1
|
Wang M, Xia X, Li Y, Zhang K, Cheng X, Wen X, Zhao L, Guo X, Song F, Cheng A. Mg 2+-Loaded Black Phosphorus Nanosheet Protects against Cerebral Ischemic Injury through Anti-Oxidative and Anti-Inflammatory Effects. Adv Healthc Mater 2025; 14:e2500929. [PMID: 40192293 DOI: 10.1002/adhm.202500929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Indexed: 05/17/2025]
Abstract
Ischemic stroke is a severe neurological disease, with high morbidity and mortality worldwide. To date, the treatment of ischemic stroke is limited, and its consequent ischemia-reperfusion injury is an important reason for this result. Excessive reactive oxygen species (ROS) and inflammatory storm followed by ischemia-reperfusion alter the microenvironment of cerebral ischemic penumbra, leading to the devastating damage to the brain. Herein, we design a black phosphorus nanosheets (BPNSs) loaded with magnesium ions (Mg2+) and polydopamine (PBP@Mg) to tackle the above problems. BPNSs of PBP@Mg effectively scavenge excessive ROS in neurocytes. Mg2+ plays an anti-inflammatory role in ischemic penumbra. Furthermore, polydopamine improves the stability of BPNSs. PBP@Mg is subsequently injected into the lateral ventricle of a rat model of ischemic stroke, resulting in an improvement of the ischemic microenvironment and a reduction in ischemic volume. BPNSs of PBP@Mg counteract against the excessive generation of ROS and the neuronal apoptosis in ischemic penumbra. Meanwhile, PBP@Mg dramatically suppresses inflammation by promoting the transformation of microglia from M1 to M2 in ischemic penumbra. PBP@Mg group exhibit a significantly better performance in neurofunctional behavior compared to ischemic group. Taken together, this study provides a novel therapeutic approach for cerebral ischemia-reperfusion injury via anti-oxidative and anti-inflammatory effects.
Collapse
Affiliation(s)
- Min Wang
- Jinzhou Medical University Postgraduate Training Base (Zhejiang Provincial People's Hospital), Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Nuclear Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xinyi Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yaoyao Li
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Kai Zhang
- Shanghai Key Laboratory of Neuro-Ultrasound for Diagnosis and Treatment, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xu Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xuehua Wen
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Lijun Zhao
- Jinzhou Medical University Postgraduate Training Base (Zhejiang Provincial People's Hospital), Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Nuclear Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiaopeng Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fahuan Song
- Jinzhou Medical University Postgraduate Training Base (Zhejiang Provincial People's Hospital), Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Nuclear Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Aiping Cheng
- Jinzhou Medical University Postgraduate Training Base (Zhejiang Provincial People's Hospital), Hangzhou, Zhejiang, 310014, China
- Cancer Center, Department of Nuclear Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
2
|
Li Y, Jiang J, Zhuo Y, Li J, Li Y, Xia Y, Yu Z. IGF2BP1 exacerbates neuroinflammation and cerebral ischemia/reperfusion injury by regulating neuronal ferroptosis and microglial polarization. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167877. [PMID: 40294852 DOI: 10.1016/j.bbadis.2025.167877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/18/2025] [Accepted: 04/25/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) injury induces neuronal ferroptosis and microglial phenotypic shifts, driving post-ischemic neurological deficits. This study examines the regulatory role of the N6-methyladenosine (m6A) reader insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in coordinating these pathological processes through Keap1/Nrf2 signaling. METHODS Cerebral I/R injury was modeled in C57BL/6 mice via middle cerebral artery occlusion (MCAO) and in hippocampal neurons and microglia through oxygen-glucose deprivation/reperfusion (OGD/R). Pro-inflammatory microglial polarization was induced by LPS/IFN-γ stimulation. IGF2BP1's functional impacts were assessed through knockdown and overexpression approaches, with mechanistic evaluations focusing on ferroptosis biomarkers, microglial polarization states, and Keap1/Nrf2 pathway activity. A microglia-neuron co-culture system elucidated cellular crosstalk mechanisms. RESULTS MCAO-operated mice demonstrated upregulated IGF2BP1 expression accompanied by neuronal apoptosis and microglial M1 polarization. IGF2BP1 silencing significantly attenuated OGD/R-induced neuronal ferroptosis, evidenced by reduced iron overload (Fe2+), lipid peroxidation (MDA), and reactive oxygen species (ROS) alongside restored glutathione (GSH) levels, while concurrently enhancing GPX4 activity through Keap1/Nrf2 pathway regulation. This intervention further shifted microglial polarization toward the M2 phenotype, effectively mitigating neuroinflammatory responses. Importantly, the neuroprotective effects of IGF2BP1 knockdown were abolished upon Keap1 overexpression. Co-culture experiments revealed that IGF2BP1-depleted microglia suppressed neuronal ferroptosis via phenotypic reprogramming. In vivo validation confirmed that IGF2BP1 knockdown ameliorated neurological deficits and reduced ferroptosis markers in MCAO-challenged mice. CONCLUSION IGF2BP1 serves as a critical regulator of cerebral I/R injury by exacerbating neuronal ferroptosis and sustaining detrimental microglial activation. These findings nominate IGF2BP1 inhibition as a promising strategy for ischemic stroke intervention.
Collapse
Affiliation(s)
- Youjun Li
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Junwen Jiang
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Jiameng Li
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - You Li
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Ying Xia
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Zhengtao Yu
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China.
| |
Collapse
|
3
|
Jasim MH, Saadoon Abbood R, Sanghvi G, Roopashree R, Uthirapathy S, Kashyap A, Sabarivani A, Ray S, Mustafa YF, Yasin HA. Flavonoids in the regulation of microglial-mediated neuroinflammation; focus on fisetin, rutin, and quercetin. Exp Cell Res 2025; 447:114537. [PMID: 40147710 DOI: 10.1016/j.yexcr.2025.114537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Neuroinflammation is a critical mechanism in central nervous system (CNS) inflammatory disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), traumatic brain injury (TBI), encephalitis, spinal cord injury (SCI), and cerebral stroke. Neuroinflammation is characterized by increased blood vessel permeability, leukocyte infiltration, glial cell activation, and elevated production of inflammatory mediators, such as chemokines and cytokines. Microglia act as the resident macrophages of the central nervous system, serving as the principal defense mechanism in brain tissue. After CNS injury, microglia modify their morphology and downregulate genes that promote homeostatic functions. Despite comprehensive transcriptome analyses revealing specific gene modifications in "pathological" microglia, microglia's precise protective or harmful functions in neurological disorders remain insufficiently comprehended. Accumulating data suggests that the polarization of microglia into the M1 proinflammatory phenotype or the M2 antiinflammatory phenotype may serve as a sensible therapeutic strategy for neuroinflammation. Flavonoids, including rutin, fisetin, and quercetin, function as crucial chemical reservoirs with unique structures and diverse actions and are extensively used to modulate microglial polarization in treating neuroinflammation. This paper highlights the detrimental effects of neuroinflammation seen in neurological disorders such as stroke. Furthermore, we investigate their therapeutic benefits in alleviating neuroinflammation via the modulation of macrophage polarization.
Collapse
Affiliation(s)
- Mohannad Hamid Jasim
- Biology Department, College of Education, University of Fallujah, Fallujah, Iraq.
| | - Rosull Saadoon Abbood
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| | - A Sabarivani
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Subhashree Ray
- Department of Biochemistry, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
| | - Hatif Abdulrazaq Yasin
- Department of Medical Laboratories Technology, Al-Nisour University College, Nisour Seq. Karkh, Baghdad, Iraq.
| |
Collapse
|
4
|
Zhang Y, Tang Q, Yao J, Liu H, Xu C, Guo Z, Liu S, Zhao R. Yi-Nao-Jie-Yu Prescription Relieves Post-Stroke Depression by Mitigating Ferroptosis in Hippocampal Neurons Via Activating the Nrf2/GPX4/SLC7A11 Pathway. J Neuroimmune Pharmacol 2025; 20:35. [PMID: 40214929 PMCID: PMC11991945 DOI: 10.1007/s11481-024-10167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/14/2024] [Indexed: 04/14/2025]
Abstract
Post-stroke depression (PSD) poses a serious impact on patients' life quality. Effective drugs to treat this annoying disease are still being sought. Yi-nao-jie-yu (YNJY) prescription has been found to relieve PSD; however, the underlying mechanisms remain unelucidated. This work elucidated the therapeutic effects and mechanisms underlying YNJY prescription in PSD. PSD rat model was treated with YNJY prescription and ML385. Depression-like behaviors of rats was appraised. Hematoxylin-eosin, Nissl, and NeuN immunofluorescence staining were performed to observe hippocampal neuronal damage. Transmission electron microscopy was used to assess hippocampal mitochondrial damage. Commercial kits and western blotting were adopted to research ferroptosis-related factors and Nrf2/GPX4/SLC7A11 signals. In vitro experiments were performed using rat hippocampal neurons to explore the mechanism by which YNJY prescription relieves PSD. In PSD rats, YNJY prescription relieved depression-like behaviors, attenuated hippocampal neuronal damage, mitigated hippocampal ferroptosis and mitochondrial damage, and activated hippocampal Nrf2/GPX4/SLC7A11 pathway. By in vitro experiments, erastin treatment exacerbated hippocampal neuronal damage, ferroptosis, mitochondrial damage, and lipid peroxidation; however, YNJY prescription abolished these erastin-induced effects. In the erastin-treated hippocampal neuronal model of PSD, ML385 treatment increased ferroptosis, hippocampal neuronal damage, and lipid peroxidation; however, YNJY prescription counteracted these ML385-induced effects. By in vivo study, ML385 reversed the relief of YNJY prescription on depressive-like behaviors of PSD rats, and the inhibition on ferroptosis in PSD rats' hippocampus. YNJY prescription relieves PSD by blocking ferroptosis via activating the Nrf2/GPX4/SLC7A11 pathway. It may be a promising agent for treating PSD clinically.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Encephalopathy, Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, 101300, China
| | - Qisheng Tang
- Department of Encephalopathy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jin Yao
- Department of Acupuncture, Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, 101300, China
| | - Hongwei Liu
- Department of Encephalopathy, Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, 101300, China
| | - Changmin Xu
- Department of Encephalopathy, Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, 101300, China
| | - Zechun Guo
- Department of Encephalopathy, Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, 101300, China
| | - Shuqing Liu
- Department of Encephalopathy, Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, 101300, China
| | - Ruizhen Zhao
- Prevention Center, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, China.
- , No. 51, Andingmen Outside Xiaoguan Street, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
5
|
Anaya-Prado R, Canseco-Villegas AI, Anaya-Fernández R, Anaya-Fernandez MM, Guerrero-Palomera MA, Guerrero-Palomera C, Garcia-Ramirez IF, Gonzalez-Martinez D, Azcona-Ramírez CC, Garcia-Perez C, Lizarraga-Valencia AL, Hernandez-Zepeda A, Palomares-Covarrubias JF, Blackaller-Medina JHA, Soto-Hintze J, Velarde-Castillo MC, Cruz-Melendrez DA. Role of nitric oxide in cerebral ischemia/reperfusion injury: A biomolecular overview. World J Clin Cases 2025; 13:101647. [PMID: 40191680 PMCID: PMC11670034 DOI: 10.12998/wjcc.v13.i10.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Nitric oxide (NO) is a gaseous molecule produced by 3 different NO synthase (NOS) isoforms: Neural/brain NOS (nNOS/bNOS, type 1), endothelial NOS (eNOS, type 3) and inducible NOS (type 2). Type 1 and 3 NOS are constitutively expressed. NO can serve different purposes: As a vasoactive molecule, as a neurotransmitter or as an immunomodulator. It plays a key role in cerebral ischemia/reperfusion injury (CIRI). Hypoxic episodes simulate the production of oxygen free radicals, leading to mitochondrial and phospholipid damage. Upon reperfusion, increased levels of oxygen trigger oxide synthases; whose products are associated with neuronal damage by promoting lipid peroxidation, nitrosylation and excitotoxicity. Molecular pathways in CIRI can be altered by NOS. Neuroprotective effects are observed with eNOS activity. While nNOS interplay is prone to endothelial inflammation, oxidative stress and apoptosis. Therefore, nNOS appears to be detrimental. The interaction between NO and other free radicals develops peroxynitrite; which is a cytotoxic agent. It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator (t-PA). Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.
Collapse
Affiliation(s)
- Roberto Anaya-Prado
- Department of Research & Department of Surgery, School of Medicine and Health Sciences, Tecnologico de Monterrey, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Direction of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Abraham I Canseco-Villegas
- Department of Research, School of Medicine and Health Sciences, Tecnologico de Monterrey, Zapopan 45116, Jalisco, Mexico
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Roberto Anaya-Fernández
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Division of Research, School of Medicine, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Michelle Marie Anaya-Fernandez
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
| | - Miguel A Guerrero-Palomera
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Citlalli Guerrero-Palomera
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Ivan F Garcia-Ramirez
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Division of Research, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Daniel Gonzalez-Martinez
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Consuelo Cecilia Azcona-Ramírez
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Claudia Garcia-Perez
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Airim L Lizarraga-Valencia
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Aranza Hernandez-Zepeda
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Jacqueline F Palomares-Covarrubias
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Division of Research, School of Medicine, Autonomous University of Guadalajara, Zapopan 45116, Jalisco, Mexico
| | - Jorge HA Blackaller-Medina
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Research, School of Medicine, UNIVA University, Zapopan 45116, Jalisco, Mexico
| | - Jacqueline Soto-Hintze
- Department of Research, School of Medicine and Health Sciences, Tecnologico de Monterrey, Zapopan 45116, Jalisco, Mexico
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| | - Mayra C Velarde-Castillo
- Division of Research and Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
- Division of Research, School of Medicine, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Dayri A Cruz-Melendrez
- Division of Research, School of Medicine, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Research & Education, Corporate Hospitals Puerta de Hierro, Zapopan 45116, Jalisco, Mexico
| |
Collapse
|
6
|
Han L, Zhai W. Mechanisms and preventive measures of ALDH2 in ischemia‑reperfusion injury: Ferroptosis as a novel target (Review). Mol Med Rep 2025; 31:105. [PMID: 40017132 PMCID: PMC11876945 DOI: 10.3892/mmr.2025.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Ischemia‑reperfusion injury (IRI) refers to tissue or organ damage that occurs following a period of inadequate blood supply (ischemia) followed by restoration of blood flow (reperfusion) within a short time frame. This phenomenon is prevalent in clinical conditions such as cardiovascular and cerebrovascular disease, organ transplantation and stroke. Despite its frequency, effective therapeutic strategies to mitigate IRI remain elusive in clinical practice, underscoring the need for a deeper understanding of its molecular mechanisms. Aldehyde dehydrogenase 2 (ALDH2), a key enzyme in alcohol metabolism, serves a role in alleviating oxidative stress and cell damage during IRI by modulating oxidative stress, decreasing apoptosis and inhibiting inflammatory responses. ALDH2 exerts protective effects by detoxifying reactive aldehydes, thereby preventing lipid peroxidation and maintaining cellular homeostasis. Furthermore, ferroptosis, a regulated form of cell death driven by iron accumulation and subsequent lipid peroxidation, is a key process in IRI. However, the precise role of ALDH2 in modulating ferroptosis during IRI remains incompletely understood. Although there is an interaction between ALDH2 activity and ferroptosis, the underlying mechanisms have yet to be clarified. The present review examines the role of ALDH2 and ferroptosis in IRI and the potential regulatory influence of ALDH2 on ferroptosis mechanisms, as well as potential targeting of ALDH2 and ferroptosis for IRI treatment and prevention. By elucidating the complex interplay between ALDH2 and ferroptosis, the present review aims to provide new insights for the development of innovative therapeutic strategies to mitigate ischemic tissue damage and improve clinical outcomes.
Collapse
Affiliation(s)
- Liang Han
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| | - Wen Zhai
- Center for Rehabilitation Medicine, Department of Anesthesiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
7
|
Fu JL, Zhang JJ, Wu Y, Wang NH, Qi Q, Yang GH, Ren N, Huang D, Li Y, Zhao LJ, Cui X, Xiao X, Xie HY. Effects of electroacupuncture per-conditioning at Huantiao on motor function recovery in acute cerebral ischemia mice. Physiol Behav 2025; 292:114814. [PMID: 39875020 DOI: 10.1016/j.physbeh.2025.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Continuous electroacupuncture pre-conditioning (EPRC) and post-conditioning (EPOC) effectively improve motor dysfunction after acute cerebral ischemia, but they require multiple treatments. Recently, electroacupuncture per-conditioning (EPEC) has demonstrated neuroprotective effects, indicating that this single-session intervention has short-term efficacy. OBJECTIVE To evaluate the effect of EPEC at Huantiao (GB30) on motor recovery in acute cerebral ischemia mice. METHODS Forty-eight male C57 BL/6 mice were divided into three groups: Sham(n = 12), Middle Cerebral Artery Occlusion Reperfusion, MCAO/R (n = 18), and Electroacupuncture, EA (n = 18). The EA group received 60 minutes of electroacupuncture during the ischemic phase. Cerebral blood flow was measured with a laser system, and neurological assessments, brain infarct volume, and neuronal damage were made at 24-, 48-, and 72-hours post-surgery. Motor recovery was tested on day 6, and inflammatory cytokines were measured on day 7. RESULTS EPEC at Huantiao (GB30) significantly improves motor function recovery in acute cerebral ischemia mice(p < 0.05), Significantly reducing cerebral infarct volume(p < 0.05) and mitigating neuronal damage and apoptosis(p < 0.05). It also promotes the restoration of cerebral blood flow during ischemia and regulates gradual restoration of cerebral blood flow in early reperfusion(p < 0.05), potentially reducing reperfusion injury. Additionally, it decreases pro-inflammatory factors such as IL-2, IL-8, and IFN-γ(p < 0.05). CONCLUSION EPEC at Huantiao (GB30) significantly improves motor recovery in acute cerebral ischemia mice by reducing infarct size, lessening neuronal damage and apoptosis, increasing cerebral blood flow during ischemia, regulating gradual restoration of cerebral blood flow in early reperfusion, decreasing pro-inflammatory factors, and alleviating reperfusion injury.
Collapse
Affiliation(s)
- Jia-le Fu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai, 200051, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
| | - Jing-Jun Zhang
- Department of Rehabilitation Medicine, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Yi Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Nian-Hong Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qi Qi
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Guo-Hui Yang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Na Ren
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Dan Huang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li-Juan Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiao Cui
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Shanghai Changning Tianshan Traditional Chinese Medicine Hospital, Shanghai, 200051, China.
| | - Xiao Xiao
- Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
| | - Hong-Yu Xie
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
8
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
9
|
Yashuo F, Chong G, Zhe Y, Lu C, Hongyu X, Yi W, Nianhong W. Electroacupuncture promotes neural function recovery by alleviating mitochondria damage in cerebral ischemia mice. Brain Res 2025; 1851:149479. [PMID: 39892805 DOI: 10.1016/j.brainres.2025.149479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
AIMS This study aimed to observe the effect of electroacupuncture (EA) at Zusanli point (ST36) on motor function of cerebral ischemia mice, and to observe the effect of EA on mitochondrial morphology of peri-infarct cortex neurons in cerebral ischemia mice. METHODS Middle cerebral artery occlusion (MCAO) was used to develop an ischemic stroke mice model. EA treatment was performed for three consecutive days for 15 min per day after MCAO modeling. We investigated the therapeutic effects of EA on MCAO mice by performing neurobehavioral assessment (modified Neurological Severity Score, Rotarod test, Open-field test and Gait analysis) and TTC staining. The morphology and function of neuronal mitochondria were evaluated by transmission electron microscopy, qRT-PCR, chemiluminescence, and western blot. Nissl staining, TUNEL staining and immunofluorescence staining were used to observe neuronal morphology and apoptosis. Furthermore, ELISA was employed to measure the expression levels of inflammatory factors in mouse serum. RESULTS EA alleviated motor dysfunction and infarct volume in mice with cerebral ischemia. It improved the neuronal mitochondria damage in MCAO mice, and decreased the protein and mRNA expression level of mitochondrial fission related proteins (FIS1 and Drp1). In addition, EA can reduce neuronal damage and apoptosis of nerve cells, and decrease the level of inflammatory factors (IL-1β, TNF-α, IL-6 and IL-8) in cerebral ischemia mice. CONCLUSION EA therapy can improve motor dysfunction and alleviate the damage of neuron mitochondria in cerebral ischemic mice.
Collapse
Affiliation(s)
- Feng Yashuo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China
| | - Guan Chong
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China
| | - Yang Zhe
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619 China
| | - Cao Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China
| | - Xie Hongyu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China
| | - Wu Yi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China.
| | - Wang Nianhong
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China.
| |
Collapse
|
10
|
Huang Y, Yang J, Lu T, Shao C, Wan H. Puerarin Alleviates Cerebral Ischemia-Reperfusion Injury by Inhibiting Ferroptosis Through SLC7A11/GPX4/ACSL4 Axis and Alleviate Pyroptosis Through Caspase-1/GSDMD Axis. Mol Neurobiol 2025:10.1007/s12035-025-04798-5. [PMID: 40056342 DOI: 10.1007/s12035-025-04798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025]
Abstract
Cerebral ischemia-reperfusion (CIRI) represents a complex disease entity that encompasses multiple pathways. The occurrence of CIRI induces cerebral infarction, accompanied by brain tissue necrosis and focal neuronal impairment. Previous studies have demonstrated that ferroptosis, a specific cell death pathway implicated in CIRI, plays a crucial role in mediating the pathophysiological process of this condition. Puerarin, is known to possess vasodilatory, antioxidant, and neuroprotective properties. However, its precise role in ferroptosis as well as the underlying mechanisms remains elusive. In this study, we delved into the neuroprotective mechanisms of puerarin using both the rat middle cerebral artery occlusion (MCAO) model and the HT22 cell model of oxygen-glucose deprivation/reperfusion (OGD/R). In the MCAO model, puerarin was found to exhibit an inhibitory effect on ACSL4, which was consistent with that of rosiglitazone. Simultaneously, it was capable of counteracting the inhibition of GPX4 by RSL3. These findings suggest that puerarin modulates GPX4 and ACSL4, thereby exerting an inhibitory effect on ferroptosis. The ferroptosis-protective effect of puerarin was further corroborated in the OGD/R through a positive control experiment with ferrostatin-1, a lipid peroxidation inhibitor. Furthermore, we also recognized the importance of other cell death modalities, such as pyroptosis. Consequently, we verified the neuroprotective effect of puerarin by examining the influence of caspase-1 and GSDMD in HT22. Mechanistically, puerarin alleviates CIRI by respectively inhibiting ferroptosis through the SLC7A11/GPX4/ACSL4 axis and pyroptosis through the caspase-1/GSDMD axis. This research provides novel insights into the targeting and therapeutic potential of puerarin for the treatment of CIRI.
Collapse
Affiliation(s)
- Ying Huang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, 310053, Zhejiang, China
| | - Ting Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Chongyu Shao
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, 310053, Zhejiang, China.
| | - Haitong Wan
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
11
|
Tang X, Mo D, Jiang N, Kou Y, Zhang Z, Peng R, Mao X, Wang R, Wang Y, Yan F. Polysaccharides from maggot extracts suppressed colorectal cancer progression by inducing ferroptosis via HMOX1/GPX4 signaling pathway. Int J Biol Macromol 2025; 296:139734. [PMID: 39798758 DOI: 10.1016/j.ijbiomac.2025.139734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/17/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Maggots contain various kinds of polysaccharides and recent studies mostly concentrated on their anti-inflammatory functions. While the molecule mechanisms related to the polysaccharides inhibiting carcinogenesis remains unclear. Here we characterized the polysaccharides extracted from maggot (MEs) determining their anti-colon cancer potentials. ME in this study were composed of glucose, mannose, galactose, arabinose and xylose. ME dose-and time-dependently inhibited viability and obviously induced G0/G1 phase arrest in human colon cancer cells. Additionally, Proteomics and western blotting proved that ME suppressed the expression of GPX4 and increased the expression of HMOX1 in vivo and vitro. ME promoted ferroptosis in HCT116 and LOVO cells, reversing ROS, lipid peroxidation and GSSG/GSH radio level. In general, the findings stated that the polysaccharides provided effects of inducing colon cancer ferroptosis, uncovering potential function of ME from maggot as a candidate compound.
Collapse
Affiliation(s)
- Xun Tang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China; State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Dongping Mo
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
| | - Ning Jiang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Yingying Kou
- Good Clinical Practice Office, the Affiliated Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Zhe Zhang
- Department of Pathology, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Rui Peng
- Department of General Surgery, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xuelian Mao
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China
| | - Rong Wang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210000, Jiangsu, PR China.
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| | - Feng Yan
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China.
| |
Collapse
|
12
|
Gao W, Lv X, Li H, Yan XS, Huo DS, Yang ZJ, Zhang ZG, Jia JX. Dexmedetomidine pretreatment alleviates brain injury in middle cerebral artery occlusion (MCAO) model rats by activating PI3K/AKT/NF-κB signaling pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:546-556. [PMID: 39995113 DOI: 10.1080/15287394.2025.2469088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a prevalent clinical complication associated with reperfusion following ischemic stroke resulting in neuronal damage and cognitive impairment. Dexmedetomidine (DEX), a highly selective α2-adrenoceptor agonist with sedative, and analgesic properties, is frequently utilized as a sedative anesthetic in clinical surgeries, and believed to play a crucial role in the prognosis of patients suffering from CIRI. However, the mechanism underlying DEX in CIRI remains to be determined. This study aimed to investigate the neuroprotective effects of Dex in rats suffering from CIRI. In the treatment group, DEX (50 µg/kg) was administered intraperitoneally 30 min prior to surgery. Middle cerebral artery occlusion (MCAO) used as a model of CIRI occurred with cerebral artery occlusion for 2 h was followed by reperfusion with blood for 24, 72, 120 or 168 h. Neurological function as assessed by the Longa neurological function score test demonstrated significantly reduced neurological scores and increased % infarct size in MCAO group which was blocked by DEX suggesting that DEX might be effective in treating ischemic stroke. In the MCAO animals, 2,3,5-triphenyltetrazolium chloride (TTC) showed large marked areas of cerebral infarction which were diminished in size by DEX. Using Western blot analysis, results showed that in MCAO rats protein expression levels of TNF-α and IL-6 were increased accompanied by reduced protein expression levels of PI3K/AKT signaling pathway. DEX pretreatment reversed the effects of MCAO as evidenced by decrease in protein expression levels of TNF-α and IL-6 associated with elevated protein expression levels of PI3K/AKT/NF-κB signaling pathway. Data demonstrated that DEX pretreatment improved the neuromotor performance and cognitive functions in animals suffering from consequences of MCAO by diminishing inflammation and activation of the PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Wei Gao
- Department of Anesthesiology, The Third Hospital of Baogang Group, Baotou, China
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Xue Lv
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Hao Li
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Zhan-Jun Yang
- Department of Human Anatomy, Chifeng University, Chi feng, China
| | - Zhi-Guo Zhang
- Department of Anesthesiology, The Third Hospital of Baogang Group, Baotou, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| |
Collapse
|
13
|
Xu R, Peng Q, Chen W, Cheng X, Wang G. ncRNAs-Mediated Pyroptosis in Cerebral Ischemia-Reperfusion Injury: Pathophysiology, Mechanisms, and Therapeutic Perspectives. Curr Issues Mol Biol 2025; 47:141. [PMID: 40136395 PMCID: PMC11941337 DOI: 10.3390/cimb47030141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a complex pathological process triggered by transient obstruction of blood flow and subsequent reperfusion, ultimately leading to intracellular disturbances such as oxidative stress, inflammatory responses, and programmed cell death. Among the various types of cell death, pyroptosis (an inflammatory kind of regulated cell death) has received increasing attention due to its involvement in key neurovascular unit cells, including endothelial cells, neurons, microglia, and astrocytes. Intriguingly, accumulating evidence demonstrates that non-coding RNAs (ncRNAs), including long non-coding RNAs, microRNAs, and circular RNAs, can modulate multiple stages of pyroptosis in CIRI. This review synthesizes recent findings on the ncRNAs-regulated pyroptosis in CIRI. We highlight the molecular underpinnings of pyroptotic activation following ischemic injury and discuss how ncRNAs shape these mechanisms. By elucidating the interactions between ncRNAs and pyroptosis-related pathways, we intend to present innovative viewpoints for early diagnosis and the development of potential therapeutic strategies to mitigate CIRI.
Collapse
Affiliation(s)
- Ruiyi Xu
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (R.X.); (W.C.)
| | - Quan Peng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (R.X.); (W.C.)
| | - Xihua Cheng
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (R.X.); (W.C.)
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| |
Collapse
|
14
|
Luan X, Chen P, Miao L, Yuan X, Yu C, Di G. Ferroptosis in organ ischemia-reperfusion injuries: recent advancements and strategies. Mol Cell Biochem 2025; 480:19-41. [PMID: 38556592 DOI: 10.1007/s11010-024-04978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/24/2024] [Indexed: 04/02/2024]
Abstract
Ferroptosis is a newly discovered type of regulated cell death participated in multiple diseases. Different from other classical cell death programs such as necrosis and apoptosis, ferroptosis involving iron-catalyzed lipid peroxidation is characterized by Fe2+ accumulation and mitochondria alterations. The phenomenon of oxidative stress following organ ischemia-reperfusion (I/R) has recently garnered attention for its connection to the onset of ferroptosis and subsequent reperfusion injuries. This article provides a comprehensive overview underlying the mechanisms of ferroptosis, with a further focus on the latest research progress regarding interference with ferroptotic pathways in organ I/R injuries, such as intestine, lung, heart, kidney, liver, and brain. Understanding the links between ferroptosis and I/R injury may inform potential therapeutic strategies and targeted agents.
Collapse
Affiliation(s)
- Xiaoyu Luan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Peng Chen
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Longyu Miao
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xinying Yuan
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Chaoqun Yu
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Guohu Di
- School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
15
|
Zeng Q, Xiao Y, Zeng X, Xiao H. Implications of the SNHG10/miR-665/RASSF5/NF-κB pathway in dihydromyricetin-mediated ischemic stroke protection. PeerJ 2024; 12:e18754. [PMID: 39726744 PMCID: PMC11670760 DOI: 10.7717/peerj.18754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Ischemic stroke (IS) remains a leading cause of disability and mortality worldwide, and inflammation and oxidative stress play significant roles in its pathogenesis. This study investigates the effects of dihydromyricetin (DHM) on IS using RT-qPCR and western blot with SH-SY5Y cells, focusing on its effects on the small nucleolar RNA host gene 10 (SNHG10)/microRNA (miR)-665/Ras association domain family member 5 (RASSF5) axis and nuclear factor-kappa B (NF-κB) signaling. In addition, the effects of the SNHG10/miR-665/RASSF5 axis on SH-SY5Y cell activity, apoptosis, oxidative stress, and inflammatory markers were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays. Our results showed that, in response to oxygen-glucose deprivation/reperfusion (OGD/R), DHM treatment improved cell viability, reduced apoptosis, and attenuated neuroinflammation and oxidative stress in a dose-dependent manner (p < 0.05). Interestingly, lncRNA SNHG10 was overexpressed during OGD/R and suppressed by DHM. Through bioinformatics analysis and experimental validation, we identified miR-665 as a direct target of SNHG10 and RASSF5 as a direct target of miR-665. The protective effect of DHM against OGD/R injury was partially reversed by SNHG10 overexpression and further enhanced by co-transfection with the miR-665 mimic and si-RASSF5 (p < 0.05). This study identifies a novel mechanism of DHM against IS, which may act via modulation of the SNHG10/miR-665/RASSF5 axis and inactivation of NF-κB signaling, and offers a promising therapeutic target for IS.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Ultrasound, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yan Xiao
- Department of Cardiovasology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xueliang Zeng
- Department of Pharmacology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hai Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
- Department of Pathology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Zheng Z, Liu N, Lu J, Zhou X, Song Z, An Y, Lu L, Zhao P, Tao J. Hydrogen-Bonded Organic Framework Enhanced Antifouling Property for Efficient In Situ Electrochemical Assay of Cerebral Ascorbic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407101. [PMID: 39396376 DOI: 10.1002/smll.202407101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Accurate determination of cerebral ascorbic acid (AA) is crucial for understanding ischemic stroke (IS) related pathological events. Carbon fiber microelectrodes (CFEs) have proven to be robust tools with high sensitivity toward AA, however, they face ongoing challenges for in situ measurement due to the non-specific adsorption of proteins in brain tissue. In this study, the hydrogen-bonded organic framework PFC-71 is synthesized and modified on CFEs through π-π stacking interactions with carboxylated carbon nanotubes (CNT-COOH). It is found that the gating effect and hydrophilicity of PFC-71 provided the CFE with excellent antibiofouling properties. As a result, AA exhibited a low oxidation potential of -30 mV on the CFE/CNT-COOH/PFC-71, even in the presence of 20 mg mL-1 bovine serum albumin. Given the structural advantages of CFE/CNT-COOH/PFC-71, a ratiometric electrochemical strategy for AA is established, enabling the in situ assay of cerebral AA in a middle cerebral artery occlusion (MCAO) model with high accuracy and stability.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ningxuan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiang Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zibin Song
- Neurosurgery Center, Department of Functional Neurosurgery, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yida An
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Lu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
17
|
Zhang R, Zhang X, Zhu X, Li T, Li Y, Zhang P, Chen Y, Li G, Han X. Nanoparticles transfected with plasmid-encoded lncRNA-OIP5-AS1 inhibit renal ischemia-reperfusion injury in mice via the miR-410-3p/Nrf2 axis. Ren Fail 2024; 46:2319327. [PMID: 38419565 PMCID: PMC10906121 DOI: 10.1080/0886022x.2024.2319327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Nanostructures composed of liposomes and polydopamine (PDA) have demonstrated efficacy as carriers for delivering plasmids, effectively alleviating renal cell carcinoma. However, their role in acute kidney injury (AKI) remains unclear. This study aimed to investigate the effects of the plasmid-encoded lncRNA-OIP5-AS1@PDA nanoparticles (POP-NPs) on renal ischemia/reperfusion (RI/R) injury and explore the underlying mechanisms. RI/R or OGD/R models were established in mice and HK-2 cells, respectively. In vivo, vector or POP-NPs were administered (10 nmol, IV) 48 h after RI/R treatment. In the RI/R mouse model, the OIP5-AS1 and Nrf2/HO-1 expressions were down-regulated, while miR-410-3p expression was upregulated. POP-NPs treatment effectively reversed RI/R-induced renal tissue injury, restoring altered levels of blood urea nitrogen, creatinine, malondialdehyde, inflammatory factors (IL-8, IL-6, TNF-α), ROS, apoptosis, miR-410-3p, as well as the suppressed expression of SOD and Nrf2/HO-1 in the model mice. Similar results were obtained in cell models treated with POP-NPs. Additionally, miR-410-3p mimics could reverse the effects of POP-NPs on cellular models, partially counteracted by Nrf2 agonists. The binding relationship between OIP5-AS1 and miR-410-3p, alongside miR-410-3p and Nrf2, has been substantiated by dual-luciferase reporter and RNA pull-down assays. The study revealed that POP-NPs can attenuate RI/R-induced injury through miR-410-3p/Nrf2 axis. These findings lay the groundwork for future targeted therapeutic approaches utilizing nanoparticles for RI/R-induced AKI.
Collapse
Affiliation(s)
- Rongjie Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xin Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xuhui Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Tao Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yansheng Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Peng Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yuanhao Chen
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Gao Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xiuwu Han
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| |
Collapse
|
18
|
Yang L, Zhou X, Heng T, Zhu Y, Gong L, Liu N, Yao X, Luo Y. FNDC5/Irisin mitigates high glucose-induced neurotoxicity in HT22 cell via ferroptosis. Biosci Trends 2024; 18:465-475. [PMID: 39414463 DOI: 10.5582/bst.2024.01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Diabetes-induced neuropathy represents a major etiology of dementia, highlighting an urgent need for the development of effective therapeutic interventions. In this study, we explored the role of fibronectin type III domain containing 5 (FNDC5)/Irisin in mitigating hyperglycemia-induced neurotoxicity in HT22 cells and investigated the underlying mechanisms. Our findings reveal that high glucose conditions are neurotoxic, leading to reduced viability of HT22 cells and increased apoptosis. Furthermore, the elevated expression of the intracellular ferroptosis marker Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4), along with increased levels of ferrous ions and malondialdehyde (MDA), suggests that high glucose conditions may induce ferroptosis in HT22 cells. FNDC5/Irisin treatment effectively mitigates high glucose-induced neurotoxicity and ferroptosis in HT22 cells. Mechanistically, FNDC5/Irisin enhances cellular antioxidant capacity, regulates ACSL4 expression, and improves intracellular redox status, thereby inhibiting ferroptosis and increasing HT22 cell survival under high-glucose conditions. These results highlight the neuroprotective potential of FNDC5/Irisin in high glucose environments, offering a promising avenue for developing treatments for diabetes-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Lingling Yang
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohan Zhou
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tian Heng
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinghai Zhu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Rehabilitation, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Lihuan Gong
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Na Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuqing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China
- Department of Rehabilitation Therapy, Chongqing Medical University, Chongqing, China
| | - Yaxi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
He Y, Wang J, Ying C, Xu KL, Luo J, Wang B, Gao J, Yin Z, Zhang Y. The interplay between ferroptosis and inflammation: therapeutic implications for cerebral ischemia-reperfusion. Front Immunol 2024; 15:1482386. [PMID: 39582857 PMCID: PMC11583640 DOI: 10.3389/fimmu.2024.1482386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/14/2024] [Indexed: 11/26/2024] Open
Abstract
Stroke ranks as the second most significant contributor to mortality worldwide and is a major factor in disability. Ischemic strokes account for 71% of all stroke incidences globally. The foremost approach to treating ischemic stroke prioritizes quick reperfusion, involving methods such as intravenous thrombolysis and endovascular thrombectomy. These techniques can reduce disability but necessitate immediate intervention. After cerebral ischemia, inflammation rapidly arises in the vascular system, producing pro-inflammatory signals that activate immune cells, which in turn worsen neuronal injury. Following reperfusion, an overload of intracellular iron triggers the Fenton reaction, resulting in an excess of free radicals that cause lipid peroxidation and damage to cellular membranes, ultimately leading to ferroptosis. The relationship between inflammation and ferroptosis is increasingly recognized as vital in the process of cerebral ischemia-reperfusion (I/R). Inflammatory processes disturb iron balance and encourage lipid peroxidation (LPO) through neuroglial cells, while also reducing the activity of antioxidant systems, contributing to ferroptosis. Furthermore, the lipid peroxidation products generated during ferroptosis, along with damage-associated molecular patterns (DAMPs) released from ruptured cell membranes, can incite inflammation. Given the complex relationship between ferroptosis and inflammation, investigating their interaction in brain I/R is crucial for understanding disease development and creating innovative therapeutic options. Consequently, this article will provide a comprehensive introduction of the mechanisms linking ferroptosis and neuroinflammation, as well as evaluate potential treatment modalities, with the goal of presenting various insights for alleviating brain I/R injury and exploring new therapeutic avenues.
Collapse
Affiliation(s)
- Yuxuan He
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingyi Wang
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Chunmiao Ying
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Kang Li Xu
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jingwen Luo
- Faculty of Chinese Medicine of Macau University of Science and
Technology, Macao, Macao SAR, China
| | - Baiqiao Wang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Gao
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Zaitian Yin
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yunke Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Li Z, Xing J. Nuclear factor erythroid 2-related factor-mediated signaling alleviates ferroptosis during cerebral ischemia-reperfusion injury. Biomed Pharmacother 2024; 180:117513. [PMID: 39341075 DOI: 10.1016/j.biopha.2024.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiac arrest (CA) is a significant challenge for emergency physicians worldwide and leads to increased morbidity and mortality rates. The poor prognosis of CA primarily stems from the complexity and irreversibility of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis, a form of programmed cell death characterized by iron overload and lipid peroxidation, plays a crucial role in the progression and treatment of CIRI. In this review, we highlight the mechanisms of ferroptosis within the context of CIRI, focusing on its role as a key contributor to neuronal damage and dysfunction post-CA. We explore the crucial involvement of the nuclear factor erythroid 2-related factor (Nrf2)-mediated signaling pathway in modulating ferroptosis-associated processes during CIRI. Through comprehensive analysis of the regulatory role of Nrf2 in the cellular responses to oxidative stress, we highlight its potential as a therapeutic target for mitigating ferroptotic cell death and improving the neurological prognosis of patients experiencing CA. Furthermore, we discuss interventions targeting the Kelch-like ECH-associated protein 1/Nrf2/antioxidant response element pathway, including the use of traditional Chinese medicine and Western medicine, which demonstrate potential for attenuating ferroptosis and preserving neuronal function in CIRI. Owing to the limitations in the safety, specificity, and effectiveness of Nrf2-targeted drugs, as well as the technical difficulties and ethical constraints in obtaining the results related to the brain pathological examination of patients, most of the studies focusing on Nrf2-related regulation of ferroptosis in CIRI are still in the basic research stage. Overall, this review aims to provide a comprehensive understanding of the mechanisms underlying ferroptosis in CIRI, offering insights into novel therapeutics aimed at enhancing the clinical outcomes of patients with CA.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
21
|
Wang S, Qin M, Fan X, Jiang C, Hou Q, Ye Z, Zhang X, Yang Y, Xiao J, Wallace K, Rastegar-Kashkooli Y, Peng Q, Jin D, Wang J, Wang M, Ding R, Tao J, Kim YT, Bhawal UK, Wang J, Chen X, Wang J. The role of metal ions in stroke: Current evidence and future perspectives. Ageing Res Rev 2024; 101:102498. [PMID: 39243890 DOI: 10.1016/j.arr.2024.102498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Metal ions play a pivotal role in maintaining optimal brain function within the human body. Nevertheless, the accumulation of these ions can result in irregularities that lead to brain damage and dysfunction. Disruptions of metal ion homeostasis can result in various pathologies, including inflammation, redox dysregulation, and blood-brain barrier disruption. While research on metal ions has chiefly focused on neurodegenerative diseases, little attention has been given to their involvement in the onset and progression of stroke. Recent studies have identified cuproptosis and confirmed ferroptosis as significant factors in stroke pathology, underscoring the importance of metal ions in stroke pathology, including abnormal ion transport, neurotoxicity, blood-brain barrier damage, and cell death. Additionally, it provides an overview of contemporary metal ion chelators and detection techniques, which may offer novel approaches to stroke treatment.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; Non-commissioned Officer School of Army Medical University, Shijiazhuang, Hebei 050000, China
| | - Mengzhe Qin
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Qingchuan Hou
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ziyi Ye
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yunfan Yang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyu Xiao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Kevin Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Yousef Rastegar-Kashkooli
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Dongqi Jin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin Tao
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ujjal K Bhawal
- Center for Global Health Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India; Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
22
|
Lan X, Wang Q, Liu Y, You Q, Wei W, Zhu C, Hai D, Cai Z, Yu J, Zhang J, Liu N. Isoliquiritigenin alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the Nrf2 pathway. Redox Biol 2024; 77:103406. [PMID: 39454290 PMCID: PMC11546133 DOI: 10.1016/j.redox.2024.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) refers to a secondary brain injury that occurs when blood supply is restored to ischemic brain tissue and is one of the leading causes of adult disability and mortality. Multiple pathological mechanisms are involved in the progression of CIRI, including neuronal oxidative stress and mitochondrial dysfunction. Isoliquiritigenin (ISL) has been preliminarily reported to have potential neuroprotective effects on rats subjected to cerebral ischemic insult. However, the protective mechanisms of ISL have not been elucidated. This study aims to further investigate the effects of ISL-mediated neuroprotection and elucidate the underlying molecular mechanism. The findings indicate that ISL treatment significantly alleviated middle cerebral artery occlusion (MCAO)-induced cerebral infarction, neurological deficits, histopathological damage, and neuronal apoptosis in mice. In vitro, ISL effectively mitigated the reduction of cell viability, Na+-K+-ATPase, and MnSOD activities, as well as the degree of DNA damage induced by oxygen-glucose deprivation (OGD) injury in PC12 cells. Mechanistic studies revealed that administration of ISL evidently improved redox homeostasis and restored mitochondrial function via inhibiting oxidative stress injury and ameliorating mitochondrial biogenesis, mitochondrial fusion-fission balance, and mitophagy. Moreover, ISL facilitated the dissociation of Keap1/Nrf2, enhanced the nuclear transfer of Nrf2, and promoted the binding activity of Nrf2 with ARE. Finally, ISL obviously inhibited neuronal apoptosis by activating the Nrf2 pathway and ameliorating mitochondrial dysfunction in mice. Nevertheless, Nrf2 inhibitor brusatol reversed the mitochondrial protective properties and anti-apoptotic effects of ISL both in vivo and in vitro. Overall, our findings revealed that ISL exhibited a profound neuroprotective effect on mice following CIRI insult by reducing oxidative stress and ameliorating mitochondrial dysfunction, which was closely related to the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Wang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yue Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Qing You
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Wei
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunhao Zhu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dongmei Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhenyu Cai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianqiang Yu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
23
|
Zhu X, Han X, Wang J. Sufentanil-induced Nrf2 protein ameliorates cerebral ischemia-reperfusion injury through suppressing neural ferroptosis. Int J Biol Macromol 2024; 279:135109. [PMID: 39197624 DOI: 10.1016/j.ijbiomac.2024.135109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
As an oxidative stress and inflammation-related disease, cerebral ischemia-reperfusion injury (CIRI) is a prevalent pathogenic factor of ischemic stroke (IS) and seriously degrades the life quality of human beings. As an opioid analgesic for anesthesia, Sufentanil (SUF) can activate the Nrf2 protein-induced anti-oxidant effects, which indicate that SUF may be used as alternative drug for CIRI therapy, but little is known regarding to its molecular mechanisms. Thus, this research aimed to examine whether SUF pre-treatment alleviated CIRI through the modulation of Nrf2 protein-mediated antioxidant activity. Our research revealed that middle cerebral artery occlusion/reperfusion (MCAO/R)-treated rats exhibited apparent CIRI-related symptoms and induced damages in rats' brain, which were all notably mitigated in the MCAO/R rats. The subsequent in vitro cellular experiments verified that oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cytotoxicity were apparently reversed by SUF co-treatment in HT22 and BV2 cells, and it was also validated that SUF was capable of suppressing inflammation and ferroptosis in CIRI models by inhibiting oxidative stress-related damages. Mechanistically, the Akt/GSK-3β pathway was excessively activated by SUF to promote Nrf2 protein expressions and enhance Nrf2-meidated anti-oxidant effects, and it was found that SUF-induced protective effects during CIRI progression were all abrogated by co-treating cells with MK2206 (Akt inhibitor), NP-12 (GSK-3β inhibitor), or ML385 (Nrf2 inhibitor). In conclusion, SUF activated the Akt/GSK-3β pathway to initiate Nrf2 protein-mediated antioxidant effects, which further suppressed oxidative stress-related inflammation and ferroptosis to ameliorate CIRI progression, and SUF could potentially be used as novel therapeutic agent for CIRI treatment in clinic.
Collapse
Affiliation(s)
- Xuelian Zhu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi 154000, China; Department of Anesthesiology, the First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Xi Han
- Department of Anatomy, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China
| | - Jingtao Wang
- Department of Anatomy, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China.
| |
Collapse
|
24
|
Wei C. The role of glutathione peroxidase 4 in neuronal ferroptosis and its therapeutic potential in ischemic and hemorrhagic stroke. Brain Res Bull 2024; 217:111065. [PMID: 39243947 DOI: 10.1016/j.brainresbull.2024.111065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Ferroptosis is a type of cell death that depends on iron and is driven by lipid peroxidation, playing a crucial role in neuronal death during stroke. A central element in this process is the inactivation of glutathione peroxidase 4 (GPx4), an antioxidant enzyme that helps maintain redox balance by reducing lipid hydroperoxides. This review examines the critical function of GPx4 in controlling neuronal ferroptosis following ischemic and hemorrhagic stroke. We explore the mechanisms through which GPx4 becomes inactivated in various stroke subtypes. In strokes, excess glutamate depletes glutathione (GSH) and products of hemoglobin breakdown overwhelm GPx4. Studies using genetic models with GPx4 deficiency underscore its vital role in maintaining neuronal survival and function. We also consider new therapeutic approaches to enhance GPx4 activity, including novel small molecule activators, adjustments in GSH metabolism, and selenium supplementation. Additionally, we outline the potential benefits of combining these GPx4-focused strategies with other anti-ferroptotic methods like iron chelation and lipoxygenase inhibition for enhanced neuroprotection. Furthermore, we highlight the significance of understanding the timing of GPx4 inactivation during stroke progression to design effective therapeutic interventions.
Collapse
Affiliation(s)
- Chao Wei
- Feinberg school of medicine, Northwestern University, IL 60611, USA
| |
Collapse
|
25
|
Wang T, Zheng Y, Zhang J, Wu Z. Targeting ferroptosis promotes diabetic wound healing via Nrf2 activation. Heliyon 2024; 10:e37477. [PMID: 39421383 PMCID: PMC11483302 DOI: 10.1016/j.heliyon.2024.e37477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
Wound healing impairment is a frequent diabetes problem leading to amputation. Hyperglycemia induces the overproduction of reactive oxygen species (ROS), iron overload and sustained inflammation, resulting in the persistence of chronic wounds. However, the intrinsic mechanisms of impaired diabetic wound healing remain enigmatic. A new non-apoptotic regulatory cellular death called Ferroptosis, is distinguished by iron-driven lipid peroxidation products accumulation along with insufficient antioxidant enzymes. A decline in antioxidant capacity, excess accumulation of peroxidation of iron and lipid have been identified in wound sites of streptozotocin-induced diabetes mellitus (DM) rats and elevated glucose (EG)-cultured macrophages. Additionally, sustained inflammation and increased inflammatory cytokines were observed in DM rats and HG-cultured macrophages. Importantly, ferrostatin-1 (Fer-1) is a ferroptosis suppressor treatment significantly ameliorated diabetes-related ferroptosis and inflammation. This treatment also enhanced cell proliferation and neovascularization, ultimately thereby accelerating diabetic wound healing. Meanwhile, our study demonstrated that an anti-ferroptotic and anti-inflammatory effects of Fer-1 were mediated through stimulation of nuclear erythroid-associated factor 2 (Nrf2). The current study may provide a new rationale for diabetic wound healing.
Collapse
Affiliation(s)
- Tongcai Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Department of Geriatric Medical Center, Inner Mongolia people's Hospital, 20 Zhaowuda Road, Hohhot, 010021, Inner Mongolia, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, China
| | - Jun Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, China
| |
Collapse
|
26
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
27
|
Zhang Y, Zhang C, Dai Q, Ma R. Continuous Theta Burst Stimulation Inhibits Oxidative Stress-Induced Inflammation and Autophagy in Hippocampal Neurons by Activating Glutathione Synthesis Pathway, Improving Cognitive Impairment in Sleep-Deprived Mice. Neuromolecular Med 2024; 26:40. [PMID: 39388015 DOI: 10.1007/s12017-024-08807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Sleep deprivation (SD) has been reported to have a negative impact on cognitive function. Continuous theta burst stimulation (cTBS) shows certain effects in improving sleep and neurological diseases, and its molecular or cellular role in SD-induced cognition impairment still need further exploration. In this study, C57BL/6 mice were subjected to 48 h of SD and cTBS treatment, and cTBS treatment significantly improved SD-triggered impairment of spatial learning and memory abilities in mice. Additionally, cTBS reduced malondialdehyde levels, increased superoxide dismutase activities, and inhibited the production of inflammatory cytokines, alleviating oxidative stress and inflammation levels in hippocampal tissues of SD model mice. cTBS decreased LC3II/LC3I ratio, Beclin1 protein levels, and LC3B puncta intensity, and elevated p62 protein levels to suppress excessive autophagy in hippocampal tissues of SD-stimulated mice. Then, we proved that inhibiting oxidative stress alleviated inflammation, autophagy, and death of hippocampal neuron cells through an in vitro cellular model for oxidative stress, and cTBS treatment promoted the production of glutathione (GSH), the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the mRNA expression of GSH synthesis-related genes to enhance antioxidant capacity in hippocampal tissues of SD mice. An Nrf2 inhibitor ML385 or a GSH synthesis inhibitor BSO reversed the alleviating effects of cTBS treatment on oxidative stress-associated damage of hippocampal tissues and cognitive impairment in SD model mice. Altogether, our study demonstrated that cTBS mitigates oxidative stress-associated inflammation and autophagy through activating the Nrf2-mediated GSH synthesis pathway, improving cognitive impairment in SD mice.
Collapse
Affiliation(s)
- Yi Zhang
- Clinical Psychology Department, the People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830001, China
| | - Cheng Zhang
- Clinical Psychology Department, the People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830001, China
| | - Qing Dai
- Anesthesiology Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Rui Ma
- Clinical Psychology Department, the People's Hospital of Xinjiang Uygur Autonomous Region, 91 Tianchi Road, Urumqi, 830001, China.
| |
Collapse
|
28
|
Li X, Xia K, Zhong C, Chen X, Yang F, Chen L, You J. Neuroprotective effects of GPR68 against cerebral ischemia-reperfusion injury via the NF-κB/Hif-1α pathway. Brain Res Bull 2024; 216:111050. [PMID: 39147243 DOI: 10.1016/j.brainresbull.2024.111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND G protein-coupled receptor 68 (GPR68), an orphan receptor, has emerged as a promising therapeutic target for mitigating neuronal inflammation and oxidative damage. This study explores the protective mechanisms of GPR68 in cerebral ischemia-reperfusion injury (CIRI). METHODS An in vivo middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was established. Mice received intraperitoneal injections of Ogerin, a selective GPR68 agonist. In vitro, GPR68 was overexpressed in SH-SY5Y and HMC3 cells, and the effects of oxygen-glucose deprivation/reperfusion (OGD/R) on cell viability were assessed using real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and flow cytometry. RESULTS The expression of GPR68 was suppressed in cells subjected to OGD/R treatment, whereas its upregulation conferred protection to SH-SY5Y and HMC3 cells. In vivo, levels of GPR68 were reduced in brain tissues affected by MCAO/R, correlating with oxidative stress, inflammation, and neurological damage. Treatment with a GPR68 agonist decreased brain infarction, apoptosis, and dysregulated gene expression induced by MCAO/R. Mechanistically, GPR68 agonist treatment may inhibit the activation of the NF-κB/Hif-1α pathway, thereby reducing oxidative and inflammatory responses and enhancing protection against CIRI. CONCLUSIONS This study confirms that the GPR68/NF-κB/Hif-1α axis modulates apoptosis, inflammation, and oxidative stress in CIRI, indicating that GPR68 is a potential therapeutic target for CIRI.
Collapse
Affiliation(s)
- Xianglong Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Neurosurgical Clinical Research Center and Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, PR China; Laboratory of Neurological Diseases and Brain Functions, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Kaiguo Xia
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Chuanhong Zhong
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Xiangzhou Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Fubing Yang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China
| | - Ligang Chen
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Neurosurgical Clinical Research Center and Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, PR China; Laboratory of Neurological Diseases and Brain Functions, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| | - Jian You
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China; Neurosurgical Clinical Research Center and Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, PR China; Laboratory of Neurological Diseases and Brain Functions, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, PR China.
| |
Collapse
|
29
|
Kumari N, Prakash R, Siddiqui AJ, Waseem A, Khan MA, Raza SS. Endothelin-1-Induced Persistent Ischemia in a Chicken Embryo Model. Bio Protoc 2024; 14:e5060. [PMID: 39282233 PMCID: PMC11393046 DOI: 10.21769/bioprotoc.5061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/18/2024] Open
Abstract
Current ischemic models strive to replicate ischemia-mediated injury. However, they face challenges such as inadequate reproducibility, difficulties in translating rodent findings to humans, and ethical, financial, and practical constraints that limit the accuracy of extensive research. This study introduces a novel approach to inducing persistent ischemia in 3-day-old chicken embryos using endothelin-1. The protocol targets the right vitelline arteries, validated with Doppler blood flow imaging and molecular biology experiments. This innovative approach facilitates the exploration of oxidative stress, inflammatory responses, cellular death, and potential drug screening suitability utilizing a 3-day-old chicken embryo. Key features • This model enables the evaluation and investigation of the pathology related to persistent ischemia • This model allows for the assessment of parameters like oxidative stress, inflammation, and cellular death • This model enables quantification of molecular changes at the nucleic acid and protein levels • This model allows for the efficient screening of drugs and their targets Graphical overview.
Collapse
Affiliation(s)
- Neha Kumari
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Ravi Prakash
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Abu J Siddiqui
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Arshi Waseem
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Mohsin A Khan
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| | - Syed S Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College and Hospital, Era University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
30
|
Chen Y, Long T, Chen J, Wei H, Meng J, Kang M, Wang J, Zhang X, Xu Q, Zhang C, Xiong K. WTAP participates in neuronal damage by protein translation of NLRP3 in an m6A-YTHDF1-dependent manner after traumatic brain injury. Int J Surg 2024; 110:5396-5408. [PMID: 38874470 PMCID: PMC11392096 DOI: 10.1097/js9.0000000000001794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a common complication of acute and severe neurosurgery. Remodeling of N6-methyladenosine (m6A) stabilization may be an attractive treatment option for neurological dysfunction after TBI. In the present study, the authors explored the epigenetic methylation of RNA-mediated NLRP3 inflammasome activation after TBI. METHODS Neurological dysfunction, histopathology, and associated molecules were examined in conditional knockout (CKO) WTAP [flox/flox, Camk2a-cre] , WTAP flox/flox , and pAAV-U6-shRNA-YTHDF1-transfected mice. Primary neurons were used in vitro to further explore the molecular mechanisms of action of WTAP/YTHDF1 following neural damage. RESULTS The authors found that WTAP and m6A levels were upregulated at an early stage after TBI, and conditional deletion of WTAP in neurons did not affect neurological function but promoted functional recovery after TBI. Conditional deletion of WTAP in neurons suppressed neuroinflammation at the TBI early phase: WTAP could directly act on NLRP3 mRNA, regulate NLRP3 mRNA m6A level, and promote NLRP3 expression after neuronal injury. Further investigation found that YTH domain of YTHDF1 could directly bind to NLRP3 mRNA and regulate NLRP3 protein expression. YTHDF1 mutation or silencing improved neuronal injury, inhibited Caspase-1 activation, and decreased IL-1β levels. This effect was mediated via suppression of NLRP3 protein translation, which also reversed the stimulative effect of WTAP overexpression on NLRP3 expression and inflammation. CONCLUSIONS Our results indicate that WTAP participates in neuronal damage by protein translation of NLRP3 in an m6A-YTHDF1-dependent manner after TBI and that WTAP/m6A/YTHDF1 downregulation therapeutics is a viable and promising approach for preserving neuronal function after TBI, which can provide support for targeted drug development.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, Shaanxi
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
| | - Junhui Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904 Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu Province
| | - Hong Wei
- Department of Rehabilitation Teaching and Research, Xi’an Siyuan University, Xi’an
| | - Jiao Meng
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, Shaanxi
| | - Meili Kang
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, Shaanxi
| | - Juning Wang
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, Shaanxi
| | - Xin Zhang
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
| | - Quanhua Xu
- Department of Neurosurgery, Bijie Traditional Chinese Medical Hospital, Bijie, Guizhou
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, Hainan
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
31
|
Chen Y, He W, Qiu J, Luo Y, Jiang C, Zhao F, Wei H, Meng J, Long T, Zhang X, Yang L, Xu Q, Wang J, Zhang C. Pterostilbene improves neurological dysfunction and neuroinflammation after ischaemic stroke via HDAC3/Nrf1-mediated microglial activation. Cell Mol Biol Lett 2024; 29:114. [PMID: 39198723 PMCID: PMC11360871 DOI: 10.1186/s11658-024-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Stroke is a type of acute brain damage that can lead to a series of serious public health challenges. Demonstrating the molecular mechanism of stroke-related neural cell degeneration could help identify a more efficient treatment for stroke patients. Further elucidation of factors that regulate microglia and nuclear factor (erythroid-derived 2)-like 1 (Nrf1) may lead to a promising strategy for treating neuroinflammation after ischaemic stroke. In this study, we investigated the possible role of pterostilbene (PTS) in Nrf1 regulation in cell and animal models of ischaemia stroke. METHODS We administered PTS, ITSA1 (an HDAC activator) and RGFP966 (a selective HDAC3 inhibitor) in a mouse model of middle cerebral artery occlusion-reperfusion (MCAO/R) and a model of microglial oxygen‒glucose deprivation/reperfusion (OGD/R). The brain infarct size, neuroinflammation and microglial availability were also determined. Dual-luciferase reporter, Nrf1 protein stability and co-immunoprecipitation assays were conducted to analyse histone deacetylase 3 (HDAC3)/Nrf1-regulated Nrf1 in an OGD/R-induced microglial injury model. RESULTS We found that PTS decreased HDAC3 expression and activity, increased Nrf1 acetylation in the cell nucleus and inhibited the interaction of Nrf1 with p65 and p65 accumulation, which reduced infarct volume and neuroinflammation (iNOS/Arg1, TNF-α and IL-1β levels) after ischaemic stroke. Furthermore, the CSF1R inhibitor PLX5622 induced elimination of microglia and attenuated the therapeutic effect of PTS following MCAO/R. In the OGD/R model, PTS relieved OGD/R-induced microglial injury and TNF-α and IL-1β release, which were dependent on Nrf1 acetylation through the upregulation of HDAC3/Nrf1 signalling in microglia. However, the K105R or/and K139R mutants of Nrf1 counteracted the impact of PTS in the OGD/R-induced microglial injury model, which indicates that PTS treatment might be a promising strategy for ischaemia stroke therapy. CONCLUSION The HDAC3/Nrf1 pathway regulates the stability and function of Nrf1 in microglial activation and neuroinflammation, which may depend on the acetylation of the lysine 105 and 139 residues in Nrf1. This mechanism was first identified as a potential regulatory mechanism of PTS-based neuroprotection in our research, which may provide new insight into further translational applications of natural products such as PTS.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, Shaanxi, China
| | - Wei He
- Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266000, Shandong, China
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Xi'an, 710043, Shaanxi, China
| | - Yangyang Luo
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Feng Zhao
- Department of Sport Medicine, Sports Medicine Institute, Peking University Third Hospital, Beijing, 100191, China
| | - Hong Wei
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiao Meng
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, Shaanxi, China
| | - Tianlin Long
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Xin Zhang
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Lingjian Yang
- School of Chemistry & Chemical Engineering, Ankang University, Ankang, 725000, China
| | - Quanhua Xu
- Department of Neurosurgery, Academy of Traditional Chinese Medicine, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Juning Wang
- Department of Medical Science Research Center, Peihua University, Xi'an, 710125, Shaanxi, China
| | - Chi Zhang
- Department of Neurosurgery, The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Xiangya Hospital, Central South University, NO. 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
32
|
Jiao T, Chen Y, Sun H, Yang L. Targeting ferroptosis as a potential prevention and treatment strategy for aging-related diseases. Pharmacol Res 2024; 208:107370. [PMID: 39181344 DOI: 10.1016/j.phrs.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Ferroptosis, an emerging paradigm of programmed cellular necrosis posited in recent years, manifests across a spectrum of maladies with profound implications for human well-being. Numerous investigations substantiate that modulating ferroptosis, whether through inhibition or augmentation, plays a pivotal role in the etiology and control of numerous age-related afflictions, encompassing neurological, circulatory, respiratory, and other disorders. This paper not only summarizes the regulatory mechanisms of ferroptosis, but also discusses the impact of ferroptosis on the biological processes of aging and its role in age-related diseases. Furthermore, it scrutinizes recent therapeutic strides in addressing aging-related conditions through the modulation of ferroptosis. The paper consolidates the existing knowledge on potential applications of ferroptosis-related pharmacotherapies and envisages the translational prospects of ferroptosis-targeted interventions in clinical paradigms.
Collapse
Affiliation(s)
- Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Yiman Chen
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China
| | - Haiyan Sun
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Lina Yang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China; Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| |
Collapse
|
33
|
Anaya-Fernández R, Anaya-Prado R, Anaya-Fernandez MM, Guerrero-Palomera MA, Garcia-Ramirez IF, Gonzalez-Martinez D, Azcona-Ramirez CC, Guerrero-Palomera CS, Garcia-Perez C, Tenorio-Gonzalez B, Tenorio-Gonzalez JE, Vargas-Ascencio LF, Canseco-Villegas AI, Servin-Romero G, Barragan-Arias AR, Reyna-Rodriguez B. Oxidative Stress in Cerebral Ischemia/Reperfusion Injury. OBM NEUROBIOLOGY 2024; 08:1-15. [DOI: 10.21926/obm.neurobiol.2403239] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Oxidative stress in cerebral ischemia/reperfusion injury (CIRI) involves reactive oxygen and nitrogen species (ROS and RNS). Despite efficient antioxidant pathways in the brain, hypoxia triggers the production of oxygen free radicals and downregulates ATP, which leads to oxidative stress. Sources of free radicals during CIRI include Ca<sup>2+</sup>-dependent enzymes, phospholipid degradation and mitochondrial enlargement. Upon reperfusion, the abrupt increase of oxygen triggers a massive radical production via enzymes like xantin oxidase (XO), phospholipase A2 (PLA2) and oxide synthases (OS). These enzymes play an essential role in neuronal damage by excitotoxicity, lipoperoxidation, nitrosylation, inflammation and programmed cell death (PCD). Endothelial nitric oxide synthase (eNOS) decreases as compared to neuronal nitric oxide synthase (nNOS). This is associated with neuronal damage, endothelial inflammation, apoptosis and oxidative stress. Strategies promoting activation of eNOS while inhibiting nNOS could offer neuroprotective benefits in CIRI. Understanding and targeting these pathways could mitigate brain damage in ischemia/reperfusion events. Clinically, tissue plasminogen activator (t-PA) has been shown to restore cerebral blood flow. However, serious side effects have been described, including hemorrhagic transformation. Different treatments are currently under investigation to avoid I/R injury. Baicalin has been reported as a potential agent that could improve t-PA adverse effects, which have to do with peroxynitrite synthesis and matrix metalloproteinase (MMP) expression. In this review, CIRI and interventions in oxidative stress are addressed. Special attention is paid to efficient antioxidant mechanisms in the brain and the production of free radicals, especially nNOS-derived nitric oxide (NO). The primary purpose is to describe accessible radical pathways with the activity of Ca<sup>2+</sup>-dependent oxidative enzymes, leading to membrane phospholipids and mitochondrial breakdown. <strong>Key</strong><strong>w</strong><strong>ords</strong>Oxidative stress; cerebral ischemia/reperfusion; nitric oxide; reactive oxygen species; nitric oxide synthase
Collapse
|
34
|
Wang Z, Zhang X, Zhang G, Zheng YJ, Zhao A, Jiang X, Gan J. Astrocyte modulation in cerebral ischemia-reperfusion injury: A promising therapeutic strategy. Exp Neurol 2024; 378:114814. [PMID: 38762094 DOI: 10.1016/j.expneurol.2024.114814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/03/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) poses significant challenges for drug development due to its complex pathogenesis. Astrocyte involvement in CIRI pathogenesis has led to the development of novel astrocyte-targeting drug strategies. To comprehensively review the current literature, we conducted a thorough analysis from January 2012 to December 2023, identifying 82 drugs aimed at preventing and treating CIRI. These drugs target astrocytes to exert potential benefits in CIRI, and their primary actions include modulation of relevant signaling pathways to inhibit neuroinflammation and oxidative stress, reduce cerebral edema, restore blood-brain barrier integrity, suppress excitotoxicity, and regulate autophagy. Notably, active components from traditional Chinese medicines (TCM) such as Salvia miltiorrhiza, Ginkgo, and Ginseng exhibit these important pharmacological properties and show promise in the treatment of CIRI. This review highlights the potential of astrocyte-targeted drugs to ameliorate CIRI and categorizes them based on their mechanisms of action, underscoring their therapeutic potential in targeting astrocytes.
Collapse
Affiliation(s)
- Ziyu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Jia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
35
|
Jia YJ, Xiong S, Yao M, Wei Y, He Y. HMGB1 inhibition blocks ferroptosis and oxidative stress to ameliorate sepsis-induced acute lung injury by activating the Nrf2 pathway. Kaohsiung J Med Sci 2024; 40:710-721. [PMID: 38837857 DOI: 10.1002/kjm2.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
The proinflammatory properties of high-mobility group box protein 1 (HMGB1) in sepsis have been extensively studied. This study aimed to investigate the impact of HMGB1 on ferroptosis and its molecular mechanism in sepsis-induced acute lung injury (ALI). A septic mouse model was established using the cecal ligation and puncture method. Blocking HMGB1 resulted in improved survival rates, reduced lung injury, decreased levels of ferroptosis markers (reactive oxygen species, malondialdehyde, and Fe2+), and enhanced antioxidant enzyme activities (superoxide dismutase and catalase) in septic mice. In addition, knockdown of HMGB1 reduced cellular permeability, ferroptosis markers, and raised antioxidant enzyme levels in lipopolysaccharide (LPS)-stimulated MLE-12 cells. Silencing of HMGB1 led to elevations in the expressions of ferroptosis core-regulators in LPS-treated MLE-12 cells, such as solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member A2 (SLC3A2), and glutathione peroxidase 4. Furthermore, blocking HMGB1 did not alter ferroptosis, oxidative stress-related changes, and permeability in LPS-treated MLE-12 cells that were pretreated with ferrostatin-1 (a ferroptosis inhibitor). HMGB1 inhibition also led to elevated expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream targets, heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) in LPS-treated MLE-12 cells and lung tissues from septic mice. The Nrf2-specific inhibitor ML385 reversed the effects of HMGB1 silencing on ferroptosis and cell permeability in LPS-treated MLE-12 cells. Our findings indicated that the inhibition of HMGB1 restrains ferroptosis and oxidative stress, thereby alleviating sepsis-induced ALI through the activation of Nrf2 signaling.
Collapse
Affiliation(s)
- Ya-Jie Jia
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Sha Xiong
- Department of Pharmacy, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ming Yao
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yu Wei
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yan He
- Department of Critical Care Medicine, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
36
|
Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM, Thomas B. A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: new insights into emerging mechanisms and therapeutic targets. Front Pharmacol 2024; 15:1390798. [PMID: 39040474 PMCID: PMC11260649 DOI: 10.3389/fphar.2024.1390798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Neurodegenerative diseases represent a pressing global health challenge, and the identification of novel mechanisms underlying their pathogenesis is of utmost importance. Ferroptosis, a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal player in the pathogenesis of neurodegenerative diseases. This review delves into the discovery of ferroptosis, the critical players involved, and their intricate role in the underlying mechanisms of neurodegeneration, with an emphasis on Alzheimer's and Parkinson's diseases. We critically appraise unsolved mechanistic links involved in the initiation and propagation of ferroptosis, such as a signaling cascade resulting in the de-repression of lipoxygenase translation and the role played by mitochondrial voltage-dependent anionic channels in iron homeostasis. Particular attention is given to the dual role of heme oxygenase in ferroptosis, which may be linked to the non-specific activity of P450 reductase in the endoplasmic reticulum. Despite the limited knowledge of ferroptosis initiation and progression in neurodegeneration, Nrf2/Bach1 target genes have emerged as crucial defenders in anti-ferroptotic pathways. The activation of Nrf2 and the inhibition of Bach1 can counteract ferroptosis and present a promising avenue for future therapeutic interventions targeting ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Priyanka Soni
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Sudarshana M. Sharma
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Irina Gazaryan
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
37
|
Chai Z, Zheng J, Shen J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke. CNS Neurosci Ther 2024; 30:e14865. [PMID: 39042604 PMCID: PMC11265528 DOI: 10.1111/cns.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jiesheng Zheng
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jian Shen
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| |
Collapse
|
38
|
Bai X, Yang Y, Luo Y, Zhang D, Zhai T, Hu Q, Zhang N, Dai Q, Liang J, Bian H, Liu X. Design and synthesis of sulfonamide phenothiazine derivatives as novel ferroptosis inhibitors and their therapeutic effects in spinal cord injury. Bioorg Chem 2024; 148:107458. [PMID: 38788362 DOI: 10.1016/j.bioorg.2024.107458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Ferroptosis is a novel style of cell death, and studies have shown that ferroptosis is strongly associated with spinal cord injury (SCI). A large number of ferroptosis inhibitors have been reported, but so far no ferroptosis inhibitor has been used clinically. Therefore there is an urgent need to discover a better inhibitor of ferroptosis. In this study, 24 novel sulfonamide phenothiazine ferroptosis inhibitors were designed and synthesized, followed by structure-activity relationship studies on these compounds. Among them, compound 23b exhibited the best activity in Erastin-induced PC12 cells (EC50 = 0.001 μM) and demonstrated a low hERG inhibition activity (IC50 > 30 μM). Additionally, compound 23b was identified as a ROS scavenger and showed promising therapeutic effects in an SD rat model of SCI. Importantly, 23b did not display significant toxicity in both in vivo and in vitro experiments and show good pharmacokinetic properties. These findings suggest that compound 23b, a novel ferroptosis inhibitor, holds potential as a therapeutic agent for spinal cord injury and warrants further investigation.
Collapse
Affiliation(s)
- Xinyue Bai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yanling Yang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Yilin Luo
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Tianyu Zhai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qianqian Hu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Ning Zhang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Qiangfang Dai
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Jiaxing Liang
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Hongyan Bian
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China
| | - Xiaolong Liu
- Yan'an Small Molecule Innovative Drug R&D Engineering Research Center, School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
39
|
Li Z, Zhang Y, Ji M, Wu C, Zhang Y, Ji S. Targeting ferroptosis in neuroimmune and neurodegenerative disorders for the development of novel therapeutics. Biomed Pharmacother 2024; 176:116777. [PMID: 38795640 DOI: 10.1016/j.biopha.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Neuroimmune and neurodegenerative ailments impose a substantial societal burden. Neuroimmune disorders involve the intricate regulatory interactions between the immune system and the central nervous system. Prominent examples of neuroimmune disorders encompass multiple sclerosis and neuromyelitis optica. Neurodegenerative diseases result from neuronal degeneration or demyelination in the brain or spinal cord, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. The precise underlying pathogenesis of these conditions remains incompletely understood. Ferroptosis, a programmed form of cell death characterised by lipid peroxidation and iron overload, plays a pivotal role in neuroimmune and neurodegenerative diseases. In this review, we provide a detailed overview of ferroptosis, its mechanisms, pathways, and regulation during the progression of neuroimmune and neurodegenerative diseases. Furthermore, we summarise the impact of ferroptosis on neuroimmune-related cells (T cells, B cells, neutrophils, and macrophages) and neural cells (glial cells and neurons). Finally, we explore the potential therapeutic implications of ferroptosis inhibitors in diverse neuroimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Ye Zhang
- Department of Forensic Medicine, Shantou University Medical College (SUMC), Shantou, Guangdong, China
| | - Meiling Ji
- Department of Emergency, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210002, China
| | - Chenglong Wu
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China
| | - Yanxing Zhang
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, China.
| | - Senlin Ji
- Department of Neurology of Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Translational Medicine Institute of Brain Disorders, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
40
|
Dong H, Ma YP, Cui MM, Qiu ZH, He MT, Zhang BG. Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review). Mol Med Rep 2024; 30:128. [PMID: 38785160 PMCID: PMC11134507 DOI: 10.3892/mmr.2024.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Stroke is a severe neurological disease that is associated with high rates of morbidity and mortality, and the underlying pathological processes are complex. Ferroptosis fulfills a significant role in the progression and treatment of stroke. It is well established that ferroptosis is a type of programmed cell death that is distinct from other forms or types of cell death. The process of ferroptosis involves multiple signaling pathways and regulatory mechanisms that interact with mechanisms inherent to stroke development. Inducers and inhibitors of ferroptosis have been shown to exert a role in the onset of this cell death process. Furthermore, it has been shown that interfering with ferroptosis affects the occurrence of stroke, indicating that targeting ferroptosis may offer a promising therapeutic approach for treating patients of stroke. Hence, the present review aimed to summarize the latest progress that has been made in terms of using therapeutic interventions for ferroptosis as treatment targets in cases of stroke. It provides an overview of the relevant pathways and molecular mechanisms that have been investigated in recent years, highlighting the roles of inducers and inhibitors of ferroptosis in stroke. Additionally, the intervention potential of various types of Traditional Chinese Medicine is also summarized. In conclusion, the present review provides a comprehensive overview of the potential therapeutic targets afforded by ferroptosis‑associated pathways in stroke, offering new insights into how ferroptosis may be exploited in the treatment of stroke.
Collapse
Affiliation(s)
- Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mei-Mei Cui
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Zheng-Hao Qiu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China
| |
Collapse
|
41
|
Wang Y, Zhang Y, Yu W, Dong M, Cheng P, Wang Y. Sevoflurane-induced regulation of NKCC1/KCC2 phosphorylation through activation of Spak/OSR1 kinase and cognitive impairment in ischemia-reperfusion injury in rats. Heliyon 2024; 10:e32481. [PMID: 38975218 PMCID: PMC11226796 DOI: 10.1016/j.heliyon.2024.e32481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
The occurrence of excitotoxic damage caused by cerebral ischemia-reperfusion (I/R) injury is closely linked to a decrease in central inhibitory function, in which the concentration of chloride inside the cells ([Cl-]i) plays a crucial role. The outflow and inflow of [Cl-]i are controlled by KCC2 and NKCC1, which are cellular cotransporters for K+/Cl- and Na+/K+/Cl-, respectively. NKCC1/KCC2 is regulated by upstream regulators such as SPAK and OSR1, whose activity is influenced by I/R. Sevoflurane is the most commonly used and controversial general anesthetic. To elucidate the impact of sevoflurane on cerebral ischemia-reperfusion (I/R) injury and its underlying mechanism, we investigated its influence on cognitive function and the mechanism of action utilizing a rat model of I/R. By activating the kinase Spak/OSR1, we discovered that I/R damage enhanced the function of NKCC1 and inhibited the function of KCC2, which triggered an imbalance of [Cl-]i concentration, leading to neurological dysfunction and cognitive dysfunction. At the beginning of reperfusion, administration of 1.3 MAC sevoflurane for 3 h increased activation of Spak/OSR1 kinases on day 7 post-perfusion, resulting in an additional dysregulation of NKCC1 and KCC2 activity, which disappeared on day 14. Administration of Closantel, a Spak/OSR1 kinase inhibitor, to animals treated with sevoflurane reverses the additional stimulation. The research revealed that sevoflurane modified the functioning of NKCC1 and KCC2, resulting in cognitive decline by activating Spak/OSR1 kinase. However, this issue could be resolved by inhibiting Spak/OSR1. The research revealed that sevoflurane transiently alters the function of NKCC1 and KCC2, resulting in exacerbating cognitive decline. However, this can be fixed by suppressing Spak/OSR1.
Collapse
Affiliation(s)
- Yuefeng Wang
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Yuanyu Zhang
- Department of Health Manageent Center, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Wei Yu
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Mengjuan Dong
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Pingping Cheng
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| | - Ye Wang
- Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China
| |
Collapse
|
42
|
Fan X, Song J, Zhang S, Lu L, Lin F, Chen Y, Li S, Jin X, Wang F. Luteolin-7-O-β-d-Glucuronide Attenuated Cerebral Ischemia/Reperfusion Injury: Involvement of the Blood-Brain Barrier. Biomedicines 2024; 12:1366. [PMID: 38927572 PMCID: PMC11201472 DOI: 10.3390/biomedicines12061366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Ischemic stroke is a common cerebrovascular disease with high mortality, high morbidity, and high disability. Cerebral ischemia/reperfusion injury seriously affects the quality of life of patients. Luteolin-7-O-β-d-glucuronide (LGU) is a major active flavonoid compound extracted from Ixeris sonchifolia (Bge.) Hance, a Chinese medicinal herb mainly used for the treatment of coronary heart disease, angina pectoris, cerebral infarction, etc. In the present study, the protective effect of LGU on cerebral ischemia/reperfusion injury was investigated in an oxygen-glucose deprivation/reoxygenation (OGD/R) neuronal model and a transient middle cerebral artery occlusion (tMCAO) rat model. In in vitro experiments, LGU was found to improve the OGD/R-induced decrease in neuronal viability effectively by the MTT assay. In in vivo experiments, neurological deficit scores, infarction volume rates, and brain water content rates were improved after a single intravenous administration of LGU. These findings suggest that LGU has significant protective effects on cerebral ischemia/reperfusion injury in vitro and in vivo. To further explore the potential mechanism of LGU on cerebral ischemia/reperfusion injury, we performed a series of tests. The results showed that a single administration of LGU decreased the content of EB and S100B and ameliorated the abnormal expression of tight junction proteins ZO-1 and occludin and metalloproteinase MMP-9 in the ischemic cerebral cortex of the tMCAO 24-h injury model. In addition, LGU also improved the tight junction structure between endothelial cells and the degree of basement membrane degradation and reduced the content of TNF-α and IL-1β in the brain tissue. Thereby, LGU attenuated cerebral ischemia/reperfusion injury by improving the permeability of the blood-brain barrier. The present study provides new insights into the therapeutic potential of LGU in cerebral ischemia.
Collapse
Affiliation(s)
- Xing Fan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.F.); (L.L.); (F.L.); (S.L.)
| | - Jintao Song
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.S.); (S.Z.); (Y.C.)
| | - Shuting Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.S.); (S.Z.); (Y.C.)
| | - Lihui Lu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.F.); (L.L.); (F.L.); (S.L.)
| | - Fang Lin
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.F.); (L.L.); (F.L.); (S.L.)
| | - Yu Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.S.); (S.Z.); (Y.C.)
| | - Shichang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China; (X.F.); (L.L.); (F.L.); (S.L.)
| | - Xinxin Jin
- Experimental Teaching Center of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.S.); (S.Z.); (Y.C.)
| |
Collapse
|
43
|
Duan WL, Ma YP, Wang XJ, Ma CS, Han B, Sheng ZM, Dong H, Zhang LY, Li PA, Zhang BG, He MT. N6022 attenuates cerebral ischemia/reperfusion injury-induced microglia ferroptosis by promoting Nrf2 nuclear translocation and inhibiting the GSNOR/GSTP1 axis. Eur J Pharmacol 2024; 972:176553. [PMID: 38574838 DOI: 10.1016/j.ejphar.2024.176553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.
Collapse
Affiliation(s)
- Wan-Li Duan
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Chang-Sheng Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Bo Han
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Zhi-Mei Sheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Li-Ying Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China.
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China; Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
44
|
Dai L, Wu Z, Yin L, Cheng L, Zhou Q, Ding F. Exogenous Functional Mitochondria Derived from Bone Mesenchymal Stem Cells That Respond to ROS Can Rescue Neural Cells Following Ischemic Stroke. J Inflamm Res 2024; 17:3383-3395. [PMID: 38803690 PMCID: PMC11129787 DOI: 10.2147/jir.s463692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Background Upon uptake by stressed cells, functional mitochondria can perform their normal functions, ultimately enhancing the survival of host cells. However, despite the promising results of this approach, there is still a lack of understanding of the specific relationship between nerve cells and functional mitochondria. Methods Functional mitochondria (F-Mito) were isolated from bone marrow-derived mesenchymal stem cells (BMSCs). The ability of microglia cells to internalize F-Mito was evaluated using a middle cerebral artery occlusion (MCAO) model in C57BL/6J mice and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. After OGD/R and F-Mito treatment, the temporal dynamics of intracellular reactive oxygen species (ROS) levels were examined.The relationship between ROS levels and F-Mito uptake was assessed at the individual cell level using MitoSOX, Mitotracker, and HIF-1α labeling. Results Our findings indicate that microglia cells exhibit enhanced mitochondrial uptake compared to astrocytes. Furthermore, internalized F-Mito reduced ROS levels and HIF-1α levels. Importantly, we found that the ROS response in microglia cells following ischemia is a critical regulator of F-Mito internalization, and promoting autophagy in microglia cells might reduce the uptake of ROS and HIF-1α levels. Conclusion It is verified that F-Mito derived from BMSCs play a protective role in ischemia-reperfusion injury, as their weakening reduces microglial cell activation and alleviates neuroinflammation.
Collapse
Affiliation(s)
- Lihua Dai
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Zheqian Wu
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Liili Yin
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Longjian Cheng
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| | - Qiang Zhou
- Department of General Surgery, Eighth People’s Hospital, ShangHai, People’s Republic of China
| | - Fei Ding
- Department of Emergency, Shidong Hospital, ShangHai, People’s Republic of China
| |
Collapse
|
45
|
Wang L, Jia JX, Zhang SB, Song W, Yan XS, Huo DS, Wang H, Wu LE, Yang ZJ. The protective effect and mechanism of glycosides of cistanche deserticola on rats in middle cerebral artery occlusion (MCAO) model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:448-456. [PMID: 38557302 DOI: 10.1080/15287394.2024.2337365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Cerebral ischemia-reperfusion injury (CIRI) occurs frequently clinically as a complication following cardiovascular resuscitation resulting in neuronal damage specifically to the hippocampal CA1 region with consequent cognitive impairment. Apoptosis and oxidative stress were proposed as major risk factors associated with CIRI development. Previously, glycosides obtained from Cistanche deserticola (CGs) were shown to play a key role in counteracting CIRI; however, the underlying mechanisms remain to be determined. This study aimed to investigate the neuroprotective effect of CGs on subsequent CIRI in rats. The model of CIRI was established for 2 hr and reperfusion for 24 hr by middle cerebral artery occlusion (MCAO) model. The MCAO rats were used to measure the antioxidant and anti-apoptotic effects of CGs on CIRI. Neurological function was evaluated by the Longa neurological function score test. 2,3,5-Triphenyltetrazolium chloride (TTC) staining was used to detect the area of cerebral infarction. Nissl staining was employed to observe neuronal morphology. TUNEL staining was used to detect neuronal apoptosis, while Western blot determined protein expression levels of factors for apoptosis-related and PI3K/AKT/Nrf2 signaling pathway. Data demonstrated that CGs treatment improved behavioral performance, brain injury, and enhanced antioxidant and anti-apoptosis in CIRI rats. In addition, CGs induced activation of PI3K/AKT/Nrf2 signaling pathway accompanied by inhibition of the expression of apoptosis-related factors. Evidence indicates that CGs amelioration of CIRI involves activation of the PI3K/AKT/Nrf2 signaling pathway associated with increased cellular viability suggesting these glycosides may be considered as an alternative compound for CIRI treatment.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurology, The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Jian-Xin Jia
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Shi-Bin Zhang
- Department of Human Anatomy, Baotou Medical College, Baotou, China
| | - Wei Song
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Xu-Sheng Yan
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - Dong-Sheng Huo
- Department of Human Anatomy, Baotou Medical College, Baotou, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Li-E Wu
- Department of Neurology, The First Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Zhan-Jun Yang
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Baotou, China
- Department of Human Anatomy, Chifeng University, Chifeng, China
| |
Collapse
|
46
|
Zhou Z, Yang Y, Wei Y, Xie Y. Remimazolam Attenuates LPS-Derived Cognitive Dysfunction via Subdiaphragmatic Vagus Nerve Target α7nAChR-Mediated Nrf2/HO-1 Signal Pathway. Neurochem Res 2024; 49:1306-1321. [PMID: 38472553 PMCID: PMC10991060 DOI: 10.1007/s11064-024-04115-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Sepsis-induced neuroinflammation is significantly associated with sepsis-related brain dysfunction. Remimazolam is a novel ultra-short-acting benzodiazepine anesthetic with multiple organ protective effects. However, it is unknown whether remimazolam can ameliorate LPS-induced brain impairment. In this study, Lipopolysaccharide (5 mg/kg, LPS) severely impaired Sprague-Dawley rats spatial learning ability, memory, and cognitive function. However, remimazolam treatment showed a protective effect on LPS-induced cognitive dysfunction. Remimazolam partly reversed LPS-induced splenomegaly, decreased serum cytokine expression, suppressed hippocampal M1 microglial activation, and mitigated oxidative stress injury and neuroinflammation. Electroacupuncture (EA) or PNU282987 treatment improved LPS-induced cognitive dysfunction and also significantly inhibited neuroinflammation and systemic inflammation. However, MLA, ML385, or subdiaphragmatic vagus nerve (SDV) treatment abolished the protective effects of remimazolam. Further mechanistic studies showed that remimazolam induces protective effects by activating subdiaphragmatic vagus nerve target α7nAChR-mediated Nrf2/HO-1 signaling pathway. These results demonstrate that remimazolam can up-regulate α7nAChR, Cyto-Nrf2, HO-1, and cognitive-related (CREB, BDNF, PSD95) protein expressions, suppress M1 microglia, ameliorate neuroinflammation or systemic inflammation, and reverse cognitive dysfunction. Therefore, this study provides insight into a new therapeutic target for the treatment of sepsis-induced cerebral dysfunction.
Collapse
Affiliation(s)
- Zhan Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Ying Yang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yi Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
47
|
Xu Y, Jia B, Li J, Li Q, Luo C. The Interplay between Ferroptosis and Neuroinflammation in Central Neurological Disorders. Antioxidants (Basel) 2024; 13:395. [PMID: 38671843 PMCID: PMC11047682 DOI: 10.3390/antiox13040395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Central neurological disorders are significant contributors to morbidity, mortality, and long-term disability globally in modern society. These encompass neurodegenerative diseases, ischemic brain diseases, traumatic brain injury, epilepsy, depression, and more. The involved pathogenesis is notably intricate and diverse. Ferroptosis and neuroinflammation play pivotal roles in elucidating the causes of cognitive impairment stemming from these diseases. Given the concurrent occurrence of ferroptosis and neuroinflammation due to metabolic shifts such as iron and ROS, as well as their critical roles in central nervous disorders, the investigation into the co-regulatory mechanism of ferroptosis and neuroinflammation has emerged as a prominent area of research. This paper delves into the mechanisms of ferroptosis and neuroinflammation in central nervous disorders, along with their interrelationship. It specifically emphasizes the core molecules within the shared pathways governing ferroptosis and neuroinflammation, including SIRT1, Nrf2, NF-κB, Cox-2, iNOS/NO·, and how different immune cells and structures contribute to cognitive dysfunction through these mechanisms. Researchers' findings suggest that ferroptosis and neuroinflammation mutually promote each other and may represent key factors in the progression of central neurological disorders. A deeper comprehension of the common pathway between cellular ferroptosis and neuroinflammation holds promise for improving symptoms and prognosis related to central neurological disorders.
Collapse
Affiliation(s)
- Yejia Xu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Bowen Jia
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
| | - Qianqian Li
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
- School of Forensic Medicine, Wannan Medical College, Wuhu 241002, China
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China
- Hebei Key Laboratory of Forensic Medicine, College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- NHC Key Laboratory of Drug Addiction Medicine, Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
48
|
Jiang Z, Yang H, Ni W, Gao X, Pei X, Jiang H, Su J, Weng R, Fei Y, Gao Y, Gu Y. Attenuation of neuronal ferroptosis in intracerebral hemorrhage by inhibiting HDAC1/2: Microglial heterogenization via the Nrf2/HO1 pathway. CNS Neurosci Ther 2024; 30:e14646. [PMID: 38523117 PMCID: PMC10961428 DOI: 10.1111/cns.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/26/2024] Open
Abstract
AIM The class I histone deacetylases (HDACs) implicate in microglial heterogenization and neuroinflammation following Intracerebral hemorrhage (ICH). Ferroptosis has also been reported in the ICH model. However, the relationship between HDAC1/2's role in microglial heterogenization and neuronal ferroptosis remains unclear. METHODS In both in vivo and in vitro models of ICH, we used Romidepsin (FK228), a selective HDAC1/2 inhibitor, to investigate its effects on microglial heterogenization and neuronal ferroptosis. In the in vitro ICH model using Hemin, a transwell system was utilized to examine how microglia-driven inflammation and ICH-triggered neuronal ferroptosis interact. Immunostaining, Western blotting and RT-qPCR were used to evaluate the microglial heterogenization and neuronal ferroptosis. Microglial heterogenization, neuronal ferroptosis, and neurological dysfunctions were assessed in vivo ICH mice model performed by autologous blood injection. RESULTS HDAC1/2 inhibition altered microglial heterogenization after ICH, as showing the reducing neuroinflammation and shifting microglia towards an anti-inflammatory phenotype by immunostaining and qPCR results. HDAC1/2 inhibition reduced ferroptosis, characterized by high ROS and low GPx4 expression in HT22 cells, and reduced iron and lipid deposition post-ICH in vivo. Additionally, the Nrf2/HO1 signaling pathway, especially acetyl-Nrf2, activated in the in vivo ICH model due to HDAC1/2 inhibition, plays a role in regulating microglial heterogenization. Furthermore, HDAC1/2 inhibition improved sensorimotor and histological outcomes post-ICH, offering a potential mechanism against ICH. CONCLUSION Inhibition of HDAC1/2 reduces neuro-ferroptosis by modifying the heterogeneity of microglia via the Nrf2/HO1 pathway, with a particular focus on acetyl-Nrf2. Additionally, this inhibition aids in the faster removal of hematomas and lessens prolonged neurological impairments, indicating novel approach for treating ICH.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Heng Yang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Wei Ni
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xinjie Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Xu Pei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Hanqiang Jiang
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Jiabin Su
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Ruiyuan Weng
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yuchao Fei
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yanqin Gao
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yuxiang Gu
- Department of Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
49
|
Tian X, Li X, Pan M, Yang LZ, Li Y, Fang W. Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cell Mol Neurobiol 2024; 44:25. [PMID: 38393376 PMCID: PMC10891262 DOI: 10.1007/s10571-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.
Collapse
Affiliation(s)
- Xinjuan Tian
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mengtian Pan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, State College, PA, 16801, USA
| | - Yunman Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
50
|
Dammavalam V, Lin S, Nessa S, Daksla N, Stefanowski K, Costa A, Bergese S. Neuroprotection during Thrombectomy for Acute Ischemic Stroke: A Review of Future Therapies. Int J Mol Sci 2024; 25:891. [PMID: 38255965 PMCID: PMC10815099 DOI: 10.3390/ijms25020891] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Stroke is a major cause of death and disability worldwide. Endovascular thrombectomy has been impactful in decreasing mortality. However, many clinical results continue to show suboptimal functional outcomes despite high recanalization rates. This gap in recanalization and symptomatic improvement suggests a need for adjunctive therapies in post-thrombectomy care. With greater insight into ischemia-reperfusion injury, recent preclinical testing of neuroprotective agents has shifted towards preventing oxidative stress through upregulation of antioxidants and downstream effectors, with positive results. Advances in multiple neuroprotective therapies, including uric acid, activated protein C, nerinetide, otaplimastat, imatinib, verapamil, butylphthalide, edaravone, nelonemdaz, ApTOLL, regional hypothermia, remote ischemic conditioning, normobaric oxygen, and especially nuclear factor erythroid 2-related factor 2, have promising evidence for improving stroke care. Sedation and blood pressure management in endovascular thrombectomy also play crucial roles in improved stroke outcomes. A hand-in-hand approach with both endovascular therapy and neuroprotection may be the key to targeting disability due to stroke.
Collapse
Affiliation(s)
- Vikalpa Dammavalam
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (K.S.)
| | - Sandra Lin
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (S.L.); (N.D.); (A.C.)
| | - Sayedatun Nessa
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (K.S.)
| | - Neil Daksla
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (S.L.); (N.D.); (A.C.)
| | - Kamil Stefanowski
- Department of Neurology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (V.D.); (K.S.)
| | - Ana Costa
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (S.L.); (N.D.); (A.C.)
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (S.L.); (N.D.); (A.C.)
| |
Collapse
|