1
|
Ashique S, Kumar P, Taj T, Debnath B, Mukherjee S, Patel A, Sridhar SB, Panigrahy UP, Poonia P, Selim S, Hussain MS. Nanotechnology: A State of the Art for the Management of Ocular Disorders—A Roadmap. BIONANOSCIENCE 2025; 15:285. [DOI: 10.1007/s12668-025-01895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 05/04/2025]
|
2
|
Avila YI, Rebolledo LP, Leal Santos N, Rawlins B, Radwan Y, Andrade-Muñoz M, Skelly E, Chandler MR, Andrade LNS, Kim TJ, Dobrovolskaia MA, Afonin KA. Changes in Generations of PAMAM Dendrimers and Compositions of Nucleic Acid Nanoparticles Govern Delivery and Immune Recognition. ACS Biomater Sci Eng 2025. [PMID: 40391736 DOI: 10.1021/acsbiomaterials.5c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Nucleic acid nanoparticles (NANPs) are promising immune modulators due to their well-established structural properties and distinct structure-activity relationship with the immune system. We previously identified that NANPs' size, shape, composition, and type of delivery vehicle define their uptake by immune cells and subsequently induced cytokine profile. In this work, we examined the delivery efficiencies and immunological impacts of two representative NANPs─DNA cubes and RNA cubes─complexed with a benchmark delivery vehicle, Lipofectamine 2000 vs. different generations of amine-terminated poly(amidoamine) dendrimers. Using molecular dynamics simulations, we modeled dendrimer interactions with nucleic acid cargos. Next, we used traditional 2D and more recently established 3D cell cultures to assess dendrimers' influence on NANPs uptake. Immune activation was evaluated in several cell lines engineered with reporter genes driven by key immune signaling pathways. Specifically, HEK-lucia reporter cells were used to evaluate RIG-I activation, while THP1-Dual cells provided quantitative readouts for both IRF and NF-κB transcription factor activity. Our findings demonstrate that both dendrimer generation and NANP composition influence cellular uptake and immune responses. This study underscores the importance of formulation in shaping NANPs' biological properties and further advances the understanding of their immunological properties critical for the development of NANPs-based adjuvants.
Collapse
Affiliation(s)
- Yelixza I Avila
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Laura P Rebolledo
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Nathalia Leal Santos
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Brandon Rawlins
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Yasmine Radwan
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- MIMETAS US, Inc, Gaithersburg, Maryland 20878, United States
| | - Melanie Andrade-Muñoz
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Elizabeth Skelly
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | | | - Luciana N S Andrade
- Center for Translational Research in Oncology (LIM24), Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Tae Jin Kim
- Department of Physical Sciences, West Virginia University Institute of Technology, Beckley, West Virginia 25801, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Kirill A Afonin
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
3
|
Roussel T, Cruz-Dubois T, Louis B, Laurini E, Ding L, Balasse L, Nail V, Dignat-George F, Giorgio S, Pricl S, Guillet B, Garrigue P, Peng L. Impact of inner hydrophobicity of dendrimer nanomicelles on biodistribution: a PET imaging study. J Mater Chem B 2025; 13:5041-5050. [PMID: 39699216 DOI: 10.1039/d4tb01266f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Self-assembly is a powerful strategy for building nanosystems for biomedical applications. We have recently developed small amphiphilic dendrimers capable of self-assembling into nanomicelles for tumor imaging. In this context, we studied the impact of increased hydrophobicity of the amphiphilic dendrimer on hydrophilic/hydrophobic balance and consequently on the self-assembly and subsequent biodistribution. Remarkably, despite maintaining the exact same surface chemistry, similar zeta potential, and small size, the altered and enlarged hydrophobic component within the amphiphilic dendrimer led to enhanced stability of the self-assembled nanomicelles, with prolonged circulation time and massive accumulation in the liver. This study reveals that even structural alteration within the interior of nanomicelles can dramatically impact biodistribution profiles. This finding highlights the deeper complexity of rational design for nanomedicine and the need to consider factors other than surface charge and chemistry, as well as size, all of which significantly impact the biodistribution of self-assembling nanosystems.
Collapse
Affiliation(s)
- Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Twiany Cruz-Dubois
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Beatrice Louis
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
| | - Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Laure Balasse
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Vincent Nail
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | | | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory, Department of Engineering and Architectures, University of Trieste, Trieste 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-136, Poland
| | - Benjamin Guillet
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Philippe Garrigue
- Aix Marseille University, INSERM, INRAE, C2VN, Marseille, France
- Aix Marseille University, CNRS, CERIMED, Marseille, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Marseille, France.
| |
Collapse
|
4
|
Popli P, Meduri RT, Sharma T, Challa RR, Vallamkonda B, Satti PR, Singh TG, Swami R. Polymeric and lipidic nanoparticles in transforming anti-HIV combinational therapy: can they turn the tide? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04169-w. [PMID: 40266304 DOI: 10.1007/s00210-025-04169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025]
Abstract
The HIV-1 pandemic presents a multifaceted challenge across the globe, standing as the foremost public health crisis today. Global data on HIV-related morbidity and mortality are alarming. Effective HIV management hinges on minimizing transmission through highly active antiretroviral therapy (HAART), which relies on a combination of HAART and has been a cornerstone in HIV management. However, challenges such as low patient adherence, suboptimal drug pharmacokinetics, and side effects, potentially undermine the efficacy of existing treatment. Emerging nanotherapeutics, particularly lipidic and polymeric nanoparticles, have exhibited immense promise in addressing these concerns. These nanocarriers enhance targeted drug delivery, facilitate controlled release, and reduce toxicity. Notably, co-delivery strategies using nanoparticles enable the simultaneous transport of multiple drugs involved in HAART. But the question arises whether the exploration is enough to turn the tide. Hence, through this review, the authors have tried to explore and discuss the obstacles faced by the lipid and polymeric nanoparticles such as stability and encapsulation efficiency, and translating these innovations to clinical practice in detail and discussed the future potential of AI-driven nanomedicine.
Collapse
Affiliation(s)
- Pankaj Popli
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Teenu Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | | | - Bhaskar Vallamkonda
- Department of Pharmaceutical Science, School of Applied Sciences and Humanities, VIGNAN'S Foundation for Science, Technology & Research, Guntur, India
| | | | | | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
5
|
Hu J, Arvejeh PM, Bone S, Hett E, Marincola FM, Roh KH. Nanocarriers for cutting-edge cancer immunotherapies. J Transl Med 2025; 23:447. [PMID: 40234928 PMCID: PMC12001629 DOI: 10.1186/s12967-025-06435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer immunotherapy aims to harness the body's own immune system for effective and long-lasting elimination of malignant neoplastic tissues. Owing to the advance in understanding of cancer pathology and immunology, many novel strategies for enhancing immunological responses against various cancers have been successfully developed, and some have translated into excellent clinical outcomes. As one promising strategy for the next generation of immunotherapies, activating the multi-cellular network (MCN) within the tumor microenvironment (TME) to deploy multiple mechanisms of action (MOAs) has attracted significant attention. To achieve this effectively and safely, delivering multiple or pleiotropic therapeutic cargoes to the targeted sites of cancerous tissues, cells, and intracellular organelles is critical, for which numerous nanocarriers have been developed and leveraged. In this review, we first introduce therapeutic payloads categorized according to their predicted functions in cancer immunotherapy and their physicochemical structures and forms. Then, various nanocarriers, along with their unique characteristics, properties, advantages, and limitations, are introduced with notable recent applications in cancer immunotherapy. Following discussions on targeting strategies, a summary of each nanocarrier matching with suitable therapeutic cargoes is provided with comprehensive background information for designing cancer immunotherapy regimens.
Collapse
Affiliation(s)
- Joyce Hu
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | - Pooria M Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sydney Bone
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Erik Hett
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | | | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
- Biotechnology Science and Engineering Program, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
6
|
Ramadan DR, Osman HA, Madhy SA, Teleb M, Darwish AI, Abu-Serie MM, Haiba NS, Khattab SN, Khalil HH. A tailored 4G s-triazine-based dendrimer vehicle for quercetin endowed with MMP-2/9 inhibition and VEGF downregulation for targeting breast cancer progression and liver metastasis. RSC Adv 2025; 15:10426-10441. [PMID: 40182507 PMCID: PMC11967334 DOI: 10.1039/d5ra01588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
Motivated by our recent research progress on the exploitation of s-triazine dendritic platforms as bioactive carriers for well-known anticancer agents and/or targeting ligands, we set out to synthesize new rationally designed dendrimers endowed with MMP-2/9 inhibition potential for halting both breast and liver cancer progression with reduced off-target side effects. New three and four generation s-triazine based dendrimers were developed to incorporate potential ZBGs (Zinc Binding Groups) and carboxyl terminal groups to facilitate direct conjugation of anti-cancer drugs (quercetin) and/or targeting ligands (lactobionic acid) through a biodegradable ester bond. Compared to free quercetin (QUR), MTT assay revealed that all the quercetin-coupled dendrimers displayed better anticancer potential (IC50 = 12.690-29.316, 4.137-29.090 μM) against MCF-7 and HepG-2 cancer cells, respectively within their safe doses (EC100 = 134.35-78.44 μM). Conjugation of lactobionic acid and PEG boosted the anticancer potency against both treated cells, improved apoptosis and down regulated MMP-9 and VEGF gene expression levels in both treated cancer cells. Generally, the more branched G4 dendrimer conjugates exhibited a superior overall anticancer performance compared to their respective G3 analogues, except for their MMP-9 inhibition where G3 conjugate appeared to be more potent and more selective than its G4 analogue.
Collapse
Affiliation(s)
- Doaa R Ramadan
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Heba A Osman
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Alexandria Egypt
| | - Somaya Aly Madhy
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - A I Darwish
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Alexandria Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Alexandria Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University Alexandria Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| |
Collapse
|
7
|
Kumar A, Shahvej SK, Yadav P, Modi U, Yadav AK, Solanki R, Bhatia D. Clinical Applications of Targeted Nanomaterials. Pharmaceutics 2025; 17:379. [PMID: 40143042 PMCID: PMC11944548 DOI: 10.3390/pharmaceutics17030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Targeted nanomaterials are at the forefront of advancements in nanomedicine due to their unique and versatile properties. These include nanoscale size, shape, surface chemistry, mechanical flexibility, fluorescence, optical behavior, magnetic and electronic characteristics, as well as biocompatibility and biodegradability. These attributes enable their application across diverse fields, including drug delivery. This review explores the fundamental characteristics of nanomaterials and emphasizes their importance in clinical applications. It further delves into methodologies for nanoparticle programming alongside discussions on clinical trials and case studies. We discussed some of the promising nanomaterials, such as polymeric nanoparticles, carbon-based nanoparticles, and metallic nanoparticles, and their role in biomedical applications. This review underscores significant advancements in translating nanomaterials into clinical applications and highlights the potential of these innovative approaches in revolutionizing the medical field.
Collapse
Affiliation(s)
- Ankesh Kumar
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - SK Shahvej
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India
| | - Pankaj Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Amit K. Yadav
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
8
|
Shi Z, Artemenko M, Yu W, Zhang M, Yi C, Chen P, Lin S, Bian Z, Lian B, Meng F, Chen J, Roussel T, Li Y, Chan KKL, Ip PPC, Lai HC, To SKY, Liu X, Peng L, Wong AST. Bola-Amphiphilic Dendrimer Enhances Imatinib to Target Metastatic Ovarian Cancer via β-Catenin-HRP2 Signaling Axis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2884-2898. [PMID: 39752231 PMCID: PMC11744500 DOI: 10.1021/acsami.4c12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
Ovarian cancer is the leading cause of death among all gynecological malignancies, and drug resistance renders the current chemotherapy agents ineffective for patients with advanced metastatic tumors. We report an effective treatment strategy for targeting metastatic ovarian cancer involving a nanoformulation (Bola/IM)─bola-amphiphilic dendrimer (Bola)-encapsulated imatinib (IM)─to target the critical mediator of ovarian cancer stem cells (CSCs) CD117 (c-Kit). Bola/IM offered significantly more effective targeting of CSCs compared to IM alone, through a novel and tumor-specific β-catenin/HRP2 axis, allowing potent inhibition of cancer cell survival, stemness, and metastasis in metastatic and drug-resistant ovarian cancer cells. Promising results were also obtained in clinically relevant patient-derived ascites and organoids alongside high tumor-oriented accumulation and favorable pharmacokinetic properties in mouse models. Furthermore, Bola/IM displayed synergistic anticancer activity when combined with the first-line chemotherapeutic drug cisplatin in patient-derived xenograft mouse models without any adverse effects. Our findings support the use of Bola/IM as a nanoformulation to empower IM, providing targeted and potent treatment of metastatic ovarian cancer. Our study thus represents a significant advancement toward addressing the unmet medical need for improved therapies targeting this challenging disease.
Collapse
Affiliation(s)
- Zeyu Shi
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 999077, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Pokfulam, Hong Kong 999077, China
| | - Margarita Artemenko
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 999077, China
| | - Weiyu Yu
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 999077, China
| | - Ming Zhang
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 999077, China
| | - Canhui Yi
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 999077, China
| | - Peng Chen
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Shuting Lin
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Zhancun Bian
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Aix-Marseille
Université, CNRS, Centre Interdisciplinaire de Nanoscience
de Marseille, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Baoping Lian
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Fanzhen Meng
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaxuan Chen
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Aix-Marseille
Université, CNRS, Centre Interdisciplinaire de Nanoscience
de Marseille, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Tom Roussel
- Aix-Marseille
Université, CNRS, Centre Interdisciplinaire de Nanoscience
de Marseille, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Ying Li
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Karen K. L. Chan
- Department
of Obstetrics and Gynecology, Queen Mary Hospital, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Philip P. C. Ip
- Department
of Pathology, Queen Mary Hospital, University
of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hung-Cheng Lai
- Department
of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department
of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
| | - Sally K. Y. To
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 999077, China
- Laboratory
for Synthetic Chemistry and Chemical Biology Limited, Pokfulam, Hong Kong 999077, China
| | - Xiaoxuan Liu
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals
and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Peng
- Aix-Marseille
Université, CNRS, Centre Interdisciplinaire de Nanoscience
de Marseille, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Alice S. T. Wong
- School
of Biological Sciences, University of Hong
Kong, Pokfulam, Hong Kong 999077, China
| |
Collapse
|
9
|
Stadler J, Garmo LG, Doyle D, Cheng CI, Richardson G, Waheed Z, Tofan T, Srinageshwar B, Sharma A, Petersen RB, Dunbar GL, Rossignol J. Curcumin encapsulated in PAMAM dendrimers for the therapeutic treatment of ischemic stroke in rats. Front Cell Dev Biol 2025; 12:1467417. [PMID: 39834388 PMCID: PMC11743639 DOI: 10.3389/fcell.2024.1467417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Ischemic stroke is a devastating neurovascular condition that occurs when cerebral tissue fails to receive an adequate supply of oxygen. Despite being a leading cause of death and disability worldwide, therapeutic interventions are currently limited. Polyamidoamine (PAMAM) dendrimers are nanomolecules commonly used in biomedical applications due to their ability to encapsulate small-molecules and improve their pharmacokinetic properties. Curcumin is known to have anti-inflammatory and antioxidant effects yet suffers from poor solubility and bioavailability. The purpose of this study is to investigate the efficacy of curcumin encapsulated in PAMAM dendrimers as a potential therapeutic treatment for ischemic stroke by studying post-stroke lesion size, astrocyte reactivity, and functional recovery in a rat model of cerebral ischemia. Methods Forty-eight male and female Sprague-Dawley rats (280-380 g) underwent either a 90-min middle cerebral artery occlusion (MCAo) or sham surgery before receiving one of four treatments: (1) Hanks' balanced salt solution (HBSS) control, (2) empty dendrimer control, (3) curcumin control, or (4) curcumin encapsulated in PAMAM dendrimer. Neurobehavioral outcomes were evaluated at 1-, 3-, 5-, and 7-day post-surgery, after which animals were euthanized on day 8 to assess infarct volume and GFAP immunoreactivity. Results Animals that received formulations containing dendrimers (curcumin encapsulated in dendrimers or empty dendrimers) demonstrated significantly lower levels of GFAP immunoreactivity and improved functional recovery, including weight and neurobehavioral scores, compared to the formulations that did not contain dendrimers (curcumin and HBSS control). Additionally, the dendrimer-curcumin treatment group exhibited a significantly improved paw laterality index over the course of the study compared with the other three treatment groups. Conclusion Although the post-stroke administration of curcumin encapsulated in PAMAM dendrimers modulates the astrocytic response and promotes functional recovery following ischemic stroke in rats, its therapeutic benefits may be driven by PAMAM dendrimers as the empty dendrimer treatment group also showed significant improvements post-stroke. Further investigation regarding PAMAM dendrimers in treating neuroinflammatory conditions remains warranted.
Collapse
Affiliation(s)
- Justin Stadler
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Lucas G. Garmo
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - David Doyle
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Chin-I. Cheng
- Department of Statistics, Actuarial and Data Science, Central Michigan University, Mt. Pleasant, MI, United States
| | - Garrett Richardson
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Zain Waheed
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Tim Tofan
- School of Business, Wayne State University, Detroit, MI, United States
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| | - Ajit Sharma
- Department of Chemistry & Biochemistry, Central Michigan University, Mount Pleasant, MI, United States
| | - Robert B. Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Gary L. Dunbar
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
10
|
Ma X, Poma A. Clinical translation and envisioned impact of nanotech for infection control: Economy, government policy and public awareness. NANOTECHNOLOGY TOOLS FOR INFECTION CONTROL 2025:299-392. [DOI: 10.1016/b978-0-12-823994-0.00004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Gulyaev IA, Sokol MB, Mollaeva MR, Klimenko MA, Yabbarov NG, Chirkina MV, Nikolskaya ED. Polymeric Drug Delivery Systems in Biomedicine. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S233-S262. [PMID: 40164161 DOI: 10.1134/s0006297924603976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Our review examines the key aspects of using polymeric carriers in biomedicine. The section "Polymers for Biomedicine" provides an overview of different types of polymers, their structural features and properties that determine their use as drug delivery vehicles. The section "Polymeric Carriers" characterizes the role of polymeric delivery systems in modern medicine. The main forms of polymeric carriers are described, as well as their key advantages for drug delivery. The section "Preclinical and Clinical Trials of Polymeric Drug Carriers" reviews the examples of clinical and preclinical studies of polymeric forms used for antitumor therapy, therapy for bacterial and infectious diseases. The final section "Targeted Drug Delivery Systems" is devoted to the discussion of approaches, as well as ligands that provide targeted drug delivery using polymeric carriers. We have paid special attention to modern approaches for increasing the efficacy of antibacterial therapy using vector molecules.
Collapse
Affiliation(s)
- Ivan A Gulyaev
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Maria B Sokol
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Mariia R Mollaeva
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maksim A Klimenko
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Nikita G Yabbarov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Margarita V Chirkina
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena D Nikolskaya
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
12
|
Dhiman A, Rana D, Benival D, Garkhal K. Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies. Ther Deliv 2025; 16:87-115. [PMID: 39445563 PMCID: PMC11703381 DOI: 10.1080/20415990.2024.2415281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.
Collapse
Affiliation(s)
- Ashish Dhiman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| |
Collapse
|
13
|
Gao Y, Li A, Li Y, Guo H, He L, Li K, Shcharbin D, Shi X, Shen M. Dendrimer/Copper(II) Complex-Mediated siRNA Delivery Disrupts Lactate Metabolism to Reprogram the Local Immune Microenvironment against Tumor Growth and Metastasis. Biomacromolecules 2024; 25:7995-8005. [PMID: 39570391 DOI: 10.1021/acs.biomac.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Solid tumors reprogram metabolic pathways to meet their biosynthesis demands, resulting in elevated levels of metabolites in the tumor microenvironment (TME), including lactate. Excessive accumulation and active transportation of lactate within the TME drives tumor progression, metastasis, and immunosuppression. Interruption of TME lactate metabolism is expected to restore antitumor responses and sensitize tumor immunotherapy. Herein, we developed phenylboronic acid- and pyridine-modified poly(amidoamine) dendrimer/copper(II) (Cu(II)) complexes, namely, D-Cu complexes, to deliver monocarboxylate transporter 4 siRNA (siMCT4) and disrupt the tumor lactate shuttle. The D-Cu complexes are shown to have a Cu(II)-mediated chemodynamic effect and T1-weighted magnetic resonance imaging potential (r1 relaxivity = 1.19 mM-1 s-1), enabling effective siMCT4 delivery to inhibit lactate efflux within cancer cells. In combination with a CD11b immune agonist, the treatment of D-Cu/siMCT4 polyplexes in a mouse breast tumor model alleviates local TME immunosuppression, leading to excellent inhibition of both primary tumor growth and lung metastasis.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Aiyu Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Yanying Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Liangyu He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Kangan Li
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaja 27, 220072 Minsk, Belarus
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
14
|
Braga CB, Perli G, Wang Q, Wylie L, Bertuzzi DL, Soares MCP, Ramos MD, Ruiz J, Padua A, Astruc D, Ornelas C. Unveiling Hierarchical Self-Assembly of Triazolylferrocenyl Dendrimers: Producing Non-Traditional Intrinsically Green Fluorescent Vesosomes for Nanotheranostics. Adv Healthc Mater 2024; 13:e2402888. [PMID: 39279325 DOI: 10.1002/adhm.202402888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Dendrimers and supramolecular chemistry continue to fascinate researchers due to the endless unrevealed potential of their combination. This study investigates the self-assembly process of a series of hydrophobic triazolylferrocenyl dendrimers in aqueous medium. Deep investigation through NMR spectroscopy, absorption UV-vis spectroscopy along with theoretical simulations demonstrates that the ferrocenyl moieties interact intramolecularly and intermolecularly driving the self-assembly process. Data obtained by DLS, NTA, SEM, TEM, and EF-TEM demonstrate that these dendrimers, in water, spontaneously self-assemble through a hierarchical process. The dendrimers first self-assemble into uniform nanovesicles, which in turn self-assemble into larger vesosomes. The resulting vesosomes emit green non-traditional intrinsic fluorescence, which is a property that emerged from the self-assembled architectures. The vesosomes are efficiently uptaken by cancer cells and induce significant cytotoxic activity against the cancer cell line MCF-7, up to the submicromolar concentration. Positive dendritic effects are identified in the fluorescence intensity and in the cytotoxic activity of the vesosomes, which follow the trend G0-9Fc < G1-27Fc < G2-81Fc. This work showcases the remarkable potential of combining the two dynamic fields of dendrimers and supramolecular chemistry, which resulted in green fluorescent vesosomes capable of performing the dual role of cell imaging and killing, with potential applications in nanotheranostics.
Collapse
Affiliation(s)
- Carolyne B Braga
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154 Campinas, Sao Paulo, 13083-970, Brazil
| | - Gabriel Perli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154 Campinas, Sao Paulo, 13083-970, Brazil
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Donostia-San Sebastián, 20018, Spain
| | - Qi Wang
- Groupe Nanosciences Moléculaires et Catalyse, Institut des Sciences Moléculaires, UMR CNRS N° 5255, Université Bordeaux I, 351, Cours de la Libération, Talence, Cedex, 33405, France
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, D-53115, Bonn, Germany
| | - Diego L Bertuzzi
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154 Campinas, Sao Paulo, 13083-970, Brazil
| | - Marco C P Soares
- Laboratory of Photonic Materials and Devices, Cidade Universitaria Zeferino Vaz, School of Mechanical Engineering, University of Campinas, Rua Mendeleyev 200 Campinas, Sao Paulo, 13083-860, Brazil
| | - Miguel D Ramos
- Instituto de Química, Universidade de São Paulo, USP, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, Brazil
| | - Jaime Ruiz
- Groupe Nanosciences Moléculaires et Catalyse, Institut des Sciences Moléculaires, UMR CNRS N° 5255, Université Bordeaux I, 351, Cours de la Libération, Talence, Cedex, 33405, France
| | - Agilio Padua
- Laboratoire de Chimie, École Normale Supérieure de Lyon, CNRS, Lyon, 69342, France
| | - Didier Astruc
- Groupe Nanosciences Moléculaires et Catalyse, Institut des Sciences Moléculaires, UMR CNRS N° 5255, Université Bordeaux I, 351, Cours de la Libération, Talence, Cedex, 33405, France
| | - Catia Ornelas
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154 Campinas, Sao Paulo, 13083-970, Brazil
- ChemistryX, R&D Department, R&D and Consulting Company, Funchal, 9000, Portugal
- Dendriwave, R&D Department, Research & Development Start-Up Company, Funchal, 9000, Portugal
| |
Collapse
|
15
|
Nemakhavhani L, Abrahamse H, Kumar SSD. A review on dendrimer-based nanoconjugates and their intracellular trafficking in cancer photodynamic therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:384-398. [PMID: 39101753 DOI: 10.1080/21691401.2024.2368033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.
Collapse
Affiliation(s)
- Lufuno Nemakhavhani
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
16
|
Tomalia DA. Dendrimers, Dendrons, and the Dendritic State: Reflection on the Last Decade with Expected New Roles in Pharma, Medicine, and the Life Sciences. Pharmaceutics 2024; 16:1530. [PMID: 39771509 PMCID: PMC11676903 DOI: 10.3390/pharmaceutics16121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/06/2025] Open
Abstract
This perspective begins with an overview of the major impact that the dendron, dendrimer, and dendritic state (DDDS) discovery has made on traditional polymer science. The entire DDDS technology is underpinned by an unprecedented new polymerization strategy referred to as step-growth, amplification-controlled polymerization (SGACP). This new SGACP paradigm allows for routine polymerization of common monomers and organic materials into precise monodispersed, dendritic macromolecules (i.e., dendrons/dendrimers) with nanoscale sizes and structure-controlled features that match and rival discrete in vivo biopolymers such as proteins and nucleic acids (i.e., DNA, siRNA, mRNA, etc.). These dendritic architectures exhibit unprecedented new intrinsic properties widely recognized to define a new fourth major polymer architecture class, namely: Category (IV): dendrons, dendrimers, and random hyperbranched polymers after traditional categories: (I) linear, (II) cross-linked, and (III) simple-branched types. Historical confusion over the first examples of the structure confirmed and verified cascade, dendron, dendrimer, and arborol syntheses, while associated misuse of accepted dendritic terminology is also reviewed and clarified. The importance of classifying all dendrons and dendrimers based on branch cell symmetry and the significant role of critical nanoscale-design parameters (CNDPs) for optimizing dendritic products for pharma/nanomedicine applications with a focus on enhancing stealth, non-complement activation properties is presented. This is followed by an overview of the extraordinary growth observed for amphiphilic dendron/dendrimer syntheses and their self-assembly into dendritic supramolecular assemblies, as well as many unique applications demonstrated in pharma and nanomedicine, especially involving siRNA delivery and mRNA vaccine development. This perspective is concluded with optimistic expectations predicted for new dendron and dendrimer application roles in pharma, nanomedicine, and life sciences.
Collapse
Affiliation(s)
- Donald A. Tomalia
- The National Dendrimer & Nanotechnology Center, NanoSynthons LLC, Mt. Pleasant, MI 48858, USA; ; Tel.: +1-989-317-3737
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
17
|
Hani U, Choudhary VT, Ghazwani M, Alghazwani Y, Osmani RAM, Kulkarni GS, Shivakumar HG, Wani SUD, Paranthaman S. Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives. Pharmaceutics 2024; 16:1527. [PMID: 39771506 PMCID: PMC11679327 DOI: 10.3390/pharmaceutics16121527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/06/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease. Conventional chemotherapy drug delivery suffers from issues such as the risk of damage to benign cells, which can cause toxicity, and a few tumor cells withstand apoptosis, thereby increasing the likelihood of developing tolerance. The side effects of cancer chemotherapy are often more pronounced than its benefits. Regarding drugs used in cancer chemotherapy, their bioavailability and stability in the tumor microenvironment are the most important issues that need immediate addressing. Hence, an effective and reliable drug delivery system through which both rapid and precise targeting of treatment can be achieved is urgently needed. In this work, we discuss the development of various nanobased carriers in the advancement of cancer therapy-their properties, the potential of polymers for drug delivery, and recent advances in formulations. Additionally, we discuss the use of tumor metabolism-rewriting nanomedicines in strengthening antitumor immune responses and mRNA-based nanotherapeutics in inhibiting tumor progression. We also examine several issues, such as nanotoxicological studies, including their distribution, pharmacokinetics, and toxicology. Although significant attention is being given to nanotechnology, equal attention is needed in laboratories that produce nanomedicines so that they can record themselves in clinical trials. Furthermore, these medicines in clinical trials display overwhelming results with reduced side effects, as well as their ability to modify the dose of the drug.
Collapse
Affiliation(s)
- Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Vikram T. Choudhary
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia; (U.H.); (M.G.)
| | - Yahia Alghazwani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Gururaj S. Kulkarni
- Department of Pharmaceutics, The Oxford College of Pharmacy, Hongsandra, Bengaluru 560068, India;
| | - Hosakote G. Shivakumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru 570015, India; (R.A.M.O.); (H.G.S.)
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar 190006, India;
| | - Sathishbabu Paranthaman
- Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India;
| |
Collapse
|
18
|
Kim D, Kim S, Na DH. Dendrimer nanoplatforms for oral drug delivery applications. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2024. [DOI: 10.1007/s40005-024-00716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/13/2024] [Indexed: 01/06/2025]
|
19
|
Wiseman R, Bigos KL, Arnsten AFT, Slusher BS. Inhibition of brain glutamate carboxypeptidase II (GCPII) to enhance cognitive function. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 102:27-63. [PMID: 39929583 DOI: 10.1016/bs.apha.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Cognitive deficits are a class of symptoms present in a broad range of disorders that go largely unaddressed by current medications. Disruptions in executive function and memory can be detrimental to patient quality of life, so there is a large unmet medical need for novel therapies to improve cognitive performance. Recent research has highlighted the importance of the type II metabotropic glutamate receptor 3 (mGluR3) in patterns of persistent neuronal firing in the dorsolateral prefrontal cortex of primates, a region critical for higher order cognitive processes. The selective, endogenous agonist of the mGlu3 receptor is N-acetylaspartyl glutamate (NAAG). NAAG is hydrolyzed by the enzyme glutamate carboxypeptidase II (GCPII) which is highly upregulated in neuroinflammatory conditions. Inhibition, GCPII has been investigated as a promising therapeutic avenue in a range of preclinical models and the relationship between NAAG and cognitive function has been studied in multiple clinical populations. The following chapter summarizes the body of preclinical and clinical work supporting the inhibition of GCPII to improve cognitive deficits and the drug discovery approaches that have been utilized to improve pharmacokinetics and brain penetration for future clinical translation of GCPII inhibitor.
Collapse
Affiliation(s)
- Robyn Wiseman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kristin L Bigos
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Amy F T Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, Connecticut, New Haven, CT, United States
| | - Barbara S Slusher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
20
|
Lim HY, Dolzhenko AV. 1,3,5-Triazine as a promising scaffold in the development of therapeutic agents against breast cancer. Eur J Med Chem 2024; 276:116680. [PMID: 39018924 DOI: 10.1016/j.ejmech.2024.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
1,3,5-Triazine scaffold has garnered considerable interest due to its wide-ranging pharmacological properties, particularly in the field of cancer research. Breast cancer is the most commonly diagnosed cancer among women. Approximately one in eight women will receive a diagnosis of invasive breast cancer during their lifetime. The five-year survival rate for invasive breast cancer is less than 30 %, indicating a need to develop a more effective therapeutic agent targeting breast cancer. This review discusses bioactive 1,3,5-triazines targeting breast cancer cells by the inhibition of different enzymes, which include PI3K, mTOR, EGFR, VEGFR, FAK, CDK, DHFR, DNA topoisomerase, ubiquitin-conjugating enzyme, carbonic anhydrase, and matrix metalloproteinase. The anticancer agent search in some drug discovery programs is based on compound screening for antiproliferative activity. Often, multiple targets contribute to the anticancer effect of 1,3,5-triazines and this approach allows identification of active molecules prior to identification of their targets.
Collapse
Affiliation(s)
- Han Yin Lim
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia.
| | - Anton V Dolzhenko
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia; Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987 Perth, Western, Bentley, 6845, Australia
| |
Collapse
|
21
|
Ma B, Shi J, Zhang Y, Li Z, Yong H, Zhou YN, Liu S, A S, Zhou D. Enzymatically Activatable Polymers for Disease Diagnosis and Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306358. [PMID: 37992728 DOI: 10.1002/adma.202306358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Indexed: 11/24/2023]
Abstract
The irregular expression or activity of enzymes in the human body leads to various pathological disorders and can therefore be used as an intrinsic trigger for more precise identification of disease foci and controlled release of diagnostics and therapeutics, leading to improved diagnostic accuracy, sensitivity, and therapeutic efficacy while reducing systemic toxicity. Advanced synthesis strategies enable the preparation of polymers with enzymatically activatable skeletons or side chains, while understanding enzymatically responsive mechanisms promotes rational incorporation of activatable units and predictions of the release profile of diagnostics and therapeutics, ultimately leading to promising applications in disease diagnosis and treatment with superior biocompatibility and efficiency. By overcoming the challenges, new opportunities will emerge to inspire researchers to develop more efficient, safer, and clinically reliable enzymatically activatable polymeric carriers as well as prodrugs.
Collapse
Affiliation(s)
- Bin Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahao Shi
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhe Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhili Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ya-Nan Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sigen A
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
22
|
Carter D, Better M, Abbasi S, Zulfiqar F, Shapiro R, Ensign LM. Nanomedicine for Maternal and Fetal Health. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303682. [PMID: 37817368 PMCID: PMC11004090 DOI: 10.1002/smll.202303682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/25/2023] [Indexed: 10/12/2023]
Abstract
Conception, pregnancy, and childbirth are complex processes that affect both mother and fetus. Thus, it is perhaps not surprising that in the United States alone, roughly 11% of women struggle with infertility and 16% of pregnancies involve some sort of complication. This presents a clear need to develop safe and effective treatment options, though the development of therapeutics for use in women's health and particularly in pregnancy is relatively limited. Physiological and biological changes during the menstrual cycle and pregnancy impact biodistribution, pharmacokinetics, and efficacy, further complicating the process of administration and delivery of therapeutics. In addition to the complex pharmacodynamics, there is also the challenge of overcoming physiological barriers that impact various routes of local and systemic administration, including the blood-follicle barrier and the placenta. Nanomedicine presents a unique opportunity to target and sustain drug delivery to the reproductive tract and other relevant organs in the mother and fetus, as well as improve the safety profile and minimize side effects. Nanomedicine-based approaches have the potential to improve the management and treatment of infertility, obstetric complications, and fetal conditions.
Collapse
Affiliation(s)
- Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Laura M. Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Kuhn E, Srinageshwar B, Story DT, Swanson D, Sharma A, Dunbar GL, Rossignol J. Delivery of PAMAM dendrimers and dendriplexes across natural barriers (blood-brain barrier and placental barrier) in healthy pregnant mice. DISCOVER NANO 2024; 19:148. [PMID: 39264474 PMCID: PMC11393257 DOI: 10.1186/s11671-024-04105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Gene therapy is an important tool for treating fetal diseases that allows for the delivery and integration of therapeutic genes into the genome of cells carrying mutations. Nanomolecules, like PAMAM dendrimers, have recently come into wider use for carrying vectors as they have several advantages over viral vectors. Namely, (1) tunable size and surface chemistry, (2) uniform size, (3) the ability to target specific tissues, and (4) the ability to carry large biomolecules and drugs. Recently, we demonstrated that 4th generation (G4) PAMAM dendrimer with a cystamine core and a non-toxic surface having 90% -OH and 10% -NH2 groups (D-Cys) could cross the blood-brain barrier following injection into the bloodstream. In the current study, as a proof of concept, we delivered the dendrimers alone (D-Cys) tagged with Cy5.5 (D-Cys-cy5.5) to healthy pregnant C57BL/6J mice to determine the fate of these dendrimers in the pregnant mice as well as in the fetus. Systematic diffusion of the D-Cys-cy5.5 was evaluated on gestational day 17 (3 days after injection) using in vivo imaging. This revealed that the dendrimer was taken up into circulation and away from the injection site. Analysis of sections by fluorescence microscopy showed that D-Cys-cy5.5 was able to successfully cross the maternal blood-brain barrier. However, analysis of the fetal brains failed to detect dendrimers in the central nervous system (CNS). Instead, they appeared to be retained in the placenta. This is one of the first studies to analyze the distribution of surface-modified PAMAM dendrimer in the pregnant mouse and fetus following systemic injection.
Collapse
Affiliation(s)
- Eric Kuhn
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Bhairavi Srinageshwar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Darren T Story
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Psychology, Saginaw Valley State University, University Center, MI, 48710, USA
| | - Douglas Swanson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Gary L Dunbar
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA
- Department of Psychology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Julien Rossignol
- College of Medicine, Central Michigan University, Mount Pleasant, MI, 48859, USA.
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, 48859, USA.
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| |
Collapse
|
24
|
Kurmaz SV, Komendant RI, Perepelitsina EO, Kurmaz VA, Khodos II, Emelyanova NS, Filatova NV, Amozova VI, Balakina AA, Terentyev AA. New Amphiphilic Terpolymers of N-Vinylpyrrolidone with Acrylic Acid and Triethylene Glycol Dimethacrylate as Promising Drug Delivery: Design, Synthesis and Biological Properties In Vitro. Int J Mol Sci 2024; 25:8422. [PMID: 39125990 PMCID: PMC11312434 DOI: 10.3390/ijms25158422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The terpolymers of N-vinylpyrrolidone (VP) with acrylic acid and triethylene glycol methacrylate were synthesized with more than 90% yield by radical copolymerization in ethanol from monomeric mixtures of different molar composition (98:2:2, 95:5: 2 and 98:2:5) and their monomer composition, absolute molecular masses and hydrodynamic radii in aqueous media were determined. Using the MTT test, these terpolymers were established to be low toxic for non-tumor Vero cells and HeLa tumor cells. Polymer compositions of hydrophobic dye methyl pheophorbide a (MPP) based on studied terpolymers and linear polyvinylpyrrolidone (PVP) were obtained and characterized in water solution. Quantum-chemical modeling of the MPP-copolymer structures was conducted, and the possibility of hydrogen bond formation between terpolymer units and the MPP molecule was shown. Using fluorescence microscopy, the accumulation and distribution of polymer particles in non-tumor (FetMSC) and tumor (HeLa) cells was studied, and an increase in the accumulation of MPP with both types of particles was found.
Collapse
Affiliation(s)
- Svetlana V. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Roman I. Komendant
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Evgenia O. Perepelitsina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Vladimir A. Kurmaz
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Igor I. Khodos
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Nina S. Emelyanova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Natalia V. Filatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Vera I. Amozova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Anastasia A. Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| | - Alexey A. Terentyev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (R.I.K.); (E.O.P.); (V.A.K.); (N.S.E.); (N.V.F.); (V.I.A.); (A.A.B.); (A.A.T.)
| |
Collapse
|
25
|
Wu Y, Li X, Fu X, Huang X, Zhang S, Zhao N, Ma X, Saiding Q, Yang M, Tao W, Zhou X, Huang J. Innovative Nanotechnology in Drug Delivery Systems for Advanced Treatment of Posterior Segment Ocular Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403399. [PMID: 39031809 PMCID: PMC11348104 DOI: 10.1002/advs.202403399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Indexed: 07/22/2024]
Abstract
Funduscopic diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), significantly impact global visual health, leading to impaired vision and irreversible blindness. Delivering drugs to the posterior segment of the eye remains a challenge due to the presence of multiple physiological and anatomical barriers. Conventional drug delivery methods often prove ineffective and may cause side effects. Nanomaterials, characterized by their small size, large surface area, tunable properties, and biocompatibility, enhance the permeability, stability, and targeting of drugs. Ocular nanomaterials encompass a wide range, including lipid nanomaterials, polymer nanomaterials, metal nanomaterials, carbon nanomaterials, quantum dot nanomaterials, and so on. These innovative materials, often combined with hydrogels and exosomes, are engineered to address multiple mechanisms, including macrophage polarization, reactive oxygen species (ROS) scavenging, and anti-vascular endothelial growth factor (VEGF). Compared to conventional modalities, nanomedicines achieve regulated and sustained delivery, reduced administration frequency, prolonged drug action, and minimized side effects. This study delves into the obstacles encountered in drug delivery to the posterior segment and highlights the progress facilitated by nanomedicine. Prospectively, these findings pave the way for next-generation ocular drug delivery systems and deeper clinical research, aiming to refine treatments, alleviate the burden on patients, and ultimately improve visual health globally.
Collapse
Affiliation(s)
- Yue Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xin Li
- Wenzhou Medical UniversityWenzhouZhejiang325035China
| | - Xueyu Fu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | | | - Nan Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Xiaowei Ma
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Wei Tao
- Center for Nanomedicine and Department of AnesthesiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMA02115USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye DiseasesChinese Academy of Medical SciencesShanghai200031China
- Shanghai Research Center of Ophthalmology and OptometryShanghai200031China
| |
Collapse
|
26
|
Yan X, Chen Q. Polyamidoamine Dendrimers: Brain-Targeted Drug Delivery Systems in Glioma Therapy. Polymers (Basel) 2024; 16:2022. [PMID: 39065339 PMCID: PMC11280609 DOI: 10.3390/polym16142022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma is the most common primary intracranial tumor, which is formed by the malignant transformation of glial cells in the brain and spinal cord. It has the characteristics of high incidence, high recurrence rate, high mortality and low cure rate. The treatments for glioma include surgical removal, chemotherapy and radiotherapy. Due to the obstruction of the biological barrier of brain tissue, it is difficult to achieve the desired therapeutic effects. To address the limitations imposed by the brain's natural barriers and enhance the treatment efficacy, researchers have effectively used brain-targeted drug delivery systems (DDSs) in glioma therapy. Polyamidoamine (PAMAM) dendrimers, as branched macromolecular architectures, represent promising candidates for studies in glioma therapy. This review focuses on PAMAM-based DDSs in the treatment of glioma, highlighting their physicochemical characteristics, structural properties as well as an overview of the toxicity and safety profiles.
Collapse
Affiliation(s)
- Xinyi Yan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
27
|
Verma J, Dahiya S. Nanomaterials for diabetes: diagnosis, detection and delivery. NANOTECHNOLOGY 2024; 35:392001. [PMID: 38990067 DOI: 10.1088/1361-6528/ad5db5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
537 million people worldwide suffer from diabetes mellitus, a problem of glucose management that is related to a number of major health risks, including cardiovascular diseases. There is a need for new, efficient formulations of diabetic medications to address this condition and its related consequences because existing treatments have a number of drawbacks and limits. This encouraged the development of treatment plans to get around some of these restrictions, like low therapeutic drug bioavailability or patients' disobedience to existing therapies. Approaches based on nanotechnology have a lot of promise to enhance the treatment of diabetic patients. In order to manage blood glucose, this review article highlights recent developments and explores the potential applications of different materials (polymeric, ceramic, dendrimers, etc.) as nanocarriers for the delivery of insulin and other antidiabetic medications. Using an injectable and acid-degradable polymeric network produced by the electrostatic interaction of oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, we reviewed a glucose-mediated release approach for the self-regulated delivery of insulin, in which, after a degradable nano-network was subcutaneously injected into type 1 diabetic mice,in vivoexperiments confirmed that these formulations improved glucose management. In addition, a discussion of silica-based nanocarriers, their potential for treating diabetes and controlling blood glucose levels, and an explanation of the role of dendrimers in diabetes treatment have been covered. This is done by utilizing the properties of silica nanoparticles, such as their tuneable particle and pore size, surface chemistry, and biocompatibility. The article summarized the significance of nanomaterials and their uses in the diagnosis and treatment of diabetes overall, illuminating the field's potential and outlining its prospects for the future.
Collapse
Affiliation(s)
- Jaya Verma
- Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, People's Republic of China
| | - Shakti Dahiya
- Department of Surgery, Divison of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15244, United States of America
| |
Collapse
|
28
|
Maity T, Balachandran AK, Krishnamurthy LP, Nagar KL, Upadhyayula RS, Sengupta S, Maiti PK. Data-Driven Approaches to Predict Dendrimer Cytotoxicity. ACS OMEGA 2024; 9:24899-24906. [PMID: 38882163 PMCID: PMC11173563 DOI: 10.1021/acsomega.4c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Dendrimers are employed as functional elements in contrast agents and are proposed as nontoxic vehicles for drug delivery. Toxicity is a property that is to be evaluated for this novel class of bionanomaterials for in vivo applications. The current research is hampered due to the lack of structured data sets for toxicity studies for dendrimers. In this work, we have built a data set by curating literature for toxicity data and augmented it with structural and physicochemical features. We present a comprehensive, feature-rich database of dendrimer toxicity measured across various cell lines for prediction, design, and optimization studies. We have also explored novel computational approaches for predicting dendrimer cytotoxicity. We demonstrate superior outcomes for toxicity prediction using essential regression in the space of small data sets.
Collapse
Affiliation(s)
- Tarun Maity
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Anandu K Balachandran
- Accenture Labs, Technology & Innovation, Ecospace, Bellandur, Bengaluru 560087, India
| | | | - Karthik L Nagar
- Accenture Labs, Technology & Innovation, Ecospace, Bellandur, Bengaluru 560087, India
| | | | - Shubhashis Sengupta
- Accenture Labs, Technology & Innovation, Ecospace, Bellandur, Bengaluru 560087, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
29
|
Mahmud MM, Pandey N, Winkles JA, Woodworth GF, Kim AJ. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials. NANO TODAY 2024; 56:102314. [PMID: 38854931 PMCID: PMC11155436 DOI: 10.1016/j.nantod.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.
Collapse
Affiliation(s)
- Md Musavvir Mahmud
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony J. Kim
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
30
|
Zhao M, Zhou M, Lu P, Wang Y, Zeng R, Liu L, Zhu S, Kong L, Zhang J. Local anesthetic delivery systems for the management of postoperative pain. Acta Biomater 2024; 181:1-18. [PMID: 38679404 DOI: 10.1016/j.actbio.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/29/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs), including amide-type LAs, ester-type LAs, and other potential ion-channel blockers, are emerging as drugs for POP management because of their effectiveness and affordability. However, LAs typically exhibit short durations of action and prolonging the duration by increasing their dosage or concentration may increase the risk of motor block or systemic local anesthetic toxicity. In addition, techniques using LAs, such as intrathecal infusion, require professional operation and are prone to catheter displacement, dislodgement, infection, and nerve damage. With the development of materials science and nanotechnology, various LAs delivery systems have been developed to compensate for these disadvantages. Numerous delivery systems have been designed to continuously release a safe dose in a single administration to ensure minimal systemic toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia according to changes in the external trigger conditions, achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this review, we summarize POP pathways, animal models and methods for POP testing, and highlight LAs delivery systems for POP management. STATEMENT OF SIGNIFICANCE: Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs) are emerging as drugs for POP management because of their effectiveness and affordability. However, they exhibit short durations and toxicity. Various LAs delivery systems have been developed to compensate for these disadvantages. They have been designed to continuously release a safe dose in a single administration to ensure minimal toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia to achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this paper, we summarize POP pathways, animal models, and methods for POP testing and highlight LAs delivery systems for POP management.
Collapse
Affiliation(s)
- Mingxu Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China; Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Mengni Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Pengcheng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ying Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Rong Zeng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Lifang Liu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Lingsuo Kong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China.
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
31
|
Lesniak WG, Boinapally S, Lofland G, Jiang Z, Foss CA, Behman Azad B, Jablonska A, Garcia MA, Brzezinski M, Pomper MG. Multimodal, PSMA-Targeted, PAMAM Dendrimer-Drug Conjugates for Treatment of Prostate Cancer: Preclinical Evaluation. Int J Nanomedicine 2024; 19:4995-5010. [PMID: 38832336 PMCID: PMC11146619 DOI: 10.2147/ijn.s454128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/28/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Prostate cancer (PC) is the second most common cancer and the fifth most frequent cause of cancer death among men. Prostate-specific membrane antigen (PSMA) expression is associated with aggressive PC, with expression in over 90% of patients with metastatic disease. Those characteristics have led to its use for PC diagnosis and therapies with radiopharmaceuticals, antibody-drug conjugates, and nanoparticles. Despite these advancements, none of the current therapeutics are curative and show some degree of toxicity. Here we present the synthesis and preclinical evaluation of a multimodal, PSMA-targeted dendrimer-drug conjugate (PT-DDC), synthesized using poly(amidoamine) (PAMAM) dendrimers. PT-DDC was designed to enable imaging of drug delivery, providing valuable insights to understand and enhance therapeutic response. Methods The PT-DDC was synthesized through consecutive conjugation of generation-4 PAMAM dendrimers with maytansinoid-1 (DM1) a highly potent antimitotic agent, Cy5 infrared dye for optical imaging, 2,2',2"-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (NOTA) chelator for radiolabeling with copper-64 and positron emission tomography tomography/computed tomography (PET/CT), lysine-urea-glutamate (KEU) PSMA-targeting moiety and the remaining terminal primary amines were capped with butane-1,2-diol. Non-targeted control dendrimer-drug conjugate (Ctrl-DDC) was formulated without conjugation of KEU. PT-DDC and Ctrl-DDC were characterized using high-performance liquid chromatography, matrix assisted laser desorption ionization mass spectrometry and dynamic light scattering. In vitro and in vivo evaluation of PT-DDC and Ctrl-DDC were carried out in isogenic human prostate cancer PSMA+ PC3 PIP and PSMA- PC3 flu cell lines, and in mice bearing the corresponding xenografts. Results PT-DDC was stable in 1×PBS and human blood plasma and required glutathione for DM1 release. Optical, PET/CT and biodistribution studies confirmed the in vivo PSMA-specificity of PT-DDC. PT-DDC demonstrated dose-dependent accumulation and cytotoxicity in PSMA+ PC3 PIP cells, and also showed growth inhibition of the corresponding tumors. PT-DDC did not accumulate in PSMA- PC3 flu tumors and did not inhibit their growth. Ctrl-DDC did not show PSMA specificity. Conclusion In this study, we synthesized a multimodal theranostic agent capable of delivering DM1 and a radionuclide to PSMA+ tumors. This approach holds promise for enhancing image-guided treatment of aggressive, metastatic subtypes of prostate cancer.
Collapse
Affiliation(s)
- Wojciech G Lesniak
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Srikanth Boinapally
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Gabriela Lofland
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Zirui Jiang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Catherine A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Babak Behman Azad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Anna Jablonska
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Mauro A Garcia
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Maria Brzezinski
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
32
|
González-Caballero MC, de Alba González M, Torres-Ruiz M, Iglesias-Hernández P, Zapata V, Terrón MC, Sachse M, Morales M, Martin-Folgar R, Liste I, Cañas-Portilla AI. Internalization and toxicity of polystyrene nanoplastics on inmortalized human neural stem cells. CHEMOSPHERE 2024; 355:141815. [PMID: 38556182 DOI: 10.1016/j.chemosphere.2024.141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Global plastic production has increased exponentially in recent decades, and a significant part of it persists in the environment, where it degrades into microplastics and nanoplastics (MPs and NPs). These can enter in humans by ingestion, inhalation, and dermal routes, and there is scientific evidence that they are able to reach the systemic circulation and penetrate and accumulate in various tissues and organs. Neurodevelopmental toxicity of NPs is one of the most worrying effects, as they can cross the blood-brain barrier. In the following study, we analyzed, by transmission electron microscopy, the in vitro uptake of 30-nm polystyrene nanoplastics (PS-NPs) into human neural stem cells (NSCs), their accumulation and subcellular localization within the cell. Furthermore, we studied the effects of different concentrations of PS-NPs on cell death, proliferation, and cell differentiation using immunocytochemistry and quantitative real time PCR for specific markers. This study demonstrated that PS-NPs were able to enter the cell, probably by endocytosis, accumulate, and aggregated in human NSCs, without being detected in the nucleus, causing cell death by apoptosis and decreased cell proliferation. This study provides new insights into the interaction and effects of PS-NPs in human NSC and supports the scientific evidence for the involvement of nanoplastic in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ma Carmen González-Caballero
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain.
| | - Mercedes de Alba González
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain
| | - Mónica Torres-Ruiz
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain
| | - Patricia Iglesias-Hernández
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain; Unidad Funcional de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - Verónica Zapata
- Unidad Funcional de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - María C Terrón
- Unidad de Microscopía Electrónica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - Martin Sachse
- Unidad de Microscopía Electrónica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda, Esparta s/n. Ctra. de Las Rozas al Escorial Km 5, 28232, Las Rozas, Madrid, Spain
| | - Raquel Martin-Folgar
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, UNED. Urbanización Monte Rozas, Avda, Esparta s/n. Ctra. de Las Rozas al Escorial Km 5, 28232, Las Rozas, Madrid, Spain
| | - Isabel Liste
- Unidad Funcional de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., 28220, Majadahonda, Madrid, Spain
| | - Ana I Cañas-Portilla
- Área de Toxicología Ambiental, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2, 28220, Majadahonda, Madrid, Spain
| |
Collapse
|
33
|
Davodabadi F, Farasati Far B, Sargazi S, Fatemeh Sajjadi S, Fathi-Karkan S, Mirinejad S, Ghotekar S, Sargazi S, Rahman MM. Nanomaterials-Based Targeting of Long Non-Coding RNAs in Cancer: A Cutting-Edge Review of Current Trends. ChemMedChem 2024; 19:e202300528. [PMID: 38267373 DOI: 10.1002/cmdc.202300528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/26/2024]
Abstract
This review article spotlights the burgeoning potential of using nanotherapeutic strategies to target long non-coding RNAs (lncRNAs) in cancer cells. This updated discourse underlines the prominent role of lncRNAs in instigating cancer, facilitating its progression, and metastasis, validating lncRNAs' potential for being effective diagnostic biomarkers and therapeutic targets. The manuscript offers an in-depth examination of different strategies presently employed to modulate lncRNA expression and function for therapeutic purposes. Among these strategies, Antisense Oligonucleotides (ASOs), RNA interference (RNAi) technologies, and the innovative clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing tools garner noteworthy mention. A significant section of the review is dedicated to nanocarriers and their crucial role in drug delivery. These nanocarriers' efficiency in targeting lncRNAs in varied types of cancers is elaborated upon, validating the importance of targeted therapy. The manuscript culminates by reaffirming the promising prospects of targeting lncRNAs to enhance the accuracy of cancer diagnosis and improve treatment efficacy. Consequently, new paths are opened to more research and innovation in employing nanotherapeutic approaches against lncRNAs in cancer cells. Thus, this comprehensive manuscript serves as a valuable resource that underscores the vital role of lncRNAs and the various nano-strategies for targeting them in cancer treatment. Future research should also focus on unraveling the complex regulatory networks involving lncRNAs and identifying fundamental functional interactions to refine therapeutic strategies targeting lncRNAs in cancer.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 9453155166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Suresh Ghotekar
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
34
|
Zhu Y, Xu L, Kang Y, Cheng Q, He Y, Ji X. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials 2024; 306:122478. [PMID: 38266348 DOI: 10.1016/j.biomaterials.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Platelets play a critical role as circulating cells in the human body and contribute to essential physiological processes such as blood clotting, hemostasis, vascular repair, and thrombus formation. Currently, platelets are extensively employed in the development of innovative biomimetic drug delivery systems, offering significant enhancements in circulation time, biocompatibility, and targeted delivery efficiency compared to conventional drug delivery approaches. Leveraging the unique physiological functions of platelets, these platelet-derived drug delivery systems (DDSs) hold great promise for the treatment of diverse diseases, including cancer, cardiovascular diseases, infectious diseases, wound healing and other diseases. This review primarily focuses on the design and characteristics of existing platelet-derived DDSs, including their preparation and characterization methods. Furthermore, this review comprehensively outlines the applications of these materials across various diseases, offering a holistic understanding of their therapeutic potential. This study aimed to provide a comprehensive overview of the potential value of these materials in clinical treatment, serving as a valuable reference for the advancement of novel platelet-derived DDSs and their broader utilization in the field of disease treatment.
Collapse
Affiliation(s)
- Yalan Zhu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Lingling Xu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Qinzhen Cheng
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Yiling He
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China; Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
35
|
Peng Y, Yang Z, Sun H, Li J, Lan X, Liu S. Nanomaterials in Medicine: Understanding Cellular Uptake, Localization, and Retention for Enhanced Disease Diagnosis and Therapy. Aging Dis 2024; 16:AD.2024.0206-1. [PMID: 38421835 PMCID: PMC11745437 DOI: 10.14336/ad.2024.0206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Nanomaterials (NMs) have emerged as promising tools for disease diagnosis and therapy due to their unique physicochemical properties. To maximize the effectiveness and design of NMs-based medical applications, it is essential to comprehend the complex mechanisms of cellular uptake, subcellular localization, and cellular retention. This review illuminates the various pathways that NMs take to get from the extracellular environment to certain intracellular compartments by investigating the various mechanisms that underlie their interaction with cells. The cellular uptake of NMs involves complex interactions with cell membranes, encompassing endocytosis, phagocytosis, and other active transport mechanisms. Unique uptake patterns across cell types highlight the necessity for customized NMs designs. After internalization, NMs move through a variety of intracellular routes that affect where they are located subcellularly. Understanding these pathways is pivotal for enhancing the targeted delivery of therapeutic agents and imaging probes. Furthermore, the cellular retention of NMs plays a critical role in sustained therapeutic efficacy and long-term imaging capabilities. Factors influencing cellular retention include nanoparticle size, surface chemistry, and the cellular microenvironment. Strategies for prolonging cellular retention are discussed, including surface modifications and encapsulation techniques. In conclusion, a comprehensive understanding of the mechanisms governing cellular uptake, subcellular localization, and cellular retention of NMs is essential for advancing their application in disease diagnosis and therapy. This review provides insights into the intricate interplay between NMs and biological systems, offering a foundation for the rational design of next-generation nanomedicines.
Collapse
Affiliation(s)
- Yue Peng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhengshuang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Hui Sun
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiuwan Lan
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine & Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research & Guangxi Key Laboratory of Brain Science, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
36
|
Liu F, Liu X, Abdiryim T, Gu H, Astruc D. Heterometallic macromolecules: Synthesis, properties and multiple nanomaterial applications. Coord Chem Rev 2024; 500:215544. [DOI: 10.1016/j.ccr.2023.215544] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
37
|
Dasram MH, Naidoo P, Walker RB, Khamanga SM. Targeting the Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment as a Potential Anti-Cancer Strategy. Int J Mol Sci 2024; 25:1371. [PMID: 38338649 PMCID: PMC10855826 DOI: 10.3390/ijms25031371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response. Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models. To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways. This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.
Collapse
Affiliation(s)
| | | | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa (R.B.W.)
| |
Collapse
|
38
|
Gholap AD, Gupta J, Kamandar P, Bhowmik DD, Rojekar S, Faiyazuddin M, Hatvate NT, Mohanto S, Ahmed MG, Subramaniyan V, Kumarasamy V. Harnessing Nanovaccines for Effective Immunization─A Special Concern on COVID-19: Facts, Fidelity, and Future Prospective. ACS Biomater Sci Eng 2024; 10:271-297. [PMID: 38096426 DOI: 10.1021/acsbiomaterials.3c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Nanotechnology has emerged as a transformative pathway in vaccine research and delivery. Nanovaccines, encompassing lipid and nonlipid formulations, exhibit considerable advantages over traditional vaccine techniques, including enhanced antigen stability, heightened immunogenicity, targeted distribution, and the potential for codelivery with adjuvants or immune modulators. This review provides a comprehensive overview of the latest advancements and applications of lipid and non-lipid-based nanovaccines in current vaccination strategies for immunization. The review commences by outlining the fundamental concepts underlying lipid and nonlipid nanovaccine design before delving into the diverse components and production processes employed in their development. Subsequently, a comparative analysis of various nanocarriers is presented, elucidating their distinct physicochemical characteristics and impact on the immune response, along with preclinical and clinical studies. The discussion also highlights how nanotechnology enables the possibility of personalized and combined vaccination techniques, facilitating the creation of tailored nanovaccines to meet the individual patient needs. The ethical aspects concerning the use of nanovaccines, as well as potential safety concerns and public perception, are also addressed. The study underscores the gaps and challenges that must be overcome before adopting nanovaccines in clinical practice. This comprehensive analysis offers vital new insights into lipid and nonlipid nanovaccine status. It emphasizes the significance of continuous research, collaboration among interdisciplinary experts, and regulatory measures to fully unlock the potential of nanotechnology in enhancing immunization and ensuring a healthier, more resilient society.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Juhi Gupta
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Pallavi Kamandar
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Deblina D Bhowmik
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Md Faiyazuddin
- Department of Pharmaceutics, School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India
| | - Navnath T Hatvate
- Institute of Chemical Technology Mumbai, Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru 575018, Karnataka, India
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Salgaonkar SP, Purewal JS, Doshi GM, Fernandes T, Gharat S, Sawarkar SP. New Insights in Psoriasis Management using Herbal Drug Nanocarriers. Curr Pharm Des 2024; 30:2550-2561. [PMID: 39051579 DOI: 10.2174/0113816128330298240708110336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
Psoriasis (Pso) is an autoimmune inflammatory skin disease characterized by red plaques covered in silver scales. The existing treatments provide limited benefits and are associated with certain drawbacks which limit their use. Thus, there is a need to explore more options that are highly target-specific and associated with minimal side effects. Researchers have thoroughly investigated the use of herbal drugs for their therapeutic potential. Preclinical studies demonstrate that phytochemicals such as curcumin, psoralen, and dithranol have antipsoriatic effects. These phytoconstituents inhibit the signalling pathways, such as the interleukin (IL) 23/Th17 axis and IL-36 inflammatory loop involved in the pathogenesis of Pso. These phytoconstituents down-regulate the pro-inflammatory cytokines like IL-17 and tumor necrosis factor (TNF)-α. However, their application in clinical settings is limited due to poor bioavailability and access to target sites. Combining phytoconstituents with modern delivery platforms like nanocarriers can address these shortcomings and improve therapeutic efficacy. This review explores the potential of herbal remedies as a substitute for conventional therapies, emphasizing the clinical trials conducted with these herbal medicines. The paper is supported by the discussion on nanocarriers like liposomes, niosomes, emulsomes, ethosomes, nanostructured lipid carriers, nanoemulsions, and dendrimers that are used to deliver herbal medicines.
Collapse
Affiliation(s)
- Shreyas P Salgaonkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Japneet Singh Purewal
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Mahesh Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Trinette Fernandes
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sujata P Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
40
|
Khatik AS, Kurdhane S, Batheja S, Gupta U. Dendrimers: promises and challenges in drug delivery. MOLECULAR PHARMACEUTICS AND NANO DRUG DELIVERY 2024:237-267. [DOI: 10.1016/b978-0-323-91924-1.00010-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Singh D, Irham LM, Singh A, Kurmi BD. Guanidinium-based Integrated Peptide Dendrimers: Pioneer Nanocarrier in Cancer Therapy. Protein Pept Lett 2024; 31:261-274. [PMID: 38629378 DOI: 10.2174/0109298665292042240325052536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 08/13/2024]
Abstract
The landscape of cancer therapy has witnessed a paradigm shift with the emergence of innovative delivery systems, and Guanidinium-based Peptide Dendrimers have emerged as a vanguard in this transformative journey. With their unique molecular architecture and intrinsic biocompatibility, these dendrimers offer a promising avenue for the targeted delivery of therapeutic cargo in cancer treatment. This comprehensive review delves into the intricate world of Guanidinium- based Peptide Dendrimers, unraveling their structural intricacies, mechanisms of action, and advancements that have propelled them from laboratory curiosities to potential clinical champions. Exploiting the potent properties of guanidinium, these dendrimers exhibit unparalleled precision in encapsulating and transporting diverse cargo molecules, ranging from conventional chemotherapeutics to cutting-edge nucleic acids. The review navigates the depths of their design principles, investigating their prowess in traversing the complex terrain of cellular barriers for optimal cargo delivery. Moreover, it delves into emerging trends, such as personalized therapeutic approaches, multimodal imaging, and bioinformatics-driven design, highlighting their potential to redefine the future of cancer therapy. Crucially, the review addresses the pivotal concerns of biocompatibility and safety, examining cytotoxicity profiles, immune responses, and in vivo studies. It underscores the importance of aligning scientific marvels with the stringent demands of clinical applications. Through each section, the narrative underscores the promises and possibilities that Guanidinium-based Peptide Dendrimers hold and how they can potentially reshape the landscape of precision cancer therapy.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan (140413), India
| | | | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
42
|
Dong C, Yu X, Jin K, Qian J. Overcoming brain barriers through surface-functionalized liposomes for glioblastoma therapy; current status, challenges and future perspective. Nanomedicine (Lond) 2023; 18:2161-2184. [PMID: 38180008 DOI: 10.2217/nnm-2023-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Glioblastoma (GB) originating from astrocytes is considered a grade IV astrocytoma tumor with severe consequences. The blood-brain barrier (BBB) offers a major obstacle in drug delivery to the brain to overcome GB. The current treatment options possess limited efficacy and maximal systemic toxic effects in GB therapy. Emerging techniques such as targeted drug delivery offer significant advantages, including enhanced drug delivery to the tumor site by overcoming the BBB. This review article focuses on the status of surface-modified lipid nanocarriers with functional ligands to efficiently traverse the BBB and improve brain targeting for successful GB treatment. The difficulties with surface-functionalized liposomes and potential future directions for opening up novel treatment options for GB are highlighted.
Collapse
Affiliation(s)
- Changming Dong
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xuebin Yu
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, 321000, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, 312500, China
| |
Collapse
|
43
|
Liu S, Xia Y, Ji F. Advances in macrophage-targeting nanoparticles for the diagnosis and treatment of inflammatory bowel disease. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:785-794. [PMID: 37986666 PMCID: PMC10764192 DOI: 10.3724/zdxbyxb-2023-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/22/2023]
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is not fully elucidated. However, it has been considered that inflammatory macrophages may be involved in the imbalance of the intestinal mucosal immunity to regulate several signaling pathways, leading to IBD progression. The ratio of M1 to M2 subtypes of activated macrophages tends to increase in the inflamed intestinal section. There are challenges in the diagnosis and treatment of IBD, such as unsatisfactory specificity of imaging findings, low drug accumulation in the intestinal lesions, unstable therapeutic efficacy, and drug-related systemic toxicity. Recently developed nanoparticles may provide a new approach for the diagnosis and treatment of IBD. Nanoparticles targeted to macrophages can be used as contrast agents to improve the imaging quality or used as a drug delivery vector to increase the therapeutic efficiency of IBD. This article reviews the research progress on macrophage-targeting nanoparticles for the diagnosis and treatment of IBD to provide a reference for further research and clinical application.
Collapse
Affiliation(s)
- Sha Liu
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yi Xia
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Feng Ji
- Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
44
|
Azzouz A, Roy R. Innovative Strategy for Truly Reversible Capture of Polluting Gases-Application to Carbon Dioxide. Int J Mol Sci 2023; 24:16463. [PMID: 38003653 PMCID: PMC10671383 DOI: 10.3390/ijms242216463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This paper consists of a deep analysis and data comparison of the main strategies undertaken for achieving truly reversible capture of carbon dioxide involving optimized gas uptakes while affording weakest retention strength. So far, most strategies failed because the estimated amount of CO2 produced by equivalent energy was higher than that captured. A more viable and sustainable approach in the present context of a persistent fossil fuel-dependent economy should be based on a judicious compromise between effective CO2 capture with lowest energy for adsorbent regeneration. The most relevant example is that of so-called promising technologies based on amino adsorbents which unavoidably require thermal regeneration. In contrast, OH-functionalized adsorbents barely reach satisfactory CO2 uptakes but act as breathing surfaces affording easy gas release even under ambient conditions or in CO2-free atmospheres. Between these two opposite approaches, there should exist smart approaches to tailor CO2 retention strength even at the expense of the gas uptake. Among these, incorporation of zero-valent metal and/or OH-enriched amines or amine-enriched polyol species are probably the most promising. The main findings provided by the literature are herein deeply and systematically analysed for highlighting the main criteria that allow for designing ideal CO2 adsorbent properties.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- École de Technologie Supérieure, Montreal, QC H3C 1K3, Canada
| | - René Roy
- Nanoqam, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada;
- Glycosciences and Nanomaterials Laboratory, Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada
- Weihai CY Dendrimer Technology Co., Ltd., No. 369-13, Caomiaozi Town, Lingang District, Weihai 264211, China
| |
Collapse
|
45
|
Aflakian F, Mirzavi F, Aiyelabegan HT, Soleimani A, Gholizadeh Navashenaq J, Karimi-Sani I, Rafati Zomorodi A, Vakili-Ghartavol R. Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials. Eur J Pharm Sci 2023; 188:106515. [PMID: 37402428 DOI: 10.1016/j.ejps.2023.106515] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/06/2023]
Abstract
Microbial resistance has increased in recent decades as a result of the extensive and indiscriminate use of antibiotics. The World Health Organization listed antimicrobial resistance as one of ten major global public health threats in 2021. In particular, six major bacterial pathogens, including third-generation cephalosporin-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were found to have the highest resistance-related death rates in 2019. To respond to this urgent call, the creation of new pharmaceutical technologies based on nanoscience and drug delivery systems appears to be the promising strategy against microbial resistance in light of recent advancements, particularly the new knowledge of medicinal biology. Nanomaterials are often defined as substances having sizes between 1 and 100 nm. If the material is used on a small scale; its properties significantly change. They come in a variety of sizes and forms to help provide distinguishing characteristics for a wide range of functions. The field of health sciences has demonstrated a strong interest in numerous nanotechnology applications. Therefore, in this review, prospective nanotechnology-based therapeutics for the management of bacterial infections with multiple medication resistance are critically examined. Recent developments in these innovative treatment techniques are described, with an emphasis on preclinical, clinical, and combinatorial approaches.
Collapse
Affiliation(s)
- Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Anvar Soleimani
- Department of Medical Microbiology, College of Health Sciences, Cihan University-Sulaimaniya, Sulaimaniya, 46001, Kurdistan Region, Iraq
| | | | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
46
|
Xie G, Lin S, Wu F, Liu J. Nanomaterial-based ophthalmic drug delivery. Adv Drug Deliv Rev 2023; 200:115004. [PMID: 37433372 DOI: 10.1016/j.addr.2023.115004] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
The low bioavailability and side effects of conventional drugs for eye disease necessitate the development of efficient drug delivery systems. Accompanying the developments of nanofabrication techniques, nanomaterials have been recognized as promising tools to overcome these challenges due to their flexible and programmable properties. Given the advances achieved in material science, a broad spectrum of functional nanomaterials capable of overcoming various ocular anterior and posterior segment barriers have been explored to satisfy the demands for ocular drug delivery. In this review, we first highlight the unique functions of nanomaterials suitable for carrying and transporting ocular drugs. Then, various functionalization strategies are emphasized to endow nanomaterials with superior performance in enhanced ophthalmic drug delivery. The rational design of several affecting factors is essential for ideal nanomaterial candidates and is depicted as well. Lastly, we introduce the current applications of nanomaterial-based delivery systems in the therapy of different ocular anterior and posterior segment diseases. The limitations of these delivery systems as well as potential solutions are also discussed. This work will inspire innovative design thinking for the development of nanotechnology-mediated strategies for advanced drug delivery and treatment toward ocular diseases.
Collapse
Affiliation(s)
- Guocheng Xie
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Feng Wu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
47
|
Ornelas C, Astruc D. Ferrocene-Based Drugs, Delivery Nanomaterials and Fenton Mechanism: State of the Art, Recent Developments and Prospects. Pharmaceutics 2023; 15:2044. [PMID: 37631259 PMCID: PMC10458437 DOI: 10.3390/pharmaceutics15082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Ferrocene has been the most used organometallic moiety introduced in organic and bioinorganic drugs to cure cancers and various other diseases. Following several pioneering studies, two real breakthroughs occurred in 1996 and 1997. In 1996, Jaouen et al. reported ferrocifens, ferrocene analogs of tamoxifen, the chemotherapeutic for hormone-dependent breast cancer. Several ferrocifens are now in preclinical evaluation. Independently, in 1997, ferroquine, an analog of the antimalarial drug chloroquine upon the introduction of a ferrocenyl substituent in the carbon chain, was reported by the Biot-Brocard group and found to be active against both chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. Ferroquine, in combination with artefenomel, completed phase IIb clinical evaluation in 2019. More than 1000 studies have been published on ferrocenyl-containing pharmacophores against infectious diseases, including parasitic, bacterial, fungal, and viral infections, but the relationship between structure and biological activity has been scarcely demonstrated, unlike for ferrocifens and ferroquines. In a majority of ferrocene-containing drugs, however, the production of reactive oxygen species (ROS), in particular the OH. radical, produced by Fenton catalysis, plays a key role and is scrutinized in this mini-review, together with the supramolecular approach utilizing drug delivery nanosystems, such as micelles, metal-organic frameworks (MOFs), polymers, and dendrimers.
Collapse
Affiliation(s)
- Catia Ornelas
- ChemistryX, R&D Department, R&D and Consulting Company, 9000-160 Funchal, Portugal
| | - Didier Astruc
- University of Bordeaux, ISM, UMR CNRS, No. 5255, 351 Cours de la Libération, CEDEX, 33405 Talence, France
| |
Collapse
|
48
|
Zhang F, Zhang Z, Alt J, Kambhampati SP, Sharma A, Singh S, Nance E, Thomas AG, Rojas C, Rais R, Slusher BS, Kannan RM, Kannan S. Dendrimer-enabled targeted delivery attenuates glutamate excitotoxicity and improves motor function in a rabbit model of cerebral palsy. J Control Release 2023; 358:27-42. [PMID: 37054778 PMCID: PMC10330216 DOI: 10.1016/j.jconrel.2023.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Glutamate carboxypeptidase II (GCPII), localized on the surface of astrocytes and activated microglia, regulates extracellular glutamate concentration in the central nervous system (CNS). We have previously shown that GCPII is upregulated in activated microglia in the presence of inflammation. Inhibition of GCPII activity could reduce glutamate excitotoxicity, which may decrease inflammation and promote a 'normal' microglial phenotype. 2-(3-Mercaptopropyl) pentanedioic acid (2-MPPA) is the first GCPII inhibitor that underwent clinical trials. Unfortunately, immunological toxicities have hindered 2-MPPA clinical translation. Targeted delivery of 2-MPPA specifically to activated microglia and astrocytes that over-express GCPII has the potential to mitigate glutamate excitotoxicity and attenuate neuroinflammation. In this study, we demonstrate that 2-MPPA when conjugated to generation-4, hydroxyl-terminated polyamidoamine (PAMAM) dendrimers (D-2MPPA) localize specifically in activated microglia and astrocytes only in newborn rabbits with cerebral palsy (CP), not in controls. D-2MPPA treatment led to higher 2-MPPA levels in the injured brain regions compared to 2-MPPA treatment, and the extent of D-2MPPA uptake correlated with the injury severity. D-2MPPA was more efficacious than 2-MPPA in decreasing extracellular glutamate level in ex vivo brain slices of CP kits, and in increasing transforming growth factor beta 1 (TGF-β1) level in primary mixed glial cell cultures. A single systemic intravenous dose of D-2MPPA on postnatal day 1 (PND1) decreased microglial activation and resulted in a change in microglial morphology to a more ramified form along with amelioration of motor deficits by PND5. These results indicate that targeted dendrimer-based delivery specifically to activated microglia and astrocytes can improve the efficacy of 2-MPPA by attenuating glutamate excitotoxicity and microglial activation.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Zhi Zhang
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Siva P Kambhampati
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Anjali Sharma
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sarabdeep Singh
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Nance
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Sujatha Kannan
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
49
|
Emmerich K, White DT, Kambhampati SP, Casado GL, Fu TM, Chunawala Z, Sahoo A, Nimmagadda S, Krishnan N, Saxena MT, Walker SL, Betzig E, Kannan RM, Mumm JS. Nanoparticle-based targeting of microglia improves the neural regeneration enhancing effects of immunosuppression in the zebrafish retina. Commun Biol 2023; 6:534. [PMID: 37202450 PMCID: PMC10193316 DOI: 10.1038/s42003-023-04898-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/02/2023] [Indexed: 05/20/2023] Open
Abstract
Retinal Müller glia function as injury-induced stem-like cells in zebrafish but not mammals. However, insights gleaned from zebrafish have been applied to stimulate nascent regenerative responses in the mammalian retina. For instance, microglia/macrophages regulate Müller glia stem cell activity in the chick, zebrafish, and mouse. We previously showed that post-injury immunosuppression by the glucocorticoid dexamethasone accelerated retinal regeneration kinetics in zebrafish. Similarly, microglia ablation enhances regenerative outcomes in the mouse retina. Targeted immunomodulation of microglia reactivity may therefore enhance the regenerative potential of Müller glia for therapeutic purposes. Here, we investigated potential mechanisms by which post-injury dexamethasone accelerates retinal regeneration kinetics, and the effects of dendrimer-based targeting of dexamethasone to reactive microglia. Intravital time-lapse imaging revealed that post-injury dexamethasone inhibited microglia reactivity. The dendrimer-conjugated formulation: (1) decreased dexamethasone-associated systemic toxicity, (2) targeted dexamethasone to reactive microglia, and (3) improved the regeneration enhancing effects of immunosuppression by increasing stem/progenitor proliferation rates. Lastly, we show that the gene rnf2 is required for the enhanced regeneration effect of D-Dex. These data support the use of dendrimer-based targeting of reactive immune cells to reduce toxicity and enhance the regeneration promoting effects of immunosuppressants in the retina.
Collapse
Affiliation(s)
- Kevin Emmerich
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - David T White
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Siva P Kambhampati
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Grace L Casado
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Tian-Ming Fu
- Janelia Farms Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Electrical and Computer Engineering and Princeton Bioengineering Initiative, Princeton University, Princeton, NJ, USA
| | - Zeeshaan Chunawala
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Arpan Sahoo
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Saumya Nimmagadda
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Nimisha Krishnan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Steven L Walker
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Eric Betzig
- Janelia Farms Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Rangaramanujam M Kannan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Jeff S Mumm
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
50
|
Astruc D. From sandwich complexes to dendrimers: journey toward applications to sensing, molecular electronics, materials science, and biomedicine. Chem Commun (Camb) 2023. [PMID: 37191211 DOI: 10.1039/d3cc01175e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This review links various areas of inorganic chemistry around the themes developed by our research group during the last four decades. It is firstly based on the electronic structure of iron sandwich complexes, showing how the metal electron count dictates their reactivities, with various applications (via C-H activation, C-C bond formation) as reducing and oxidizing agents, redox and electrocatalysts and precursors of dendrimers and catalyst templates through bursting reactions. Various electron-transfer processes and consequences are explored, including the influence of the redox state on the acidity of robust ligands and the possibility to iterate in situ C-H activation and C-C bond formation to build arene-cored dendrimers. Examples of how these dendrimers are functionalized are illustrated using the cross olefin metathesis reactions, with application to the synthesis of soft nanomaterials and biomaterials. Mixed and average valence complexes give rise to remarkable subsequent organometallic reactions, including the salt influence on these reactions. The stereo-electronic aspect of these mixed valencies is pointed out in star-shaped multi-ferrocenes with a frustration effect and other multi-organoiron systems, with the perspective of understanding electron-transfer processes among dendrimer redox sites involving electrostatic effects and application to redox sensing and polymer metallocene batteries. Dendritic redox sensing is summarized for biologically relevant anions such as ATP2- with supramolecular exoreceptor interactions at the dendrimer periphery in parallel with the seminal work on metallocene-derived endoreceptors by Beer's group. This aspect includes the design of the first metallodendrimers that have applications in both redox sensing and micellar catalysis with nanoparticles. These properties provide the opportunity to summarize the biomedical (mostly anticancer) applications of ferrocenes, dendrimers and dendritic ferrocenes in biomedicine (in particular the contribution from our group, but not only). Finally, the use of dendrimers as templates for catalysis is illustrated with numerous reactions including C-C bond formation, click reactions and H2 production reactions.
Collapse
Affiliation(s)
- Didier Astruc
- Univ. Bordeaux, ISM, UMR CNRS No. 5255, 351 Cours de la Libération, 33405 Talence Cedex, France.
| |
Collapse
|