1
|
Wang Q, Liu M, Cao BY, Su C, Meng X, Ding Y, Ren XY, Gong CX. Osteoporosis Caused by Monoallelic Variant of WNT1 Gene in Four Pediatric Patients. Am J Med Genet A 2025; 197:e63987. [PMID: 39780405 DOI: 10.1002/ajmg.a.63987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Pediatric patients of autosomal dominant early onset osteoporosis conferred by heterozygous mutation in the WNT1 (OMIM: 615221) were rarely reported, and therapy in pediatrics is relatively inexperienced. The clinical and genotypic characteristics and treatment process of four children with osteoporosis caused by WNT1 monoallelic variation were analyzed. The patients admitted from June 2023 to January 2024. All patients presented multiple vertebral compression fracture, two of them experienced recurrent peripheral fragility fractures. The age of the first fractures occur between 2 years and 12 years. Lumber BMD by dual-energy X-ray absorptiometry were decreased (height adjusted z score of -8.06 to -3.50). Four monoallelic variants in WNT1 (c.505G>T, c.616G>A, c.677C>T and c. 506G>A with transcript ID. NM_005430.4) were identified in the probands, and relatives carrying mutations presented with a bone phenotype, consistent with autosomal dominant inheritance. Novel variant c.616G>A was analyzed by 3D protein structural modeling. Subsequent to the treatment of zelodronic acid on all four patients, lumbar BMD improvement by 0.061-0.251 g/cm2. Our data showed that the age of onset of osteoporosis by monoallelic variants in WNT1 is significantly earlier than the age of onset in the general population. Severe osteoporosis is also exhibited in pediatric patients, not just in aging patients with WNT1 variant. Zoledronic acid treatment is effective in short-term observation for pediatric patients with improvement of bone pain and BMD, and no more facture during treatment.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Bing-Yan Cao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xi Meng
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuan Ding
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiao-Ya Ren
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Chun-Xiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wang Y, Hu J, Sun L, Zhou B, Lin X, Zhang Q, Wang O, Jiang Y, Xia W, Xing X, Li M. Correlation of serum DKK1 level with skeletal phenotype in children with osteogenesis imperfecta. J Endocrinol Invest 2024; 47:2785-2795. [PMID: 38744806 PMCID: PMC11473575 DOI: 10.1007/s40618-024-02380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE We aim to detect serum DKK1 level of pediatric patients with OI and to analyze its relationship with the genotype and phenotype of OI patients. METHODS A cohort of pediatric OI patients and age-matched healthy children were enrolled. Serum levels of DKK1 and bone turnover biomarkers were measured by enzyme-linked immunosorbent assay. Bone mineral density (BMD) was measured by Dual-energy X-ray absorptiometry. Pathogenic mutations of OI were detected by next-generation sequencing and confirmed by Sanger sequencing. RESULTS A total of 62 OI children with mean age of 9.50 (4.86, 12.00) years and 29 healthy children were included in this study. The serum DKK1 concentration in OI children was significantly higher than that in healthy children [5.20 (4.54, 6.32) and 4.08 (3.59, 4.92) ng/mL, P < 0.001]. The serum DKK1 concentration in OI children was negatively correlated with height (r = - 0.282), height Z score (r = - 0.292), ALP concentration (r = - 0.304), lumbar BMD (r = - 0.276), BMD Z score of the lumbar spine and femoral neck (r = - 0.32; r = - 0.27) (all P < 0.05). No significant difference in serum DKK1 concentration was found between OI patients with and without vertebral compression fractures. In patients with spinal deformity (22/62), serum DKK1 concentration was positively correlated with SDI (r = 0.480, P < 0.05). No significant correlation was observed between serum DKK1 concentration and the annual incidence of peripheral fractures, genotype and types of collagen changes in OI children. CONCLUSION The serum DKK1 level was not only significantly elevated in OI children, but also closely correlated to their skeletal phenotype, suggesting that DKK1 may become a new biomarker and a potential therapeutic target of OI.
Collapse
Affiliation(s)
- Y Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - J Hu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - L Sun
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - B Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - X Lin
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - Q Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - O Wang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - Y Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - W Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - X Xing
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China
| | - M Li
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shuaifuyuan No. 1, Beijing, 100730, Dongcheng District, China.
| |
Collapse
|
3
|
Li Y, Zhu M, Chen WX, Luo J, Li X, Cao Y, Zheng M, Ma S, Xiao Z, Zhang Y, Jiang L, Wang X, Tan T, Li X, Gong Q, Xiong X, Wang J, Tang M, Li M, Tang YP. A novel mutation in intron 1 of Wnt1 causes developmental loss of dopaminergic neurons in midbrain and ASD-like behaviors in rats. Mol Psychiatry 2023; 28:3795-3805. [PMID: 37658228 PMCID: PMC10730402 DOI: 10.1038/s41380-023-02223-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders with a strong genetic liability. Despite extensive studies, however, the underlying pathogenic mechanism still remains elusive. In the present study, we identified a homozygous mutation in the intron 1 of Wnt1 via large-scale screening of ASD risk/causative genes and verified that this mutation created a new splicing donor site in the intron 1, and consequently, a decrease of WNT1 expression. Interestingly, humanized rat models harboring this mutation exhibited robust ASD-like behaviors including impaired ultrasonic vocalization (USV), decreased social interactions, and restricted and repetitive behaviors. Moreover, in the substantia nigra compacta (SNpc) and the ventral tegmental area (VTA) of mutant rats, dopaminergic (DAergic) neurons were dramatically lost, together with a comparable decrease in striatal DAergic fibers. Furthermore, using single-cell RNA sequencing, we demonstrated that the decreased DAergic neurons in these midbrain areas might attribute to a shift of the boundary of the local pool of progenitor cells from the hypothalamic floor plate to the midbrain floor plate during the early embryonic stage. Moreover, treatments of mutant rats with levodopa could attenuate the impaired USV and social interactions almost completely, but not the restricted and repetitive behaviors. Our results for the first time documented that the developmental loss of DAergic neurons in the midbrain underlies the pathogenesis of ASD, and that the abnormal progenitor cell patterning is a cellular underpinning for this developmental DAergic neuronal loss. Importantly, the effective dopamine therapy suggests a translational significance in the treatment of ASD.
Collapse
Affiliation(s)
- Yongyi Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Mingwei Zhu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jing Luo
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yangyang Cao
- Department of Child Health, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Meng Zheng
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhilan Xiao
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yani Zhang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Linyan Jiang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiumin Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Ting Tan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xia Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Qian Gong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Xiaoli Xiong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Jun Wang
- Department of Child Health, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mingxi Tang
- Department of Pathology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Ya-Ping Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
- Department of Child Health, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
4
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
5
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
6
|
Zhang B, Li R, Wang W, Zhou X, Luo B, Zhu Z, Zhang X, Ding A. The role of WNT1 mutant variant (WNT1 c.677C>T ) in osteogenesis imperfecta. Ann Hum Genet 2020; 84:447-455. [PMID: 32757296 PMCID: PMC7590185 DOI: 10.1111/ahg.12399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
Osteogenesis imperfecta (OI), also known as "brittle bone disease," is a rare inherited genetic disorder characterized by bone fragility and often associated with short stature. The mutation in WNT1 causes autosomal recessive OI (AR-OI) due to the key role of WNT/β-catenin signaling in bone formation. WNT1 mutations cause phenotypes in OI of varying degrees of clinical severity, ranging from moderate to progressively deforming forms. The nucleotide change c.677C > T is one of the recurrent variants in the WNT1 alleles in Chinese AR-OI patients. To explore the effects of mutation c.677C > T on WNT1 function, we evaluated the activation of WNT/β-catenin signaling, cell proliferation, osteoblast differentiation, and osteoclast differentiation in WNT1c.677C>T , WNT1c.884C>A , and wild type WNT1 transfected into MC3T3-E1 preosteoblasts. Plasmids containing wild type WNT1, WNT1c.677C>T , and WNT1c.884C>A cDNAs were constructed. Protein levels of phosphorylation at serine 9 of GSK-3β (p-GSK-3β), GSK-3β, nonphosphorylated β-catenin (non-p-β-catenin), and β-catenin were detected with western blot. Cell proliferation was determined using MTS. BMP-2 and RANKL mRNA and protein levels were detected by qPCR and western blot. Our results showed that WNT1c.677C>T failed to activate WNT/β-catenin signaling and impaired the proliferation of preosteoblasts. Moreover, compared to wild type WNT1, WNT1c.677C>T downregulated BMP-2 protein expression and was exhibited a diminished capacity to suppress the RANKL protein level. In conclusion, mutation c.677C > T hindered the ability of WNT1 to induce the WNT/β-catenin signaling pathway and it affected the WNT/β-catenin pathway which might potentially contribute to hampered bone homeostasis.
Collapse
Affiliation(s)
- Bashan Zhang
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Rong Li
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Wenfeng Wang
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Xueming Zhou
- Department of Orthopedic, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Beijing Luo
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Zinian Zhu
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Xibo Zhang
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Aijiao Ding
- Clinical Laboratory, Affiliated Dongguan People's Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|