive oxygen species, leading to oxidative stress. Moreover, nitrofuryl HN 4a did not exhibit membrane-targeting ability; it could embed into DNA to block DNA replication but could not cleave DNA. These findings implied that HNs are promising as novel structural scaffolds of potential multitargeting broad-spectrum antifungal candidates for treating fungal infection.
Collapse
Affiliation(s)
- Jin-Xin Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jing-Song Lv
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jian-Mei Lin
- Department of Infections, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
12
|
Lê-Bury P, Echenique-Rivera H, Pizarro-Cerdá J, Dussurget O. Determinants of bacterial survival and proliferation in blood. FEMS Microbiol Rev 2024; 48:fuae013. [PMID: 38734892 PMCID: PMC11163986 DOI: 10.1093/femsre/fuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/13/2024] Open
Abstract
Bloodstream infection is a major public health concern associated with high mortality and high healthcare costs worldwide. Bacteremia can trigger fatal sepsis whose prevention, diagnosis, and management have been recognized as a global health priority by the World Health Organization. Additionally, infection control is increasingly threatened by antimicrobial resistance, which is the focus of global action plans in the framework of a One Health response. In-depth knowledge of the infection process is needed to develop efficient preventive and therapeutic measures. The pathogenesis of bloodstream infection is a dynamic process resulting from the invasion of the vascular system by bacteria, which finely regulate their metabolic pathways and virulence factors to overcome the blood immune defenses and proliferate. In this review, we highlight our current understanding of determinants of bacterial survival and proliferation in the bloodstream and discuss their interactions with the molecular and cellular components of blood.
Collapse
Affiliation(s)
- Pierre Lê-Bury
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 18 route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Hebert Echenique-Rivera
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| | - Javier Pizarro-Cerdá
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
- Institut Pasteur, Université Paris Cité, Yersinia National Reference Laboratory, WHO Collaborating Research & Reference Centre for Plague FRA-146, 28 rue du Dr Roux, 75015 Paris, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Yersinia Research Unit, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
13
|
Xiao Y, He S, Cheng X, Peng L, Tian Y, Li T, He J, Hao P, Chong W, Hai Y, You C, Fang F, Peng Z, Zhang Y. Elevated lactate dehydrogenase predicts pneumonia in spontaneous intracerebral hemorrhage. Heliyon 2024; 10:e26109. [PMID: 38404841 PMCID: PMC10884414 DOI: 10.1016/j.heliyon.2024.e26109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
Background Although a variety of risk factors for pneumonia after spontaneous intracerebral hemorrhage have been established, an objective and easily obtainable predictor is still needed. Lactate dehydrogenase is a nonspecific inflammatory biomarker. In this study, we aimed to assess the association between lactate dehydrogenase and pneumonia in spontaneous intracerebral hemorrhage patients. Methods Our study was a retrospective, multicenter cohort study, undertaken in 7562 patients diagnosed with spontaneous intracerebral hemorrhage from 3 hospitals. All serum Lactate dehydrogenase was collected within 7 days from admission and divided into four groups as quartile(Q). We conducted a multivariable logistic regression analysis to assess the association of Lactate dehydrogenase with pneumonia. Results Among a total of 7562 patients, 2971 (39.3%) patients were diagnosed with pneumonia. All grades of elevated lactate dehydrogenase were associated with increased raw and risk-adjusted risk of pneumonia. Multiple logistic regression analysis showed odds ratios for Q2-Q4 compared with Q1 were 1.21 (95% CI, 1.04-1.42), 1.64(95% CI, 1.41-1.92), and 1.92 (95% CI, 1.63-2.25) respectively. The odds ratio after adjustment was 4.42 (95% CI, 2.94-6.64) when lactate dehydrogenase was a continuous variable after log-transformed. Conclusions Elevated lactate dehydrogenase is significantly associated with an increase in the odds of pneumonia and has a predictive value for severe pneumonia in patients with pneumonia. Lactate dehydrogenase may be used to predict pneumonia events in spontaneous intracerebral hemorrhage patients as a laboratory marker.
Collapse
Affiliation(s)
- Yangchun Xiao
- Department of Neurosurgery, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Shuanghong He
- Health Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Cheng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyuan Peng
- Department of Neurosurgery, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Yixin Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tiangui Li
- Department of Neurosurgery, The First People's Hospital of Longquanyi District Chengdu, Sichuan, China
| | - Jialing He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pengfei Hao
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, China
| | - Weelic Chong
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yang Hai
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zongjun Peng
- Department of Neurosurgery, Sichuan Friendship Hospital, China
| | - Yu Zhang
- Department of Neurosurgery, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Morris FC, Jiang Y, Fu Y, Kostoulias X, Murray GL, Yu Y, Peleg AY. Lactate metabolism promotes in vivo fitness during Acinetobacter baumannii infection. FEMS Microbiol Lett 2024; 371:fnae032. [PMID: 38719540 PMCID: PMC11126152 DOI: 10.1093/femsle/fnae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Acinetobacter baumannii is one of the most prevalent causes of nosocomial infections worldwide. However, a paucity of information exists regarding the connection between metabolic capacity and in vivo bacterial fitness. Elevated lactate is a key marker of severe sepsis. We have previously shown that the putative A. baumannii lactate permease gene, lldP, is upregulated during in vivo infection. Here, we confirm that lldP expression is upregulated in three A. baumannii strains during a mammalian systemic infection. Utilising a transposon mutant disrupted for lldP in the contemporary clinical strain AB5075-UW, and a complemented strain, we confirmed its role in the in vitro utilisation of l-(+)-lactate. Furthermore, disruption of the lactate metabolism pathway resulted in reduced bacterial fitness during an in vivo systemic murine competition assay. The disruption of lldP had no impact on the susceptibility of this strain to complement mediated killing by healthy human serum. However, growth in biologically relevant concentrations of lactate observed during severe sepsis, led to bacterial tolerance to killing by healthy human blood, a phenotype that was abolished in the lldP mutant. This study highlights the importance of the lactate metabolism pathway for survival and growth of A. baumannii during infection.
Collapse
Affiliation(s)
- Faye C Morris
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Jiang
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Ying Fu
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Xenia Kostoulias
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Gerald L Murray
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Present Address; Royal Women's Hospital, Grattan Street, Parkville, Victoria 3052, Australia
| | - Yusong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310016, China
| | - Anton Y Peleg
- Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital and School of Translational Medicine, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
15
|
Zhang C, Liu Y, An H, Wang X, Xu L, Deng H, Wu S, Zhang JR, Liu X. Amino Acid Starvation-Induced Glutamine Accumulation Enhances Pneumococcal Survival. mSphere 2023; 8:e0062522. [PMID: 37017541 PMCID: PMC10286718 DOI: 10.1128/msphere.00625-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/19/2023] [Indexed: 04/06/2023] Open
Abstract
Bacteria are known to cope with amino acid starvation by the stringent response signaling system, which is mediated by the accumulation of the (p)ppGpp alarmones when uncharged tRNAs stall at the ribosomal A site. While a number of metabolic processes have been shown to be regulatory targets of the stringent response in many bacteria, the global impact of amino acid starvation on bacterial metabolism remains obscure. This work reports the metabolomic profiling of the human pathogen Streptococcus pneumoniae under methionine starvation. Methionine limitation led to the massive overhaul of the pneumococcal metabolome. In particular, methionine-starved pneumococci showed a massive accumulation of many metabolites such as glutamine, glutamic acid, lactate, and cyclic AMP (cAMP). In the meantime, methionine-starved pneumococci showed a lower intracellular pH and prolonged survival. Isotope tracing revealed that pneumococci depend predominantly on amino acid uptake to replenish intracellular glutamine but cannot convert glutamine to methionine. Further genetic and biochemical analyses strongly suggested that glutamine is involved in the formation of a "prosurvival" metabolic state by maintaining an appropriate intracellular pH, which is accomplished by the enzymatic release of ammonia from glutamine. Methionine starvation-induced intracellular pH reduction and glutamine accumulation also occurred to various extents under the limitation of other amino acids. These findings have uncovered a new metabolic mechanism of bacterial adaptation to amino acid limitation and perhaps other stresses, which may be used as a potential therapeutic target for infection control. IMPORTANCE Bacteria are known to cope with amino acid starvation by halting growth and prolonging survival via the stringent response signaling system. Previous investigations have allowed us to understand how the stringent response regulates many aspects of macromolecule synthesis and catabolism, but how amino acid starvation promotes bacterial survival at the metabolic level remains largely unclear. This paper reports our systematic profiling of the methionine starvation-induced metabolome in S. pneumoniae. To the best of our knowledge, this represents the first reported bacterial metabolome under amino acid starvation. These data have revealed that the significant accumulation of glutamine and lactate enables S. pneumoniae to form a "prosurvival" metabolic state with a lower intracellular pH, which inhibits bacterial growth for prolonged survival. Our findings have provided insightful information on the metabolic mechanisms of pneumococcal adaptation to nutrient limitation during the colonization of the human upper airway.
Collapse
Affiliation(s)
- Chengwang Zhang
- Department of Basic Medical Science, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Yanhong Liu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xueying Wang
- National Protein Science Facility, Tsinghua University, Beijing, China
| | - Lina Xu
- National Protein Science Facility, Tsinghua University, Beijing, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Songquan Wu
- Department of Basic Medical Science, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- National Protein Science Facility, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Gupta S, Paul K. Membrane-active substituted triazines as antibacterial agents against Staphylococcus aureus with potential for low drug resistance and broad activity. Eur J Med Chem 2023; 258:115551. [PMID: 37348297 DOI: 10.1016/j.ejmech.2023.115551] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
A library of new naphthalimide-triazine analogues was synthesized as broad-spectrum antibacterial agents to overcome drug resistance. Bioactivity assay reveals that derivative 8e, with benzylamine in its structure, exhibits strong antibacterial properties against multi-drug resistance Staphylococcus aureus at a concentration of 1.56 μg/ml. It was also found to be better than chloromycin and amoxicillin. The active compound 8e efficiently inhibits the development of drug resistance within 11 passages. In addition, compound 8e inhibits the formation of biofilms in S. aureus and acts rapidly in bactericidal efficacy. Furthermore, mechanistic studies reveal that compound 8e effectively destroys the cytoplasmic membrane of bacteria, leading to leakage of intercellular protein content and loss in metabolic activity. Compound 8e binds to HSA readily with a binding constant of 1.32 × 105 M-1, indicating that the compound could be delivered to the target site effectively. Compound 8e can also form a supramolecular complex with DNA to obstruct DNA replications. These results suggest that analogue 8e could be further developed as a potential antibacterial agent. Furthermore, the cytotoxicity of all the synthesized compounds was evaluated against 60 human cancer cell lines to test their potential for anticancer agents.
Collapse
Affiliation(s)
- Saurabh Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147001, India.
| |
Collapse
|
17
|
Im H, Pearson ML, Martinez E, Cichos KH, Song X, Kruckow KL, Andrews RM, Ghanem ES, Orihuela CJ. Targeting NAD+ regeneration enhances antibiotic susceptibility of Streptococcus pneumoniae during invasive disease. PLoS Biol 2023; 21:e3002020. [PMID: 36928033 PMCID: PMC10019625 DOI: 10.1371/journal.pbio.3002020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/02/2023] [Indexed: 03/18/2023] Open
Abstract
Anaerobic bacteria are responsible for half of all pulmonary infections. One such pathogen is Streptococcus pneumoniae (Spn), a leading cause of community-acquired pneumonia, bacteremia/sepsis, and meningitis. Using a panel of isogenic mutants deficient in lactate, acetyl-CoA, and ethanol fermentation, as well as pharmacological inhibition, we observed that NAD(H) redox balance during fermentation was vital for Spn energy generation, capsule production, and in vivo fitness. Redox balance disruption in fermentation pathway-specific fashion substantially enhanced susceptibility to killing in antimicrobial class-specific manner. Blocking of alcohol dehydrogenase activity with 4-methylpyrazole (fomepizole), an FDA-approved drug used as an antidote for toxic alcohol ingestion, enhanced susceptibility of multidrug-resistant Spn to erythromycin and reduced bacterial burden in the lungs of mice with pneumonia and prevented the development of invasive disease. Our results indicate fermentation enzymes are de novo targets for antibiotic development and a novel strategy to combat multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Hansol Im
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Madison L. Pearson
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Eriel Martinez
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kyle H. Cichos
- Department of Orthopaedic Surgery Arthroplasty Section, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiuhong Song
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Katherine L. Kruckow
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rachel M. Andrews
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elie S. Ghanem
- Department of Orthopaedic Surgery Arthroplasty Section, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
18
|
Kahlert CR, Nigg S, Onder L, Dijkman R, Diener L, Vidal AGJ, Rodriguez R, Vernazza P, Thiel V, Vidal JE, Albrich WC. The quorum sensing com system regulates pneumococcal colonisation and invasive disease in a pseudo-stratified airway tissue model. Microbiol Res 2023; 268:127297. [PMID: 36608536 PMCID: PMC9868095 DOI: 10.1016/j.micres.2022.127297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The effects of the com quorum sensing system during colonisation and invasion of Streptococcus pneumoniae (Spn) are poorly understood. METHODS We developed an ex vivo model of differentiated human airway epithelial (HAE) cells with beating ciliae, mucus production and tight junctions to study Spn colonisation and translocation. HAE cells were inoculated with Spn wild-type TIGR4 (wtSpn) or its isogenic ΔcomC quorum sensing-deficient mutant. RESULTS Colonisation density of ΔcomC mutant was lower after 6 h but higher at 19 h and 30 h compared to wtSpn. Translocation correlated inversely with colonisation density. Transepithelial electric resistance (TEER) decreased after pneumococcal inoculation and correlated with increased translocation. Confocal imaging illustrated prominent microcolony formation with wtSpn but disintegration of microcolony structures with ΔcomC mutant. ΔcomC mutant showed greater cytotoxicity than wtSpn, suggesting that cytotoxicity was likely not the mechanism leading to translocation. There was greater density- and time-dependent increase of inflammatory cytokines including NLRP3 inflammasome-related IL-18 after infection with ΔcomC compared with wtSpn. ComC inactivation was associated with increased pneumolysin expression. CONCLUSIONS ComC system allows a higher organisational level of population structure resulting in microcolony formation, increased early colonisation and subsequent translocation. We propose that ComC inactivation unleashes a very different and possibly more virulent phenotype that merits further investigation.
Collapse
Affiliation(s)
- Christian R Kahlert
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland; Children's Hospital of Eastern Switzerland, Infectious Disease & Hospital Epidemiology, St. Gallen, Switzerland.
| | - Susanne Nigg
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Cantonal Hospital St. Gallen, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Liliane Diener
- Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Ana G Jop Vidal
- Department of Cell and Molecular Biology, and Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Regulo Rodriguez
- Institute of Pathology, Cantonal Hospital St. Gallen, Switzerland
| | - Pietro Vernazza
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jorge E Vidal
- Department of Cell and Molecular Biology, and Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Werner C Albrich
- Division of Infectious Diseases & Hospital Epidemiology, Cantonal Hospital St. Gallen, Switzerland.
| |
Collapse
|
19
|
Zhang Y, Li Z, Xu X, Peng X. Transposon mutagenesis in oral streptococcus. J Oral Microbiol 2022; 14:2104951. [PMID: 35903085 PMCID: PMC9318214 DOI: 10.1080/20002297.2022.2104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oral streptococci are gram-positive facultative anaerobic bacteria that are normal inhabitants of the human oral cavity and play an important role in maintaining oral microecological balance and pathogenesis. Transposon mutagenesis is an effective genetic manipulation strategy for studying the function of genomic features. In order to study cariogenic related genes and crucial biological element genes of oral Streptococcus, transposon mutagenesis was widely used to identify functional genes. With the advent of next-generation sequencing (NGS) technology and the development of transposon random mutation library construction methods, transposon insertion sequencing (TIS) came into being. Benefiting from high-throughput advances in NGS, TIS was able to evaluate the fitness contribution and essentiality of genetic features in the bacterial genome. The application of transposon mutagenesis, including TIS, to oral streptococci provided a massive amount of valuable detailed linkage data between genetic fitness and genetic backgrounds, further clarify the processes of colonization, virulence, and persistence and provides a more reliable basis for investigating relationships with host ecology and disease status. This review focuses on transposon mutagenesis, including TIS, and its applicability in oral streptococci.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Pn-AqpC-Mediated Fermentation Pattern Coordination with the Two-Component System 07 Regulates Host N-Glycan Degradation of Streptococcus pneumoniae. Microbiol Spectr 2022; 10:e0249622. [PMID: 36106896 PMCID: PMC9603416 DOI: 10.1128/spectrum.02496-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The opportunistic pathogen Streptococcus pneumoniae (pneumococcus) is a human nasopharyngeal commensal, and host N-glycan metabolism promotes its colonization and invasion. It has been reported that glucose represses, while fetuin, a glycoconjugated model protein, induces, the genes involved in N-glycan degradation through the two-component system TCS07. However, the mechanisms of glucose repression and TCS07 induction remain unknown. Previously, we found that the pneumococcal aquaglyceroporin Pn-AqpC facilitates oxygen uptake, thereby contributing to the antioxidant potential and virulence. In this study, through Tandem Mass Tag (TMT) quantitative proteomics, we found that the deletion of Pn-aqpC caused a marked upregulation of 11 proteins involved in N-glycan degradation in glucose-grown pneumococcus R6. Both quantitative RT-PCR and GFP fluorescence reporters revealed that the upregulation of N-glycan genes was completely dependent on response regulator (RR) 07, but not on the histidine kinase HK07 of TCS07 or the phosphoryl-receiving aspartate residue of RR07 in ΔPn-aqpC, indicating that RR07 was activated in an HK07-independent manner when Pn-AqpC was absent. The deletion of Pn-aqpC also enhanced the expression of pyruvate formate lyase and increased formate production, probably due to reduced cellular oxygen content, indicating that a shunt of glucose catabolism to mixed acid fermentation occurs. Notably, formate induced the N-glycan degradation genes in glucose-grown R6, but the deletion of rr07 abolished this induction, indicating that formate activates RR07. However, the induction of N-glycan degradation proteins reduced the intraspecies competition of R6 in glucose. Therefore, although N-glycan degradation promotes pneumococcal pathogenesis, the glucose metabolites-based RR07 regulation reported here is of importance for balancing growth fitness and the pathogenicity of pneumococcus. IMPORTANCE Pneumococcus, a human opportunistic pathogen, is capable of metabolizing host complex N-glycans. N-glycan degradation promotes pneumococcus colonization in the nasopharynx as well as invasion into deeper tissues, thus significantly contributing to pathogenesis. It is known that the two-component system 07 induces the N-glycan metabolizing genes; however, how TCS07 is activated remains unknown. This study reveals that formate, the anaerobic fermentation metabolite of pneumococcus, is a novel activator of the response regulator (RR) 07. Although the high expression of N-glycan degradation genes promotes pneumococcal colonization in the nasopharynx and pathogenesis, this reduces pneumococcal growth fitness in glucose as indicated in this work. Notably, the presence of Pn-AqpC, an oxygen-transporting aquaglyceroporin, enables pneumococcus to maintain glucose homolactic acid fermentation, thus reducing formate production, maintaining RR07 inactivation, and controlling N-glycan degrading genes at a non-induced status. Thus, this study highlights a novel fermentation metabolism pattern linking TCS-regulated carbohydrate utilization strategies as a trade-off between the fitness and the pathogenicity of pneumococcus.
Collapse
|
21
|
Yang X, Syed R, Fang B, Zhou C. A new discovery towards novel skeleton of benzimidazole‐conjugated pyrimidinones as unique effective antibacterial agents. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xi Yang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Rasheed Syed
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Cheng‐He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
22
|
Li FF, Zhao WH, Tangadanchu VKR, Meng JP, Zhou CH. Discovery of novel phenylhydrazone-based oxindole-thiolazoles as potent antibacterial agents toward Pseudomonas aeruginosa. Eur J Med Chem 2022; 239:114521. [PMID: 35716514 DOI: 10.1016/j.ejmech.2022.114521] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
Abstract
With the soaring of bacterial infection and drug resistance, it is imperative to exploit new efficient antibacterial agents. This work constructed a series of unique phenylhydrazone-based oxindole-thiolazoles to combat monstrous bacterial resistance. Some target molecules showed potent antibacterial activity, among which oxindole-thiolimidazole derived carboxyphenylhydrazone 4e exhibited an 8-fold stronger inhibitory ability than norfloxacin on the growth of P. aeruginosa, with MIC value of 1 μg/mL. Compound 4e with imperceptible hemolysis could hamper bacterial biofilm formation and significantly impede the development of bacterial resistance. Subsequent mechanism studies demonstrated that 4e could destruct bacterial cytoplasmic membrane, causing the leakage of cellular contents (protein and nucleic acid). Moreover, metabolic stagnation and intracellular oxidative stress caused by 4e expedited the death of bacteria. Furthermore, molecule 4e existed supramolecular interactions with DNA to block DNA proliferation. These research results provided a promising light for phenylhydrazone-based oxindole-thiolazoles as novel potential antibacterial agents.
Collapse
Affiliation(s)
- Fen-Fen Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Wen-Hao Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiang-Ping Meng
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Yang XC, Zhang PL, Kumar KV, Li S, Geng RX, Zhou CH. Discovery of unique thiazolidinone-conjugated coumarins as novel broad spectrum antibacterial agents. Eur J Med Chem 2022; 232:114192. [DOI: 10.1016/j.ejmech.2022.114192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
|
24
|
Jia H, Zeng X, Cai R, Wang Z, Yuan Y, Yue T. Fabrication of Epsilon-Polylysine-Based Magnetic Nanoflowers with Effective Antibacterial Activity against Alicyclobacillus acidoterrestris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:857-868. [PMID: 35040323 DOI: 10.1021/acs.jafc.1c06885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The risk of fruit juice contamination caused by microorganisms, especially Alicyclobacillus acidoterrestris, has been reported worldwide. To develop cost-effective control methods, in this work, flower-like magnetic molybdenum disulfide (Fe3O4@MoS2) nanoparticles (NPs) were fabricated by a facile two-step hydrothermal method. After further modifying polyacrylic acid (PAA) on the surface of the NPs, epsilon-polylysine (EPL) was immobilized via N-(3-dimethylaminopropyl)-N-carbodiimide hydrochloride/N-hydroxysuccinimide coupling reaction to obtain the Fe3O4@MoS2@PAA-EPL nanocomposites. Antibacterial results exhibited that the synthesized nanocomposites showed effective antibacterial activity against A. acidoterrestris with a minimum inhibitory concentration of 0.31 mg mL-1. Investigation on the antibacterial mechanism revealed that the presence of nanocomposites caused damage and disruption of the bacterial membrane through dent formation, resulting in the leakage of intracellular protein. Moreover, the activity of dehydrogenase enzymes was inhibited with the treatment of Fe3O4@MoS2@PAA-EPL, causing the reduction of metabolic activity and adenosine triphosphate levels in bacteria. Simultaneously, the presence of nanocomposites improved intracellular reactive oxygen species levels, and this disrupted the antioxidant defense system and caused oxidative damage to bacteria. Furthermore, Fe3O4@MoS2@PAA-EPL nanocomposites were confirmed to possess satisfactory biocompatibility by performing in vitro cytotoxicity and in vivo acute toxicity experiments. The aim of this research was to develop a new pathway for the inhibition of A. acidoterrestris in the juice industry.
Collapse
Affiliation(s)
- Hang Jia
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Xuejun Zeng
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
- Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture, Yangling 712100, China
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
25
|
Yang M, Meng F, Gu W, Fu L, Zhang F, Li F, Tao Y, Zhang Z, Wang X, Yang X, Li J, Yu J. Influence of Polysaccharides From Polygonatum kingianum on Short-Chain Fatty Acid Production and Quorum Sensing in Lactobacillus faecis. Front Microbiol 2021; 12:758870. [PMID: 34867887 PMCID: PMC8635744 DOI: 10.3389/fmicb.2021.758870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 01/09/2023] Open
Abstract
Polysaccharide is one of the main active ingredients of Polygonatum kingianum, which has been proven to regulate the balance of gut microbiota. For the first time, this study focused on the regulation of polysaccharides from Polygonatum kingianum (PS) on Lactobacillus faecis, a specific probiotic in the intestinal tract. PS effectively promoted the biomass, biofilm and acetic acid production in L. faecis 2-84, and enhanced quorum sensing (QS) signaling. The characteristics of gene sequence were analyzed using genomics approaches, and L. faecis 2-84 was found to encode 18 genes that are closely related to QS and 10 genes related to short-chain fatty acids (SCFAs). Additionally, transcriptome and proteome analysis demonstrated that PS could promote the QS system of L. faecis by enhancing the transcription of oppA gene and expression of oppD protein. PS also regulated the production and metabolism of SCFAs of L. faecis by upregulating the expression of ldh and metE gene and adh2 protein, and downregulating the expression of mvK gene. In conclusion, it was speculated that PS could affect intestinal SCFAs production by affecting the QS system and SCFAs production in L. faecis. The present study implied that PS might have a role in promoting the growth of intestinal probiotics, where the QS system and SCFAs might be two of the important mechanisms for the probiotic activity of PS.
Collapse
Affiliation(s)
- Min Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China.,Kunming Third People's Hospital, Kunming, China
| | - Fanying Meng
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Wen Gu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Lihui Fu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Fan Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Fengjiao Li
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Yating Tao
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhengyang Zhang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Xi Wang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Xingxin Yang
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Jingping Li
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Jie Yu
- Yunnan Key Laboratory of Southern Medicine Utilization, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
26
|
Nutritional and Volatile Characterisation of Milk Inoculated with Thermo-Tolerant Lactobacillus bulgaricus through Adaptive Laboratory Evolution. Foods 2021; 10:foods10122944. [PMID: 34945497 PMCID: PMC8701330 DOI: 10.3390/foods10122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, thermo-tolerant strain of Lactobacillus bulgaricus (L. bulgaricus) was developed using gradual increase in temperature to induce Adaptive Laboratory Evolution (ALE). Viable colony count of 1.87 ± 0.98 log cfu/mL was achieved at 52 °C, using MRS agar supplemented with 2% lactose. Changes in bacteria morphology were discovered, from rod (control) to filament (52 °C) to cocci after frozen storage (−80 °C). When milk was inoculated with thermo-tolerant L. bulgaricus, lactic acid production was absent, leaving pH at 6.84 ± 0.13. This has caused weakening of the protein network, resulting in high whey separation and lower water-holding capacity (37.1 ± 0.35%) compared to the control (98.10 ± 0.60%). Significantly higher proteolytic activity was observed through free amino acids analysis by LC-MS. Arginine and methionine (237.24 ± 5.94 and 98.83 ± 1.78 µg/100 g, respectively) were found to be 115- and 275-fold higher than the control, contributing to changing the aroma similar to cheese. Further volatile analysis through SPME-GC-MS has confirmed significant increase in cheese-aroma volatiles compared to the control, with increase in diacetyl formation. Further work on DNA profiling, metabolomics and peptidomics will help to answer mechanisms behind the observed changes made in the study.
Collapse
|
27
|
Anatomical site-specific carbohydrate availability impacts Streptococcus pneumoniae virulence and fitness during colonization and disease. Infect Immun 2021; 90:e0045121. [PMID: 34748366 DOI: 10.1128/iai.00451-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (Spn) colonizes the nasopharynx asymptomatically but can also cause severe life-threatening disease. Importantly, stark differences in carbohydrate availability exist between the nasopharynx and invasive disease sites, such as the bloodstream, which most likely impact Spn's behavior. Herein, using chemically-defined media (CDM) supplemented with physiological levels of carbohydrates, we examined how anatomical-site specific carbohydrate availability impacted Spn physiology and virulence. Spn grown in CDM modeling the nasopharynx (CDM-N) had reduced metabolic activity, slower growth rate, demonstrated mixed acid fermentation with marked H2O2 production, and were in a carbon-catabolite repression (CCR)-derepressed state versus Spn grown in CDM modeling blood (CDM-B). Using RNA-seq, we determined the transcriptome for Spn WT and its isogenic CCR deficient mutant in CDM-N and CDM-B. Genes with altered expression as a result of changes in carbohydrate availability or catabolite control protein deficiency, respectively, were primarily involved in carbohydrate metabolism, but also encoded for established virulence determinants such polysaccharide capsule and surface adhesins. We confirmed that anatomical site-specific carbohydrate availability directly influenced established Spn virulence traits. Spn grown in CDM-B formed shorter chains, produced more capsule, were less adhesive, and were more resistant to macrophage killing in an opsonophagocytosis assay. Moreover, growth of Spn in CDM-N or CDM-B prior to the challenge of mice impacted relative fitness in a colonization and invasive disease model, respectively. Thus, anatomical site-specific carbohydrate availability alters Spn physiology and virulence, in turn promoting anatomical-site specific fitness.
Collapse
|
28
|
Llibre A, Grudzinska FS, O'Shea MK, Duffy D, Thickett DR, Mauro C, Scott A. Lactate cross-talk in host-pathogen interactions. Biochem J 2021; 478:3157-3178. [PMID: 34492096 PMCID: PMC8454702 DOI: 10.1042/bcj20210263] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Lactate is the main product generated at the end of anaerobic glycolysis or during the Warburg effect and its role as an active signalling molecule is increasingly recognised. Lactate can be released and used by host cells, by pathogens and commensal organisms, thus being essential for the homeostasis of host-microbe interactions. Infection can alter this intricate balance, and the presence of lactate transporters in most human cells including immune cells, as well as in a variety of pathogens (including bacteria, fungi and complex parasites) demonstrates the importance of this metabolite in regulating host-pathogen interactions. This review will cover lactate secretion and sensing in humans and microbes, and will discuss the existing evidence supporting a role for lactate in pathogen growth and persistence, together with lactate's ability to impact the orchestration of effective immune responses. The ubiquitous presence of lactate in the context of infection and the ability of both host cells and pathogens to sense and respond to it, makes manipulation of lactate a potential novel therapeutic strategy. Here, we will discuss the preliminary research that has been carried out in the context of cancer, autoimmunity and inflammation.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - Frances S Grudzinska
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Matthew K O'Shea
- Department of Infection, University Hospitals Birmingham NHS Foundation Trust, Birmingham, U.K
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, U.K
| | - Darragh Duffy
- Translational Immunology Laboratory, Institut Pasteur, Paris, France
| | - David R Thickett
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| | - Aaron Scott
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, U.K
| |
Collapse
|
29
|
Hofmann J, Bitew MA, Kuba M, De Souza DP, Newton HJ, Sansom FM. Characterisation of putative lactate synthetic pathways of Coxiella burnetii. PLoS One 2021; 16:e0255925. [PMID: 34388185 PMCID: PMC8362950 DOI: 10.1371/journal.pone.0255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
The zoonotic pathogen Coxiella burnetii, the causative agent of the human disease Q fever, is an ever-present danger to global public health. Investigating novel metabolic pathways necessary for C. burnetii to replicate within its unusual intracellular niche may identify new therapeutic targets. Recent studies employing stable isotope labelling established the ability of C. burnetii to synthesize lactate, despite the absence of an annotated synthetic pathway on its genome. A noncanonical lactate synthesis pathway could provide a novel anti-Coxiella target if it is essential for C. burnetii pathogenesis. In this study, two C. burnetii proteins, CBU1241 and CBU0823, were chosen for analysis based on their similarities to known lactate synthesizing enzymes. Recombinant GST-CBU1241, a putative malate dehydrogenase (MDH), did not produce measurable lactate in in vitro lactate dehydrogenase (LDH) activity assays and was confirmed to function as an MDH. Recombinant 6xHis-CBU0823, a putative NAD+-dependent malic enzyme, was shown to have both malic enzyme activity and MDH activity, however, did not produce measurable lactate in either LDH or malolactic enzyme activity assays in vitro. To examine potential lactate production by CBU0823 more directly, [13C]glucose labelling experiments compared label enrichment within metabolic pathways of a cbu0823 transposon mutant and the parent strain. No difference in lactate production was observed, but the loss of CBU0823 significantly reduced 13C-incorporation into glycolytic and TCA cycle intermediates. This disruption to central carbon metabolism did not have any apparent impact on intracellular replication within THP-1 cells. This research provides new information about the mechanism of lactate biosynthesis within C. burnetii, demonstrating that CBU1241 is not multifunctional, at least in vitro, and that CBU0823 also does not synthesize lactate. Although critical for normal central carbon metabolism of C. burnetii, loss of CBU0823 did not significantly impair replication of the bacterium inside cells.
Collapse
Affiliation(s)
- Janine Hofmann
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fiona M. Sansom
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
30
|
Wang J, Zhang PL, Ansari MF, Li S, Zhou CH. Molecular design and preparation of 2-aminothiazole sulfanilamide oximes as membrane active antibacterial agents for drug resistant Acinetobacter baumannii. Bioorg Chem 2021; 113:105039. [PMID: 34091291 DOI: 10.1016/j.bioorg.2021.105039] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
A series of 2-aminothiazole sulfanilamide oximes were developed as new membrane active antibacterial agents to conquer the microbial infection. Benzoyl derivative 10c was preponderant for the treatment of drug-resistant A. baumannii infection in contrast to norfloxacin and exerted excellent biocompatibility against mammalian cells including erythrocyte and LO2 cell line. Meanwhile, it had ability to eradicate established biofilm to alleviate the resistance burden. Mechanism investigation elucidated that compound 10c was able to disturb the membrane effectively and inhibit lactic dehydrogenase, which led to cytoplasmic content leakage. The cellular redox homeostasis was interfered via the production of reactive oxygen and nitrogen species (RONS), which further contributed to respiratory pathway inactivation and reduction of GSH activity. This work indicated that 2-aminothiazole sulfanilamide oximes could be a promising start for the exploitation of novel antibacterial agents against pathogens.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
31
|
Sui YF, Ansari MF, Fang B, Zhang SL, Zhou CH. Discovery of novel purinylthiazolylethanone derivatives as anti-Candida albicans agents through possible multifaceted mechanisms. Eur J Med Chem 2021; 221:113557. [PMID: 34087496 DOI: 10.1016/j.ejmech.2021.113557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
An unprecedented amount of fungal and fungal-like infections has recently brought about some of the most severe die-offs and extinctions due to fungal drug resistance. Aimed to alleviate the situation, new effort was made to develop novel purinylthiazolylethanone derivatives, which were expected to combat the fungal drug resistance. Some prepared purinylthiazolylethanone derivatives possessed satisfactory inhibitory action towards the tested fungi, among which compound 8c gave a MIC value of 1 μg/mL against C. albicans. The active molecule 8c was able to kill C. albicans with undetectable resistance as well as low hematotoxicity and cytotoxicity. Furthermore, it could hinder the growth of C. albicans biofilm, thus avoiding the occurrence of drug resistance. Mechanism research manifested that purinylthiazolylethanone derivative 8c led to damage of cell wall and membrane disruption, so protein leakage and the cytoplasmic membrane depolarization were observed. On this account, the activity of fungal lactate dehydrogenase was reduced and metabolism was impeded. Meanwhile, the increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) disordered redox equilibrium, giving rise to oxidative damage to fungal cells and fungicidal effect.
Collapse
Affiliation(s)
- Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators As Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Cao X, Wang B. Targeted PD-L1 PLGA/liposomes-mediated luteolin therapy for effective liver cancer cell treatment. J Biomater Appl 2021; 36:843-850. [PMID: 34000859 DOI: 10.1177/08853282211017701] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stealth PLGA/Liposome nanoparticles (NPs) modified with tumor-targeting PD-L1 antibody for systemic delivery of luteolin for liver cancer were prepared. The morphologies and therapeutic effects of luteolin-loaded PD-L1 targeted stealth PLGA/Liposomes (L-PD-SP/Ls) in vitro were analyzed. Functional L-PD-P/L NPs composed of PLGA, DOPC and DSPE-PEG display low cell cytoxicity in HepG2 cells, and has more cell uptake ability than P/Ls NPs. L-PD-SP/Ls was more effective in inhibiting HepG2 cell proliferation than free luteolin in solution (p < 0.05) and luteolin-loaded P/Ls (p < 0.05). Compared with the cell control group and the non-PD-L1 targeted group, the mediated effect of PD-L1 can significantly enhance the uptake of drugs by cells, and L-PD-SP/Ls can significantly reduce the expression of Bcl-2 and increase the level of LDH in cells. Our findings collectively support the utility of PD-L1-targeted P/L NPs as a potentially effective drug delivery system.
Collapse
Affiliation(s)
- Xinqiao Cao
- Department Of Radiotherapy, Heng Shui City People's Hospital, Hengshui, China
| | - Bing Wang
- Department Of Radiotherapy, Heng Shui City People's Hospital, Hengshui, China
| |
Collapse
|
33
|
Su D, Li J, Ren J, Gao Y, Li R, Jin X, Zhang J, Wang G. The relationship between serum lactate dehydrogenase level and mortality in critically ill patients. Biomark Med 2021; 15:551-559. [PMID: 33988459 DOI: 10.2217/bmm-2020-0671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background: To assess the association between serum lactate dehydrogenase (LDH) levels and mortality in intensive care unit patients. Materials & methods: A total of 1981 patients in the eICU Collaborative Research Database were divided into four groups according to quartiles of LDH levels. Logistic regressions were performed. Results: Elevated LDH levels were significantly associated with higher mortality (intensive care unit mortality: Q2 vs Q1: 1.046 [0.622-1.758]; Q3 vs Q1: 1.667 [1.029-2.699]; and Q4 vs Q1: 1.760 [1.092-2.839]). Similar results persisted in patients with different acute physiology and chronic health evaluation IV scores, and with or without sepsis. Conclusion: The serum LDH level may aid in the early identification of mortality risk in critically ill patients.
Collapse
Affiliation(s)
- Dan Su
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiamei Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiajia Ren
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruohan Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuting Jin
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Sanchez-Rosario Y, Johnson MDL. Media Matters, Examining Historical and Modern Streptococcus pneumoniae Growth Media and the Experiments They Affect. Front Cell Infect Microbiol 2021; 11:613623. [PMID: 33834003 PMCID: PMC8021847 DOI: 10.3389/fcimb.2021.613623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/02/2021] [Indexed: 12/18/2022] Open
Abstract
While some bacteria can thrive for generations in minerals and salts, many require lavish nutrition and specific chemicals to survive to the point where they can be observed and researched. Although researchers once boiled and rendered animal flesh and bones to obtain a media that facilitated bacterial growth, we now have a plethora of formulations and manufacturers to provide dehydrated flavors of historical, modified, and modern media. The purpose of media has evolved from simple isolation to more measured study. However, in some instances, media formulated to aid the metabolic, nutritional, or physical properties of microbes may not be best suited for studying pathogen behavior or resilience as a function of host interactions. While there have been comparative studies on handfuls of these media in Streptococcus pneumoniae, this review focuses on describing both the historical and modern composition of common complex (Todd Hewitt and M17), semi-defined (Adams and Roe), and defined pneumococcal media (RPMI and Van de Rijn and Kessler), key components discovered/needed for cultivation/growth enhancement, and effects these different media have on bacterial phenotypes and experimental outcomes. While many researchers find the best conditions to grow and experiment on their bacteria of choice, the reasons for some researchers to use a specific medium is at best, not discussed, and at worst, arbitrary. As such, the goal of this review is to highlight the differences in pneumococcal media to encourage investigators to challenge their decisions on why they use a given medium, discuss the recipe, and explain their reasoning.
Collapse
Affiliation(s)
| | - Michael D L Johnson
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States.,BIO5 Institute, University of Arizona, Tucson, AZ, United States.,Valley Fever Center for Excellence, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
35
|
Hirschmann S, Gómez-Mejia A, Mäder U, Karsunke J, Driesch D, Rohde M, Häussler S, Burchhardt G, Hammerschmidt S. The Two-Component System 09 Regulates Pneumococcal Carbohydrate Metabolism and Capsule Expression. Microorganisms 2021; 9:microorganisms9030468. [PMID: 33668344 PMCID: PMC7996280 DOI: 10.3390/microorganisms9030468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Streptococcus pneumoniae two-component regulatory systems (TCSs) are important systems that perceive and respond to various host environmental stimuli. In this study, we have explored the role of TCS09 on gene expression and phenotypic alterations in S. pneumoniae D39. Our comparative transcriptomic analyses identified 67 differently expressed genes in total. Among those, agaR and the aga operon involved in galactose metabolism showed the highest changes. Intriguingly, the encapsulated and nonencapsulated hk09-mutants showed significant growth defects under nutrient-defined conditions, in particular with galactose as a carbon source. Phenotypic analyses revealed alterations in the morphology of the nonencapsulated hk09- and tcs09-mutants, whereas the encapsulated hk09- and tcs09-mutants produced higher amounts of capsule. Interestingly, the encapsulated D39∆hk09 showed only the opaque colony morphology, while the D39∆rr09- and D39∆tcs09-mutants had a higher proportion of transparent variants. The phenotypic variations of D39ΔcpsΔhk09 and D39ΔcpsΔtcs09 are in accordance with their higher numbers of outer membrane vesicles, higher sensitivity against Triton X-100 induced autolysis, and lower resistance against oxidative stress. In conclusion, these results indicate the importance of TCS09 for pneumococcal metabolic fitness and resistance against oxidative stress by regulating the carbohydrate metabolism and thereby, most likely indirectly, the cell wall integrity and amount of capsular polysaccharide.
Collapse
Affiliation(s)
- Stephanie Hirschmann
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Alejandro Gómez-Mejia
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Ulrike Mäder
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Julia Karsunke
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | | | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (J.K.); (G.B.)
- Correspondence:
| |
Collapse
|
36
|
Jabir MS, Hussien AA, Sulaiman GM, Yaseen NY, Dewir YH, Alwahibi MS, Soliman DA, Rizwana H. Green synthesis of silver nanoparticles from Eriobotrya japonica extract: a promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:48-60. [DOI: 10.1080/21691401.2020.1867152] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Majid S. Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Aya A. Hussien
- College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| | | | - Nahi Y. Yaseen
- Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq
| | - Yaser H. Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Dina A. Soliman
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
37
|
Lv XT, Zhu YP, Cheng AG, Jin YX, Ding HB, Wang CY, Zhang SY, Chen GP, Chen QQ, Liu QC. High serum lactate dehydrogenase and dyspnea: Positive predictors of adverse outcome in critical COVID-19 patients in Yichang. World J Clin Cases 2020; 8:5535-5546. [PMID: 33344544 PMCID: PMC7716337 DOI: 10.12998/wjcc.v8.i22.5535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak in China, constitutes a Public Health Emergency of International Concern. It is well known that COVID-19 patients may have increased serum lactate dehydrogenase (LDH) levels in the early stage. The clinical changes in LDH may have predictive value in disease evolution and prognosis in critically ill COVID-19 patients.
AIM To examine serum LDH and clinical characteristics in patients with COVID-19 and their predictive value for prognosis.
METHODS This retrospective study analyzed the clinical data of forty-seven critical COVID-19 patients in the intensive care unit of the Third People's Hospital of Yichang City from January 27 to March 25, 2020 and divided them into survivors and non-survivors. The patients were diagnosed according to the World Health Organization interim guidance and critical cases met any one of the following criteria: Respiratory failure and required mechanical ventilation, the occurrence of shock, and the combined failure of other organs that required intensive care unit monitoring and treatments, according to the diagnostic criteria of critical COVID-19. Clinical data including symptoms, detection of SARS-CoV-2, chest computed tomography (CT) images, changes in serum LDH in different clinical phases, and prognosis were collected. Statistical analysis of the data was performed. Continuous variables were expressed as median (interquartile range) and compared with the Mann-Whitney U test. Categorical variables were compared with the Chi-square test. Survival data were analyzed using Kaplan-Meier survival curves and log-rank tests.
RESULTS According to chest CT images, we observed the alveolitis and fibrosis stages in all critical patients in this study. Most non-survivors died in the fibrosis stage. Non-survivors had fewer days of hospitalization, shorter disease duration, shorter duration of alveolitis and fibrosis, and had dyspnea symptoms at disease onset (P = 0.05). Both first and lowest LDH values in the alveolitis stage were more pronounced in non-survivors than in survivors (449.0 U/L vs 288.0 U/L, P = 0.0243; 445.0 U/L vs 288.0 U/L, P = 0.0199, respectively), while the first, lowest and highest values of serum LDH in non-survivors were all significantly increased compared to survivors in the fibrosis phase (449.0 U/L vs 225.5 U/L, P = 0.0028; 432.0 U/L vs 191.0 U/L, P = 0.0007; 1303.0 U/L vs 263.5 U/L, P = 0.0001, respectively). The cut-off points of first LDH values in the alveolitis and fibrosis phase for distinction of non-survivors from survivors were 397.0 U/L and 263.0 U/L, respectively. In the fibrosis stage, non-survivors had more days with high LDH than survivors (7.0 d vs 0.0 d, P = 0.0002). Importantly, patients with high LDH had a significantly shorter median survival time than patients with low LDH in the alveolitis phase (22.0 d vs 36.5 d, P = 0.0002), while patients with high LDH also had a significantly shorter median survival time than patients with low LDH in the fibrosis phase (27.5 d vs 40.0 d, P = 0.0008). The proportion of non-survivors with detectable SARS-CoV-2 until death in the alveolitis stage was significantly increased compared with that in the fibrosis stage (100% vs 35.7%, P = 0.0220).
CONCLUSION High LDH and dyspnea symptoms were positive predictors of an adverse outcome in critical COVID-19. The rapid progressive fibrosis stage was more perilous than the alveolitis stage, even if SARS-CoV-2 is undetectable.
Collapse
Affiliation(s)
- Xiao-Ting Lv
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
- Institute of Respiratory Disease, Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Yong-Ping Zhu
- Department of Cardiovascular Surgery, Fujian Medical University Attached Union Hospital, Fuzhou 350001, Fujian Province, China
| | - Ai-Guo Cheng
- Department of Critical Medicine, the Third People's Hospital of Yichang, Yichang 443000, Hubei Province, China
| | - Yong-Xu Jin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Hai-Bo Ding
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Cai-Yun Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Shu-Yu Zhang
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Gong-Ping Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Qing-Quan Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Qi-Cai Liu
- Department of Reproductive Medicine Centre, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| |
Collapse
|
38
|
Lactate production by Staphylococcus aureus biofilm inhibits HDAC11 to reprogramme the host immune response during persistent infection. Nat Microbiol 2020; 5:1271-1284. [PMID: 32661313 PMCID: PMC7529909 DOI: 10.1038/s41564-020-0756-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a leading cause of biofilm-associated prosthetic joint infection (PJI), resulting in significant disability and prolonged treatment. It is known that host leukocyte IL-10 production is required for S. aureus biofilm persistence in PJI. A S. aureus bursa aurealis Tn library consisting of 1,952 non-essential genes was screened for mutants that failed to induce IL-10 in myeloid-derived suppressor cells (MDSCs), which identified a critical role for bacterial lactic acid biosynthesis. We generated a S. aureus ddh/ldh1/ldh2 triple Tn mutant that cannot produce D- or L-lactate. Co-culture of MDSCs or macrophages with ddh/ldh1/ldh2 mutant biofilm produced substantially less IL-10 compared with wild type S. aureus, which was also observed in a mouse model of PJI and led to reduced biofilm burden. Using MDSCs recovered from the mouse PJI model and in vitro leukocyte-biofilm co-cultures we show that bacterial-derived lactate inhibits histone deacetylase 11 (HDAC11), causing unchecked HDAC6 activity and increased histone 3 acetylation at the Il-10 promoter, resulting in enhanced Il-10 transcription in MDSCs and macrophages. Finally, we show that synovial fluid of patients with PJI contains elevated amounts of D-lactate and IL-10 compared with control subjects, and bacterial lactate increases IL-10 production by human monocyte-derived macrophages. Biofilms are bacterial communities that are difficult to treat because of their tolerance to antibiotics and ability to evade immune-mediated clearance. Prosthetic joint infection (PJI), a devastating complication of arthroplasty, is characterized by biofilm formation. The current study has discovered a central role for lactic acid biosynthesis in S. aureus biofilm formation during PJI. Mechanistically, bacterial-derived lactate inhibits histone deacetylase 11 (HDAC11) activity, which causes extensive epigenetic changes at the promoters of numerous host genes, including the key anti-inflammatory cytokine Il-10. Indeed, IL-10 production by myeloid-derived suppressor cells (MDSCs) and macrophages is critical for biofilm persistence during PJI. HDAC11 inhibition by S. aureus lactate results in unchecked HDAC6 activity, a positive regulator of IL-10, thereby increasing IL-10 production by MDSCs and macrophages in vitro and in vivo. Similarly, S. aureus lactate promotes IL-10 production in human monocyte-derived macrophages following biofilm exposure. This study highlights how bacterial metabolism can influence the host immune response to promote infection persistence.
Collapse
|
39
|
Echlin H, Frank M, Rock C, Rosch JW. Role of the pyruvate metabolic network on carbohydrate metabolism and virulence in Streptococcus pneumoniae. Mol Microbiol 2020; 114:536-552. [PMID: 32495474 DOI: 10.1111/mmi.14557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen that must adapt to unique nutritional environments in several host niches. The pneumococcus can metabolize a range of carbohydrates that feed into glycolysis ending in pyruvate, which is catabolized by several enzymes. We investigated how the pneumococcus utilizes these enzymes to metabolize different carbohydrates and how this impacts survival in the host. Loss of ldh decreased bacterial burden in the nasopharynx and enhanced bacteremia in mice. Loss of spxB, pdhC or pfl2 decreased bacteremia and increased host survival. In glucose or galactose, loss of ldh increased capsule production, whereas loss of spxB and pdhC reduced capsule production. The pfl2 mutant exhibited reduced capsule production only in galactose. In glucose, pyruvate was metabolized primarily by LDH to generate lactate and NAD+ and by SpxB and PDHc to generate acetyl-CoA. In galactose, pyruvate metabolism was shunted toward acetyl-CoA production. The majority of acetyl-CoA generated by PFL was used to regenerate NAD+ with a subset used in capsule production, while the acetyl-CoA generated by SpxB and PDHc was utilized primarily for capsule biosynthesis. These data suggest that the pneumococcus can alter flux of pyruvate metabolism dependent on the carbohydrate present to succeed in distinct host niches.
Collapse
Affiliation(s)
- Haley Echlin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jason W Rosch
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
40
|
Motib AS, Al-Bayati FAY, Manzoor I, Shafeeq S, Kadam A, Kuipers OP, Hiller NL, Andrew PW, Yesilkaya H. TprA/PhrA Quorum Sensing System Has a Major Effect on Pneumococcal Survival in Respiratory Tract and Blood, and Its Activity Is Controlled by CcpA and GlnR. Front Cell Infect Microbiol 2019; 9:326. [PMID: 31572692 PMCID: PMC6753895 DOI: 10.3389/fcimb.2019.00326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
Streptococcus pneumoniae is able to cause deadly diseases by infecting different tissues, each with distinct environmental and nutritional compositions. We hypothesize that the adaptive capabilities of the microbe is an important facet of pneumococcal survival in fluctuating host environments. Quorum-sensing (QS) mechanisms are pivotal for microbial host adaptation. We previously demonstrated that the TprA/PhrA QS system is required for pneumococcal utilization of galactose and mannose, neuraminidase activity, and virulence. We also showed that the system can be modulated by using linear molecularly imprinted polymers. Due to being a drugable target, we further studied the operation of this QS system in S. pneumoniae. We found that TprA controls the expression of nine different operons on galactose and mannose. Our data revealed that TprA expression is modulated by a complex regulatory network, where the master regulators CcpA and GlnR are involved in a sugar dependent manner. Mutants in the TprA/PhrA system are highly attenuated in their survival in nasopharynx and lungs after intranasal infection, and growth in blood after intravenous infection.
Collapse
Affiliation(s)
- Anfal Shakir Motib
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom.,Department of Microbiology, College of Medicine, University of Diyala, Baqubah, Iraq
| | - Firas A Y Al-Bayati
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom.,College of Pharmacy, University of Kirkuk, Kirkuk, Iraq
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Anagha Kadam
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Peter W Andrew
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
41
|
Elevated Lactate Dehydrogenase Level Predicts Postoperative Pneumonia in Patients with Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2019; 129:e821-e830. [DOI: 10.1016/j.wneu.2019.06.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
|
42
|
Roy S, Mondal A, Yadav V, Sarkar A, Banerjee R, Sanpui P, Jaiswal A. Mechanistic Insight into the Antibacterial Activity of Chitosan Exfoliated MoS2 Nanosheets: Membrane Damage, Metabolic Inactivation, and Oxidative Stress. ACS APPLIED BIO MATERIALS 2019; 2:2738-2755. [DOI: 10.1021/acsabm.9b00124] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| | - Anupam Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| | - Varnika Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| | - Ankita Sarkar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| | - Ruptanu Banerjee
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani, Dubai Campus, PO Box 345055, Dubai International Academic City, Dubai, United Arab Emirates
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175005, India
| |
Collapse
|
43
|
Najmuldeen H, Alghamdi R, Alghofaili F, Yesilkaya H. Functional assessment of microbial superoxide dismutase isozymes suggests a differential role for each isozyme. Free Radic Biol Med 2019; 134:215-228. [PMID: 30658083 DOI: 10.1016/j.freeradbiomed.2019.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/06/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Microbes can have multiple enzymes that are able to catalyse the same enzymatic reactions but may differ in structure. These are known as isozymes. It is assumed that isozymes have the same functional role for cells. Contrary to this assumption, we hypothesised that isozymes can confer different functions for microbial cells despite catalysing the same reactions. To test this hypothesis, we studied the role of superoxide dismutases (SOD) in Klebsiella pneumoniae, the causative agent of several nosocomial and community-acquired infections, in infection relevant assays. SODs are responsible for detoxification of toxic superoxide radicals. K. pneumoniae genome contains three superoxide dismutase genes, sodA, sodB, and sodC coding for Mn-, Fe- and CuZn- co-factored SODs, respectively. By creating and testing single, double, and triple SOD mutants, we investigated the regulatory interactions among SOD and determined the role of each isozyme in oxidative stress resistance, biofilm formation, cell morphology, metabolism, and in vivo colonization and persistence. Our results demonstrate that SOD isozymes in K. pneumoniae have unique roles beyond oxidative stress resistance, and there is a regulatory interplay among SODs.
Collapse
Affiliation(s)
- Hastyar Najmuldeen
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| | - Rashed Alghamdi
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Fayez Alghofaili
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Biology, College of Science, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Hasan Yesilkaya
- Department of Infection, Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 9HN, UK.
| |
Collapse
|
44
|
Identifying genes associated with invasive disease in S. pneumoniae by applying a machine learning approach to whole genome sequence typing data. Sci Rep 2019; 9:4049. [PMID: 30858412 PMCID: PMC6411942 DOI: 10.1038/s41598-019-40346-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pneumoniae, a normal commensal of the upper respiratory tract, is a major public health concern, responsible for substantial global morbidity and mortality due to pneumonia, meningitis and sepsis. Why some pneumococci invade the bloodstream or CSF (so-called invasive pneumococcal disease; IPD) is uncertain. In this study we identify genes associated with IPD. We transform whole genome sequence (WGS) data into a sequence typing scheme, while avoiding the caveat of using an arbitrary genome as a reference by substituting it with a constructed pangenome. We then employ a random forest machine-learning algorithm on the transformed data, and find 43 genes consistently associated with IPD across three geographically distinct WGS data sets of pneumococcal carriage isolates. Of the genes we identified as associated with IPD, we find 23 genes previously shown to be directly relevant to IPD, as well as 18 uncharacterized genes. We suggest that these uncharacterized genes identified by us are also likely to be relevant for IPD.
Collapse
|
45
|
Shields RC, Jensen PA. The bare necessities: Uncovering essential and condition-critical genes with transposon sequencing. Mol Oral Microbiol 2019; 34:39-50. [PMID: 30739386 DOI: 10.1111/omi.12256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/18/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Querying gene function in bacteria has been greatly accelerated by the advent of transposon sequencing (Tn-seq) technologies (related Tn-seq strategies are known as TraDIS, INSeq, RB-TnSeq, and HITS). Pooled populations of transposon mutants are cultured in an environment and next-generation sequencing tools are used to determine areas of the genome that are important for bacterial fitness. In this review we provide an overview of Tn-seq methodologies and discuss how Tn-seq has been applied, or could be applied, to the study of oral microbiology. These applications include studying the essential genome as a means to rationally design therapeutic agents. Tn-seq has also contributed to our understanding of well-studied biological processes in oral bacteria. Other important applications include in vivo pathogenesis studies and use of Tn-seq to probe the molecular basis of microbial interactions. We also highlight recent advancements in techniques that act in synergy with Tn-seq such as clustered regularly interspaced short palindromic repeats (CRISPR) interference and microfluidic chip platforms.
Collapse
Affiliation(s)
- Robert C Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Paul A Jensen
- Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
46
|
Camelo-Castillo A, Henares D, Brotons P, Galiana A, Rodríguez JC, Mira A, Muñoz-Almagro C. Nasopharyngeal Microbiota in Children With Invasive Pneumococcal Disease: Identification of Bacteria With Potential Disease-Promoting and Protective Effects. Front Microbiol 2019; 10:11. [PMID: 30745895 PMCID: PMC6360994 DOI: 10.3389/fmicb.2019.00011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 01/07/2019] [Indexed: 01/26/2023] Open
Abstract
Background and Aims: The risk of suffering from some infectious diseases can be related to specific microbiota profiles. Specifically, the nasopharyngeal microbiota could play a role as a risk or protective factor in the development of invasive disease caused by S. pneumoniae. Methodology: We analyzed the nasopharyngeal microbiota of children with invasive pneumococcal disease (IPD) and that of healthy controls matched by age, sex, and seasonality from Catalonia, Spain. Epidemiological, microbiological and clinical variables were considered to compare microbiota profiles, analyzed by sequencing the V1-V4 region of the 16S rRNA gene. Results: Twenty-eight children with IPD (median age 43 months) and 28 controls (42.6 months) were included in the study. IPD children presented a significantly higher bacterial diversity and richness (p < 0.001). Principal coordinate analysis revealed three different microbiota profiles: microbiota A, dominated by the genus Dolosigranulum (44.3%); Microbiota B, mostly represented by Streptococcus (36.9%) and Staphylococcus (21.3%) and a high diversity of anaerobic genera including Veillonella, Prevotella and Porphyromonas; and Microbiota C, mainly containing Haemophilus (52.1%) and Moraxella (31.4%). The only explanatory factor for the three microbiotas was the classification of children into disease or healthy controls (p = 0.006). A significant negative correlation was found between Dolosigranulum vs. Streptococcus (p = 0.029), suggesting a potential antagonistic effect against pneumococcal pathogens. Conclusions: The higher bacterial diversity and richness in children with IPD could suggest an impaired immune response. This lack of immune competence could be aggravated by breastfeeding <6 months and by the presence of keystone pathogens such as Porphyromonas, a bacterium which has been shown to be able to manipulate the immune response, and that could favor the overgrowth of many proteolytic anaerobic organisms giving rise to a dramatic dysbiosis. From an applied viewpoint, we found suggestive microbiota profiles associated to IPD or asymptomatic colonization that could be used as disease biomarkers or to pave the way for characterizing health-associated inhabitants of the respiratory tract. The identification of beneficial bacteria could be useful to prevent pneumococcal infections by integrating those microorganisms in a probiotic formula. The present study suggests not only respiratory tract samples, but also breast milk, as a potential source of those beneficial bacteria.
Collapse
Affiliation(s)
- Anny Camelo-Castillo
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Desirée Henares
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Network of Epidemiology and Public Health, CIBERESP, Barcelona, Spain
| | - Pedro Brotons
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Network of Epidemiology and Public Health, CIBERESP, Barcelona, Spain
| | - Antonio Galiana
- Department of Microbiology, Hospital de Alicante, Alicante, Spain
| | | | - Alex Mira
- Network of Epidemiology and Public Health, CIBERESP, Barcelona, Spain.,Center for Advanced Research in Public Health, FISABIO Foundation, Valencia, Spain
| | - Carmen Muñoz-Almagro
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Barcelona, Spain.,Network of Epidemiology and Public Health, CIBERESP, Barcelona, Spain.,School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
47
|
The Pneumococcal Surface Proteins PspA and PspC Sequester Host C4-Binding Protein To Inactivate Complement C4b on the Bacterial Surface. Infect Immun 2018; 87:IAI.00742-18. [PMID: 30323030 DOI: 10.1128/iai.00742-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
Complement is a critical component of antimicrobial immunity. Various complement regulatory proteins prevent host cells from being attacked. Many pathogens have acquired the ability to sequester complement regulators from host plasma to evade complement attack. We describe here how Streptococcus pneumoniae adopts a strategy to prevent the formation of the C3 convertase C4bC2a by the rapid conversion of surface bound C4b and iC4b into C4dg, which remains bound to the bacterial surface but no longer forms a convertase complex. Noncapsular virulence factors on the pneumococcus are thought to facilitate this process by sequestering C4b-binding protein (C4BP) from host plasma. When S. pneumoniae D39 was opsonized with human serum, the larger C4 activation products C4b and iC4b were undetectable, but the bacteria were liberally decorated with C4dg and C4BP. With targeted deletions of either PspA or PspC, C4BP deposition was markedly reduced, and there was a corresponding reduction in C4dg and an increase in the deposition of C4b and iC4b. The effect was greatest when PspA and PspC were both knocked out. Infection experiments in mice indicated that the deletion of PspA and/or PspC resulted in the loss of bacterial pathogenicity. Recombinant PspA and PspC both bound serum C4BP, and both led to increased C4b and reduced C4dg deposition on S. pneumoniae D39. We conclude that PspA and PspC help the pneumococcus to evade complement attack by binding C4BP and so inactivating C4b.
Collapse
|
48
|
Leonard A, Lalk M. Infection and metabolism – Streptococcus pneumoniae metabolism facing the host environment. Cytokine 2018; 112:75-86. [DOI: 10.1016/j.cyto.2018.07.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/15/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
|
49
|
Zhu H, Wang Y, Ni Y, Zhou J, Han L, Yu Z, Mao A, Wang D, Fan H, He K. The Redox-Sensing Regulator Rex Contributes to the Virulence and Oxidative Stress Response of Streptococcus suis Serotype 2. Front Cell Infect Microbiol 2018; 8:317. [PMID: 30280091 PMCID: PMC6154617 DOI: 10.3389/fcimb.2018.00317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen responsible for septicemia and meningitis. The redox-sensing regulator Rex has been reported to play critical roles in the metabolism regulation, oxidative stress response, and virulence of various pathogens. In this study, we identified and characterized a Rex ortholog in the SS2 virulent strain SS2-1 that is involved in bacterial pathogenicity and stress environment susceptibility. Our data show that the Rex-knockout mutant strain Δrex exhibited impaired growth in medium with hydrogen peroxide or a low pH compared with the wildtype strain SS2-1 and the complementary strain CΔrex. In addition, Δrex showed a decreased level of survival in whole blood and in RAW264.7 macrophages. Further analyses revealed that Rex deficiency significantly attenuated bacterial virulence in an animal model. A comparative proteome analysis found that the expression levels of several proteins involved in virulence and oxidative stress were significantly different in Δrex compared with SS2-1. Electrophoretic mobility shift assays revealed that recombinant Rex specifically bound to the promoters of target genes in a manner that was modulated by NADH and NAD+. Taken together, our data suggest that Rex plays critical roles in the virulence and oxidative stress response of SS2.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Yong Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| | - Lixiao Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Aihua Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China.,Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, China
| |
Collapse
|
50
|
Zhi X, Abdullah IT, Gazioglu O, Manzoor I, Shafeeq S, Kuipers OP, Hiller NL, Andrew PW, Yesilkaya H. Rgg-Shp regulators are important for pneumococcal colonization and invasion through their effect on mannose utilization and capsule synthesis. Sci Rep 2018; 8:6369. [PMID: 29686372 PMCID: PMC5913232 DOI: 10.1038/s41598-018-24910-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/05/2018] [Indexed: 01/18/2023] Open
Abstract
Microbes communicate with each other by using quorum sensing (QS) systems and modulate their collective 'behavior' for in-host colonization and virulence, biofilm formation, and environmental adaptation. The recent increase in genome data availability reveals the presence of several putative QS sensing circuits in microbial pathogens, but many of these have not been functionally characterized yet, despite their possible utility as drug targets. To increase the repertoire of functionally characterized QS systems in bacteria, we studied Rgg144/Shp144 and Rgg939/Shp939, two putative QS systems in the important human pathogen Streptococcus pneumoniae. We find that both of these QS circuits are induced by short hydrophobic peptides (Shp) upon sensing sugars found in the respiratory tract, such as galactose and mannose. Microarray analyses using cultures grown on mannose and galactose revealed that the expression of a large number of genes is controlled by these QS systems, especially those encoding for essential physiological functions and virulence-related genes such as the capsular locus. Moreover, the array data revealed evidence for cross-talk between these systems. Finally, these Rgg systems play a key role in colonization and virulence, as deletion mutants of these QS systems are attenuated in the mouse models of colonization and pneumonia.
Collapse
Affiliation(s)
- Xiangyun Zhi
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Iman Tajer Abdullah
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
- Department of Biology, College of Science, University of Kirkuk, Kirkuk, Iraq
| | - Ozcan Gazioglu
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Peter W Andrew
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK
| | - Hasan Yesilkaya
- Department of Infection, Immunity & Inflammation, University of Leicester, Leicester, LE1 9HN, UK.
| |
Collapse
|