1
|
Cui Z, He J, Li A, Wang J, Yang Y, Wang K, Liu Z, Ouyang Q, Su Z, Hu P, Xiao G. Novel insights into non-coding RNAs and their role in hydrocephalus. Neural Regen Res 2026; 21:636-647. [PMID: 39688559 DOI: 10.4103/nrr.nrr-d-24-00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
A large body of evidence has highlighted the role of non-coding RNAs in neurodevelopment and neuroinflammation. This evidence has led to increasing speculation that non-coding RNAs may be involved in the pathophysiological mechanisms underlying hydrocephalus, one of the most common neurological conditions worldwide. In this review, we first outline the basic concepts and incidence of hydrocephalus along with the limitations of existing treatments for this condition. Then, we outline the definition, classification, and biological role of non-coding RNAs. Subsequently, we analyze the roles of non-coding RNAs in the formation of hydrocephalus in detail. Specifically, we have focused on the potential significance of non-coding RNAs in the pathophysiology of hydrocephalus, including glymphatic pathways, neuroinflammatory processes, and neurological dysplasia, on the basis of the existing evidence. Lastly, we review the potential of non-coding RNAs as biomarkers of hydrocephalus and for the creation of innovative treatments.
Collapse
Affiliation(s)
- Zhiyue Cui
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jian He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - An Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Junqiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yijian Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Kaiyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhikun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Ouyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Department of Neurosurgery, Zhuzhou Hospital, Central South University Xiangya School of Medicine, Zhuzhou, Hunan Province, China
| | - Zhangjie Su
- Department of Neurosurgery, Addenbrooke 's Hospital, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, UK
| | - Pingsheng Hu
- Department of Diagnostic Radiology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan Province, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Diagnosis and Treatment Center for Hydrocephalus, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Moyo B, Brown LBC, Khondaker II, Bao G. Engineering adeno-associated viral vectors for CRISPR/Cas based in vivo therapeutic genome editing. Biomaterials 2025; 321:123314. [PMID: 40203649 DOI: 10.1016/j.biomaterials.2025.123314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The recent approval of the first gene editing therapy for sickle cell disease and transfusion-dependent beta-thalassemia by the U.S. Food and Drug Administration (FDA) demonstrates the immense potential of CRISPR (clustered regularly interspaced short palindromic repeats) technologies to treat patients with genetic disorders that were previously considered incurable. While significant advancements have been made with ex vivo gene editing approaches, the development of in vivo CRISPR/Cas gene editing therapies has not progressed as rapidly due to significant challenges in achieving highly efficient and specific in vivo delivery. Adeno-associated viral (AAV) vectors have shown great promise in clinical trials as vehicles for delivering therapeutic transgenes and other cargos but currently face multiple limitations for effective delivery of gene editing machineries. This review elucidates these challenges and highlights the latest engineering strategies aimed at improving the efficiency, specificity, and safety profiles of AAV-packaged CRISPR/Cas systems (AAV-CRISPR) to enhance their clinical utility.
Collapse
Affiliation(s)
- Buhle Moyo
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Lucas B C Brown
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Graduate Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77030, USA
| | - Ishika I Khondaker
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Huang X, Yu J, Gou S, Qin H, Lu WW, Li Z, Tong L, Chen D. CRISPR/CasRx-mediated RNA knockdown targeting β-catenin and Ihh signaling alleviates osteoarthritis. Genes Dis 2025; 12:101468. [PMID: 40290123 PMCID: PMC12033902 DOI: 10.1016/j.gendis.2024.101468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 10/27/2024] [Indexed: 04/30/2025] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease. Currently, OA is incurable. Abnormal activation of canonical Wnt/β-catenin or Indian hedgehog (Ihh) signaling could lead to OA development and progression. This study aimed to determine if targeting β-catenin and Ihh signaling could yield an effective therapeutic intervention for OA disease. CRISPR/CasRx is a new RNA interference tool that can precisely and efficiently cleave single-strand RNAs. In this study, we screened CRISPR-derived RNA (crRNA) targeting Ctnnb1 and Smo in vitro and selected two optimal crRNAs for each gene. CasRx-mediated Ctnnb1 and Smo knockdown showed high efficiency and specificity with no obvious off-target effects in vitro. We then performed intra-articular injection of selected crRNAs driven by the adeno-associated virus into an OA mouse model. Micro-CT, histological, and histomorphometric analyses were conducted to evaluate the efficacy of CasRx approach on OA treatment. We found that the knockdown of Ctnnb1 and Smo decelerated pathological damage in the keen joint of the experimental OA mouse model. Our findings suggest that CasRx-mediated Ctnnb1 and Smo knockdown could be a potential strategy for OA treatment.
Collapse
Affiliation(s)
- Xingyun Huang
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiamin Yu
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Shixue Gou
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, China
| | - Hongyu Qin
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
- Division of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - William W. Lu
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
| | - Zhen Li
- AO Research Institute Davos, Davos 7270, Switzerland
| | - Liping Tong
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
4
|
De Carli A, Favaro D, Filipponi C, Filippini F, Fonnesu R, Plicanti E, Nottoli S, Barski P, Lindstaedt A, Witt D, Falleni A, Frenzilli G, Alcalá-Lalinde A, Herrera-Carrillo E, Raffa V, Freer G, Pistello M, Lai M. Fighting RNA viruses with a gold nanoparticle Cas13d gene-editing armor. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102540. [PMID: 40391300 PMCID: PMC12088821 DOI: 10.1016/j.omtn.2025.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/14/2025] [Indexed: 05/21/2025]
Abstract
A novel Cas13d-based gene-editing approach has been developed to target viral RNAs in infected cells, reducing the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Zika virus (ZIKV) by up to 90% compared with controls. Despite its potential, the use of Cas13d as an antiviral faces several challenges that limit its effectiveness before reaching target cells. This study presents a proof-of-concept strategy for constructing Cas13d with gold nanoparticles (Au_NPs) to destroy SARS-CoV-2 and ZIKV genomes into cells. The Au_NPs Cas13d complexes were administered to Huh-7 cells infected with either virus, in single or multiple doses. The study demonstrated that Au_NPs Cas13d cuts target RNAs with comparable efficiency as lipofected ribonucleoprotein (RNP). Additionally, we found that Au_NPs Cas13d can spontaneously enter cells by endocytosis or diffusion, before the first 4 h of treatment. Au_NPs Cas13d co-localized with SARS-CoV-2 virions in early endosomes and reduced SARS-CoV-2 replication after a single administration, unlike RNPs, which showed no antiviral activity. However, Au_NPs Cas13d was less efficient at reducing ZIKV replication compared with lipofected Cas13d-RNPs, likely due to different intracellular localization. These results suggest that Au_NPs can be adapted as a new antiviral strategy, highlighting an innovative delivery method of Cas13d against viruses without the need for transfecting, providing a new gene-editing-based approach against emerging RNA viruses.
Collapse
Affiliation(s)
- Alessandro De Carli
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa (CISUP), 56100 Pisa, Italy
| | - Domenico Favaro
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy
| | - Carolina Filipponi
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Fabio Filippini
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | | | - Erika Plicanti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
| | - Silvia Nottoli
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy
| | - Piotr Barski
- ProChimia Surfaces Sp. z o.o., Al Zwycięstwa 96/98 F8, 81-451 Gdynia, Poland
| | | | - Dariusz Witt
- ProChimia Surfaces Sp. z o.o., Al Zwycięstwa 96/98 F8, 81-451 Gdynia, Poland
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Giada Frenzilli
- Department of Clinical and Experimental Medicine, Section of Applied Biology and Genetics, and INSTM Local Unit, University of Pisa, 56126 Pisa, Italy
| | - Ana Alcalá-Lalinde
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam 1105AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam 1105AZ, the Netherlands
| | - Elena Herrera-Carrillo
- Amsterdam UMC, University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam 1105AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam 1105AZ, the Netherlands
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Giulia Freer
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa (CISUP), 56100 Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
- Virology Unit, Pisa University Hospital, 56124 Pisa, Italy
| | - Michele Lai
- Retrovirus Center, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy
- Centre for Instrumentation Sharing, University of Pisa (CISUP), 56100 Pisa, Italy
| |
Collapse
|
5
|
Titoli S, Barra V, Gargano S, Di Leonardo A, Melfi R. RNA editing applied to cystic fibrosis: RESTORE can target G542X CFTR mRNA and revert the nonsense mutation. Gene 2025; 951:149384. [PMID: 40054708 DOI: 10.1016/j.gene.2025.149384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Nonsense mutations in the CFTR gene are responsible for approximately 8 % of cystic fibrosis (CF) cases worldwide. The consequent premature termination of translation leads to the production of a truncated and non-functional CFTR protein. Despite the intensive research in the field, these patients cannot benefit from specific and approved therapies yet. To address this issue, in this study we evaluated a potential therapeutic strategy to overcome the nonsense G542X (UGG > UGA) mutation in the CFF-16HBEge human bronchial epithelial cells by restoring the full-length CFTR protein. METHODS We applied the RESTORE (Recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing) approach, based on specifically designed antisense RNA oligonucleotides (ASOs) to recruit endogenous ADAR (adenosine deaminase acting on RNA) enzymes. The ADAR's recruitment to the target CFTR mRNA is expected to promote the deamination of adenosine (A) into inosine (I) within the premature termination codon (UGA). As the ribosome reads the inosine as guanosine (G), the stop codon could be recoded as a tryptophan (UGG), thereby allowing the synthesis of a full-length CFTR protein, albeit with a different amino acid. RESULTS Our results indicate that in the CFF-16HBEge G542X cell line, the transfection of a specific ASO allows the rescue of the CFTR transcript and protein expression, compared to the untransfected mutated cells. Next generation sequencing of CFTR cDNA also confirmed the occurrence of the expected RNA editing outcome. CONCLUSIONS The obtained results suggest that the RESTORE approach might be explored as a promising strategy to treating nonsense mutations in CFTR, potentially contributing to novel therapeutic options for CF patients.
Collapse
Affiliation(s)
- Simona Titoli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Serena Gargano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy; Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, Palermo 90128, Italy.
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| |
Collapse
|
6
|
Aloliqi AA, Alnuqaydan AM, Albutti A, Alharbi BF, Rahmani AH, Khan AA. Current updates regarding biogenesis, functions and dysregulation of microRNAs in cancer: Innovative approaches for detection using CRISPR/Cas13‑based platforms (Review). Int J Mol Med 2025; 55:90. [PMID: 40242952 PMCID: PMC12021393 DOI: 10.3892/ijmm.2025.5531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
MicroRNAs (miRNAs) are short non‑coding RNAs, which perform a key role in cellular differentiation and development. Most human diseases, particularly cancer, are linked to miRNA functional dysregulation implicated in the expression of tumor‑suppressive or oncogenic targets. Cancer hallmarks such as continued proliferative signaling, dodging growth suppressors, invasion and metastasis, triggering angiogenesis, and avoiding cell death have all been demonstrated to be affected by dysregulated miRNAs. Thus, for the treatment of different cancer types, the detection and quantification of this type of RNA is significant. The classical and current methods of RNA detection, including northern blotting, reverse transcription‑quantitative PCR, rolling circle amplification and next‑generation sequencing, may be effective but differ in efficiency and accuracy. Furthermore, these approaches are expensive, and require special instrumentation and expertise. Thus, researchers are constantly looking for more innovative approaches for miRNA detection, which can be advantageous in all aspects. In this regard, an RNA manipulation tool known as the CRISPR and CRISPR‑associated sequence 13 (CRISPR/Cas13) system has been found to be more advantageous in miRNA detection. The Cas13‑based miRNA detection approach is cost effective and requires no special instrumentation or expertise. However, more research and validation are required to confirm the growing body of CRISPR/Cas13‑based research that has identified miRNAs as possible cancer biomarkers for diagnosis and prognosis, and as targets for treatment. In the present review, current updates regarding miRNA biogenesis, structural and functional aspects, and miRNA dysregulation during cancer are described. In addition, novel approaches using the CRISPR/Cas13 system as a next‑generation tool for miRNA detection are discussed. Furthermore, challenges and prospects of CRISPR/Cas13‑based miRNA detection approaches are described.
Collapse
Affiliation(s)
- Abdulaziz A. Aloliqi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Abdullah M. Alnuqaydan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Aqel Albutti
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Basmah F. Alharbi
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Al-Qassim 51452, Saudi Arabia
| |
Collapse
|
7
|
Hoffmann S, Seeger T. Advances in human induced pluripotent stem cell (hiPSC)-based disease modelling in cardiogenetics. MED GENET-BERLIN 2025; 37:137-146. [PMID: 40207041 PMCID: PMC11976404 DOI: 10.1515/medgen-2025-2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-based disease modelling has significantly advanced the field of cardiogenetics, providing a precise, patient-specific platform for studying genetic causes of heart diseases. Coupled with genome editing technologies such as CRISPR/Cas, hiPSC-based models not only allow the creation of isogenic lines to study mutation-specific cardiac phenotypes, but also enable the targeted modulation of gene expression to explore the effects of genetic and epigenetic deficits at the cellular and molecular level. hiPSC-based models of heart disease range from two-dimensional cultures of hiPSC-derived cardiovascular cell types, such as various cardiomyocyte subtypes, endothelial cells, pericytes, vascular smooth muscle cells, cardiac fibroblasts, immune cells, etc., to cardiac tissue cultures including organoids, microtissues, engineered heart tissues, and microphysiological systems. These models are further enhanced by multi-omics approaches, integrating genomic, transcriptomic, epigenomic, proteomic, and metabolomic data to provide a comprehensive view of disease mechanisms. In particular, advances in cardiovascular tissue engineering enable the development of more physiologically relevant systems that recapitulate native heart architecture and function, allowing for more accurate modelling of cardiac disease, drug screening, and toxicity testing, with the overall goal of personalised medical approaches, where therapies can be tailored to individual genetic profiles. Despite significant progress, challenges remain in the maturation of hiPSC-derived cardiomyocytes and the complexity of reproducing adult heart conditions. Here, we provide a concise update on the most advanced methods of hiPSC-based disease modelling in cardiogenetics, with a focus on genome editing and cardiac tissue engineering.
Collapse
Affiliation(s)
- Sandra Hoffmann
- University Hospital HeidelbergInstitute of Human GeneticsHeidelbergGermany
| | | |
Collapse
|
8
|
Bryson JW. Array Assembler Provides Greatly Simplified crRNA Array Design for CRISPR Cas12 and Cas13 Variants. ACS Synth Biol 2025; 14:1868-1872. [PMID: 40335033 DOI: 10.1021/acssynbio.5c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
As newer CRISPR variants have emerged and corresponding toolkits have been developed, researchers can now readily target multiple genes simultaneously for knockout, activation, or repression alongside being able to bind or cleave mRNA. However, as larger multitargeting crRNA arrays are required for these experiments, the design process becomes more complicated, taking more time and increasing risks of errors being introduced. The Array Assembler seeks to address the critical bottleneck that emerges during longer crRNA array design by providing a highly user-friendly tool to process input crRNA spacer sequences into the oligos required for efficient assembly of the corresponding crRNA array. By enabling rapid and reliable design of oligos for efficient assembly of crRNA arrays from a user-defined list of crRNA spacer sequences this tool should prove useful for a wide range of laboratories employing genomic perturbations.
Collapse
Affiliation(s)
- James W Bryson
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
9
|
Peterson L, Coca R, Parikh S, McCarthy K, Man HY. ADAR2-mediated Q/R editing of GluA2 in homeostatic synaptic plasticity. Sci Signal 2025; 18:eadr1442. [PMID: 40359260 DOI: 10.1126/scisignal.adr1442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/24/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025]
Abstract
Homeostatic synaptic plasticity is a negative feedback mechanism through which neurons modify their synaptic strength to counteract chronic increases or decreases in activity. In response to activity deprivation, synaptic strength is enhanced by increasing the number of AMPA receptors (AMPARs), particularly Ca2+-permeable AMPARs, at the synapse. Here, we found that this increase in Ca2+-permeable AMPARs during homeostatic upscaling was mediated by decreased posttranscriptional editing of GRIA2 mRNA encoding the AMPAR subunit GluA2. In cultured neurons, activity deprivation resulted in increases in the amount of unedited GluA2, such that its ion channel pore contains a glutamine (Q) codon instead of arginine (R), and in the number of Ca2+-permeable AMPARs at the synapse. These effects were mediated by a splicing factor-dependent decrease in ADAR2 abundance and activity in the nucleus. Overexpression of ADAR2 or CRISPR-Cas13-directed editing of GluA2 transcripts blocked homeostatic upscaling in activity-deprived primary neurons. In mice, dark rearing resulted in decreased Q-to-R editing of GluA2-encoding transcripts in the primary visual cortex (V1), and viral overexpression of ADAR2 in the V1 blocked the induction of homeostatic synaptic plasticity. The findings indicate that activity-dependent regulation of GluA2 editing contributes to homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Lucy Peterson
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Richard Coca
- Department of Biology, Boston University, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
| | - Shreya Parikh
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| |
Collapse
|
10
|
Cui Z, Huang F, Fang K, Yan J, Zhang Y, Kang DD, Zhou Y, Zhao Y, Everitt JI, Hankey W, Armstrong AJ, Huang J, Wang H, Jin VX, Dong Y, Wang Q. SCORT-Cas13d Nanotherapy Precisely Targets the 'Undruggable' Transcription Factor HoxB13 in Metastatic Prostate Cancer In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417605. [PMID: 40349174 DOI: 10.1002/advs.202417605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/01/2025] [Indexed: 05/14/2025]
Abstract
Metastatic cancer, the primary cause of cancer mortality, frequently exhibits heightened dependence on certain transcription factors (TFs), which serve as master regulators of oncogenic signaling yet are often untargetable by small molecules. Selective Cell in ORgan Targeting (SCORT) nanoparticles are developed for precise CRISPR/Cas13d mRNA and gRNA delivery to metastatic cancer cells in vivo, aiming to knock down the undruggable oncogenic TF HoxB13. In prostate cancer liver metastasis models driven by HoxB13, repeated systemic SCORT-Cas13d-gHoxB13 treatment significantly decreases HoxB13 expression, reduces metastasis, and extends mouse survival. Prolonged treatment shows no significant impact on major organ function, histology or immune markers. Mechanistically, SCORT-Cas13d-gHoxB13 treatment suppresses metastatic tumor proliferation and angiogenesis while promoting apoptosis by regulating multiple gene pathways. Unexpectedly, it inhibits the non-canonical, EMT-independent oncogenic function of Snail. These findings suggest that SCORT-Cas13d-gHoxB13 can effectively and safely target the undruggable HoxB13 in metastatic prostate cancer, positioning CRISPR/Cas13d as a potential treatment.
Collapse
Affiliation(s)
- Zhifen Cui
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Furong Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kun Fang
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yue Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - William Hankey
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Andrew J Armstrong
- Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute Center for Prostate and Urologic Cancer, Durham, NC, 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hongyan Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Victor X Jin
- Medical College of Wisconsin Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute Center for Prostate and Urologic Cancer, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
11
|
Butterfield GL, Reisman SJ, Iglesias N, Gersbach CA. Gene regulation technologies for gene and cell therapy. Mol Ther 2025; 33:2104-2122. [PMID: 40195118 DOI: 10.1016/j.ymthe.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025] Open
Abstract
Gene therapy stands at the forefront of medical innovation, offering unique potential to treat the underlying causes of genetic disorders and broadly enable regenerative medicine. However, unregulated production of therapeutic genes can lead to decreased clinical utility due to various complications. Thus, many technologies for controlled gene expression are under development, including regulated transgenes, modulation of endogenous genes to leverage native biological regulation, mapping and repurposing of transcriptional regulatory networks, and engineered systems that dynamically react to cell state changes. Transformative therapies enabled by advances in tissue-specific promoters, inducible systems, and targeted delivery have already entered clinical testing and demonstrated significantly improved specificity and efficacy. This review highlights next-generation technologies under development to expand the reach of gene therapies by enabling precise modulation of gene expression. These technologies, including epigenome editing, antisense oligonucleotides, RNA editing, transcription factor-mediated reprogramming, and synthetic genetic circuits, have the potential to provide powerful control over cellular functions. Despite these remarkable achievements, challenges remain in optimizing delivery, minimizing off-target effects, and addressing regulatory hurdles. However, the ongoing integration of biological insights with engineering innovations promises to expand the potential for gene therapy, offering hope for treating not only rare genetic disorders but also complex multifactorial diseases.
Collapse
Affiliation(s)
- Gabriel L Butterfield
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Samuel J Reisman
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Nahid Iglesias
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
12
|
Hampton JT, Liu WR. Editing proteins inside a cell. Science 2025; 388:472. [PMID: 40310931 PMCID: PMC12070397 DOI: 10.1126/science.adx5085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Pairs of split protein segments can modify a variety of target proteins in a living cell.
Collapse
Affiliation(s)
- J Trae Hampton
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
13
|
Gao Y, Mardian R, Ma J, Li Y, French CE, Wang B. Programmable trans-splicing riboregulators for complex cellular logic computation. Nat Chem Biol 2025; 21:758-766. [PMID: 39747656 DOI: 10.1038/s41589-024-01781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025]
Abstract
Synthetic genetic circuits program the cellular input-output relationships to execute customized functions. However, efforts to scale up these circuits have been hampered by the limited number of reliable regulatory mechanisms with high programmability, performance, predictability and orthogonality. Here we report a class of split-intron-enabled trans-splicing riboregulators (SENTRs) based on de novo designed external guide sequences. SENTR libraries provide low leakage expression, wide dynamic range, high predictability with machine learning and low crosstalk at multiple component levels. SENTRs can sense RNA targets, process signals by logic computation and transduce them into various outputs, either mRNAs or noncoding RNAs. We subsequently demonstrate that digital logic operation with up to six inputs can be implemented using multiple orthogonal SENTRs to regulate a single gene simultaneously and coupling SENTRs with split intein-mediated protein trans-splicing. SENTR represents a powerful and versatile regulatory tool at the post-transcriptional level in Escherichia coli, suggesting broad biotechnological applications.
Collapse
Affiliation(s)
- Yuanli Gao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rizki Mardian
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jiaxin Ma
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
| | - Yang Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China
| | - Christopher E French
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Zhejiang University-University of Edinburgh Joint Research Center for Engineering Biology, International Campus, Zhejiang University, Haining, China
| | - Baojun Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Wang KC, Zheng T, Hubbard BP. CRISPR/Cas technologies for cancer drug discovery and treatment. Trends Pharmacol Sci 2025; 46:437-452. [PMID: 40133194 DOI: 10.1016/j.tips.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) tools are revolutionizing the establishment of genotype-phenotype relationships and are transforming cell- and gene-based therapies. In the field of oncology, CRISPR/CRISPR-associated protein 9 (Cas9), Cas12, and Cas13 have advanced the generation of cancer models, the study of tumor evolution, the identification of target genes involved in cancer growth, and the discovery of genes involved in chemosensitivity and resistance. Moreover, preclinical therapeutic strategies employing CRISPR/Cas have emerged. These include the generation of chimeric antigen receptor T (CAR-T) cells and engineered immune cells, and the use of precision anticancer gene-editing agents to inactivate driver oncogenes, suppress tumor support genes, and cull cancer cells in response to genetic circuit output. This review summarizes the collective impact that CRISPR technology has had on basic and applied cancer research, and highlights the promises and challenges facing its clinical translation.
Collapse
Affiliation(s)
- Kevin C Wang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tiffany Zheng
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Basil P Hubbard
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
15
|
Shiryaeva O, Tolochko C, Alekseeva T, Dyachuk V. Targets and Gene Therapy of ALS (Part 1). Int J Mol Sci 2025; 26:4063. [PMID: 40362304 PMCID: PMC12071412 DOI: 10.3390/ijms26094063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons, which causes muscle atrophy. Genetic forms of ALS are recorded only in 10% of cases. However, over the past decade, studies in genetics have substantially contributed to our understanding of the molecular mechanisms underlying ALS. The identification of key mutations such as SOD1, C9orf72, FUS, and TARDBP has led to the development of targeted therapy that is gradually being introduced into clinical trials, opening up a broad range of opportunities for correcting these mutations. In this review, we aimed to present an extensive overview of the currently known mechanisms of motor neuron degeneration associated with mutations in these genes and also the gene therapy methods for inhibiting the expression of their mutant proteins. Among these, antisense oligonucleotides, RNA interference (siRNA and miRNA), and gene-editing (CRISPR/Cas9) methods are of particular interest. Each has shown its efficacy in animal models when targeting mutant genes, whereas some of them have proven to be efficient in human clinical trials.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Dyachuk
- Almazov Federal Medical Research Centre, 197341 Saint Petersburg, Russia; (O.S.); (C.T.); (T.A.)
| |
Collapse
|
16
|
Mukherjee A, Samanta S, Das S, Haque MZ, Jana PS, Samanta I, Kar I, Das S, Nanda PK, Thomas P, Dandapat P. Leveraging CRISPR-Cas-Enhanced Isothermal Amplification Tools for Quick Identification of Pathogens Causing Livestock Diseases. Curr Microbiol 2025; 82:260. [PMID: 40274667 DOI: 10.1007/s00284-025-04226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
Prompt and accurate diagnosis of infectious pathogens of livestock origin is of utmost importance for epidemiological surveillance and effective therapeutic strategy formulation. Among various methods, nucleic acid-based detection of pathogens is the most sensitive and specific; but the majority of these assays need expensive equipment and skilled workers. Due to the rapid advancement of clustered regularly interspaced short palindromic repeats-CRISPR-associated protein (CRISPR-Cas)-based nucleic acid detection methods, these are now being widely used for pathogen detection. CRISPR-Cas is a bacterial counterpart of "adaptive immunity", generally used for editing genome. Many CRISPR systems have been modified for nucleic acid detection due to their excellent selectivity in detecting DNA and RNA sequences. The combination of CRISPR with suitable isothermal amplification technologies has made it more sensitive, specific, versatile, and reproducible for the detection of pathogen nucleic acids at the point of care. Amplification of pathogen nucleic acid by isothermal amplification followed by CRISPR-Cas-based detection has several advantages, including short sample-to-answer times and no requirement for laboratory set-up. They are also significantly less expensive than the existing nucleic acid detection methods. This review focuses on the recent trends in the use of this precision diagnostic method for diagnosis of a wide range of animal pathogens with or without zoonotic potential, particularly various isothermal amplification strategies, and visualization methods for sensing bacteria, viruses, and parasites of veterinary and public health importance.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India.
| | - Sukhen Samanta
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, 741 235, India
| | - Subhasree Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Molla Zakirul Haque
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Partha Sarathi Jana
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indranil Samanta
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Indrajit Kar
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
| | - Srinibas Das
- Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Mohanpur, West Bengal, 741 252, India
- Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata, 700 094, West Bengal, India
| | - Pramod Kumar Nanda
- ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Belgachia Road, Kolkata, West Bengal, 700 037, India
| | - Prasad Thomas
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Premanshu Dandapat
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| |
Collapse
|
17
|
Lin XL, Zhou YM, Meng K, Yang JY, Zhang H, Lin JH, Wu HY, Wang XY, Zhao H, Feng SS, Park KS, Cai DQ, Zheng L, Qi XF. CRISPR/Cas-mediated mRNA knockdown in the embryos of Xenopus tropicalis. Cell Biosci 2025; 15:52. [PMID: 40270035 PMCID: PMC12020200 DOI: 10.1186/s13578-025-01397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
The Xenopus tropicalis (Western clawed frog) is an important amphibian model for genetics, developmental and regenerative biology, due to its diploid genetic background and short generation time. CRISPR-Cas13 and CRISPR interference (CRISPRi) systems have recently been employed to suppress mRNA expression in many organisms such as yeast, plants, and mammalian cells. However, no systematic study of these two systems has been carried out in Xenopus tropicalis. Here, we show that CRISPRi rather than CRISPR-Cas13 is an effective and suitable approach to suppress specific mRNA transcription in Xenopus tropicalis embryos. We demonstrated that CRISPRi composed of dCas9 and KRAB-MeCP2 (dCas9-KM) can efficiently target exogenous and endogenous transcripts in Xenopus tropicalis embryos. Moreover, our data suggest that the new KRAB domain from ZIM3 protein (ZIM3-KRAB, ZIM3K) alone has a comparable transcript targeting capacity in Xenopus tropicalis embryos to the traditional fusion repressor KRAB-MeCP2 in which the KRAB domain from KOX1 protein. In conclusion, our results demonstrate that CRISPRi rather than CRISPR-Cas13 is an efficient knockdown platform to explore specific gene function in Xenopus tropicalis embryos.
Collapse
Affiliation(s)
- Xiao-Lin Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Yi-Min Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Ke Meng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Jia-Yi Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Han Zhang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Jin-Hua Lin
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Hai-Yan Wu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Xiao-Yu Wang
- Division of Histology & Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shan-Shan Feng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, 220-701, Korea
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
18
|
Wen L, Fu J, Wang Z, Xie R, Tang S, Yu L, Zhou H. Regulatory mechanisms of m6A RNA methylation in esophageal cancer: a comprehensive review. Front Genet 2025; 16:1561799. [PMID: 40330012 PMCID: PMC12053326 DOI: 10.3389/fgene.2025.1561799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Esophageal cancer is an aggressively malignant neoplasm characterized by a high mortality rate. Frequently diagnosed at an advanced stage, it presents challenges for optimal therapeutic intervention due to its non-specific symptoms, resulting in lost opportunities for effective treatment, such as surgery, radiotherapy, chemotherapy and target therapy. The N6-methyladenosine (m6A) modification represents the most critical post-transcriptional modification of eukaryotic messenger RNA (mRNA). The reversible m6A modification is mediated by three regulatory factors: m6A methyltransferases, demethylating enzymes, and m6A recognition proteins. These components identify and bind to specific RNA methylation sites, thereby modulating essential biological functions such as RNA processing, nuclear export, stability, translation and degradation, which significantly influence tumorigenesis, invasion, and metastasis. Given the importance of m6A modification, this paper offers a comprehensive examination of the regulatory mechanisms, biological functions, and future therapeutic implications of m6A RNA methylation in the context of esophageal cancer.
Collapse
Affiliation(s)
- Long Wen
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, North Sichuan Medical College, Institute of Surgery, Nanchong, China
| | - Jiang Fu
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixu Wang
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rangping Xie
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengjie Tang
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Li Yu
- Department of Physical Examination, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
| | - Haining Zhou
- Department of Thoracic Surgery, Suining Central Hospital, An Affiliated Hospital of Chongqing Medical University, Suining, China
- Graduate School, North Sichuan Medical College, Institute of Surgery, Nanchong, China
- Graduate School, Institute of Surgery, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
19
|
Sun J, Yu X, Tang G, Chen M, Zheng Y, Hu Y, Li Q, Li X, Li N, Li Z, Li Y, Lu N, Tan W, Yang Y, Lyu X, Zhao G, Wang H, Dai L, Zhao GP, Ai L, Zhao W. A CRISPR-SpCas9M-reporting system for efficient and rapid genome editing in Caulobacter crescentus. Nucleic Acids Res 2025; 53:gkaf353. [PMID: 40298107 PMCID: PMC12038397 DOI: 10.1093/nar/gkaf353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
As members of the α-proteobacteria group, Caulobacter crescentus and its relatives are wildly studied for their unique asymmetric life cycle and versatile applications in industry, agriculture, and biomedicine. However, genetic manipulation in these bacteria remains challenging, typically requiring time-consuming and labor-intensive procedures. Here, we report a practical CRISPR-SpCas9M-reporting system that overcomes the limitations of SpCas9 expression and CRISPR escape, enabling efficient, markerless, and rapid genome editing in C. crescentus. Two genes encoding for a pair of scaffold proteins were knocked out individually or iteratively, demonstrating their direct involvements in cellular signaling asymmetry. Key components, including the Cas protein, Cas inducer, sgRNA, homologous arms, and reporter, were systematically analyzed and optimized in the system, finally achieving the apparent editing efficiency up to 80% in C. crescentus. Furthermore, we applied the CRISPR-SpCas9M-reporting system to two C. crescentus relatives, Agrobacterium fabrum and Sinorhizobium meliloti, establishing it as an efficient and general editing strategy. We anticipate that this system could be applied to other CRISPR-Cas-recalcitrant organisms, accelerating both basic and applied research in α-proteobacteria.
Collapse
Affiliation(s)
- Jingxian Sun
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xin Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guiyue Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengqing Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yixin Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucan Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmei Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyang Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ningning Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhongyue Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ning Lu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujiao Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoye Lyu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guohong Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Ping Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Lab of Genetic Engineering and Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lianzhong Ai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
20
|
Ouyang Y, Xia Y, Tang X, Qin L, Xia S. Trans-Kingdom sRNA Silencing in Sclerotinia sclerotiorum for Crop Fungal Disease Management. Pathogens 2025; 14:398. [PMID: 40333207 PMCID: PMC12030631 DOI: 10.3390/pathogens14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/19/2025] [Accepted: 04/19/2025] [Indexed: 05/09/2025] Open
Abstract
Sclerotinia sclerotiorum is a globally widespread and vast destructive plant pathogenic fungus that causes significant yield losses in crops. Due to the lack of effective resistant germplasm resources, the control of diseases caused by S. sclerotiorum largely relies on chemical fungicides. However, excessive use of these chemicals not only causes environmental concerns but also leads to the increased development of resistance in S. sclerotiorum. In contrast, trans-kingdom sRNA silencing-based technologies, such as host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS), offer novel, effective, and environmentally friendly methods for the management of S. sclerotiorum infection. This review summarizes recent advances in the identification of S. sclerotiorum pathogenic genes, target gene selection, categories, and application of trans-kingdom RNA interference (RNAi) technologies targeting this pathogen. Although some challenges, including off-target effects and the efficiency of external sRNA uptake, exist, recent findings have proposed solutions for further improvement. Combined with the latest developments in CRISPR/Cas gene editing and other technologies, trans-kingdom RNAi has significant potential to become a crucial tool in the control of sclerotinia stem rot (SSR), mitigating the impact of S. sclerotiorum on crop production.
Collapse
Affiliation(s)
- Yuqing Ouyang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Yunong Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Xianyu Tang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| | - Lei Qin
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (Y.O.); (Y.X.); (X.T.)
| |
Collapse
|
21
|
Chen Y, Chen Y, Qin W. Mapping RNA-Protein Interactions via Proximity Labeling-Based Approaches. Chem Asian J 2025:e202500118. [PMID: 40249647 DOI: 10.1002/asia.202500118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
RNA-protein interactions are fundamental to a wide range of biological processes, and understanding these interactions in their native cellular context is both vital and challenging. Traditional methods for studying RNA-protein interactions rely on crosslinking, which can introduce artifacts. Recently, proximity labeling-based techniques have emerged as powerful alternatives, offering a crosslinking-free approach to investigate these interactions. This review highlights recent advancements in the development and application of proximity labeling methods, focusing on both RNA-centric and protein-centric strategies for profiling cellular RNA-protein interactions. By examining these innovative approaches, we aim to provide insights into their potential for enhancing our understanding of RNA-protein dynamics in various biological settings.
Collapse
Affiliation(s)
- Yongzuo Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuxin Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Zhang Y, Jin Z, Liu L, Zhang D. The Strategy and Application of Gene Attenuation in Metabolic Engineering. Microorganisms 2025; 13:927. [PMID: 40284763 PMCID: PMC12029929 DOI: 10.3390/microorganisms13040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic engineering has a wide range of applications, spanning key sectors such as energy, pharmaceuticals, agriculture, chemicals, and environmental sustainability. Its core focus is on precisely modulating metabolic pathways to achieve efficient, sustainable, and environmentally friendly biomanufacturing processes, offering new possibilities for societal sustainable development. Gene attenuation is a critical technique within metabolic engineering, pivotal in optimizing metabolic fluxes and improving target metabolite yields. This review article discusses gene attenuation mechanisms, the applications across various biological systems, and implementation strategies. Additionally, we address potential future challenges and explore its potential to drive further advancements in the field.
Collapse
Affiliation(s)
- Yahui Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
23
|
Menon AV, Song B, Chao L, Sriram D, Chansky P, Bakshi I, Ulianova J, Li W. Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology. Front Genome Ed 2025; 7:1565387. [PMID: 40292231 PMCID: PMC12021818 DOI: 10.3389/fgeed.2025.1565387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
The CRISPR system has transformed many research areas, including cancer and immunology, by providing a simple yet effective genome editing system. Its simplicity has facilitated large-scale experiments to assess gene functionality across diverse biological contexts, generating extensive datasets that boosted the development of computational methods and machine learning/artificial intelligence applications. Integrating CRISPR with single-cell technologies has further advanced our understanding of genome function and its role in many biological processes, providing unprecedented insights into human biology and disease mechanisms. This powerful combination has accelerated AI-driven analyses, enhancing disease diagnostics, risk prediction, and therapeutic innovations. This review provides a comprehensive overview of CRISPR-based genome editing systems, highlighting their advancements, current progress, challenges, and future opportunities, especially in cancer and immunology.
Collapse
Affiliation(s)
- A. Vipin Menon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Lumen Chao
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Diksha Sriram
- The George Washington University, Washington, DC, DC, United States
| | - Pamela Chansky
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Ishnoor Bakshi
- The George Washington University, Washington, DC, DC, United States
| | - Jane Ulianova
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| |
Collapse
|
24
|
Yang X, Shi X, Lv C, Liu W, Zhang F, Liu B. Integrating CRISPR-Cas12a with Aptamer as a Logic Gate Biosensing Platform for the Detection of CD33 and CD123. ACS OMEGA 2025; 10:13634-13644. [PMID: 40224444 PMCID: PMC11983205 DOI: 10.1021/acsomega.5c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Molecular logic gates, as biomolecule-based computational systems, are highly suitable for multitarget detection due to their programmability and modularity. However, existing systems are primarily limited to nucleic acid detection and have not been widely applied to disease-related sensing, particularly for disease antigens. CD33 and CD123 are critical biomarkers for acute myeloid leukemia (AML), yet conventional detection methods rely on expensive equipment and complex procedures, limiting their accessibility and practicality. This study designs a DNA logic gate system integrating nucleic acid aptamers, catalytic hairpin assembly (CHA), and CRISPR-Cas12a, pioneering its use for AML antigen detection. The system comprises three modules: input recognition, signal amplification, and signal transduction. Nucleic acid aptamers specifically identify CD33 and CD123, while CHA enables efficient signal amplification and CRISPR-Cas12a generates a fluorescent output via trans-cleavage activity. The system operates stably at room temperature and implements multiple logic gate models, including YES, OR, AND, NOR, and INHIBIT, enabling the simultaneous detection of CD33 and CD123. Experimental results are visually distinguishable under blue light, and the system requires only standard fluorescence detection instruments. In serum samples, it exhibits excellent selectivity and stability, with a detection limit of 0.5 ng/mL. This study pioneers the application of logic gate technology for disease antigen detection, addressing a critical gap in AML biomarker sensing. Our study indicates that this logic detection platform, characterized by its simplicity in operation, high sensitivity, and versatility in logic functions, holds promise as a potent sensing system for the intelligent multiplex target detection of disease antigens, environmental pollutants, and heavy metals.
Collapse
Affiliation(s)
- Xinyi Yang
- Institute
of Medical Artificial Intelligence, Binzhou
Medical University, Yantai 264003, Shandong, PR China
| | - Xiaolong Shi
- Institution
of Computational Science and Technology, Guangzhou University, Guangzhou 510006, Guangdong, PR China
| | - Chenyu Lv
- Institute
of Medical Artificial Intelligence, Binzhou
Medical University, Yantai 264003, Shandong, PR China
| | - Wenbin Liu
- Institution
of Computational Science and Technology, Guangzhou University, Guangzhou 510006, Guangdong, PR China
| | - Fengyue Zhang
- Institute
of Medical Artificial Intelligence, Binzhou
Medical University, Yantai 264003, Shandong, PR China
- College
of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun
Street, Beijing 100081, PR China
| | - Bo Liu
- Institute
of Medical Artificial Intelligence, Binzhou
Medical University, Yantai 264003, Shandong, PR China
| |
Collapse
|
25
|
Luo H, Yao J, Zhang R. Harnessing RNA base editing for diverse applications in RNA biology and RNA therapeutics. ADVANCED BIOTECHNOLOGY 2025; 3:11. [PMID: 40198443 PMCID: PMC11979053 DOI: 10.1007/s44307-025-00063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Recent advancements in molecular engineering have established RNA-based technologies as powerful tools for both fundamental research and translational applications. Among the various RNA-based technologies developed, RNA base editing has recently emerged as a groundbreaking advancement. It primarily involves the conversion of adenosine (A) to inosine (I) and cytidine (C) to uridine (U), which are mediated by ADAR and APOBEC enzymes, respectively. RNA base editing has been applied in both biological research and therapeutic contexts. It enables site-directed editing within target transcripts, offering reversible, dose-dependent effects, in contrast to the permanent or heritable changes associated with DNA base editing. Additionally, RNA editing-based profiling of RNA-binding protein (RBP) binding sites facilitates transcriptome-wide mapping of RBP-RNA interactions in specific tissues and at the single-cell level. Furthermore, RNA editing-based sensors have been utilized to express effector proteins in response to specific RNA species. As RNA base editing technologies continue to evolve, we anticipate that they will significantly drive advancements in RNA therapeutics, synthetic biology, and biological research.
Collapse
Affiliation(s)
- Hui Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jing Yao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
26
|
Parikh SJ, Terron HM, Burgard LA, Maranan DS, Butler DD, Wiseman A, LaFerla FM, Lane S, Leissring MA. Targeted Control of Gene Expression Using CRISPR-Associated Endoribonucleases. Cells 2025; 14:543. [PMID: 40214496 PMCID: PMC11988398 DOI: 10.3390/cells14070543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
CRISPR-associated endoribonucleases (Cas RNases) cleave single-stranded RNA in a highly sequence-specific manner by recognizing and binding to short RNA sequences known as direct repeats (DRs). Here, we investigate the potential of exploiting Cas RNases for the regulation of target genes with one or more DRs introduced into the 3' untranslated region, an approach we refer to as DREDGE (direct repeat-enabled downregulation of gene expression). The DNase-dead version of Cas12a (dCas12a) was identified as the most efficient among five different Cas RNases tested and was subsequently evaluated in doxycycline-regulatable systems targeting either stably expressed fluorescent proteins or an endogenous gene. DREDGE performed superbly in stable cell lines, resulting in up to 90% downregulation with rapid onset, notably in a fully reversible and highly selective manner. Successful control of an endogenous gene with DREDGE was demonstrated in two formats, including one wherein both the DR and the transgene driving expression of dCas12a were introduced in one step by CRISPR-Cas. Our results establish DREDGE as an effective method for regulating gene expression in a targeted, highly selective, and fully reversible manner, with several advantages over existing technologies.
Collapse
Affiliation(s)
- Sagar J. Parikh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Heather M. Terron
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Luke A. Burgard
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Derek S. Maranan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Dylan D. Butler
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Abigail Wiseman
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Frank M. LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Shelley Lane
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| | - Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697, USA
| |
Collapse
|
27
|
Sun Y, Cao Y, Song Y, Li J, Hou Y, Huang W, Xie G, Yang W, Zhang R. Improved RNA base editing with guide RNAs mimicking highly edited endogenous ADAR substrates. Nat Biotechnol 2025:10.1038/s41587-025-02628-6. [PMID: 40181169 DOI: 10.1038/s41587-025-02628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Adenosine deaminase acting on RNA (ADAR)-mediated RNA base editing offers a safer alternative to genome editing for specific clinical applications because of nonpermanent editing of targets. Current guide RNA (gRNA) designs feature a fully complementary specificity domain with an A-C mismatch at the targeted adenosine. However, perfectly matched dsRNA is not the most effective ADAR substrate. Here we introduce MIRROR (mimicking inverted repeats to recruit ADARs using engineered oligoribonucleotides), an approach that implements structural motifs derived from highly edited inverted Alu repeats in human tissues to enable rational gRNA design for ADAR recruitment. We demonstrated that MIRROR is applicable to both short chemically synthesized gRNAs with modifications and long biologically generated gRNAs and surpasses current state-of-the-art approaches in both gRNA forms. It enhances editing efficiency by up to 5.7-fold in multiple human cell types and primary hepatocytes from an alpha-1 antitrypsin deficiency mouse model. Our findings improve programmable RNA editing in vitro and in vivo by rational design through the screening of highly edited natural substrate mimics.
Collapse
Affiliation(s)
- Yuanfan Sun
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yong Cao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yulong Song
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jin Li
- RecoRNA Biotechnology, Guangzhou, China
| | | | - Wen Huang
- RecoRNA Biotechnology, Guangzhou, China
| | | | | | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
28
|
Zilberzwige-Tal S, Altae-Tran H, Kannan S, Wilkinson ME, Vo SCDT, Strebinger D, Edmonds KK, Yao CCJ, Mears KS, Shmakov SA, Makarova KS, Macrae RK, Koonin EV, Zhang F. Reprogrammable RNA-targeting CRISPR systems evolved from RNA toxin-antitoxins. Cell 2025; 188:1925-1940.e20. [PMID: 39970912 DOI: 10.1016/j.cell.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/12/2024] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
Despite ongoing efforts to study CRISPR systems, the evolutionary origins giving rise to reprogrammable RNA-guided mechanisms remain poorly understood. Here, we describe an integrated sequence/structure evolutionary tracing approach to identify the ancestors of the RNA-targeting CRISPR-Cas13 system. We find that Cas13 likely evolved from AbiF, which is encoded by an abortive infection-linked gene that is stably associated with a conserved non-coding RNA (ncRNA). We further characterize a miniature Cas13, classified here as Cas13e, which serves as an evolutionary intermediate between AbiF and other known Cas13s. Despite this relationship, we show that their functions substantially differ. Whereas Cas13e is an RNA-guided RNA-targeting system, AbiF is a toxin-antitoxin (TA) system with an RNA antitoxin. We solve the structure of AbiF using cryoelectron microscopy (cryo-EM), revealing basic structural alterations that set Cas13s apart from AbiF. Finally, we map the key structural changes that enabled a non-guided TA system to evolve into an RNA-guided CRISPR system.
Collapse
Affiliation(s)
- Shai Zilberzwige-Tal
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Han Altae-Tran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Soumya Kannan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Max E Wilkinson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samuel Chau-Duy-Tam Vo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel Strebinger
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - KeHuan K Edmonds
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chun-Chen Jerry Yao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Molecular Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kepler S Mears
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Rhiannon K Macrae
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
29
|
Cheng ECK, Lam JKC, Kwon SC. Cytosolic CRISPR RNAs for efficient application of RNA-targeting CRISPR-Cas systems. EMBO Rep 2025; 26:1891-1912. [PMID: 40011676 PMCID: PMC11976971 DOI: 10.1038/s44319-025-00399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technologies have evolved rapidly over the past decade with the continuous discovery of new Cas systems. In particular, RNA-targeting CRISPR-Cas13 proteins are promising single-effector systems to regulate target mRNAs without altering genomic DNA, yet the current Cas13 systems are restrained by suboptimal efficiencies. Here, we show that U1 promoter-driven CRISPR RNAs (crRNAs) increase the efficiency of various applications, including RNA knockdown and editing, without modifying the Cas13 protein effector. We confirm that U1-driven crRNAs are exported into the cytoplasm, while conventional U6 promoter-driven crRNAs are mostly confined to the nucleus. Furthermore, we reveal that the end positions of crRNAs expressed by the U1 promoter are consistent regardless of guide sequences and lengths. We also demonstrate that U1-driven crRNAs, but not U6-driven crRNAs, can efficiently repress the translation of target genes in combination with catalytically inactive Cas13 proteins. Finally, we show that U1-driven crRNAs can counteract the inhibitory effect of miRNAs. Our simple and effective engineering enables unprecedented cytosolic RNA-targeting applications.
Collapse
Affiliation(s)
- Ezra C K Cheng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Joe K C Lam
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - S Chul Kwon
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
30
|
Hardy CS, Bahr LE, Rothman AL, Anderson KB, Barba-Spaeth G, Weiskopf D, Ooi EE, Marques ET, Bonsignori M, Barrett AD, Kirkpatrick BD, Castanha PM, Hamins-Puertolas M, Christofferson RC, Dimopoulos G, Oliveira F, Chiang LW, Ko AI, Gunale B, Kulkarni P, Perkins TA, Dorigatti I, Stewart T, Shaw J, Johansson MA, Thomas SJ, Waickman AT. Proceedings of the second annual dengue endgame summit: A call to action. PLoS Negl Trop Dis 2025; 19:e0013028. [PMID: 40294026 PMCID: PMC12036847 DOI: 10.1371/journal.pntd.0013028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
On August 7-9, 2024, the second annual dengue "endgame" summit was held in Syracuse, NY, hosted by the Global Health Institute at SUNY Upstate Medical University. The meeting brought together attendees from around the world, with talks spanning healthcare, government control programs, basic research, and medical countermeasure development efforts. The summit goal was to work toward a better understanding of what dengue control could look like and the steps required to reach such a goal. The objectives of the meeting were to discuss the current global state of dengue, what dengue "control" might look like, and to discuss actionable pathways for achieving dengue control. Topics covered throughout the meeting included DENV immunity and pathogenesis, challenges in countermeasure development, innovative vector control strategies, dengue diagnostics, addressing challenges in science communication, and vaccine hesitancy. Several fundamental knowledge gaps were repeatedly highlighted by the summit attendees and were cited as critical barriers to the development, deployment, and evaluation of effective dengue countermeasures. These gaps include (1) the lack of a broadly applicable immunologic biomarker/correlate of DENV immunity and (2) the lack of universally accepted/applicable metrics for quantifying dengue severity in the setting of countermeasure evaluations. In addition, the lack of clear and consistent international leadership in the global dengue control effort was cited as a barrier to widespread and synergistic research and countermeasure development/deployment activities. Despite these persistent roadblocks, summit attendees expressed optimism that holistic and multi-tiered approaches-incorporating optimal use of existing and nascent countermeasure technologies deployed in collaboration with local communities-could be effective in progressing toward dengue control.
Collapse
Affiliation(s)
- Céline S.C. Hardy
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
| | - Lauren E. Bahr
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
| | - Alan L. Rothman
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Kathryn B. Anderson
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
| | - Giovanna Barba-Spaeth
- Unité de Virologie Structurale, Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Paris, France
| | - Daniela Weiskopf
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, California, United States of America
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, SingaporeSingapore
| | - Ernesto T.A. Marques
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mattia Bonsignori
- Translational Immunobiology Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan D.T. Barrett
- Sealy Institute for Vaccine Sciences and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Beth D. Kirkpatrick
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, The University of Vermont, Burlington, Vermont, United States of America
| | - Priscila M.S. Castanha
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marco Hamins-Puertolas
- Department of Medicine, University of California, San Francisco, California, United States of America
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, Louisiana School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| | - George Dimopoulos
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fabiano Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lillian W. Chiang
- Evrys Bio, Inc., Pennsylvania Biotechnology Center, Doylestown, Pennsylvania,
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Bhagwat Gunale
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, India
| | - Prasad Kulkarni
- Serum Institute of India Pvt. Ltd., Hadapsar, Pune, Maharashtra, India
| | - T. Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Ilaria Dorigatti
- MRC Centre for Global Infectious Disease Analysis and the Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, United Kingdom
| | - Telisa Stewart
- Department of Public Health and Preventive Medicine, Upstate Medical University, Syracuse, New York, United States of America
| | - Jana Shaw
- Department of Pediatrics, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Michael A. Johansson
- Bouvé College of Health Sciences and Network Science Institute, Northeastern University, Boston, Massachusetts, United States of America
| | - Stephen J. Thomas
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
- Global Health Institute, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Adam T. Waickman
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
- Global Health Institute, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
31
|
Reautschnig P, Fruhner C, Wahn N, Wiegand CP, Kragness S, Yung JF, Hofacker DT, Fisk J, Eidelman M, Waffenschmidt N, Feige M, Pfeiffer LS, Schulz AE, Füll Y, Levanon EY, Mandel G, Stafforst T. Precise in vivo RNA base editing with a wobble-enhanced circular CLUSTER guide RNA. Nat Biotechnol 2025; 43:545-557. [PMID: 38997581 PMCID: PMC11994451 DOI: 10.1038/s41587-024-02313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/17/2024] [Indexed: 07/14/2024]
Abstract
Recruiting the endogenous editing enzyme adenosine deaminase acting on RNA (ADAR) with tailored guide RNAs for adenosine-to-inosine (A-to-I) RNA base editing is promising for safely manipulating genetic information at the RNA level. However, the precision and efficiency of editing are often compromised by bystander off-target editing. Here, we find that in 5'-UAN triplets, which dominate bystander editing, G•U wobble base pairs effectively mitigate off-target events while maintaining high on-target efficiency. This strategy is universally applicable to existing A-to-I RNA base-editing systems and complements other suppression methods such as G•A mismatches and uridine (U) depletion. Combining wobble base pairing with a circularized format of the CLUSTER approach achieves highly precise and efficient editing (up to 87%) of a disease-relevant mutation in the Mecp2 transcript in cell culture. Virus-mediated delivery of the guide RNA alone realizes functional MeCP2 protein restoration in the central nervous system of a murine Rett syndrome model with editing yields of up to 19% and excellent bystander control in vivo.
Collapse
Affiliation(s)
- Philipp Reautschnig
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Carolin Fruhner
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Nicolai Wahn
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Charlotte P Wiegand
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Sabrina Kragness
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - John F Yung
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Daniel T Hofacker
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Jenna Fisk
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Michelle Eidelman
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Nils Waffenschmidt
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Maximilian Feige
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Annika E Schulz
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Yvonne Füll
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Gail Mandel
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, Faculty of Science, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University of Tübingen, Tübingen, Germany.
- iFIT Cluster of Excellence (EXC2180) Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
32
|
Li H, Qiu Y, Song B, Quan X, Zhang D, Li X, Yang J, Liu X, Zeng Z, Jing J, Yin S, Dai Q, Wang L, Han H, Ye H, Sun Z, Cheng Y, Zhang X, Du B, Liu M, Li D. Engineering a photoactivatable A-to-I RNA base editor for gene therapy in vivo. Nat Biotechnol 2025:10.1038/s41587-025-02610-2. [PMID: 40164763 DOI: 10.1038/s41587-025-02610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Tunable and reversible regulation of exogenous and endogenous gene expression would be useful for improving the safety and efficacy of gene therapy. Current chemically inducible systems are limited by the rapid diffusion and extended metabolism of small molecules, and associated side effects. Here we develop a photoactivatable RNA adenosine base editor (PA-rABE) by harnessing a compact Cas13 variant and a split ADAR2 deaminase fused with the Magnets system, which is activated through blue-light-induced dimerization. PA-rABE achieves highly efficient editing on endogenous RNA with minimal bystander editing and off-target effects. By editing a phosphorylation site of the endogenous CTNNB1 gene, PA-rABE stabilizes the β-catenin protein and activates Wnt signaling in vivo. Using adeno-associated virus vectors to deliver PA-rABE along with an hF9 variant containing a premature termination codon, we show amelioration of clotting defects in hemophilia B mice upon illumination. In summary, PA-rABE offers a controlled RNA base-editing technology for diverse biomedical applications, enabling reversible and spatiotemporally specific modulation.
Collapse
Affiliation(s)
- Huiying Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Yuhao Qiu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Bowen Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xinyi Quan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xinru Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Jingyun Yang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xiaohong Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Zhiyang Zeng
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Ji Jing
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Shuming Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Qi Dai
- Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Honghui Han
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Zhenliang Sun
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China
| | - Xueli Zhang
- Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Bing Du
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
- BRL Medicine Inc., Shanghai, China.
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai Academy of Natural Sciences (SANS), Shanghai, China.
| |
Collapse
|
33
|
Ganesh I, Karthiga I, Murugan M, Rangarajalu K, Ballambattu VB, Ravikumar S. CRISPR/Cas-Based Prenatal Screening for Aneuploidy: Challenges and Opportunities for Early Diagnosis. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:610. [PMID: 40282900 PMCID: PMC12028914 DOI: 10.3390/medicina61040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Aneuploidy is increasingly recognized globally as a common cause of miscarriage among expectant mothers. The existing prenatal screening techniques for detecting aneuploidy have several limitations. The ability to diagnose aneuploidy early in a non-invasive manner is not feasible with the current screening methods, as they may produce false positive or false negative results. Recently, the widely used gene editing tool CRISPR/Cas has shown great promise in diagnostics. This review summarizes the prenatal screening tests used in the first trimester to assess aneuploidy conditions. Additionally, we discuss the advantages and disadvantages of molecular diagnostic tests, including the benefits and challenges of CRISPR/Cas-based trisomy detection. Thus, the proposed prenatal screening using CRISPR/Cas could provide significant benefits to expectant mothers by potentially enabling the early diagnosis of trisomy, helping to prevent miscarriage and birth defects. Furthermore, it opens new avenues for research, allowing clinicians and researchers to develop, optimize, and implement CRISPR/Cas-based prenatal screening assays in the future.
Collapse
Affiliation(s)
- Irisappan Ganesh
- Department of Medical Biotechnology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.G.); (M.M.)
| | - Ilangovan Karthiga
- Department of Biochemistry, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.K.); (K.R.)
| | - Manoranjani Murugan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.G.); (M.M.)
| | - Kumar Rangarajalu
- Department of Biochemistry, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.K.); (K.R.)
| | - Vishnu Bhat Ballambattu
- Advisor—Medical Research & Publications, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India;
| | - Sambandam Ravikumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.G.); (M.M.)
| |
Collapse
|
34
|
Li G, Chen G, Yuan GH, Wei J, Ni Q, Wu J, Yang B, Yang L, Chen J. Specific and efficient RNA A-to-I editing through cleavage of an ADAR inhibitor. Nat Biotechnol 2025:10.1038/s41587-025-02591-2. [PMID: 40140558 DOI: 10.1038/s41587-025-02591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/13/2025] [Indexed: 03/28/2025]
Abstract
RNA editing can be a promising therapeutic approach. However, ectopic expression of RNA editing enzymes has been shown to trigger off-target editing. Here we identified adenosine deaminase acting on RNA (ADAR) inhibitors (ADIs) that suppress the activity of the fused ADAR2 deamination domain (ADAR2DD). Using these specific ADIs, we develop an RNA transformer adenosine base editor (RtABE) with high specificity. Fusing ADI to ADAR2DD, RtABE remains inactive until it binds to its target site. After binding to the target site, ADI is cleaved from ADAR2DD, and RtABE becomes active. RtABE can induce efficient editing in broad sequence contexts, including UAN, AAN, CAN and GAN. Using an adeno-associated virus for delivery of RtABE enables therapeutic RNA correction and restoration of α-L-iduronidase activity in Hurler syndrome mice with no substantial off-target editing. RtABE is a specific and efficient RNA editing system with a broad scope that may be a better alternative to existing RNA editing tools.
Collapse
Affiliation(s)
- Guangye Li
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Guo Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Guo-Hua Yuan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qingyang Ni
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jing Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bei Yang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
35
|
Ai J, Deng J, Hu J, Pu X, Yuan T, Teng Y, Li H, Chen B, Du J, Jiang L, Chen X, Xiong E, Yang R. PAM-Independent CRISPR-Cas12a System for Specific Assays of Single Nucleotide Variants. JACS AU 2025; 5:1392-1401. [PMID: 40151256 PMCID: PMC11938009 DOI: 10.1021/jacsau.5c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/29/2025]
Abstract
The CRISPR-Cas12a system has been extensively utilized in nucleic acid detection owing to its remarkable sensitivity and specificity. Nonetheless, its strict dependency on the presence of a protospacer adjacent motif (PAM) within double-stranded DNA (dsDNA) introduces considerable limitations, thereby constraining its applicability, flexibility, and broader accessibility in molecular diagnostics. Here, we communicate a universal, robust, and high-fidelity method for a PAM-independent nucleic acid assay based on the CRISPR-Cas12a system, named TRACER (mutant target-recognized PAM-independent CRISPR-Cas12a enzyme reporting system). TRACER can effectively distinguish target nucleic acids at concentrations as low as 0.5 aM, thereby enabling it to identify the presence of a 0.1% single nucleotide variant (SNV)-included mutant-type gene in heterozygotes. Thus, TRACER exhibits comparable sensitivity, specificity, and accuracy to Sanger sequencing in analyzing the SNV-related clinical tumor samples. Overall, TRACER introduces a brand-new perspective for SNV assays by eliminating the dependency on PAM sites and significantly expands the application range of the CRISPR-Cas12a system, thus holding immense potential for clinical diagnostics, biomedical research, and drug discovery.
Collapse
Affiliation(s)
- Jinlong Ai
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinhai Deng
- Richard
Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical
Sciences, King’s College London, London SE1 1UL, U.K.
| | - Jingjing Hu
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xingxiang Pu
- Department
of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital & The Affiliated Cancer
Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Tongyan Yuan
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yuling Teng
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Han Li
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Bojie Chen
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinlian Du
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ling Jiang
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xiaoyan Chen
- Department
of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital & The Affiliated Cancer
Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Erhu Xiong
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ronghua Yang
- Key
Laboratory of Chemical Biology & Traditional Chinese Medicine
Research (Ministry of Education), Institute of Interdisciplinary Studies,
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
36
|
Wandera KG, Schmelz S, Migur A, Kibe A, Lukat P, Achmedov T, Caliskan N, Blankenfeldt W, Beisel CL. AcrVIB1 inhibits CRISPR-Cas13b immunity by promoting unproductive crRNA binding accessible to RNase attack. Mol Cell 2025; 85:1162-1175.e7. [PMID: 39965569 DOI: 10.1016/j.molcel.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/17/2024] [Accepted: 01/21/2025] [Indexed: 02/20/2025]
Abstract
Anti-CRISPR proteins (Acrs) inhibit CRISPR-Cas immune defenses, with almost all known Acrs acting on the Cas nuclease-CRISPR (cr)RNA ribonucleoprotein (RNP) complex. Here, we show that AcrVIB1 from Riemerella anatipestifer, the only known Acr against Cas13b, principally acts upstream of RNP complex formation by promoting unproductive crRNA binding followed by crRNA degradation. AcrVIB1 tightly binds to Cas13b but not to the Cas13b-crRNA complex, resulting in enhanced rather than blocked crRNA binding. However, the more tightly bound crRNA does not undergo processing and fails to activate collateral RNA cleavage even with target RNA. The bound crRNA is also accessible to RNases, leading to crRNA turnover in vivo even in the presence of Cas13b. Finally, cryoelectron microscopy (cryo-EM) structures reveal that AcrVIB1 binds a helical domain of Cas13b responsible for securing the crRNA, keeping the domain untethered. These findings reveal an Acr that converts an effector nuclease into a crRNA sink to suppress CRISPR-Cas defense.
Collapse
Affiliation(s)
- Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Stefan Schmelz
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Angela Migur
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Anuja Kibe
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Peer Lukat
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Wulf Blankenfeldt
- Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany; Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
37
|
Naeem S, Zhang J, Zhang Y, Wang Y. Nucleic acid therapeutics: Past, present, and future. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102440. [PMID: 39897578 PMCID: PMC11786870 DOI: 10.1016/j.omtn.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nucleic acid therapeutics have become increasingly recognized in recent years for their capability to target both coding and non-coding sequences. Several types of nucleic acid modalities, including siRNA, mRNA, aptamer, along with antisense oligo, have been approved by regulatory bodies for therapeutic use. The field of nucleic acid therapeutics has been brought to the forefront by the rapid development of vaccines against COVID-19, followed by a number of approvals for clinical use including much anticipated CRISPR-Cas9. However, obstacles such as the difficulty of achieving efficient and targeted delivery to diseased sites remain. This review provides an overview of nucleic acid therapeutics and highlights substantial advancements, including critical engineering, conjugation, and delivery strategies, that are paving the way for their growing role in modern medicine.
Collapse
Affiliation(s)
- Sajid Naeem
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ju Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zhang
- School of Biomedical Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yu Wang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
38
|
Dickmander RJ, Lenarcic EM, Sears JD, Hale AE, Moorman NJ. RNA-targeted proteomics identifies YBX1 as critical for efficient HCMV mRNA translation. Proc Natl Acad Sci U S A 2025; 122:e2421155122. [PMID: 40035757 PMCID: PMC11912382 DOI: 10.1073/pnas.2421155122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Viruses have evolved unique strategies to circumvent host control of protein synthesis and enable viral protein synthesis in the face of the host response. Defining the factors that regulate viral messenger RNA (mRNA) translation is thus critical to understand how viruses replicate and cause disease. To identify factors that might regulate viral mRNA translation, we developed a technique for identifying proteins associated with a native RNA expressed from its endogenous promoter and genomic locus. This approach uses a guide RNA to target dCas13b fused to a biotin ligase domain to a specific RNA, where it covalently labels proteins in close proximity. Using this approach, we identified multiple proteins associated with transcripts encoding the human cytomegalovirus (HCMV) IE1 and IE2 proteins and found that several associated proteins positively or negatively regulate HCMV replication. We confirmed that one such protein, the cellular Y-box binding protein 1 (YBX1), binds to HCMV immediate early mRNAs and is required for efficient viral protein expression and virus replication. Ablating YBX1 expression reduced the association of HCMV immediate early mRNAs with polysomes, demonstrating a role for YBX1 as a positive regulator of viral RNA translation. These results provide a powerful tool for unraveling RNA-protein interactions that can be used in a wide range of biological processes and reveal a role for YBX1 as a critical regulator of HCMV immediate early gene expression.
Collapse
Affiliation(s)
- Rebekah J. Dickmander
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Erik M. Lenarcic
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - John D. Sears
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Andrew E. Hale
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
39
|
Ai X, Ding S, Zhou S, Du F, Liu S, Cui X, Dong J, Huang X, Tang Z. Enhancing RNA editing efficiency and specificity with engineered ADAR2 guide RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102447. [PMID: 39967855 PMCID: PMC11834095 DOI: 10.1016/j.omtn.2025.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
RNA editing is a prospective therapeutic approach for correcting harmful mutations, offering the benefits of reversibility and tunability without permanently modifying the genome. However, the relatively low enzymatic activity and the occurrence of off-target editing events present significant challenges, limiting its utility. In response to this limitation, we introduced a novel strategy: strand displacement-responsive ADAR system for RNA editing (SPRING) by adding a "blocking sequence" to form a hairpin guide RNA. This modification significantly improves the efficiency of site-directed RNA editing (SDRE) at various target sites. Furthermore, the use of hairpin guide RNA within the SPRING system enhances the specificity of RNA editing through competitive reactions during target hybridization. In principle, this approach can be employed across various ADAR-based editing systems, offering a novel RNA-editing platform with wide-ranging potential for research, therapy, and biotech applications.
Collapse
Affiliation(s)
- Xilei Ai
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Sheng Ding
- School of Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610052, China
| | - Shan Zhou
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Feng Du
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shuai Liu
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Juan Dong
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Huang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
40
|
Zhao X, Yang L, Li P, Cheng Z, Jia Y, Luo L, Bi A, Xiong H, Zhang H, Xu H, Zhang J, Zhang Y. High-accuracy crRNA array assembly strategy for multiplex CRISPR. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102428. [PMID: 39897580 PMCID: PMC11787013 DOI: 10.1016/j.omtn.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/10/2024] [Indexed: 02/04/2025]
Abstract
Simultaneous targeting of multiple loci with the CRISPR system, a tool known as multiplex CRISPR, offers greater feasibility for manipulating and elucidating the intricate and redundant endogenous networks underlying complex cellular functions. Owing to the versatility of continuously emerging Cas nucleases and the use of CRISPR arrays, multiplex CRISPR has been implemented in numerous in vitro and in vivo studies. However, a streamlined, practical strategy for CRISPR array assembly that is both convenient and accurate is lacking. Here, we present a novel, highly accurate, cost-, and time-saving strategy for CRISPR array assembly. Using this strategy, we efficiently assembled 12 CRISPR RNAs (crRNAs) (for AsCas12a) and 15 crRNAs (for RfxCas13d) in a single reaction. CRISPR arrays driven by Pol II promoters exhibited a distinct expression pattern compared with those driven by Pol III promoters, which could be exploited for specific distributions of CRISPR intensity. Improved approaches were subsequently designed and validated for expressing long CRISPR arrays. The study provides a flexible and powerful tool for the convenient implementation of multiplex CRISPR across DNA and RNA, facilitating the dissection of sophisticated cellular networks and the future realization of multi-target gene therapy.
Collapse
Affiliation(s)
- Xiangtong Zhao
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, China
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lixian Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng Li
- Department of Gastroenterology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zijing Cheng
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongshi Jia
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Limin Luo
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Aihong Bi
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hanchu Xiong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongen Xu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jinrui Zhang
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, China
| | - Yaodong Zhang
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, Henan, China
| |
Collapse
|
41
|
Yuan Y, Li Y, Li G, Lei L, Huang X, Li M, Yao Y. Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics. Mol Pharm 2025; 22:1142-1159. [PMID: 39878334 DOI: 10.1021/acs.molpharmaceut.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy. In the realm of genome editing, LNPs have emerged as a potent vehicle for delivering CRISPR/Cas components, offering significant advantages such as high in vivo efficacy. The incorporation of machine learning into the optimization of LNP platforms for gene therapeutics represents a significant advancement, harnessing its predictive capabilities to substantially accelerate the research and development process. This review highlights the dynamic evolution of LNP technology, which is expected to drive transformative progress in the field of gene therapy.
Collapse
Affiliation(s)
- Yichen Yuan
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Ying Li
- Research Center for Space Computing System, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Guo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Liqun Lei
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Xingxu Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
42
|
Walsh E, Torres TZB, Prince BC, Rückert C. Generation of Cas9 Knock-In Culex quinquefasciatus Mosquito Cells. DNA 2025; 5:1. [PMID: 39958709 PMCID: PMC11823230 DOI: 10.3390/dna5010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Background/Objectives Culex species mosquitoes are globally distributed and transmit several pathogens that impact animal and public health, including West Nile virus, Usutu virus, and Plasmodium relictum. Despite their relevance, Culex species are less widely studied than Aedes and Anopheles mosquitoes. To expand the genetic tools used to study Culex mosquitoes, we previously developed an optimized plasmid for transient Cas9 and single-guide RNA (sgRNA) expression in Culex quinquefasciatus cells to generate gene knockouts. Here, we established a monoclonal cell line that consistently expresses Cas9 and can be used for screens to determine gene function or antiviral activity. Methods We used this system to perform the successful gene editing of seven genes and subsequent testing for potential antiviral effects, using a simple single-guide RNA (sgRNA) transfection and subsequent virus infection. Results We were able to show antiviral effects for the Cx. quinquefasciatus genes dicer-2, argonaute-2b, vago, piwi5, piwi6a, and cullin4a. In comparison to the RNAi-mediated gene silencing of dicer-2, argonaute-2b, and piwi5, our Cas9/sgRNA approach showed an enhanced ability to detect antiviral effects. Conclusions We propose that this cell line offers a new tool for studying gene function in Cx. quinquefasciatus mosquitoes that avoids the use of RNAi. This short study also serves as a proof-of-concept for future gene knock-ins in these cells. Our cell line expands the molecular resources available for vector competence research and will support the design of future research strategies to reduce the transmission of mosquito-borne diseases.
Collapse
Affiliation(s)
- Elizabeth Walsh
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Tran Zen B. Torres
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Brian C. Prince
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
43
|
Perez AR, Mavrothalassitis O, Chen JS, Hellman J, Gropper MA. CRISPR: fundamental principles and implications for anaesthesia. Br J Anaesth 2025; 134:839-852. [PMID: 39855935 PMCID: PMC11867086 DOI: 10.1016/j.bja.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based medical therapies are increasingly gaining regulatory approval worldwide. Consequently, patients receiving CRISPR therapy will come under the care of anaesthesiologists. An understanding of CRISPR, its technological implementations, and the characteristics of patients likely to receive this therapy will be essential to caring for this patient population. However, the role of CRISPR in anaesthesiology extends beyond simply caring for patients with prior CRISPR therapy. CRISPR has multiple direct potential applications in anaesthesia, particularly for managing chronic pain and critical illness. Additionally, given the unique skills anaesthesiologists possess, CRISPR potentially allows new roles for anaesthesiologists in the field of oncology. Consequently, CRISPR technology could enable new domains of anaesthetic practice. This review provides a primer on CRISPR for anaesthesiologists and an overview on how the technology could impact the field.
Collapse
Affiliation(s)
- Alexendar R Perez
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Silico Therapeutics, Inc., San Jose, CA, USA.
| | - Orestes Mavrothalassitis
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | | | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Michael A Gropper
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
44
|
Kim M, Hutchins EJ. CRISPR-Cas13d as a molecular tool to achieve targeted gene expression knockdown in chick embryos. Dev Biol 2025; 519:5-12. [PMID: 39622311 PMCID: PMC11824683 DOI: 10.1016/j.ydbio.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/26/2024] [Accepted: 11/29/2024] [Indexed: 12/11/2024]
Abstract
The chick embryo is a classical model system commonly used in developmental biology due to its amenability to gene perturbation experiments. Pairing this powerful model organism with cutting-edge technology can significantly expand the range of experiments that can be performed. Recently, the CRISPR-Cas13d system has been successfully adapted for use in zebrafish, medaka, killifish, and mouse embryos to achieve targeted gene expression knockdown. Despite its success in other animal models, no prior study has explored the potential of CRISPR-Cas13d in the chick. Here, we present an adaptation of the CRISPR-Cas13d system to achieve targeted gene expression knockdown in the chick embryo. As proof-of-principle, we demonstrate the knockdown of PAX7, an early neural crest marker. Application of this adapted CRISPR-Cas13d technique resulted in effective knockdown of PAX7 expression and function, comparable to knockdown achieved by translation-blocking morpholino. CRISPR-Cas13d complements preexisting knockdown tools such as CRISPR-Cas9 and morpholinos, thereby expanding the experimental potential and versatility of the chick model system.
Collapse
Affiliation(s)
- Minyoung Kim
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Erica J Hutchins
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA; Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
45
|
Kha T, Zhao Y, Zhu R. Site-Selective Modification and Labeling of Native RNA. Chemistry 2025; 31:e202404244. [PMID: 39865772 PMCID: PMC11855268 DOI: 10.1002/chem.202404244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 01/28/2025]
Abstract
Ribonucleic acid (RNA) plays a pivotal role in regulating biological processes within living systems, with modified nucleosides serving as critical modulators of various aspects of biological functions. Therefore, the development of efficient methodologies for late-stage, site-selective RNA modification is of considerable interest, as it facilitates the functional exploration of RNA chemical modifications and their implications for therapeutic applications. Precise RNA modification holds significant promise for the treatment of genetic diseases by enabling the correction of mutated nucleobases to their wild-type forms. Additionally, the site-selective incorporation of synthetic labeling groups into RNA provides invaluable tools for structural and functional studies, thereby uncovering previously hidden dimensions of RNA's role in biological systems. In this review, we provide a comprehensive overview of three principal approaches to site-selective, late-stage RNA modifications: enzyme-mediated strategies, catalytic nucleic acid-based techniques, and chemical methodologies. These approaches predominantly target the nucleobase or the 2'-hydroxyl (2'-OH) group of RNA nucleosides. We evaluate the advantages and limitations of each strategy and discuss future directions for advancing this field of research.
Collapse
Affiliation(s)
- Tuan‐Khoa Kha
- Department of ChemistryNational University of SingaporeSingapore117544
| | - Yiran Zhao
- Department of ChemistryNational University of SingaporeSingapore117544
| | - Ru‐Yi Zhu
- Department of ChemistryNational University of SingaporeSingapore117544
| |
Collapse
|
46
|
Fry LE, Major L, Salman A, McDermott LA, Yang J, King AJ, McClements ME, MacLaren RE. Comparison of CRISPR-Cas13b RNA base editing approaches for USH2A-associated inherited retinal degeneration. Commun Biol 2025; 8:200. [PMID: 39922978 PMCID: PMC11807095 DOI: 10.1038/s42003-025-07557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 01/15/2025] [Indexed: 02/10/2025] Open
Abstract
CRISPR-Cas13 systems have therapeutic promise for the precise correction of point mutations in RNA. Using adenosine deaminase acting on RNA (ADAR) effectors, A-I base conversions can be targeted using guide RNAs (gRNAs). We compare the Cas13 effectors PspCas13b and Cas13bt3 for the repair of the gene USH2A, a common cause of inherited retinal disease and Usher syndrome. In cultured cells, we demonstrate up to 80% efficiency for the repair of the common c.11864 G > A and its murine equivalent c.11840 G > A, across different gRNAs and promoters. We develop and characterize a mouse model of Usher syndrome carrying the c.11840 G > A mutation designed for the evaluation of base editors for inherited retinal disease. Finally, we compare Cas13 effectors delivered via AAV for the repair of Ush2a in photoreceptors. Mean RNA editing rates in photoreceptors across different constructs ranged from 0.32% to 2.04%, with greater efficiency in those injected with PspCas13b compared to Cas13bt3 constructs. In mice injected with PspCas13b constructs, usherin protein was successfully restored and correctly localized to the connecting cilium following RNA editing. These results support the development of transcriptome targeting gene editing therapies for retinal disease.
Collapse
Affiliation(s)
- Lewis E Fry
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Centre for Eye Research Australia, East Melbourne, VIC, Australia
| | - Lauren Major
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ahmed Salman
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lucy A McDermott
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Michelle E McClements
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
47
|
Fan W, Sun X, Yuan R, Hou X, Wan J, Liao B. HCN4 and arrhythmias: Insights into base mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108534. [PMID: 39922561 DOI: 10.1016/j.mrrev.2025.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/13/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
In the human sinoatrial node (SAN), HCN4 is the primary subtype among the four HCN (hyperpolarization activated cyclic nucleotide-gated) family subtypes. A tetramer of HCN subunits forms the ion channel conducting the hyperpolarization-activated "funny" current (If), which plays an important regulatory role in maintaining the pacemaker activity of the SAN. With the advancement of detection technologies over the past 20 years, the relationship between base mutations in the HCN4 gene encoding the HCN4 protein and arrhythmias has been continuously elucidated. The expression and kinetic changes of mutated channels were investigated in COS-7, CHO, HEK-293T cells, and Xenopus oocytes, but their functional changes were not elucidated in human myocardial cells. New genome editing methods, such as Base editor and Prime editor, use components of the CRISPR system and other enzymes to directly install single-gene mutation into cellular DNA without causing double-stranded DNA breaks, which reproduce and correct base mutations. In this review, we summarize all base mutations of the HCN4 gene, discuss the clinical characteristics and function of some base mutations, and combine base editors to explore the establishment of disease models and the potential for future gene correction.
Collapse
Affiliation(s)
- Wei Fan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Xuemei Sun
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, 25 Taiping Street, Jiangyang District, Luzhou, Sichuan 646000, PR China
| | - Ruoran Yuan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of Cardiovascular Remodeling and Dysfunction, Luzhou, Sichuan 646000, PR China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
48
|
Yang Y, Yang Z, Zhang X, Niu B, Huang Q, Li Y, Yin H, Zhang X, Liao M, Jia W. Rapid detection of Pan-Avian Influenza Virus and H5, H7, H9 subtypes of Avian Influenza Virus using CRISPR/Cas13a and lateral flow assay. Poult Sci 2025; 104:104745. [PMID: 39740498 PMCID: PMC11750554 DOI: 10.1016/j.psj.2024.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025] Open
Abstract
Avian Influenza Virus (AIV) has been prevalent worldwide in recent years, resulting in substantial economic losses in the poultry industry. More importantly, AIV is capable of cross-species transmission among mammals, posing a dormant yet considerable threat to human health and safety. In this study, two rapid detection methods for AIV based on the CRISPR-Cas13a were developed. These methods can identify AIV through the M gene and differentiate the H5, H7, and H9 subtypes via the HA gene. The first method utilizes RT-RAA isothermal amplification of the target sequence in combination with the "collateral effect" of the Cas13a protein. The results are measured using a real-time quantitative PCR instrument, with a Limit of Detection (LOD) as low as 1 copy/μL. The second method combines RT-RAA with Cas13a and a lateral flow assay, allowing results to be visually observed with the naked eye, with a LOD of 10 copies/μL. Both methods demonstrated specificity and sensitivity comparable to or exceeding that of qRT-PCR, suggesting strong potential for clinical application.
Collapse
Affiliation(s)
- Yujia Yang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyi Yang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xinkui Zhang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Beibei Niu
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qiuhong Huang
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Li
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, China
| | - Huifang Yin
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis of Fujian Province University, College of Life Science, Longyan University, Longyan, 364012, China
| | - Xianpeng Zhang
- Dongguan Key Laboratory of Zoonosis, Dongguan Center for Animal Disease Prevention and Control, Dongguan, 523128, China
| | - Ming Liao
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weixin Jia
- Guangdong Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, National Avian Influenza Para-Reference Laboratory (Guangzhou), College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
49
|
Han HJ, Yu D, Yu J, Kim J, Do Heo W, Tark D, Kang SM. Targeting pseudoknots with Cas13b inhibits porcine epidemic diarrhoea virus replication. J Gen Virol 2025; 106:002071. [PMID: 39903512 PMCID: PMC11793167 DOI: 10.1099/jgv.0.002071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein 13 (CRISPR-Cas13), an RNA editing technology, has shown potential in combating RNA viruses by degrading viral RNA within mammalian cells. In this study, we demonstrate the effective inhibition of porcine epidemic diarrhoea virus (PEDV) replication and spread using CRISPR-Cas13. We analysed the sequence similarity of the pseudoknot region between PEDV and severe acute respiratory syndrome coronavirus 2, both belonging to the Coronaviridae family, as well as the similarity of the RNA-dependent RNA polymerase (RdRp) gene region among three different strains of the PED virus. Based on this analysis, we synthesized three CRISPR RNAs (crRNAs) targeting the pseudoknot region and the nonpseudoknot region, each for comparison. In cells treated with crRNA #3 targeting the pseudoknot region, RdRp gene expression decreased by 95%, membrane (M) gene expression by 89% and infectious PEDV titre within the cells reduced by over 95%. Additionally, PED viral nucleocapsid (N) and M protein expression levels decreased by 83 and 98%, respectively. The optimal concentration for high antiviral efficacy without cytotoxicity was determined. Treating cells with 1.5 µg of Cas13b mRNA and 0.5 µg of crRNA resulted in no cytotoxicity while achieving over 95% inhibition of PEDV replication. The Cas13b mRNA therapeutics approach was validated as significantly more effective through a comparative study with merafloxacin, a drug targeting the pseudoknot region of the viral genome. Our results indicate that the pseudoknot region plays a crucial role in the degradation of the PEDV genome through the CRISPR-Cas13 system. Therefore, targeting Cas13b to the pseudoknot offers a promising new approach for treating coronavirus infections.
Collapse
Affiliation(s)
- Hee-Jeong Han
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
- ViEL-T Corporate Research Institute, ViEL-T lnc., Jeonju Innovation Startup Hub (SJ Bldg) 204, Jeonju 54852, Republic of Korea
| | - Daseuli Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeonghye Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihye Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Sang-Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
- ViEL-T Corporate Research Institute, ViEL-T lnc., Jeonju Innovation Startup Hub (SJ Bldg) 204, Jeonju 54852, Republic of Korea
| |
Collapse
|
50
|
Li G, Cheng Y, Yu J, Zhu Y, Ma H, Zhou Y, Pu Z, Zhu G, Yuan Y, Zhang Z, Zhou X, Tian K, Qiao J, Hu X, Chen XX, Ji Q, Huang X, Ma B, Yao Y. Compact RNA editors with natural miniature Cas13j nucleases. Nat Chem Biol 2025; 21:280-290. [PMID: 39300230 DOI: 10.1038/s41589-024-01729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
Clustered regularly interspaced short palindromic repeats-Cas13 effectors are used for RNA editing but the adeno-associated virus (AAV) packaging limitations because of their big sizes hinder their therapeutic application. Here we report the identification of the Cas13j family, with LepCas13j (529 aa) and ChiCas13j (424 aa) being the smallest and most highly efficient variants for RNA interference. The miniaturized Cas13j proteins enable the development of compact RNA base editors. Chi-RESCUE-S, by fusing dChiCas13j with hADAR2dd, demonstrates high efficiency and specificity in A-to-G and C-to-U conversions. Importantly, this system is compatible with single-AAV packaging without the need for protein sequence truncation. It successfully corrected pathogenic mutations, such as APOC3D65N and SCN9AR896Q, to the wild-type forms. In addition, we developed an optimized system, Chi-RESCUE-S-mini3, which pioneered efficient in vivo C-to-U RNA editing of PCSK9 in mice through single-AAV delivery, resulting in reduced total cholesterol levels. These results highlight the potential of Cas13j to treat human diseases.
Collapse
Affiliation(s)
- Guo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
- Xianghu Laboratory, Hangzhou, China.
| | - Yaxian Cheng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jingwen Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yunfei Zhu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Hongru Ma
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yuqiao Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhongji Pu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Guanglin Zhu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | | | - Ziyue Zhang
- Zhejiang Institute of Tianjin University, Shaoxing, China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
| | - Xinzhi Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Kairen Tian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Institute of Tianjin University, Shaoxing, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Zhejiang Institute of Tianjin University, Shaoxing, China
| | - Xiaoxiang Hu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Xue-Xin Chen
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Bin Ma
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|