1
|
Zhao R, Zhu X, Wei W, Zhen L. The role of HSPA14 in breast cancer: implications for tumorigenesis, immune response modulation, and personalized therapies. Int J Hyperthermia 2025; 42:2452922. [PMID: 39828281 DOI: 10.1080/02656736.2025.2452922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Heat shock proteins have been implicated in the process of carcinogenesis. HSPA14, a member of the heat shock protein family, remains poorly understood in terms of its significance and pathomechanisms in breast cancer. METHODS We analyzed the expression levels of HSPA14 and its prognostic significance in breast cancer using TCGA data. TCGA data was used to investigate the association between HSPA14 expression and clinicopathological features in breast cancer patients. GSEA analysis was conducted to identify the biological function of HSPA14. Spearman's correlation analysis was performed to examine the correlation between HSPA14 expression and immune cell infiltration, as well as immune checkpoint genes. Single cell transcriptomic data from GSE114727 was utilized to calculate the expression of HSPA14 in different cell subpopulations. The data on HSPA14 levels and drug sensitivity were extracted from the CellMiner dataset. The mRNA expression of HSPA14 was validated through cell experiments. RESULTS HSPA14 expression is elevated in breast cancer, which is associated with poor overall survival. It can serve as a diagnostic biomarker for breast cancer patients. Pathway analysis revealed that HSPA14-associated differential genes are involved in cell cycle, apoptosis, cellular response to heat stress, and more. Additionally, HSPA14 expression is significantly correlated with the immune microenvironment. The expression of HSPA14 may also indicate drug sensitivity. CONCLUSION Our study elucidates the involvement of HSPA14 in tumorigenesis, particularly in modulating the immune response, shaping the immune microenvironment, and contributing to drug resistance, which are pivotal for the development of personalized breast cancer therapies.
Collapse
Affiliation(s)
- Ruipeng Zhao
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Xiaocun Zhu
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Wan Wei
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Linlin Zhen
- Department of Thyroid and Breast Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
2
|
Wang Y. The significance of matrix remodeling associated 7 (MXRA7) in pathogenesis or management of renal diseases deserves more investigations. Ren Fail 2025; 47:2449575. [PMID: 39780515 PMCID: PMC11721947 DOI: 10.1080/0886022x.2024.2449575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Affiliation(s)
- Yiqiang Wang
- Wisdom Lake Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
3
|
Vasudevan J, Vijayakumar R, Reales-Calderon JA, Lam MSY, Ow JR, Aw J, Tan D, Tan AT, Bertoletti A, Adriani G, Pavesi A. In vitro integration of a functional vasculature to model endothelial regulation of chemotherapy and T-cell immunotherapy in liver cancer. Biomaterials 2025; 320:123175. [PMID: 40043483 DOI: 10.1016/j.biomaterials.2025.123175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/06/2025]
Abstract
The complex tumor microenvironment (TME) presents significant challenges to the development of effective therapies against solid tumors, highlighting the need for advanced in vitro models that better recapitulate TME biology. To address this, we developed a vascularized human liver tumor model using a microfluidic platform, designed to test both drug and cell-based therapies. This model mimics critical tumorigenic features such as hypoxia, extracellular matrix (ECM), and perfusable vascular networks. Intravascular administration of Sorafenib demonstrated its ability to disrupt vascular structures significantly, while eliciting heterogeneous responses in two distinct liver tumor cell lines, HepG2 and Hep3b. Furthermore, treatment with engineered T-cells revealed that the tumor vasculature impeded T-cell infiltration into the tumor core but preserved their cytotoxic capacity, albeit with reduced exhaustion levels. Cytokine analysis and spatial profiling of vascularized tumor samples identified proinflammatory factors that may enhance T-cell-mediated antitumor responses. By capturing key TME characteristics, this microfluidic platform provides a powerful tool enabling detailed investigation of tumor-immune and tumor-vascular interactions. Its versatility could serve as a promising bridge between preclinical studies and clinical testing, offering opportunities for developing and optimizing personalized therapeutic strategies for solid tumors.
Collapse
Affiliation(s)
- Jyothsna Vasudevan
- Mechanobiology Institute, National University of Singapore (NUS), 5A Engineering Drive 1, Singapore, 117411, Republic of Singapore
| | - Ragavi Vijayakumar
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Jose Antonio Reales-Calderon
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Maxine S Y Lam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Joey Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Damien Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore
| | - Anthony Tanoto Tan
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
| | - Antonio Bertoletti
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Republic of Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A∗STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore; Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore, 117583, Republic of Singapore
| | - Andrea Pavesi
- Mechanobiology Institute, National University of Singapore (NUS), 5A Engineering Drive 1, Singapore, 117411, Republic of Singapore; Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Republic of Singapore; Lee Kong Chian School of Medicine (LKCMedicine), Cancer Discovery and Regenerative Medicine Program, Nanyang Technological University, 308232, Republic of Singapore.
| |
Collapse
|
4
|
Li Z, Li X, Yang M, Pei X, Que T, Xian J, Jin H. DDX24 inhibits clear cell renal cell carcinoma progression by directly regulating AKR1B10. Cell Signal 2025; 132:111804. [PMID: 40216172 DOI: 10.1016/j.cellsig.2025.111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies worldwide, but only a few markers have been used to diagnose ccRCC. Here, we report the critical roles of DEAD-box helicase 24 (DDX24), a member of the DEAD-box RNA helicase family, in ccRCC. The DDX24 expression level and its prognostic value were initially detected in public data and then verified in a ccRCC tissue microarray. Subsequent in vitro and in vivo experiments were conducted on representative ccRCC cell lines. RNA sequencing and experimental studies were performed to explore the underlying mechanisms, and the associations between DDX24 expression and immune characteristics were evaluated. DDX24 levels were significantly lower in ccRCC tissues and negatively correlated with advanced clinical stage and overall survival. Functional analyses showed that DDX24 overexpression inhibited ccRCC cell proliferation, migration, and invasion, while DDX24 knockdown enhanced these phenotypes. Mechanistic studies revealed that DDX24 regulated the expression of aldo-keto reductase family 1 member B10 (AKR1B10) and epithelial-mesenchymal transition (EMT)-related transcription factors. Given the low expression of DDX24, ccRCC patients may benefit more from immunotherapies. In conclusion, these findings demonstrate that DDX24 suppresses ccRCC progression through direct regulation of AKR1B10, potentially mediated by EMT-related pathways, which provides potential therapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Zhijun Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan Province 421001, China
| | - Xinglin Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Ultrasound, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong Province 518000, China
| | - Min Yang
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Nuclear Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Taotao Que
- Department of Urology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan Province 421001, China
| | - Jianzhong Xian
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China; Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China
| | - Hongjun Jin
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong Province 519000, China.
| |
Collapse
|
5
|
Wang K, Xiao Y, Ren J, Zuo C, Mu L, Li Q, Song Y. Ferroptosis and low-grade Glioma: The breakthrough potential of NUAK2. Free Radic Biol Med 2025; 234:203-219. [PMID: 40286882 DOI: 10.1016/j.freeradbiomed.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Low-grade glioma (LGG) is a primary brain tumor with high cellular heterogeneity and recurrence, leading to poor prognosis. Standard treatments (surgery, radiotherapy, and chemotherapy) have limited efficacy. Ferroptosis, an iron-dependent form of regulated cell death, is a potential therapeutic target, while dysregulated ferroptosis-related genes (FRGs) may drive tumor progression and therapy resistance. METHODS This study integrated multi-omics data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) to identify FRGs associated with LGG prognosis. Single-cell RNA sequencing (scRNA-seq) and pseudotime trajectory analysis were performed to investigate their functional roles. Key findings were validated through in vitro and in vivo experiments. RESULTS We identified 345 FRGs associated with LGG prognosis, which are involved in oxidative stress response, cell proliferation, and immune regulation. High-risk patients exhibited an immunosuppressive tumor microenvironment with elevated levels of M2 macrophages and Treg cells but reduced CD8+ T cell infiltration. Pseudotime trajectory analysis highlighted the dynamic roles of macrophages and astrocytes in immune evasion and microenvironment remodeling. Notably, the NUAK2 gene emerged as a key driver of tumor progression and immune suppression. In vitro and in vivo experiments confirmed that targeting NUAK2 significantly reduced tumor cell viability and growth, underscoring its critical regulatory role in LGG. CONCLUSIONS Our study provides comprehensive insights into the role of FRGs in LGG prognosis and tumor microenvironment regulation, with a particular focus on the NUAK2 gene. As a potential therapeutic target, NUAK2's critical role in tumor progression and immune evasion offers a new direction for LGG treatment. Future research should focus on validating NUAK2's role in larger cohorts and exploring its clinical application as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kan Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China; Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150000, Heilongjiang Province, China
| | - Yifei Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150000, Heilongjiang Province, China
| | - Jiangbin Ren
- Department of Neurosurgey, Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin City, 300200, China
| | - Chengcheng Zuo
- Department of Otolaryngology, Huzhou Central Hospital, Huzhou, 313000, China
| | - Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China
| | - Qingla Li
- Department of Neurosurgery, Second Hospital of Heilongjiang Province, Harbin City, 150028, Heilongjiang Province, China.
| | - Yuwen Song
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China.
| |
Collapse
|
6
|
Dübbel L, Göken-Riebisch A, Koch KW. Intracellular and exosomal localization of the negative checkpoint regulator VISTA in immune cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119966. [PMID: 40262722 DOI: 10.1016/j.bbamcr.2025.119966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Strategies in immunotherapy often target the immunosuppressive environment of tumor cells. One route of therapeutic interference could involve negative checkpoint regulators of which V-domain immunoglobulin (Ig)-containing suppressor of T-cell activation (VISTA) has raised more interest recently. The protein is expressed on the surface of tumor cells, T-lymphocytes, and antigen-presenting cells (APCs), but its intracellular expression pattern has not been investigated yet. We examined the intracellular distribution of VISTA and its possible role in translocation processes by immunofluorescence and Western blots. We analyzed the expression and localization of VISTA in murine bone marrow-derived macrophages (BMDMs), human monocyte-derived macrophages, and human T lymphocytes (Jurkat). We obtained different cell fractions and organelles of various cell types and analyzed for the presence of VISTA. Monitoring a VISTA-GFP fusion construct in transfected cell lines HL-60 and THP-1 confirmed VISTA localization in these cell lines. All used cell lines showed the colocalization of VISTA and several vesicle markers together with VISTA staining along microtubule fibers. Additionally, we found VISTA in secreted exosomes and have the first hints for nucleic expression in all tested cell lines. Therefore, the storage of VISTA in vesicles and its potential presence in nuclei resembles two other well-described checkpoint regulators, CTLA-4 and PD-L1, respectively. We conclude that VISTA storage in vesicles enables a fast response to immunogenic stimuli, which needs to be considered for inhibitory experiments. The localization of VISTA in exosomes suggests a signaling function to facilitate cell-cell communication. Furthermore, the VISTA expression in the nucleus proposes a transcriptional role.
Collapse
Affiliation(s)
- Lena Dübbel
- Division of Biochemistry, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany; University Clinic of Gynaecology and Obstetrics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany.
| | - Anna Göken-Riebisch
- University Clinic of Gynaecology and Obstetrics, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
7
|
Kodada D, Hadžega D, Krumpolec P, Janoštiaková N, Bľandová G, Janega P, Ballová Z, Dosedla E, Minárik G, Repiská V. Differential gene expression in uterine endometrioid cancer cells and adjusted normal tissue. Mol Cell Probes 2025; 81:102027. [PMID: 40090626 DOI: 10.1016/j.mcp.2025.102027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Endometrial cancer is a significant public health concern with rising incidence rates globally. Understanding the molecular mechanisms underlying this disease is crucial for developing effective therapeutic strategies. Our study aimed to characterize transcriptional changes in endometrial cancer tissues compared to adjusted healthy tissue. Using RNA sequencing, we identified 2483 differentially expressed genes (DEGs), including protein-coding genes, long non-coding RNAs (lncRNAs), and microRNAs (miRNAs). Notably, several known cancer-related genes were differentially expressed, such as MYC, AKT3, CCND1, and CDKN2A. Pathway analysis revealed significant alterations in cell cycle regulation, several signaling pathways, and metabolic processes. These findings provide valuable insights into the molecular pathways dysregulated in endometrial cancer. Our results may contribute to the development of novel therapeutic targets and biomarkers for this disease.
Collapse
Affiliation(s)
- Dominik Kodada
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia.
| | | | | | - Nikola Janoštiaková
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia
| | - Gabriela Bľandová
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia
| | - Pavol Janega
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia; Medirex Group Academy, 94905, Nitra, Slovakia
| | - Zuzana Ballová
- Faculty of Medicine, P.J.Šafarik University and Hospital AGEL Košice-Šaca Inc., 040 15, Košice-Šaca, Slovakia
| | - Erik Dosedla
- Faculty of Medicine, P.J.Šafarik University and Hospital AGEL Košice-Šaca Inc., 040 15, Košice-Šaca, Slovakia
| | | | - Vanda Repiská
- Faculty of Medicine, Comenius University in Bratislava, 84215, Bratislava, Slovakia
| |
Collapse
|
8
|
Liu KS, Chang YH, Wu HJ, Lin HY. Machine learning explores the prognostic and immuno-oncological impact of mitochondrial unfolded protein response in CESC. Discov Oncol 2025; 16:883. [PMID: 40410615 DOI: 10.1007/s12672-025-02723-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) pose significant global health challenges. While the mitochondrial unfolded protein response (UPRmt) is known to influence cancer biology, its specific role in CESC remains unclear. METHODS We employed machine learning to analyze UPRmt genes in CESC using TCGA multi-omics data. Our comprehensive analysis included genetic alterations, prognostic significance, tumor-immune interactions, single-cell transcriptomics, pathway enrichment, and drug sensitivity assessments. RESULTS ATF5 emerged as the most significant prognostic factor among UPRmt genes, with high expression correlating with better overall survival. High ATF5 expression was associated with an immunologically active tumor microenvironment, characterized by enhanced immune cell infiltration, increased immune checkpoint expression, and higher tumor mutational burden. Single-cell RNA sequencing revealed ATF5's distinct expression patterns in stromal cells, particularly in endometrial stromal and smooth muscle cells. Gene set enrichment analysis provided mechanistic insight, revealing ATF5's connection to the immune response via the regulation of P-stalk ribosome functions, a finding that underscores a novel aspect of UPRmt's role in shaping the tumor immune landscape. Drug sensitivity analysis showed that low ATF5 expression correlated with resistance to conventional chemotherapeutics (cisplatin, paclitaxel, and etoposide) but increased sensitivity to imatinib, potentially through EP300-dependent mechanisms. CONCLUSIONS Our findings establish ATF5 as both a favorable prognostic marker and a key immune response regulator in CESC. Its influence on the tumor microenvironment and treatment response suggests potential therapeutic applications. These insights into UPRmt's role in CESC provide new directions for developing personalized treatment strategies.
Collapse
Affiliation(s)
- Keh-Sen Liu
- Division of Infectious Diseases, Department of Internal Medicine, Show Chwan Memorial Hospital, Changhua, 500, Taiwan
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, 356, Taiwan
| | - Yen-Hsiang Chang
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 833, Taiwan
| | - Hsing-Ju Wu
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, 356, Taiwan
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua, 500, Taiwan
| | - Hung-Yu Lin
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua, 500, Taiwan.
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
9
|
Li Z, Zhu Z, Wang P, Hou C, Ren L, Xu D, Wang X, Guo F, Meng Q, Liang W, Xue J, Zhi X. Diagnostic, prognostic, and immunological roles of FUT8 in lung adenocarcinoma and lung squamous cell carcinoma. PLoS One 2025; 20:e0321756. [PMID: 40373023 PMCID: PMC12080848 DOI: 10.1371/journal.pone.0321756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/11/2025] [Indexed: 05/17/2025] Open
Abstract
Lung cancer remains the leading cause of malignant tumors worldwide in terms of the incidence and mortality, posing a significant threat to human health. Given that distant metastases typically occur at the time of initial diagnosis, leading to a poor 5-year survival rate among patients, it is crucial to identify markers for diagnosis, prognosis, and therapeutic efficacy monitoring. Abnormal glycosylation is a hallmark of cancer cells, characterized by the disruption of core fucosylation, which is predominantly driven by the enzyme fucosyltransferase 8 (FUT8). Evidence indicates that FUT8 is a pivotal enzyme in cancer onset and progression, influencing cellular glycosylation pathways. Utilizing bioinformatics approaches, we have investigated FUT8 in lung cancer, resulting in a more systematic and comprehensive understanding of its role in the disease's pathogenesis. In this study, we employed bioinformatics to analyze the differential expression of FUT8 between LUAD and LUSC. We observed upregulation of FUT8 in both LUAD and LUSC, associated with unfavorable prognosis, and higher diagnostic utility in LUAD. GO/KEGG analysis revealed a primary association between LUAD and the spliceosome. Immunologically, FUT8 expression was significantly associated with immune cell infiltration and immune checkpoint activity, with a notable positive correlation with M2 macrophage infiltration. Our analysis of FUT8 indicates that it may serve as a potential biomarker for lung cancer diagnosis and prognosis, and could represent a therapeutic target for LUAD and LUSC immunotherapy.
Collapse
Affiliation(s)
- Zhijun Li
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Zhenpeng Zhu
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Peng Wang
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Chenyang Hou
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Lijuan Ren
- Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Dandan Xu
- Hebei Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xiran Wang
- Department of Bioinformatics, School of Health Care, Changchun Vocational College of Health, Changchun City, Jilin Province, China
| | - Fei Guo
- Department of Surgery, Hebei Key Laboratory of Systems Biology and Gene Regulation, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Qingxue Meng
- Technology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Weizheng Liang
- Hebei Key Laboratory of Systems Biology and Gene Regulation, Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Jun Xue
- Department of Surgery, Hebei Key Laboratory of Systems Biology and Gene Regulation, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou City, Hebei Province, China
| |
Collapse
|
10
|
Liu F, Xin S, Liu Y. ProLoc-IHS: Multi-label protein subcellular localization based on immunohistochemical images and sequence information. Int J Biol Macromol 2025; 313:144096. [PMID: 40379182 DOI: 10.1016/j.ijbiomac.2025.144096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Immunohistochemistry (IHC) imaging is a powerful technique to study the subcelluar localization (SCL) of human proteins in both normal and pathological tissues. As the manual annotation of localization for IHC images is time-consuming and the number of annotated is limited, a computational tool is necessary to analyze IHC images. However, existing prediction models rarely incorporate protein sequences. In this paper, a novel protein SCL prediction model for IHC images, ProLoc-IHS, is proposed by combining with sequence features. First, a bimodal dataset is curated including IHC images and protein sequences, which are derived from the Human Protein Atlas (HPA) and UniProt respectively. Then, ProLoc-IHS extracts embeddings from IHC images and protein sequences using a visual language model, Vision Transformer (Vit), and a protein language model, ProtT5, respectively. Subsequently, these embeddings are fused using a cross-attention module, and the fused features are input into the feature learning module of ProLoc-IHS, which contains a multi-head attention mechanism, a feedforward neural network and a residual connection. Finally, binary cross entropy (BCE) and Focal loss function are incorporated into the feature learning module to solve multi-label classification tasks. Experimental results show that ProLoc-IHS outperforms other prediction models. The newly curated dataset and ProLoc-IHS code are available at https://github.com/xinshuaiiii/ProLoc-IHS.
Collapse
Affiliation(s)
- Fu Liu
- College of Communication Engineering, Jilin University, Renmin Street No.5988, Changchun, 130012, Jilin, China.
| | - Shuai Xin
- College of Communication Engineering, Jilin University, Renmin Street No.5988, Changchun, 130012, Jilin, China.
| | - Yun Liu
- College of Communication Engineering, Jilin University, Renmin Street No.5988, Changchun, 130012, Jilin, China.
| |
Collapse
|
11
|
Wu Y, Guo Z, Li Z, Cai C, Liu J, Tang X, Que L. Effects of Integrin-Linked Kinase Silencing Combined With Trichostatin A on Cancer Stem Cells. Oral Dis 2025. [PMID: 40364491 DOI: 10.1111/odi.15377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/13/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is characterized by high invasiveness and metastasis, with cancer stem cells (CSCs) playing a central role in tumor progression. This study investigates the effects of integrin-linked kinase (ILK) silencing and trichostatin A (TSA) treatment on CSCs, assessing their potential to diminish CSC properties and inhibit OSCC progression. METHODS AND MATERIALS CSCs were enriched and isolated from primary OSCC samples and Tca8113 cell line and MOC1 cell line using side population (SP) analysis, with their characteristics and the therapeutic impact of treatments assessed through assays such as MTT, wound healing, cell invasion, cell cycle, and apoptosis. RESULTS Higher SP cell content correlated significantly with poor pathological classification, metastasis, and recurrence. Treated CSCs showed reduced proliferation, migration, and invasion, along with increased apoptosis. In vivo experiments demonstrated that the combined treatment substantially reduced tumor growth. CONCLUSION The study confirms the efficacy of targeting CSCs with ILK silencing and TSA treatment in OSCC, suggesting a promising strategy for CSC-directed therapies that merit further investigation.
Collapse
Affiliation(s)
- Yulu Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhangao Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenchen Cai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiyuan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiufa Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lin Que
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Pei Y, Yang Z, Li B, Chen X, Mao Y, Ding Y. Unraveling the molecular mechanisms of paclitaxel in high-grade serous ovarian cancer through network pharmacology. Sci Rep 2025; 15:16445. [PMID: 40355485 PMCID: PMC12069709 DOI: 10.1038/s41598-025-00658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most common and aggressive subtype of epithelial ovarian cancer, often diagnosed at advanced stages with a poor prognosis. Paclitaxel (PTX), a standard chemotherapeutic agent for HGSOC, exerts cytotoxic effects on cancer cells and modulates the tumor microenvironment. This study aimed to elucidate the molecular mechanisms of PTX in HGSOC using bioinformatics, machine learning, network pharmacology, and molecular docking, to identify potential diagnostic biomarkers and therapeutic targets. We identified differentially expressed genes (DEGs) between HGSOC and normal ovarian tissues using the GSE54388 dataset from the Gene Expression Omnibus database. The intersection of these DEGs with PTX targets, identified from the Swiss Target Prediction database, yielded 15 overlapping genes. These genes were analyzed via protein-protein interaction (PPI) network analysis to identify significant interaction relationships. Kaplan-Meier survival analysis was then performed to assess the prognostic significance of these genes. Their protein expression patterns in HGSOC tissues were validated using the Human Protein Atlas (HPA) database. Functional enrichment analysis was conducted using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. A combined diagnostic model was developed using LASSO regression and validated in two independent external datasets (GSE26712 and GSE12470). Molecular docking experiments were conducted to confirm the binding affinity of PTX to key proteins. Immune infiltration analysis was performed to assess the tumor microenvironment, revealing significant differences in immune cell composition between normal and tumor tissues. A total of 2267 DEGs were identified, with 15 overlapping genes related to PTX targets. After PPI network analysis, Kaplan-Meier survival analysis, and HPA validation, five key genes (AURKA, CBX7, CCNA2, HSP90AA1, and TUBB3) were identified as associated with HGSOC progression. The combined diagnostic model demonstrated high accuracy in distinguishing HGSOC from normal tissues, with AUC values of 0.9892 and 0.9465 in the GSE26712 and GSE12470 validation datasets, respectively. Molecular docking confirmed stable binding of PTX to these key proteins, suggesting their role in PTX's therapeutic effects. Immune infiltration analysis revealed significant differences in immune cell composition between normal and tumor tissues, highlighting the potential impact of these genes on the tumor microenvironment. In summary, our findings provide a theoretical basis for improving clinical diagnosis and elucidating the underlying mechanisms of HGSOC.
Collapse
Affiliation(s)
- Yihao Pei
- School of Stomatology, Medical College of Jinzhou Medical University, Jinzhou, 121000, China
| | - Ziqi Yang
- School of Stomatology, Medical College of Jinzhou Medical University, Jinzhou, 121000, China
| | - Ben Li
- School of Medicine, Medical College of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiping Chen
- Department of General Stomatology, Dental Disease Prevention and Control Institute, Jiading District, Shanghai, 201800, China
| | - Yiming Mao
- Department of Thoracic Surgery, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China.
| | - Yun Ding
- Office of Chairman, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215028, China.
| |
Collapse
|
13
|
Chen YW, Ahn IS, Wang SSM, Majid S, Diamante G, Cely I, Zhang G, Cabanayan A, Komzyuk S, Bonnett J, Arneson D, Yang X. Multitissue single-cell analysis reveals differential cellular and molecular sensitivity between fructose and high-fat high-sucrose diets. Cell Rep 2025; 44:115690. [PMID: 40349341 DOI: 10.1016/j.celrep.2025.115690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/03/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
Metabolic syndrome (MetS), a conglomerate of dysregulated metabolic traits that vary between individuals, is partially driven by modern diets high in fat, sucrose, or fructose and their interactions with host genes in metabolic tissues. To elucidate the roles of individual tissues and cell types in diet-induced MetS, we performed single-cell RNA sequencing on the hypothalamus, liver, adipose tissue, and small intestine of mice fed high-fat high-sucrose (HFHS) or fructose diets. We found that hypothalamic neurons were sensitive to fructose, while adipose progenitor cells and macrophages were responsive to HFHS. Ligand-receptor analysis revealed lipid metabolism and inflammation networks among peripheral tissues driven by HFHS, while both diets stimulated synaptic remodeling within the hypothalamus. mt-Rnr2, a top responder to both diets, mitigated diet-induced MetS by stimulating thermogenesis. Our study demonstrates that HFHS and fructose diets have differential cell type and network targets but also share regulators such as mt-Rnr2 to affect MetS risk.
Collapse
Affiliation(s)
- Yen-Wei Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susanna Sue-Ming Wang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sana Majid
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ingrid Cely
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Guanglin Zhang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angelus Cabanayan
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sergey Komzyuk
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jack Bonnett
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas Arneson
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Molecular Toxicology, University of California, Los Angeles, Los Angeles, CA, USA; Interdepartmental Program of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Liu M, Liu H, Yang Y, Xiong X, Zou T. Subcellular Photocatalysis Enables Tumor-Targeted Inhibition of Thioredoxin Reductase I by Organogold(I) Complexes. J Am Chem Soc 2025; 147:15719-15731. [PMID: 40272019 DOI: 10.1021/jacs.5c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Selective inhibition of TrxR1 over TrxR2 is a highly sought-after goal, because the two enzymes play distinct roles in cancer progression. However, achieving targeted inhibition is challenging due to their high homology and identical active site sequence. Herein we report a new subcellular photocatalysis approach for targeted inhibition by controllably activating organogold(I) prodrugs within the cytosol, the exclusive location of TrxR1. The NHC-Au(I)-alkynyl complexes are stable and evenly distributed in the cell; they can meanwhile be efficiently transformed into active NHC-Au(I)-L species (L = labile ligands) via a radical mechanism by photocatalysts released into the cytosol (from endosome/lysosome) upon light irradiation, leading to selective inhibition of TrxR1 without affecting TrxR2. This results in strong cytotoxicity to cancer cells with much higher selectivity than auranofin, a pan TrxR inhibitor that cannot discriminate TrxR1/2, along with potent antitumor activities in multiple zebrafish and mouse models. This subcellular prodrug activation may thus suggest a novel approach to precision targeting using the remarkable spatial control of photocatalysis.
Collapse
Affiliation(s)
- Moyi Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Haitao Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yan Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaolin Xiong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Taotao Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
15
|
Hsueh HY, Gumpper-Fedus K, Poelstra JW, Pitter KL, Cruz-Monserrate Z. Pan-Cancer Analysis Identifies a Ras-Related GTPase as a Potential Modulator of Cancer. Int J Mol Sci 2025; 26:4419. [PMID: 40362656 PMCID: PMC12073092 DOI: 10.3390/ijms26094419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Ras signaling regulates many cellular processes in cancer development. While well-known Ras-related oncogenes, such as KRAS, have been extensively explored, the role of other Ras-related genes in cancer remains poorly studied. Dexamethasone-induced Ras-related protein 1 (RASD1), a member of the Ras superfamily, is widely expressed across various tissues and is involved in inhibiting cell growth and inducing apoptosis, suggesting a potential role as a tumor suppressor. Here, we investigated RASD1 expression across multiple tissues and cancers, utilizing data from The Cancer Genome Atlas (TCGA), Human Protein Atlas, and Genotype-Tissue Expression (GTEx) databases. Our analysis revealed a significant downregulation of RASD1 mRNA expression in several cancer types compared to normal tissues, correlating with low levels of promoter methylation. Interestingly, high RASD1 expression correlated with a favorable prognosis in multiple cancers. Immune cell infiltration analysis indicated that elevated RASD1 expression is associated with an increased infiltration of CD4+ T cells and myeloid-derived dendritic cells in cancer. Furthermore, the expression of genes exhibiting similar expression patterns as RASD1 suggest that RASD1 may play a role in interleukin-4-mediated apoptosis and could regulate the transcription of the phosphatase and tensin homolog (PTEN) gene. Overall, these findings suggest that RASD1 may modulate immune signaling and tumor suppressive pathways.
Collapse
Affiliation(s)
- Hsiang-Yin Hsueh
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.-Y.H.); (K.G.-F.)
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
- The Ohio State University Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kristyn Gumpper-Fedus
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.-Y.H.); (K.G.-F.)
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center (MCIC), College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Kenneth L. Pitter
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.-Y.H.); (K.G.-F.)
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
16
|
Liu S, Feng L, Wang Z. DCTPP1: A promising target in cancer therapy and prognosis through nucleotide metabolism. Drug Discov Today 2025; 30:104348. [PMID: 40180312 DOI: 10.1016/j.drudis.2025.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Deoxycytidine triphosphate pyrophosphatase 1 (DCTPP1) is an important deoxycytidine triphosphate (dCTP) hydrolase responsible for eliminating noncanonical dCTP and maintaining deoxyribonucleoside triphosphate (dNTP) pool homeostasis. This regulation is vital for proper DNA replication and genome stability. Emerging evidence highlights the considerable role of DCTPP1 in tumor progression, chemotherapy resistance, and prognostic prediction. Consequently, DCTPP1 has emerged as a promising nucleotide metabolism-related target for cancer therapy. In this review, we provide a comprehensive summary of the structural and cellular biological features of DCTPP1, its functions, and its role in cancer. In addition, we discuss recent advancments in small molecules targeting DCTPP1, and propose potential directions for future research.
Collapse
Affiliation(s)
- Shaoxuan Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li Feng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhe Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
17
|
Zhang Y, Li B, Li J, Zhao J, Li Y, Kang S. NDRG1/2 as a prognostic predictive biomarker of cervical cancer and its correlation with immune infiltration. Biomark Med 2025; 19:329-339. [PMID: 40190258 PMCID: PMC12051547 DOI: 10.1080/17520363.2025.2483495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 03/19/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Cervical cancer (CC) is a leading cause of cancer-related death in women. The N-myc down-stream regulatory gene (NDRG) family has an unclear prognostic role in CC. METHODS We analyzed NDRG mRNA and protein levels in CC using public databases. And NDRG1 expression was verified through immunohistochemistry in clinical samples. Additionally, we utilized other bioinformatics tools to analyze the correlations between NDRG and survival, as well as immune infiltration. RESULTS NDRG1 was elevated, and NDRG2 was reduced in CC tissues. High NDRG1 and low NDRG2/3 correlated with poorer survival and were associated with reduced immune cell infiltration, particularly CD8+ T cells. Genetic alterations in NDRG1/2/3 were primarily amplifications, while DNA hypomethylation of NDRG1 in CC tissues, particularly at specific CpG sites, was associated with prognosis. PPI and enrichment analyses implicated NDRGs in metabolic processes, HIF-1 signaling, and immune regulation, underscoring their roles in CC progression and prognosis. CONCLUSIONS NDRG1/2 present potential as new prognostic biomarkers, shedding light on therapeutic targets for CC.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Bingjie Li
- Department of Pathology, Hebei General Hospital, Shijiazhuang, China
| | - Jie Li
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zhao
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, China
| | - Yan Li
- Department of Molecular Biology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shan Kang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Iyer MK, Fletcher A, Okoye JO, Shi C, Chen F, Kanu E, Eckhoff AM, Bao M, di Magliano MP, Frankel TL, Chinnaiyan AM, Nussbaum DP, Allen PJ. Spatial Transcriptomics of Intraductal Papillary Mucinous Neoplasms Reveals Divergent Indolent and Malignant States. Clin Cancer Res 2025; 31:1796-1808. [PMID: 39969959 PMCID: PMC12045729 DOI: 10.1158/1078-0432.ccr-24-1529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/20/2024] [Accepted: 02/17/2025] [Indexed: 02/20/2025]
Abstract
PURPOSE Intraductal papillary mucinous neoplasms (IPMN) occur in 5% to 10% of the population, but only a small minority progress to pancreatic ductal adenocarcinoma (PDAC). The lack of accurate predictors of high-risk disease leads to both unnecessary operations for indolent neoplasms and missed diagnoses of PDAC. Digital spatial RNA profiling (DSP-RNA) provides an opportunity to define and associate transcriptomic states with cancer risk. EXPERIMENTAL DESIGN We performed whole-transcriptome DSP-RNA profiling on 10 IPMN specimens encompassing the spectrum of dysplastic changes from normal duct to cancer. Epithelial regions within each tissue were annotated as normal duct, low-grade dysplasia, high-grade dysplasia, or invasive carcinoma. The resulting digital gene expression data were analyzed with R/Bioconductor. RESULTS Our analysis uncovered three distinct epithelial transcriptomic states-"normal-like" (cNL), "low risk" (cLR), and "high risk" (cHR)-which were significantly associated with pathologic grade. Furthermore, the three states were significantly correlated with the exocrine, classical, and basal-like molecular subtypes described in PDAC. Specifically, exocrine function diminished in cHR, classical activation distinguished neoplasia (cLR and cHR) from cNL, and basal-like genes were specifically upregulated in cHR. Intriguingly, markers of cHR were detected in normal duct and low-grade dysplasia regions from specimens with PDAC but not from specimens containing only low-grade IPMN. CONCLUSIONS DSP-RNA of IPMN revealed low-risk (indolent) and high-risk (malignant) expression programs that correlated with the activity of exocrine and basal-like PDAC signatures, respectively, and distinguished pathologically low-grade specimens from malignant specimens. These findings contextualize IPMN pathogenesis and have the potential to improve risk stratification.
Collapse
Affiliation(s)
- Matthew K. Iyer
- Department of Surgery, Duke University; Durham, North Carolina
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Ashley Fletcher
- Department of Surgery, Duke University; Durham, North Carolina
| | - Jude Ogechukwu Okoye
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Histopathology, Nnamdi Azikiwe University, Nnewi, Nigeria
| | - Chanjuan Shi
- Department of Pathology, Duke University; Durham, North Carolina
| | - Fengming Chen
- Department of Pathology, Duke University; Durham, North Carolina
| | - Elishama Kanu
- Department of Surgery, Duke University; Durham, North Carolina
| | | | - Matthew Bao
- Department of Surgery, Duke University; Durham, North Carolina
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, Duke University; Durham, North Carolina
- Department of Urology, University of Michigan, Ann Arbor, Michigan
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Peter J. Allen
- Department of Surgery, Duke University; Durham, North Carolina
| |
Collapse
|
19
|
Tandaric L, Auranen A, Kleinmanns K, DePont Christensen R, Vestrheim Thomsen LC, Wogsland CE, McCormack E, Mäenpää J, Madsen K, Stampe Petersson K, Mirza MR, Bjørge L. Peripheral blood leukocyte signatures as biomarkers in relapsed ovarian cancer patients receiving combined anti-CD73/anti-PD-L1 immunotherapy in arm A of the NSGO-OV-UMB1/ENGOT-OV30 trial. Mol Oncol 2025; 19:1436-1451. [PMID: 39887612 PMCID: PMC12077279 DOI: 10.1002/1878-0261.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Immune checkpoint inhibitors have demonstrated limited efficacy in overcoming immunosuppression in patients with epithelial ovarian cancer (EOC). Although certain patients experience long-term treatment benefit, reliable biomarkers for responder pre-selection and the distinction of dominant immunosuppressive mechanisms have yet to be identified. Here, we used a 40-marker suspension mass cytometry panel to comprehensively phenotype peripheral blood leukocytes sampled over time from patients with relapsed EOC who underwent combination oleclumab (anti-CD73) and durvalumab (anti-PD-L1) immunotherapy in the NSGO-OV-UMB1/ENGOT-OV30 trial. We found that survival duration was impacted by baseline abundances of total peripheral blood mononuclear cells. Longitudinal analyses revealed a significant increase in CD14+CD16- myeloid cells during treatment, with significant expansion of monocytic myeloid-derived suppressor cells occurring in patients with shorter progression-free survival, who additionally showed a continuous decrease in central memory T-cell abundances. All patients demonstrated significant PD-L1 upregulation over time on most T-cell subsets. Higher CD73 and IDO1 expression on certain leukocytes at baseline significantly positively correlated with longer progression-free survival. Overall, our study proposes potential biomarkers for EOC immunotherapy personalization and response monitoring; however, further validation in larger studies is needed.
Collapse
Affiliation(s)
- Luka Tandaric
- Centre for Cancer Biomarkers CCBIO, Department of Clinical ScienceUniversity of BergenNorway
- Department of Obstetrics and GynecologyHaukeland University HospitalBergenNorway
| | - Annika Auranen
- Department of Obstetrics and Gynecology and Tays Cancer CentreTampere University HospitalFinland
- Nordic Society of Gynaecological Oncology – Clinical Trial Unit (NSGO‐CTU)TampereFinland
| | - Katrin Kleinmanns
- Centre for Cancer Biomarkers CCBIO, Department of Clinical ScienceUniversity of BergenNorway
| | | | - Liv Cecilie Vestrheim Thomsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical ScienceUniversity of BergenNorway
- Department of Obstetrics and GynecologyHaukeland University HospitalBergenNorway
- Department of Health Registry Research and DevelopmentNorwegian Institute of Public HealthOsloNorway
| | - Cara Ellen Wogsland
- Centre for Cancer Biomarkers CCBIO, Department of Clinical ScienceUniversity of BergenNorway
- Kinn Therapeutics ASBergenNorway
| | - Emmet McCormack
- Centre for Cancer Biomarkers CCBIO, Department of Clinical ScienceUniversity of BergenNorway
- Centre for Pharmacy, Department of Clinical ScienceUniversity of BergenNorway
- Department of Internal Medicine, Hematology SectionHaukeland University HospitalBergenNorway
| | - Johanna Mäenpää
- Department of Obstetrics and Gynecology and Tays Cancer CentreTampere University HospitalFinland
- Nordic Society of Gynaecological Oncology – Clinical Trial Unit (NSGO‐CTU)TampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityFinland
| | - Kristine Madsen
- Nordic Society of Gynaecological Oncology – Clinical Trial Unit (NSGO‐CTU)CopenhagenDenmark
| | - Karen Stampe Petersson
- Nordic Society of Gynaecological Oncology – Clinical Trial Unit (NSGO‐CTU)CopenhagenDenmark
| | - Mansoor Raza Mirza
- Nordic Society of Gynaecological Oncology – Clinical Trial Unit (NSGO‐CTU)CopenhagenDenmark
- Department of OncologyRigshospitalet, Copenhagen University HospitalDenmark
| | - Line Bjørge
- Centre for Cancer Biomarkers CCBIO, Department of Clinical ScienceUniversity of BergenNorway
- Department of Obstetrics and GynecologyHaukeland University HospitalBergenNorway
| |
Collapse
|
20
|
van der Gaag S, Jordens T, Yaqub M, Grijseels R, van Valkengoed DW, de Langen EN, van den Broek R, Thijssen VLJL, de Langen AJ, Kouwenhoven MCM, Bahce I, Westerman BA, Hendrikse NH, Bartelink IH. Physiologically Based Pharmacokinetic Model of Tyrosine Kinase Inhibitors to Predict Target Site Penetration, with PET-Guided Verification. CPT Pharmacometrics Syst Pharmacol 2025; 14:918-928. [PMID: 40009553 PMCID: PMC12072221 DOI: 10.1002/psp4.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/28/2025] Open
Abstract
Osimertinib, a tyrosine kinase inhibitor (TKI), treats non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. However, its efficacy may vary due to heterogeneous drug distribution, assessable through microdosed radiolabeled drugs and positron emission tomography (PET). Precision dosing using microdosed TKI-PET encounters challenges due to pharmacokinetic (PK) variations between micro- and therapeutic doses. This study aims to predict osimertinib's tissue concentration-time profiles for both microdose and therapeutic dose scenarios using a whole-body physiologically based pharmacokinetic (PBPK) model, which incorporates nonlinear PK processes and target site occupancy. A target site PBPK model for osimertinib was developed to predict drug distribution across various tissues, including lung tumor, based on a previously published PBPK model. The model incorporated tissue-specific parameters and accounted for both linear and nonlinear pharmacokinetic processes, including EGFR-binding dynamics and tumor dynamics. Model predictions were verified with microdosed [11C]C-osimertinib PET imaging data and clinical pharmacokinetic profiles to assess accuracy and reliability. The developed target site-PBPK model accurately predicted osimertinib pharmacokinetics across multiple (tumor) tissues and dose levels within 2-fold error compared to observed PET data. This study underscores the utility of PBPK modeling in predicting osimertinib's pharmacokinetics across diverse tissues, offering insights into drug distribution and predictions of target engagement in NSCLC patients using microdose PET imaging data. The developed model serves as a promising tool for optimizing dosing strategies and evaluating novel EGFR-TKIs in NSCLC treatment.
Collapse
Affiliation(s)
- Suzanne van der Gaag
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
- Cancer Center AmsterdamImaging and BiomarkersAmsterdamthe Netherlands
| | - Tamara Jordens
- Cancer Center AmsterdamImaging and BiomarkersAmsterdamthe Netherlands
- Department of Clinical Pharmacology and PharmacyAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Maqsood Yaqub
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Robbin Grijseels
- Department of Clinical Pharmacology and PharmacyAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Daan W. van Valkengoed
- Department of Clinical Pharmacology and PharmacyAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Evelien N. de Langen
- Department of Clinical Pharmacology and PharmacyAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Ruben van den Broek
- Department of Clinical Pharmacology and PharmacyAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Victor L. J. L. Thijssen
- Department of Radiation OncologyAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and RadiobiologyAmsterdam UMC Location Amsterdam Medical CenterAmsterdamthe Netherlands
- Cancer Center AmsterdamCancer Biology and ImmunologyAmsterdamthe Netherlands
| | - Adrianus J. de Langen
- Department of Thoracic OncologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamthe Netherlands
| | - Mathilde C. M. Kouwenhoven
- Department of NeurologyAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
- Cancer Center AmsterdamBrain Tumor Center AmsterdamAmsterdamthe Netherlands
| | - Idris Bahce
- Department of Pulmonary MedicineAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Bart A. Westerman
- Department of NeurosurgeryAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - N. Harry Hendrikse
- Department of Radiology and Nuclear MedicineAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
- Cancer Center AmsterdamImaging and BiomarkersAmsterdamthe Netherlands
- Department of Hospital PharmacyErasmus MC, University Medical Center RotterdamRotterdamthe Netherlands
- Department of Radiology and Nuclear MedicineErasmus MC, University Medical Center RotterdamRotterdamthe Netherlands
| | - Imke H. Bartelink
- Cancer Center AmsterdamImaging and BiomarkersAmsterdamthe Netherlands
- Department of Clinical Pharmacology and PharmacyAmsterdam UMC Location Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
21
|
Plage H, Furlano K, Hofbauer S, Roßner F, Schallenberg S, Elezkurtaj S, Lennartz M, Marx A, Samtleben H, Fisch M, Rink M, Slojewski M, Kaczmarek K, Ecke T, Klatte T, Koch S, Adamini N, Minner S, Simon R, Sauter G, Weischenfeldt J, Schlomm T, Horst D, Zecha H, Kluth M, Weinberger S. PLAP expression is linked to invasive tumor growth in urothelial carcinoma of the bladder. Int Urol Nephrol 2025; 57:1381-1388. [PMID: 39680294 PMCID: PMC12003486 DOI: 10.1007/s11255-024-04319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE Placental alkaline phosphatase (PLAP) is a protein with a poorly understood function that is normally only expressed in the placenta. In cancer, PLAP expression is a hallmark of germ cell neoplasms, but it can also occur in urothelial carcinoma. To evaluate the potential clinical significance of PLAP expression in bladder cancer, METHODS: PLAP protein was analyzed by immunohistochemistry in more than 2500 urothelial bladder carcinomas in a tissue microarray format. RESULTS PLAP staining was absent in normal urothelial cells but was observed in 15.9% of urothelial carcinomas, including 282 (11.5%) with weak, 57 (2.3%) with moderate, and 51 (2.1%) with strong staining. PLAP positivity occurred in 4.1% of 413 pTa G2 low-grade, 10.2% of 176 pTa G2 high-grade, and 7.2% of 97 pTa G3 tumors (p = 0.0636). As compared to pTa tumors, the PLAP positivity rate was markedly higher in 1341 pT2-4 carcinomas (19.8%, p < 0.0001). Within pT2-4 carcinomas, PLAP staining was unrelated to pT, pN, grade, L-status, V-status, overall survival, recurrence-free survival, and cancer-specific survival (p > 0.25). However, PLAP positivity was linked to p16 positivity (p = 0.0185), GATA3 positivity (p < 0.0001), and p63 expression loss (p = 0.0456). CONCLUSION In summary, these data show that PLAP is expressed in a significant fraction of pT2-4 urothelial carcinomas, unrelated to cancer aggressiveness but associated with specific molecular features. Once anti-PLAP cancer drugs become effective, urothelial carcinoma is a candidate tumor entity for clinical evaluation.
Collapse
Affiliation(s)
- Henning Plage
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Kira Furlano
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Sebastian Hofbauer
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Florian Roßner
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and, Berlin Institute of Health, Berlin, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and, Berlin Institute of Health, Berlin, Germany
| | - Sefer Elezkurtaj
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and, Berlin Institute of Health, Berlin, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas Marx
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Henrik Samtleben
- Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Margit Fisch
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rink
- Department of Urology, Marienhospital Hamburg, Hamburg, Germany
| | - Marcin Slojewski
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Krystian Kaczmarek
- Department of Urology and Urological Oncology, Pomeranian Medical University, Szczecin, Poland
| | - Thorsten Ecke
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Tobias Klatte
- Department of Urology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Stefan Koch
- Department of Pathology, Helios Hospital Bad Saarow, Bad Saarow, Germany
| | - Nico Adamini
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joachim Weischenfeldt
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Biotech Research & Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and, Berlin Institute of Health, Berlin, Germany
| | - Henrik Zecha
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Urology, Albertinen Hospital, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Weinberger
- Department of Urology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
22
|
Guo Y, Li G, Xia F, Li C. Upregulation of RCN2 accelerates tumor progression and indicates poor prognosis in OSCC. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:564-575. [PMID: 39730259 DOI: 10.1016/j.oooo.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024]
Abstract
OBJECTIVE Oral squamous cell carcinoma (OSCC) is a prevalent cancer of the head and neck region. However, the potential role of RCN2 in OSCC is currently not well understood. STUDY DESIGN A series of molecular biology experiments were conducted to explore the mechanism by which RCN2 promotes OSCC growth through protein kinase A (PKA). RESULTS Our results revealed a significant increase in RCN2 levels in OSCC tissues. Moreover, OSCC patients with high RCN2 expression had a significantly worse prognosis than those with lower RCN2 expression. Interestingly, PKA activity was increased in RCN2-overexpressing YD-10B cells but reduced in RCN2-knockout Ca9-22 cells. These findings suggest that RCN2-mediated PKA activity is activated in OSCC cells. Moreover, the specific PKA inhibitor H89 significantly reduced the proliferation ability of RCN2-overexpressing Ca9-22 cells. Furthermore, we identified AKT/mTORC as a downstream pathway through which PKA promotes OSCC cell proliferation. The Tumor Immune Estimation Resource database revealed that the expression level of RCN2 was correlated with the infiltration levels of B cells, CD8+ T cells, CD4+ T cells, and neutrophils in the microenvironment of OSCC. CONCLUSIONS Our study revealed that RCN2 promotes tumor progression by activating PKA/AKT/mTORC signaling, which suggests that RCN2 may serve as a potential target for OSCC treatment.
Collapse
Affiliation(s)
- Yongshan Guo
- Department of Stomatology, Xinjiang Production and Construction Corps Hospital, Urumqi, China
| | - Guolong Li
- Department of Stomatology, Xinjiang Production and Construction Corps Hospital, Urumqi, China
| | - Feifei Xia
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Changxue Li
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Shihezi University, Shihezi, China.
| |
Collapse
|
23
|
Ju G, Lin Q, Lu L, Lin Z, Huang D, Lin Y, Huang X, Lin Q, Xu H, Bai Y, Miao S, Li J, Song J, Chen J. TFDP1 drives triple-negative breast Cancer development through senescence suppression and serves as a therapeutic target for topotecan. Int J Biol Macromol 2025; 310:143543. [PMID: 40300683 DOI: 10.1016/j.ijbiomac.2025.143543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
Triple-negative breast cancer (TNBC) constitutes the molecular subtype exhibiting the poorest prognosis. Targeted therapy emerges as a pivotal strategy to enhance the clinical outcomes of individuals with TNBC. Identifying targets and corresponding therapeutic agents is essential for reducing TNBC-related mortality. Topotecan, a chemotherapeutic agent approved for treating metastatic breast cancer, remains under investigation regarding its specific targets and molecular mechanisms in TNBC. Data procured from CRISPR/Cas9 library screenings showed that TFDP1 may be a therapeutic target in TNBC, and the L1000FWD database suggested that TFDP1 serves as a potential target of topotecan. The overexpression of TFDP1 was observed in TNBC tissues, correlating with poorer prognosis. Knockdown of TFDP1 inhibited the cell growth, clonal expansion, and tumorigenicity of TNBC cells. Mechanistically, TFDP1 inhibited cellular senescence in TNBC cells. In vitro experiments demonstrated that topotecan inhibited TNBC cell growth and promoted cellular senescence, counteracting the effects of TFDP1 overexpression on TNBC cells. These findings suggest that topotecan impedes TNBC cell growth by targeting TFDP1. This interaction provides valuable insights into the molecular mechanisms governing TNBC cell senescence, presenting TFDP1 as a potential therapeutic target. Combining topotecan with senolytic therapies may offer a promising strategy for TNBC treatment.
Collapse
Affiliation(s)
- Gaoda Ju
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China.
| | - Qingliang Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Lihu Lu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Zhuangbin Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Daxin Huang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Yaobin Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Xiaoxue Huang
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Qiong Lin
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Huan Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China
| | - Yue Bai
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Sen Miao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Junjian Li
- State Key Laboratory of Systems Medicine for Cancer, Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jianyuan Song
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China.
| | - Jianwu Chen
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou 350001, Fujian Province, China; Digestive, Hematological and Breast Malignancies, Clinical Research Center for Radiology and Radiotherapy of Fujian Province, Fuzhou 350001, Fujian Province, China.
| |
Collapse
|
24
|
Kyuno D, Asano H, Okumura R, Takasawa K, Takasawa A, Konno T, Nakamori Y, Magara K, Ono Y, Imamura M, Kimura Y, Kojima T, Osanai M. The Role of Claudin-1 in Enhancing Pancreatic Cancer Aggressiveness and Drug Resistance via Metabolic Pathway Modulation. Cancers (Basel) 2025; 17:1469. [PMID: 40361399 PMCID: PMC12070999 DOI: 10.3390/cancers17091469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/17/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma is a lethal malignancy, necessitating an understanding of its molecular mechanisms for the development of new therapeutic strategies. The tight junction protein claudin-1, known to influence cellular functions in various cancers and is considered a therapeutic target, remains unclear in pancreatic cancer. METHODS This study assessed claudin-1 expression in resected pancreatic cancer samples, public databases, and pancreatic cancer cell lines. Claudin-1 knockout with CRISPR/Cas9 on poorly differentiated pancreatic cancer cell lines and a proteome analysis were performed to investigate the intracellular mechanisms of claudin-1. RESULTS Claudin-1 was markedly overexpressed in pancreatic ductal adenocarcinoma and intraepithelial neoplasia compared to normal ducts, and high claudin-1 levels were an independent predictor of poor prognosis. Claudin-1 knockout diminished cell proliferation, migration, invasion, and chemoresistance in pancreatic ductal adenocarcinoma. Proteome analysis revealed the significant downregulation of aldo-keto reductase family proteins (AKR1C2, AKR1C3, and AKR1B1) in claudin-1 knockout cells, which are linked to metabolic pathways. Aldo-keto reductase knockdown reduced chemoresistance, proliferation, and invasion in these cell lines. CONCLUSIONS These findings indicate that the abnormal expression of claudin-1 promotes tumor progression and drug resistance through its interaction with aldo-keto reductase proteins, highlighting claudin-1 and aldo-keto reductase family proteins as potential biomarkers and therapeutic targets for pancreatic cancer.
Collapse
Affiliation(s)
- Daisuke Kyuno
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
- Department of Surgery, Division of Gastroenterological Surgery, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Hinae Asano
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Reona Okumura
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kumi Takasawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Akira Takasawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Takumi Konno
- Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yuna Nakamori
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Kazufumi Magara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Masafumi Imamura
- Department of Surgery, Division of Gastroenterological Surgery, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Yasutoshi Kimura
- Department of Surgery, Division of Gastroenterological Surgery, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Institute of Cancer Research, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| |
Collapse
|
25
|
Hu R, Tran B, Li S, Stackpole ML, Zeng W, Zhou Y, Melehy A, Sadeghi S, Finn RS, Zhou XJ, Li W, Agopian VG. Noninvasive prognostication of hepatocellular carcinoma based on cell-free DNA methylation. PLoS One 2025; 20:e0321736. [PMID: 40279344 PMCID: PMC12026916 DOI: 10.1371/journal.pone.0321736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/11/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND The current noninvasive prognostic evaluation methods for hepatocellular carcinoma (HCC), which are largely reliant on radiographic imaging features and serum biomarkers such as alpha-fetoprotein (AFP), have limited effectiveness in discriminating patient outcomes. Identification of new prognostic biomarkers is a critical unmet need to improve treatment decision-making. Epigenetic changes in cell-free DNA (cfDNA) have shown promise in early cancer diagnosis and prognosis. Thus, we aim to evaluate the potential of cfDNA methylation as a noninvasive predictor for prognostication in patients with active, radiographically viable HCC. METHODS Using Illumina HumanMethylation450 array data of 377 HCC tumors and 50 adjacent normal tissues obtained from The Cancer Genome Atlas (TCGA), we identified 158 HCC-related DNA methylation markers associated with overall survival (OS). This signature was further validated in 29 HCC tumor tissue samples. Subsequently, we applied the signature to an independent cohort of 52 patients with plasma cfDNA samples by calculating the cfDNA methylation-based risk score (methRisk) via random survival forest models with 10-fold cross-validation for the prognostication of OS. RESULTS The cfDNA-based methRisk showed strong discriminatory power when evaluated as a single predictor for OS (3-year AUC = 0.81, 95% CI: 0.68-0.94). Integrating the methRisk with existing risk indices like Barcelona clinic liver cancer (BCLC) staging significantly improved the noninvasive prognostic assessments for OS (3-year AUC = 0.91, 95% CI: 0.80-1), and methRisk remained an independent predictor of survival in the multivariate Cox model (P = 0.007). CONCLUSIONS Our study serves as a pilot study demonstrating that cfDNA methylation biomarkers assessed from a peripheral blood draw can stratify HCC patients into clinically meaningful risk groups. These findings indicate that cfDNA methylation is a promising noninvasive prognostic biomarker for HCC, providing a proof-of-concept for its potential clinical utility and laying the groundwork for broader applications.
Collapse
Affiliation(s)
- Ran Hu
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- Bioinformatics Interdepartmental Graduate Program, University of California at Los Angeles, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Benjamin Tran
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Mary L. Stackpole
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Weihua Zeng
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Yonggang Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Andrew Melehy
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Saeed Sadeghi
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Richard S. Finn
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Wenyuan Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Vatche G. Agopian
- Department of Surgery, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
26
|
Fredrikson JP, Roth DM, Cosgrove JA, Sener G, Crow LA, Eckenstein K, Wu L, Hosseini M, Thomas G, Eksi SE, Bertassoni L. Engineering neuronal networks in granular microgels to innervate bioprinted cancer organoids on-a-chip. LAB ON A CHIP 2025. [PMID: 40269972 DOI: 10.1039/d5lc00134j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Organoid models are invaluable for studying organ processes in vitro, offering an unprecedented ability to replicate organ function. Despite recent advancements that have increased their cellular complexity, organoids generally lack key specialized cell types, such as neurons, limiting their ability to fully model organ function and dysfunction. Innervating organoids remains a significant challenge due to the asynchronous biological cues governing neural and organ development. Here, we present a versatile organ-on-a-chip platform designed to innervate organoids across diverse tissue types. Our strategy enables the development of innervated granular hydrogel tissue constructs, followed by the sequential addition of organoids. The microfluidic device features an open tissue chamber, which can be easily manipulated using standard pipetting or advanced bioprinting techniques. Engineered to accommodate microgels of any material larger than 50 μm, the chamber provides flexibility for constructing customizable hydrogel environments. Organoids and other particles can be precisely introduced into the device at any stage using aspiration-assisted bioprinting. To validate this platform, we demonstrate the successful growth of primary mouse superior cervical ganglia (mSCG) neurons and the platform's effectiveness in innervating prostate cancer spheroids and patient-derived renal cell carcinoma organoids. This platform offers a robust and adaptable tool for generating complex innervated organoids, paving the way for more accurate in vitro models of organ development, function, and disease.
Collapse
Affiliation(s)
- Jacob P Fredrikson
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Daniela M Roth
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Jameson A Cosgrove
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Gulsu Sener
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Lily A Crow
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Kazumi Eckenstein
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Lillian Wu
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
| | - Mahshid Hosseini
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
| | - George Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Sebnem Ece Eksi
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Luiz Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA.
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR 97201, USA
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
27
|
Raymakers L, Passchier EM, Verdonschot MEL, Evers M, Chan C, Kuijpers KC, Raicu GM, Molenaar IQ, van Santvoort HC, Strijbis K, Intven MPW, Daamen LA, Leusen JHW, Olofsen PA. The Efficacy of Targeted Monoclonal IgA Antibodies Against Pancreatic Ductal Adenocarcinoma. Cells 2025; 14:632. [PMID: 40358156 PMCID: PMC12071589 DOI: 10.3390/cells14090632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/11/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
The efficacy of immunotherapy in pancreatic ductal adenocarcinoma (PDAC) remains limited. The tumor microenvironment (TME), characterized by the accumulation of suppressive myeloid cells including neutrophils, attributes to immunotherapy resistance in PDAC. IgA monoclonal antibodies (mAbs) can activate neutrophils to kill tumor cells; this can be further enhanced by blocking the myeloid immune checkpoint CD47. In this study, we investigated the potential of this therapeutic strategy for PDAC. We determined the expression of tumor-associated antigens (TAAs) on PDAC cell lines and fresh patient samples, and the results showed that the TAAs epithelial cell adhesion molecule (EpCAM), trophoblast cell surface antigen 2 (TROP2) and mucin-1 (MUC1), as well as CD47 were consistently expressed on PDAC. In line with this, we showed that IgA mAbs against EpCAM can activate neutrophils to lyse various PDAC cell lines and tumor cells, which can be augmented by addition of CD47 blockade. In addition, we observed that neutrophils were present in patient tumors and expressed the receptor for IgA. In conclusion, our results indicate that a combination of IgA mAb with CD47 blockade is a promising preclinical treatment strategy for PDAC, which merits further investigation.
Collapse
Affiliation(s)
- Léon Raymakers
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
- Division of Imaging & Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.P.W.I.); (L.A.D.)
| | - Elsemieke M. Passchier
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Meggy E. L. Verdonschot
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Mitchell Evers
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Chilam Chan
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Karel C. Kuijpers
- Department of Pathology, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, St. Antonius Hospital Nieuwegein, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands (G.M.R.)
| | - G. Mihaela Raicu
- Department of Pathology, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, St. Antonius Hospital Nieuwegein, Koekoekslaan 1, 3435 CM Nieuwegein, The Netherlands (G.M.R.)
| | - I. Quintus Molenaar
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (I.Q.M.); (H.C.v.S.)
| | - Hjalmar C. van Santvoort
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (I.Q.M.); (H.C.v.S.)
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands;
| | - Martijn P. W. Intven
- Division of Imaging & Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.P.W.I.); (L.A.D.)
| | - Lois A. Daamen
- Division of Imaging & Oncology, University Medical Center Utrecht Cancer Center, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (M.P.W.I.); (L.A.D.)
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (I.Q.M.); (H.C.v.S.)
| | - Jeanette H. W. Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| | - Patricia A. Olofsen
- Center for Translational Immunology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; (L.R.); (E.M.P.); (M.E.L.V.); (M.E.); (P.A.O.)
| |
Collapse
|
28
|
Martinez-Val A, Van der Hoeven L, Bekker-Jensen DB, Jørgensen MM, Nors J, Franciosa G, Andersen CL, Bramsen JB, Olsen JV. Proteomics of colorectal tumors identifies the role of CAVIN1 in tumor relapse. Mol Syst Biol 2025:10.1038/s44320-025-00102-8. [PMID: 40269326 DOI: 10.1038/s44320-025-00102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Colorectal cancer molecular signatures derived from omics data can be employed to stratify CRC patients and aid decisions about therapies or evaluate prognostic outcome. However, molecular biomarkers for identification of patients at increased risk of disease relapse are currently lacking. Here, we present a comprehensive multi-omics analysis of a Danish colorectal cancer tumor cohort composed of 412 biopsies from tumors of 371 patients diagnosed at TNM stage II or III. From mass spectrometry-based patient proteome profiles, we classified the tumors into four molecular subtypes, including a mesenchymal-like subtype. As the mesenchymal-rich tumors are known to represent the most invasive and metastatic phenotype, we focused on the protein signature defining this subtype to evaluate their potential as relapse risk markers. Among signature-specific proteins, we followed-up Caveolae-Associated Protein-1 (CAVIN1) and demonstrated its role in tumor progression in a 3D in vitro model of colorectal cancer. Compared to previous omics analyses of CRC, our multi-omics classification provided deeper insights into EMT in cancer cells with stronger correlations with risk of relapse.
Collapse
Affiliation(s)
- Ana Martinez-Val
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Leander Van der Hoeven
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte B Bekker-Jensen
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Evosep Biosystems, Odense, Denmark
| | - Margarita Melnikova Jørgensen
- Institute of Pathology, Randers Regional Hospital, Randers, Denmark
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jesper Nors
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Giulia Franciosa
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Claus L Andersen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Jesper B Bramsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
29
|
Goncalves MM, Uday AB, Forrester TJB, Currie SQW, Kim AS, Feng Y, Jitkova Y, Velyvis A, Harkness RW, Kimber MS, Schimmer AD, Zeytuni N, Vahidi S. Mechanism of allosteric activation in human mitochondrial ClpP protease. Proc Natl Acad Sci U S A 2025; 122:e2419881122. [PMID: 40232800 PMCID: PMC12036999 DOI: 10.1073/pnas.2419881122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Human ClpP protease contributes to mitochondrial protein quality control by degrading misfolded proteins. ClpP is overexpressed in cancers such as acute myeloid leukemia (AML), where its inhibition leads to the accumulation of damaged respiratory chain subunits and cell death. Conversely, hyperactivating ClpP with small-molecule activators, such as the recently discovered ONC201, disrupts mitochondrial protein degradation and impairs respiration in cancer cells. Despite its critical role in human health, the mechanism underlying the structural and functional properties of human ClpP remains elusive. Notably, human ClpP is paradoxically activated by active-site inhibitors. All available structures of human ClpP published to date are in the inactive compact or compressed states, surprisingly even when ClpP is bound to an activator molecule such as ONC201. Here, we present structures of human mitochondrial ClpP in the active extended state, including a pair of structures where ClpP is bound to an active-site inhibitor. We demonstrate that amino acid substitutions in the handle region (A192E and E196R) recreate a conserved salt bridge found in bacterial ClpP, stabilizing the extended active state and significantly enhancing ClpP activity. We elucidate the ClpP activation mechanism, highlighting a hormetic effect where substoichiometric inhibitor binding triggers an allosteric transition that drives ClpP into its active extended state. Our findings link the conformational dynamics of ClpP to its catalytic function and provide high-resolution structures for the rational design of potent and specific ClpP inhibitors, with implications for targeting AML and other disorders with ClpP involvement.
Collapse
Affiliation(s)
- Monica M. Goncalves
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Adwaith B. Uday
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
| | - Taylor J. B. Forrester
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
| | - S. Quinn W. Currie
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Angelina S. Kim
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Yue Feng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Algirdas Velyvis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Robert W. Harkness
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Matthew S. Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, Montréal, QCH3A 0C7, Canada
- Centre de Recherche en Biologie Structurale, Montréal, QCH3G 0B1, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
30
|
Zhu X, Cui Z, Li S, She Y, Wu Z. ADAMTSL2 is an independent predictor for the prognosis of gastric cancer. Discov Oncol 2025; 16:570. [PMID: 40252157 PMCID: PMC12009256 DOI: 10.1007/s12672-025-02259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/28/2025] [Indexed: 04/21/2025] Open
Abstract
AIMS To explore novel biomarkers capable of predicting the prognosis of gastric cancer (GC) and investigate the mechanisms underlying the development of GC. METHODS Firstly, differentially expressed genes (DEGs) in GC tumors and adjacent tissues were analyzed using transcriptome sequencing data. Then, the DEGs significantly associated with the prognosis of GC were selected. From this subset, genes with high protein expression levels in tumor tissues were focused. Multivariate hazard analysis was performed to further identify DEGs with independent prognostic value for GC patients. Eventually, the potential mechanisms involving DEGs that underlie the development of GC were investigated. RESULTS Altogether, 25 previously DEGs that have not been reported before were discovered in the context of GC. Among these genes, ADAMTSL2, DSCC1, COL5A3, F2RL2, GRIN2D, IGSF6, IER5L, PLA2G7, PODNL1, RCN3 and RTN4RL2 were significantly associated with the overall survival, first progression and post progression survival of GC patients. Moreover, protein levels of ADAMTSL2, COL5A3, DSCC1, GRIN2D, PODNL1 and RCN3 were consistently highly expressed in clinical GC specimens. Furthermore, multivariate hazard analysis identified ADAMTSL2 as an independent predictor of GC prognosis. Further exploration revealed a potential regulatory connection between ADAMTSL2 and hsa-miR-7-2-3p. hsa-miR-7-2-3p was significantly down-regulated in GC and GC patients with low expression of hsa-miR-7 had a poor overall survival. Additionally, ADAMTSL2 was significantly co-expressed with key molecules (NOTCH1, NOTCH3, NOTCH4 and HEY1) in Notch signaling pathway. CONCLUSIONS ADAMTSL2 stands out as an independent predictor for the prognosis of GC and may play a crucial pathological role in the development of GC.
Collapse
Affiliation(s)
- Xiuling Zhu
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China
| | - Zhongyuan Cui
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China
| | - Shasha Li
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China
| | - Yingzhen She
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China
| | - Zhixian Wu
- Department of Hepatobiliary, The 900th Hospital of Joint Service Support Force (Fuzong Clinical Medical College), Fujian Medical University, 156, North Xi'erhuan Rd, Fuzhou, 350025, Fujian, China.
| |
Collapse
|
31
|
Wang L, Yang H, Cao L, Yang Y, Ding R. Integrative genomic pan-cancer analysis reveals the prognostic significance of DEFB1 in tumors. Discov Oncol 2025; 16:552. [PMID: 40244529 PMCID: PMC12006651 DOI: 10.1007/s12672-025-02340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/08/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Defensin beta 1 (DEFB1) is a key immune response gene, but its role in cancer remains unclear. This study aims to explore DEFB1 expression, genetic alterations, immune infiltration, and prognostic significance across various cancer types. METHODS We analyzed DEFB1 expression and its association with cancer prognosis using data from public platforms, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA). Additionally, we examined DEFB1 genetic alterations, immune cell infiltration, and its molecular partners using various bioinformatics tools. RESULTS DEFB1 expression was highest in salivary glands, kidneys, and pancreas. In cancers, DEFB1 was upregulated in cholangiocarcinoma, kidney chromophobe, and melanoma, but downregulated in breast, colon, and rectal cancers. High DEFB1 expression was linked to poorer overall survival in lung adenocarcinoma and pancreatic adenocarcinoma, but better survival in head and neck squamous cell carcinoma. Genetic analysis revealed alterations in liver and gastric cancers. Immune infiltration analysis showed a correlation between DEFB1 and cancer-associated fibroblasts in liver cancer, while neutrophil infiltration was linked to bladder carcinoma, diffuse large B-cell lymphoma, and lung squamous cell carcinoma. Key genes associated with DEFB1 included KLK1, BSND, and CLCNKB. DISCUSSION This study highlights DEFB1's potential as a prognostic biomarker and its influence on the tumor immune microenvironment across different cancers. These findings suggest DEFB1 could be a target for future cancer therapies, although further studies are needed to validate these results.
Collapse
Affiliation(s)
- Li Wang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Hongyu Yang
- Department of Rheumatology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Lu Cao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yang Yang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Ran Ding
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
32
|
Huang R, Kee L, Gont A, Meens J, Ferens FG, Irwin MS, Ailles L, Yuzwa SA, Robinson CM, Ohh M. Comparative single-cell transcriptomic profiling of patient-derived renal carcinoma cells in cellular and animal models of kidney cancer. FEBS Open Bio 2025. [PMID: 40241258 DOI: 10.1002/2211-5463.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/26/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer that often displays resistance to conventional cancer therapies, including chemotherapy and radiation therapy. Targeted treatments, including immunotherapies and small molecular inhibitors, have been associated with improved outcomes. However, variations in the patient response and the development of resistance suggest that more models that better recapitulate the pathogenesis and metastatic mechanisms of ccRCC are required to improve our understanding and disease management. Here, we examined the transcriptional landscapes of in vitro cell culture as well as in vivo orthotopic and metastatic NOD/SCID-γ mouse models of ccRCC using a single patient-derived RCC243 cell line to allow unambiguous comparison between models. In our mouse model assays, RCC243 cells formed metastatic tumors, and all tumors retained clear cell morphology irrespective of model type. Notably, gene expression profiles differed markedly between the RCC243 tumor models-cell culture, orthotopic tumors, and metastatic tumors-suggesting an impact of the experimental model system and whether the tumor was orthotopic or metastatic. Furthermore, we found conserved prognostic markers between RCC243 tumor models and human ccRCC patient datasets, and genes upregulated in metastatic RCC243 were associated with worse patient outcomes.
Collapse
Affiliation(s)
- Richard Huang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Lynn Kee
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Alexander Gont
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Jalna Meens
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Fraser G Ferens
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Meredith S Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Canada
- Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Laurie Ailles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Canada
| | - Scott A Yuzwa
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Claire M Robinson
- School of Medicine, Health Sciences Centre, University College Dublin, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
- Department of Biochemistry, University of Toronto, Canada
| |
Collapse
|
33
|
AlMaazmi FI, Bou Malhab LJ, ElDohaji L, Saber-Ayad M. Deciphering the Controversial Role of TP53 Inducible Glycolysis and Apoptosis Regulator (TIGAR) in Cancer Metabolism as a Potential Therapeutic Strategy. Cells 2025; 14:598. [PMID: 40277923 PMCID: PMC12025843 DOI: 10.3390/cells14080598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Tumor metabolism has emerged as a critical target in cancer therapy, revolutionizing our understanding of how cancer cells grow, survive, and respond to treatment. Historically, cancer research focused on genetic mutations driving tumorigenesis, but in recent decades, metabolic reprogramming has been recognized as a hallmark of cancer. The TP53 inducible glycolysis and apoptosis regulator, or TIGAR, affects a wide range of cellular and molecular processes and plays a key role in cancer cell metabolism by regulating the balance between glycolysis and antioxidant defense mechanisms. Cancer cells often exhibit a shift towards aerobic glycolysis (the Warburg effect), which allows rapid energy production and gives rise to biosynthetic intermediates for proliferation. By inhibiting glycolysis, TIGAR can reduce the proliferation rate of cancer cells, particularly in early-stage tumors or specific tissue types. This metabolic shift may limit the resources available for rapid cell division, thereby exerting a tumor-suppressive effect. However, this metabolic shift also leads to increased levels of reactive oxygen species (ROS), which can damage the cell if not properly managed. TIGAR helps protect cancer cells from excessive ROS by promoting the pentose phosphate pathway (PPP), which generates NADPH-a key molecule involved in antioxidant defense. Through its actions, TIGAR decreases the glycolytic flux while increasing the diversion of glucose-6-phosphate into the PPP. This reduces ROS levels and supports biosynthesis and cell survival by maintaining the balance of nucleotides and lipids. The role of TIGAR has been emerging as a prognostic and potential therapeutic target in different types of cancers. This review highlights the role of TIGAR in different types of cancer, evaluating its potential role as a diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Fatima I. AlMaazmi
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Immunology and NAT, Dubai Blood Donation Center, Dubai Health, Dubai P.O. Box 505055, United Arab Emirates
| | - Lara J. Bou Malhab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Leen ElDohaji
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates; (F.I.A.); (L.E.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
34
|
Deng H, Wu D, He Y, Yu X, Liu J, Zhang Y, Leng B, Yuan X, Xiao L. E2F1-driven EXOSC10 transcription promotes hepatocellular carcinoma growth and stemness: a potential therapeutic target. Hereditas 2025; 162:60. [PMID: 40221814 PMCID: PMC11992873 DOI: 10.1186/s41065-025-00430-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND E2F Transcription Factor 1 (E2F1) is a transcription factor that plays a crucial role in the growth of many cancers, including hepatocellular carcinoma (HCC). Herein, this study probed the functions and underlying mechanisms of E2F1 in HCC tumorigenesis. METHODS The expression profiles of E2F1 and Exosome Component 10 (EXOSC10) were detected using qRT-PCR and western blotting. Functional experiments were carried out using 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, tube formation, and sphere formation assays in vitro, as well as xenograft experiments in vivo, respectively. Stemness-related proteins were assayed using western blotting. The interaction between E2F1 and EXOSC10 was verified using bioinformatics analysis and dual-luciferase reporter assay. RESULTS E2F1 was highly expressed in HCC tissues and cells, and was associated with advanced TNM stage, distant metastasis, and short survival rate. Functionally, knockdown of E2F1 suppressed HCC cell proliferation, angiogenesis, and stemness, and induced cell apoptosis. Mechanistically, E2F1 directly bound to the promoter region of EXOSC10 to up-regulate its expression. EXOSC10 silencing impaired HCC cell proliferation, angiogenesis, and stemness. Moreover, the anticancer effects of E2F1 knockdown were reversed by EXOSC10 elevation. In vivo assay, E2F1 deficiency suppressed HCC tumor growth and eliminated cancer stemness, while these effects were abolished by EXOSC10 up-regulation. CONCLUSION E2F1 promotes EXOSC10 transcription and then facilitates HCC growth and cancer stemness, revealing a potential target for HCC therapy.
Collapse
Affiliation(s)
- Haoyue Deng
- Department of Pathology, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Dingyong Wu
- Department of Oncology, Songshan General Hospital, Chongqing, 401120, China
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Inaffiliationidualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Xiaolei Yu
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Jifei Liu
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Yanrui Zhang
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Bing Leng
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China
| | - Xiaofeng Yuan
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China.
| | - Liguo Xiao
- Department of Oncology, Fengning Manchu Autonomous County Hospital, No.737 Binhe Road, Chengde, 067000, Hebei, China.
| |
Collapse
|
35
|
Kato M, Nishino J, Nagai M, Rokutan H, Narushima D, Ono H, Hasegawa T, Imoto S, Matsui S, Tsunoda T, Shibata T. Comprehensive analysis of prognosis markers with molecular features derived from pan-cancer whole-genome sequences. Hum Genomics 2025; 19:39. [PMID: 40221813 PMCID: PMC11993945 DOI: 10.1186/s40246-025-00744-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Cancer prognosis markers are useful for treatment decisions; however, the omics-level landscape is not well understood across multiple cancer types. Pan-Cancer Analysis of Whole Genomes (PCAWG) provides unprecedented access to various types of molecular data, ranging from typical DNA mutations and RNA expressions to more deeply analyzed or whole-genomic features, such as HLA haplotypes and structural variations. We analyzed the PCAWG data of 13 cancer types from 1,514 patients to identify prognosis markers belonging to 17 molecular features in the survival analysis based on the Cox and Lasso regression methods. We found that germline features including HLA haplotypes, neoantigens, and the number of structural variations were associated with overall survival; however, mutational signatures were not. Measuring a few markers provided a sufficient prognostic performance evaluated by c-index for each cancer type. DNA markers demonstrated better or comparable prognostic performance compared to RNA markers in some cancer types. "Universal" markers strongly associated with overall survival across cancer types were not identified. These findings will give insights into the clinical implementation of prognosis markers.
Collapse
Affiliation(s)
- Mamoru Kato
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan.
- CREST, JST, Tokyo, Japan.
| | - Jo Nishino
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan
- CREST, JST, Tokyo, Japan
| | - Momoko Nagai
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan
- CREST, JST, Tokyo, Japan
| | - Hirofumi Rokutan
- Division of Cancer Genomics, Research Institute, National Cancer Center Japan, Tokyo, Japan
| | - Daichi Narushima
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan
| | - Hanako Ono
- Division of Bioinformatics, Research Institute, National Cancer Center Japan, Tokyo, Japan
| | - Takanori Hasegawa
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shigeyuki Matsui
- CREST, JST, Tokyo, Japan
- Department of Biostatistics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuhiko Tsunoda
- CREST, JST, Tokyo, Japan
- Laboratory for Medical Science Mathematics, Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, Research Institute, National Cancer Center Japan, Tokyo, Japan
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Shao YY, Wang HY, Hsu HW, Wo RR, Cheng AL, Hsu CH. Downregulation of PD-L1 expression by Wnt pathway inhibition to enhance PD-1 blockade efficacy in hepatocellular carcinoma. Biol Direct 2025; 20:49. [PMID: 40211365 PMCID: PMC11987266 DOI: 10.1186/s13062-025-00645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 04/13/2025] Open
Abstract
BACKGROUND Immunotherapy targeting the programmed death-ligand 1 (PD-L1) pathway is a standard treatment for advanced hepatocellular carcinoma (HCC). The Wnt signaling pathway, often upregulated in HCC, contributes to an immunosuppressive tumor microenvironment. This study investigated the impact of Wnt pathway inhibition on PD-L1 expression in HCC and evaluated the potential therapeutic benefit of combining Wnt pathway inhibition with PD-L1 blockade. METHODS The effects of Wnt pathway inhibitors XAV939 and IWR-1 on PD-L1 expression were examined in human HCC cell lines HuH7 and Hep3B. Beta-catenin overexpression and knockdown experiments confirmed these findings. For in vivo efficacy, the BNL 1ME A.7R.1 mouse HCC cell line was orthotopically implanted in mice, which were subsequently treated with XAV939, anti-PD-L1 antibodies, or both. RESULTS Wnt pathway inhibitors XAV939 and IWR-1 significantly reduced PD-L1 protein expression in a dose-dependent manner in HuH7 and Hep3B cells, without affecting mRNA levels. CTNNB1 knockdown produced similar results, and beta-catenin overexpression reversed the effects of Wnt pathway inhibitors on PD-L1 expression. Wnt pathway inhibition did not promote PD-L1 protein degradation but instead increased the level of unphosphorylated 4EBP1, which could prevent the translation function of eIF-4E. In vivo, mice treated with a combination of XAV939 and an anti-PD-L1 antibody had significantly smaller tumors compared to those treated with either agent alone. The combination treatment also enhanced multiple immune-related pathways in harvested tumors. CONCLUSION Inhibition of the Wnt pathway reduced PD-L1 expression in HCC cells and enhanced the efficacy of PD-L1 blockade, supporting its potential as HCC treatment.
Collapse
Affiliation(s)
- Yu-Yun Shao
- Graduate Institute of Oncology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd, Taipei City, 10051, Taiwan
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd, Taipei City, Taiwan
| | - Han-Yu Wang
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
| | - Hung-Wei Hsu
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
| | - Rita Robin Wo
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
| | - Ann-Lii Cheng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd, Taipei City, 10051, Taiwan
- Department of Internal Medicine, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd, Taipei City, Taiwan
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan
- Department of Medical Oncology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd, Taipei City, Taiwan
| | - Chih-Hung Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, 1, Sec. 1, Ren'ai Rd, Taipei City, 10051, Taiwan.
- Department of Oncology, National Taiwan University Hospital, 7, Chun-Shan S. Rd, Taipei, Taiwan.
- Department of Medical Oncology, National Taiwan University Cancer Center, 57, Ln. 155, Sec. 3, Keelung Rd, Taipei City, Taiwan.
| |
Collapse
|
37
|
Choezom D, Plum JM, Karuna M. P, Danieli-Mackay A, Lenz C, Brockmeyer P, Gross JC. The Ceramide-Dependent EV Secretome Differentially Affects Prostate Cancer Cell Migration. Cells 2025; 14:547. [PMID: 40214501 PMCID: PMC11988362 DOI: 10.3390/cells14070547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Tumor-derived extracellular vesicles (EVs) play an important role in cancer progression. Neutral sphingomyelinases (nSMases) are lipid-modifying enzymes that modulate the secretion of EVs from cells. How nSMase activity and therefore ceramide generation affect the composition and functionality of secreted EVs is not fully understood. Here, we aimed to investigate the expression of nSMases 1 and 2 in prostate cancer (PCa) tissue and their role in EV composition and secretion for prostate cancer cell migration. Reduced nSMase 1 and 2 expression was found in prostate cancer and correlated with the age of the patient. When nSMase 2 was inhibited by GW4869 in PCa cells (PC3 and DU145), the EV secretome was significantly altered, while the number of EVs and the total protein content of released EVs were not significantly changed. Using proteomic analysis, we found that extracellular matrix proteins, such as SDC4 (Syndecan-4) and SRPX-2, were differentially secreted on EVs from GW4869-treated PC3 cells. In scratch wound migration assays, GW4869 significantly increased migration compared to control PC3 cells but not DU145 cells, while SDC4 knockdown significantly reduced the migration of PC3 cells. These and other nSMase-2-dependent secreted proteins are interesting candidates for understanding the role of stress-induced EVs in the progression of prostate cancer.
Collapse
Affiliation(s)
- Dolma Choezom
- Department of Hematology and Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.C.)
- Department of Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Jan-Moritz Plum
- Department of Hematology and Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.C.)
- Department of Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Pradhipa Karuna M.
- Department of Hematology and Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.C.)
- Department of Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Adi Danieli-Mackay
- Department of Hematology and Oncology, University Medical Center Goettingen, 37075 Goettingen, Germany; (D.C.)
- Department of Developmental Biochemistry, University Medical Center Goettingen, 37077 Goettingen, Germany
| | - Christof Lenz
- Department of Clinical Chemistry, University Medical Center Goettingen, 37075 Goettingen, Germany;
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Phillipp Brockmeyer
- Department of Oral and Maxillofacial Surgery, University Medical Center Goettingen, 37075 Goettingen, Germany
| | - Julia Christina Gross
- Institute of Molecular Medicine, Department Medicine, HMU Health and Medical University Potsdam, 14471 Potsdam, Germany
| |
Collapse
|
38
|
Salmerón C, Tomás Bort E, Sriram K, Javadi-Paydar M, Smitham JE, Pham K, Grose RP, McCormick PJ, DiNardo A, Weitz J, Tiriac H, Lowy AM, Insel PA. Histamine H1 Receptor: A potential therapeutic target for pancreatic ductal adenocarcinoma. J Pharmacol Exp Ther 2025; 392:103573. [PMID: 40288207 DOI: 10.1016/j.jpet.2025.103573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) have a dismal 5-year survival (∼13%). Thus, new, effective, and ideally, less toxic therapies are desperately needed. Epidemiologic studies have found that patients with PDAC prescribed H1-antihistamines have improved survival. Expression of the histamine H1 receptor (HRH1), a G protein-coupled receptor which is blocked by approved H1-antihistamines, is increased by ∼20-fold in PDAC tumors compared with normal pancreas. Here, we used bioinformatic and molecular biological techniques to identify the cellular localization of HRH1 in the PDAC tumor microenvironment, assess functional responses to HRH1 activation, and define its potential biological roles in PDAC. We found that HRH1 is primarily expressed in cancer cells of PDAC tumors in humans and KPC mice (mice engineered to develop PDAC) and signals via G protein q/11 to increase intracellular Ca2+. HRH1 activation increases migration and invasion by PDAC cancer cells. Orally administered fexofenadine, an H1-antihistamine, was bioavailable in the tumors of KPC mice and yielded smaller pancreatic tumor tissue weights and lower expression of immunomodulatory (interleukin 6 and PD-1) and fibrotic (Col1A1) genes than in vehicle-control KPC mice. Thus, PDAC cancer cells express HRH1, which is functional in vitro and in vivo, suggesting that the repurposing of approved H1-antihistamines may be an efficacious and safe therapeutic approach for patients with PDAC. SIGNIFICANCE STATEMENT: Pancreatic ductal adenocarcinoma (PDAC) has a ∼13% 5-year survival rate, highlighting the need for new therapies. The HRH1 (histamine) receptor, associated with poorer survival, is upregulated in PDAC tumors. This study found that HRH1 is functional in PDAC cells, increasing intracellular Ca2+ via Gq/11 and promoting tumorigenic responses. KPC mice treated with an H1-antihistamine have reduced pancreas weight and lower proinflammatory and fibrotic markers in PDAC tumors. Thus, HRH1 may be a potential target for repurposing approved H1-antihistamines to treat PDAC.
Collapse
Affiliation(s)
- Cristina Salmerón
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Elena Tomás Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom; Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Mehrak Javadi-Paydar
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Jane E Smitham
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Kimberly Pham
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Anna DiNardo
- Department of Dermatology, University of California San Diego, La Jolla, California
| | - Jonathan Weitz
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Hervé Tiriac
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Andrew M Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California.
| |
Collapse
|
39
|
Dimayacyac-Esleta BRT, Mira FD, Zarate LM, Porras BJO, Juntilla DLA, Suñga LBL, Pondevida VB, Naval SS, Sayo TMS, Luna HGC, Prieto EI. Discovery of Key Candidate Protein Biomarkers in Early-Stage Nonsmall Cell Lung Carcinoma through Quantitative Proteomics. J Proteome Res 2025; 24:1701-1714. [PMID: 40014793 DOI: 10.1021/acs.jproteome.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Difficulties in early-stage diagnosis are among the factors contributing to the high mortality of nonsmall cell lung carcinoma (NSCLC) patients. Unfortunately, diagnostic biomarkers are currently lacking, limiting options in the clinic. To discover proteins that have potential for biomarker applications, we performed an in-depth quantitative proteomic analysis on a cohort of Filipino early-stage NSCLC lung adenocarcinoma (LUAD) patients. Differentially expressed proteins (DEPs) were obtained by using tandem mass tag (TMT) labeling and mass spectrometry (MS)-based quantitative proteomics. A total of 6240 quantified proteins were identified with 3155 significantly upregulated and 1248 significantly downregulated. Integration of the proteomic result with curated transcriptome data allowed the identification of 33 proteins with biomarker potential. This study also provided insights into relevant pathways in NSCLC LUAD, such as protein translation and metabolic pathways. Interestingly, all of the enzymes in the hexosamine biosynthetic pathway (HBP) are found to be upregulated, suggesting its important role in NSCLC LUAD. It is worthwhile to look at the potential of targeting the metabolic vulnerability of NSCLC LUAD as a new strategy in drug development. All MS data were deposited into ProteomeXchange with the identifier PXD050598.
Collapse
Affiliation(s)
| | - Ferdinand D Mira
- Institute of Chemistry, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Lorenzo M Zarate
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Ben Joshua O Porras
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Dave Laurence A Juntilla
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Lara Beatrice L Suñga
- Institute of Chemistry, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Venus B Pondevida
- Institute of Chemistry, University of the Philippines Diliman, Metro Manila 1101, Philippines
| | - Sullian S Naval
- Lung Center of the Philippines, Metro Manila 1100, Philippines
| | | | | | - Eloise I Prieto
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Metro Manila 1101, Philippines
| |
Collapse
|
40
|
Zhu G, Zhang H, Xie R, Younis MR, Fu S, Wang X, Liu B, Li K, Lui S, Wu M. Monitoring Acidification Preceding Aβ Deposition in Alzheimer's Disease. Adv Healthc Mater 2025; 14:e2404907. [PMID: 40103521 DOI: 10.1002/adhm.202404907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Amyloid beta (Aβ) is the primary early biomarker of Alzheimer's disease (AD), and since an acidic environment promotes Aβ aggregation, acidification plays a crucial role in AD progression. In this study, a novel acid-responsive near-infrared (NIR) fluorescent probe alongside multiple molecular biology techniques to investigate the temporal relationship between acidification and Aβ deposition, as well as the underlying mechanisms of acidification is employed. By monitoring 2- to 11-month-old APP/PS1 mice and wild-type (WT) mice, it is detected significant fluorescence signal in APP/PS1 mice beginning at 3 months preceding Aβ deposition at 5 months, and peaking at 5 months, followed by cognitive deficits at 8 months. Additionally, elevated monocarboxylate transporter 4 (MCT4) protein expression in 3-month-old APP/PS1 mice indicated disruption of astrocyte-neuron lactate shuttle (ANLS) homeostasis. Overall, this findings first demonstrate that acidification precedes Aβ deposition, peaks at the onset of Aβ deposition, and diminishes thereafter, with early acidification likely driven by the disruption of ANLS.
Collapse
Affiliation(s)
- Guannan Zhu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu, 610041, China
| | - Hong Zhang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu, 610041, China
| | - Ruoxi Xie
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu, 610041, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California, 90095, USA
| | - Shengxiang Fu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu, 610041, China
| | - Xiaoze Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu, 610041, China
| | - Beibei Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu, 610041, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, No. 29, Wangjiang Road, Chengdu, 610064, China
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu, 610041, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Xiang, Chengdu, 610041, China
| |
Collapse
|
41
|
Cheng K, Chen Q, Chen Z, Cai Y, Cai H, Wu S, Gao P, Cai Y, Wu Z, Zhou J, Peng B, Wang X. PLEK2 promotes migration and invasion in pancreatic ductal adenocarcinoma by MMP1 through IL-17 pathway. Mol Cell Biochem 2025; 480:2401-2412. [PMID: 39117976 DOI: 10.1007/s11010-024-05078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis primarily due to metastasis. Accumulating evidence suggests that PLEK2 acts as an oncogene in various tumors. This study aimed to investigate the effects of PLEK2 on PDAC. Expression analysis of PLEK2 was conducted using qRT-PCR, Western blot, and immunohistochemistry in PDAC. Wound healing and transwell assays were performed to evaluate the impact of PLEK2 on cell migration and invasion. A xenograft tumor model was employed to assess the in vivo proliferation of PLEK2. Additionally, the downstream pathway of PLEK2 was analyzed through RNA-seq and confirmed by Western blot analysis. The results demonstrated the upregulation of PLEK2 expression in tumor specimens. High PLEK2 expression was significantly associated with poor overall survival and advanced TNM stages. Correlation analyses revealed positive correlations between PLEK2 and TGF-β, EGFR, and MMP1. Wound healing and transwell assays demonstrated that PLEK2 promoted PDAC cell migration and invasion, potentially through the activation of the epithelial-to-mesenchymal transition process. The in vivo experiment further confirmed that PLEK2 knockdown suppressed tumor growth. RNA-seq analysis revealed PLEK2's regulation of MMP1 and activation of p-ERK and p-STAT3, which were verified by Western blot analysis. Overall, the present study suggests that PLEK2 may play a tumor-promoting role in PDAC. These findings provide valuable insights into the molecular mechanisms of pancreatic cancer and highlight the potential of PLEK2 as a therapeutic target.
Collapse
Affiliation(s)
- Ke Cheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiangxing Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zixin Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - He Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shangdi Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Pan Gao
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yunqiang Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhong Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Bing Peng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Lin HY, Chu PY. Mitochondrial calcium uniporter as biomarker and therapeutic target for breast cancer: Prognostication, immune microenvironment, epigenetic regulation and precision medicine. J Adv Res 2025; 70:445-461. [PMID: 38663838 PMCID: PMC11976406 DOI: 10.1016/j.jare.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Mitochondrial calcium uniporter (MCU) is a central subunit of MCU complex that regulate the levels of calcium ions within mitochondria. A comprehensive understanding the implications of MCU in clinical prognostication, biological understandings and therapeutic opportunity of breast cancer (BC) is yet to be determined. OBJECTIVES This study aims to investigate the role of MCU in predictive performance, tumor progression, epigenetic regulation, shaping of tumor immune microenvironment, and pharmacogenetics and the development of anti-tumor therapy for BC. METHODS The downloaded TCGA datasets were used to identify predictive ability of MCU expressions via supervised learning principle. Functional enrichment, mutation landscape, immunological profile, drug sensitivity were examined using bioinformatics analysis and confirmed by experiments exploiting human specimens, in vitro and in vivo models. RESULTS MCU copy numbers increase with MCU gene expression. MCU expression, but not MCU genetic alterations, had a positive correlation with known BC prognostic markers. Higher MCU levels in BC showed modest efficacy in predicting overall survival. In addition, high MCU expression was associated with known BC prognostic markers and with malignancy. In BC tumor and sgRNA-treated cell lines, enrichment pathways identified the involvement of cell cycle and immunity. miR-29a was recognized as a negative epigenetic regulator of MCU. High MCU levels were associated with increased mutation levels in oncogene TP53 and tumor suppression gene CDH1, as well as with an immunosuppressive microenvironment. Sigle-cell sequencing indicated that MCU mostly mapped on to tumor cell and CD8 T-cells. Inter-databases verification further confirmed the aforementioned observation. miR-29a-mediated knockdown of MCU resulted in tumor suppression and mitochondrial dysfunction, as well as diminished metastasis. Furthermore, MCU present pharmacogenetic significance in cellular docetaxel sensitivity and in prediction of patients' response to chemotherapeutic regimen. CONCLUSION MCU shows significant implication in prognosis, outcome prediction, microenvironmental shaping and precision medicine for BC. miR-29a-mediated MCU inhibition exerts therapeutic effect in tumor growth and metastasis.
Collapse
Affiliation(s)
- Hung-Yu Lin
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan.
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan; Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
43
|
Cheng L, Wang Y, Zhang Y. Dying to survive: harnessing inflammatory cell death for better immunotherapy. Trends Cancer 2025; 11:376-402. [PMID: 39986988 DOI: 10.1016/j.trecan.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Immunotherapy has transformed cancer treatment paradigms, but its effectiveness depends largely on the immunogenicity of the tumor. Unfortunately, the high resemblance of cancer to normal tissues makes most tumors immunologically 'cold', with a poor response to immunotherapy. Danger signals are critical for breaking immune tolerance and mobilizing robust, long-lasting antitumor immunity. Recent studies have identified inflammatory cell death modalities and their power in providing danger signals to trigger optimal tumor suppression. However, key mediators of inflammatory cell death are preferentially silenced during early tumor immunoediting. Strategies to rejuvenate inflammatory cell death hold great promise for broadening immunotherapy-responsive tumors. In this review, we examine how inflammatory cell death enhances tumor immunogenicity, how it is suppressed during immunoediting, and the potential of harnessing it for improved immunotherapy.
Collapse
Affiliation(s)
- Long Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yibo Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
44
|
Kim GW, Cha M, Ong HTM, Yoo J, Jeon YH, Lee SW, Oh SY, Kang MJ, Kim Y, Kwon SH. HDAC6 and USP9X Control Glutamine Metabolism by Stabilizing GS to Promote Glioblastoma Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501553. [PMID: 40162736 DOI: 10.1002/advs.202501553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Glioblastoma (GBM) is the most common and the deadliest brain cancer. Glutamine anabolism mediated by glutamine synthetase (GS) is beneficial for GBM cell growth, especially under glutamine deprivation. However, the molecular mechanism underlying GS homeostasis in GBM remains undisclosed. Here, it is reported that histone deacetylase 6 (HDAC6) promotes GS deacetylation, stabilizing it via ubiquitin-mediated pathway. It is found that deubiquitination of GS is modulated by ubiquitin-specific peptidase 9, X-linked (USP9X). USP9X stabilizes GS by removing its K48-linked polyubiquitination on lysine 91 and 103. Accordingly, targeting HDAC6 and USP9X in vitro and in vivo represses GBM tumorigenesis by decreasing GS stability. Metabolic analysis shows that silencing HDAC6 and USP9X disrupts de novo nucleotide synthesis, thereby attenuating GBM cell growth. Furthermore, GS modulation by targeting HDAC6 and USP9X restrains the self-renewal capacity. These results suggest that HDAC6 and USP9X are crucial epigenetic enzymes that promote GBM tumorigenesis by modulating glutamine metabolism.
Collapse
Affiliation(s)
- Go Woon Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Minhae Cha
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hien Thi My Ong
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Yoo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Yu Hyun Jeon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Sang Wu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Soo Yeon Oh
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Youngsoo Kim
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea
| |
Collapse
|
45
|
Zagare A, Balaur I, Rougny A, Saraiva C, Gobin M, Monzel AS, Ghosh S, Satagopam VP, Schwamborn JC. Deciphering shared molecular dysregulation across Parkinson's disease variants using a multi-modal network-based data integration and analysis. NPJ Parkinsons Dis 2025; 11:63. [PMID: 40164620 PMCID: PMC11958823 DOI: 10.1038/s41531-025-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder with no effective treatment. Advances in neuroscience and systems biomedicine now enable the use of complex patient-specific in vitro disease models and cutting-edge computational tools for data integration, enhancing our understanding of complex PD mechanisms. To explore common biomedical features across monogenic PD forms, we developed a knowledge graph (KG) by integrating previously published high-content imaging and RNA sequencing data of PD patient-specific midbrain organoids harbouring LRRK2-G2019S, SNCA triplication, GBA-N370S or MIRO1-R272Q mutations with publicly available biological data. Furthermore, we generated a single-cell RNA sequencing dataset of midbrain organoids derived from idiopathic PD patients (IPD) to stratify IPD patients within the spectrum of monogenic forms of PD. Despite the high degree of PD heterogeneity, we found that common transcriptomic dysregulation in monogenic PD forms is reflected in glial cells of IPD patient midbrain organoids. In addition, dysregulation in ROBO signalling might be involved in shared pathophysiology between monogenic PD and IPD cases.
Collapse
Affiliation(s)
- Alise Zagare
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Irina Balaur
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Adrien Rougny
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Claudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Matthieu Gobin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Soumyabrata Ghosh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata P Satagopam
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
46
|
Jain A, Heremans I, Rademaker G, Detomasi TC, Rohweder P, Anderson D, Zhang J, Hernandez GA, Gupta S, von Linde T, Lange M, Spacci M, Luo J, Citron YR, Olzmann JA, Dawson DW, Craik CS, Bommer G, Perera RM, Zoncu R. Leucine aminopeptidase LyLAP enables lysosomal degradation of membrane proteins. Science 2025; 387:eadq8331. [PMID: 40146846 DOI: 10.1126/science.adq8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/25/2024] [Accepted: 01/13/2025] [Indexed: 03/29/2025]
Abstract
Breakdown of every transmembrane protein trafficked to lysosomes requires proteolysis of their hydrophobic helical transmembrane domains. Combining lysosomal proteomics with functional genomic datasets, we identified lysosomal leucine aminopeptidase (LyLAP; formerly phospholipase B domain-containing 1) as the hydrolase most tightly associated with elevated endocytosis. Untargeted metabolomics and biochemical reconstitution demonstrated that LyLAP is a processive monoaminopeptidase with preference for amino-terminal leucine. This activity was necessary and sufficient for the breakdown of hydrophobic transmembrane domains. LyLAP was up-regulated in pancreatic ductal adenocarcinoma (PDA), which relies on macropinocytosis for nutrient uptake. In PDA cells, LyLAP ablation led to the buildup of undigested hydrophobic peptides, lysosomal membrane damage, and growth inhibition. Thus, LyLAP enables lysosomal degradation of membrane proteins and protects lysosomal integrity in highly endocytic cancer cells.
Collapse
Affiliation(s)
- Aakriti Jain
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Isaac Heremans
- Metabolic Research Group, de Duve Institute and WELBIO, Universite Catholique de Louvain, Brussels, Belgium
| | - Gilles Rademaker
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler C Detomasi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Dashiell Anderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Justin Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Grace A Hernandez
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Suprit Gupta
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Teresa von Linde
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Martina Spacci
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jiayi Luo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Y Rose Citron
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Guido Bommer
- Metabolic Research Group, de Duve Institute and WELBIO, Universite Catholique de Louvain, Brussels, Belgium
| | - Rushika M Perera
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
47
|
Sanfilippo C, Castrogiovanni P, Imbesi R, Vecchio M, Vinciguerra M, Blennow K, Zetterberg H, Di Rosa M. Sex-specific modulation of FOLR1 and its cycle enzyme genes in Alzheimer's disease brain regions. Metab Brain Dis 2025; 40:163. [PMID: 40153031 DOI: 10.1007/s11011-025-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/13/2025] [Indexed: 03/30/2025]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive cognitive and functional decline. Its incidence increases significantly with age and is more prevalent in women than men. We investigated the folate receptor alpha (FOLR1) gene expression levels in the central nervous system (CNS) of AD and non-demented healthy control (NDHC) subjects. Our cohort included 3,946 samples: 2,391 NDHC and 1,555 AD patients, stratified by brain region, age, and sex. Interestingly, a significant increase in FOLR1 expression was observed only in females with AD compared to NDHC females. Furthermore, we found that FOLR1 expression was differentially increased in the prefrontal cortex (PFC) and diencephalon (DIE) only in AD females. Moreover, in females, genes involved in the folic acid (FA) cycle that drives DNA synthesis were significantly modulated. In contrast, in males, downregulation of TYMS effectively blocks the completion of the cycle, thereby preventing downstream DNA synthesis. Tissue Transcriptome Deconvolution (TTD) analysis revealed astrocytes and endothelial cells associated with FOLR1 expression in both AD males and females. Gene Ontology analysis supported these findings, showing enrichment in processes aligned with these cell types. Positive correlations between brain FOLR1 expression and markers for astrocytes (glial fibrillary acidic protein) and endothelial cells (CD31) provided further validation. Our findings suggest a potential role for sex-dependent FOLR1 expression and its association with specific brain regions and cellular processes in AD.
Collapse
Affiliation(s)
- Cristina Sanfilippo
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF, Ingrassia, University of Catania, Via Santa Sofia n.78, Catania, Sicily, 95100, Italy
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy
| | - Michele Vecchio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute, Medical University Varna, Varna, Bulgaria
- Liverpool Centre for Cardiovascular Science, Faculty of Health, Liverpool John Moores University, Liverpool, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer'S Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
48
|
Zhang X, Mille-Fragoso LS, Kaseniit KE, Lee AP, Zhang M, Call CC, Hu Y, Xie Y, Gao XJ. Post-transcriptional modular synthetic receptors. Nat Chem Biol 2025:10.1038/s41589-025-01872-w. [PMID: 40155716 DOI: 10.1038/s41589-025-01872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025]
Abstract
Inspired by the power of transcriptional synthetic receptors and hoping to complement them to expand the toolbox for cell engineering, we establish LIDAR (Ligand-Induced Dimerization-Activating RNA editing), a modular post-transcriptional synthetic receptor platform that harnesses RNA editing by adenosine deaminases acting on RNA. LIDAR is compatible with various receptor architectures in different cellular contexts and enables the sensing of diverse ligands and the production of functional outputs. Furthermore, LIDAR can sense orthogonal signals in the same cell and produce synthetic spatial patterns, potentially enabling the programming of complex multicellular behaviors. Lastly, LIDAR is compatible with compact encoding and can be delivered as synthetic mRNA. Thus, LIDAR expands the family of synthetic receptors, holding the promise to empower basic research and therapeutic applications.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Luis S Mille-Fragoso
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - K Eerik Kaseniit
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - Arden P Lee
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Meng Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yixin Hu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yunxin Xie
- The Chinese Undergraduate Visiting Research (UGVR) Program, Stanford, CA, USA
| | - Xiaojing J Gao
- Stanford Bio-X, Stanford University, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
49
|
Zhou M, Yang Y, He S, Xu Q, Du C, Tian W, Chen H. Ingenane Diterpenoids from Euphorbia peplus as Potential New CHK1 Inhibitors That Sensitize Cancer Cells to Chemotherapy. JOURNAL OF NATURAL PRODUCTS 2025; 88:688-705. [PMID: 40056138 DOI: 10.1021/acs.jnatprod.4c01343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Phosphorylation of checkpoint kinase 1 at Ser-345 (p-CHK1(S345)) mediates the replication stress response in cancer cells, leading to chemotherapy resistance. Therefore, finding inhibitors of p-CHK1(S345) is currently a promising strategy to prevent acquired drug resistance. In this study, 14 ingenane diterpenoids (1-14), involving two undescribed compounds possessing an unprecedented exocyclic double bond Δ6(20), were identified from Euphorbia peplus. The inhibitory effects of the isolated compounds on p-CHK1(S345) and their structure-activity relationship (SAR) were investigated. Compounds 7 and 8 presented the strongest inhibitory effects, abrogated cell cycle arrest, and caused the accumulation of DNA damage, improving the sensitivity of cancer cells to chemotherapeutic drugs. An in vivo assay confirmed the enhancement of 8 on the anticancer effect of topotecan via blocking of p-CHK1(S345). Mechanistically, 8 increased CHK1 ubiquitination to inhibit p-CHK1(S345) via activation of protein kinase C (PKC). PKC activation was first found to enhance CHK1 ubiquitination to block p-CHK1(S345). Above all, this finding not only indicates that compound 8 could be developed as a novel CHK1 inhibitor but also reveals a previously unrecognized role of PKC in regulating cancer chemotherapy sensitivity.
Collapse
Affiliation(s)
- Mi Zhou
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yanlan Yang
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Shoulun He
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Qiannan Xu
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Chunchun Du
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Wenjing Tian
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| | - Haifeng Chen
- School of Pharmaceutical Science, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen 361002, China
| |
Collapse
|
50
|
Barés G, Beà A, Sancho-Balsells A, Valero JG, Aluja D, Inserte J, García-Carpi S, Miró-Casas E, Borràs-Pernas S, Hernández S, Martínez-Val A, Olsen JV, Tebar F, Cañas X, Comella JX, Pérez-Galán P, Ruiz-Meana M, Giralt A, Llovera M, Sanchis D. Mammalian TatD DNase domain containing 1 (TATDN1) is a proteostasis-responsive gene with roles in ventricular structure and neuromuscular function. FEBS J 2025. [PMID: 40123200 DOI: 10.1111/febs.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025]
Abstract
The characterization of highly conserved but poorly understood genes often reveals unexpected biological roles, advancing our understanding of disease mechanisms. One such gene is Mammalian TatD DNase domain containing 1 (Tatdn1), the mammalian homolog of bacterial Twin-arginine translocation D (TatD), a protein proposed to have roles either in DNA degradation or protein quality control in unicellular organisms. Despite its association with different pathologies, including several cancer types and cardiovascular diseases, the role of TATDN1 in mammals remains unexplored. Here, we demonstrate that Tatdn1 encodes a cytoplasmic protein that does not participate in DNA degradation but is upregulated in cells under proteostasis stress. Tatdn1-deficient mice exhibit dysregulated expression of genes involved in membrane and extracellular protein biology, along with mild dilated cardiomyopathy and impaired motor coordination. These findings identify TATDN1 as a key player in cytosolic processes linked to protein homeostasis, with significant physiological implications for cardiac and neurological function.
Collapse
Affiliation(s)
- Gisel Barés
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Spain
- IRBLleida, Lleida, Spain
| | - Aida Beà
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Spain
- IRBLleida, Lleida, Spain
| | - Anna Sancho-Balsells
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan G Valero
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| | - David Aluja
- Cardiovascular Diseases Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari and Universitat Autònoma de Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari and Universitat Autònoma de Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Sandra García-Carpi
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Spain
- IRBLleida, Lleida, Spain
| | - Elisabet Miró-Casas
- Cardiovascular Diseases Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari and Universitat Autònoma de Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Sara Borràs-Pernas
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sara Hernández
- IRBLleida, Lleida, Spain
- Experimental Neuromuscular pathology Group, Departament de Medicina Experimental, Universitat de Lleida and IRBLleida, Lleida, Spain
| | - Ana Martínez-Val
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Proteomics Program, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cellular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xavier Cañas
- Institut de Recerca Sant Joan de Deu Barcelona, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Joan X Comella
- Institut de Recerca Sant Joan de Deu Barcelona, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Patricia Pérez-Galán
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari and Universitat Autònoma de Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Albert Giralt
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Production and Validation Center of Advanced Therapies (Creatio), Faculty of Medicine and Health Science, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marta Llovera
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Spain
- IRBLleida, Lleida, Spain
| | - Daniel Sanchis
- Cell Signaling and Apoptosis Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Spain
- IRBLleida, Lleida, Spain
| |
Collapse
|