1
|
Salian VS, Thompson KJ, Tang X, Lowe VJ, Kalari KR, Kandimalla KK. Characterization of transcriptomic changes in the neurovascular unit of Alzheimiers transgenic mouse models using digital spatial profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.03.640886. [PMID: 40492192 PMCID: PMC12148062 DOI: 10.1101/2025.03.03.640886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Alzheimer's disease (AD) affects 40 million individuals globally and is characterized by the accumulation of amyloid-beta (Aβ) proteins, which aggregate and form plaques. BBB dysfunction drives AD cerebrovascular pathology and BBB integrity is maintained by neurovascular unit (NVU). Specifically, within the NVU, the cerebral endothelial cells maintain vascular homeostasis. In this study, we isolated endothelial-enriched regions of interest (ROIs) using the Nanostring GeoMx digital spatial profiler and employed a deconvolution model to evaluate transcriptomic changes. We observed dysregulation of cellular signaling potentially disrupting the APP+ BBB integrity. Analysis of ligand-receptor pairings that are the foundation of the NVU intercellular signaling indicated that the endothelial vasculature completes a feedback loop with the NVU to the regulating astroctyes. Further, we identified potentially antagonistic signaling roles for opioid receptor species that should be further investigated for potential therapeutic targets.
Collapse
|
2
|
Tiwari H, Singh S, Sharma S, Gupta P, Verma A, Chattopadhaya A, Kumar B, Agarwal S, Kumar R, Gupta SK, Gautam V. Deciphering the landscape of triple negative breast cancer from microenvironment dynamics and molecular insights to biomarker analysis and therapeutic modalities. Med Res Rev 2025; 45:817-841. [PMID: 39445844 DOI: 10.1002/med.22090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Triple negative breast cancer (TNBC) displays a notable challenge in clinical oncology due to its invasive nature which is attributed to the absence of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor (HER-2). The heterogenous tumor microenvironment (TME) of TNBC is composed of diverse constituents that intricately interact to evade immune response and facilitate cancer progression and metastasis. Based on molecular gene expression, TNBC is classified into four molecular subtypes: basal-like (BL1 and BL2), luminal androgen receptor (LAR), immunomodulatory (IM), and mesenchymal. TNBC is an aggressive histological variant with adverse prognosis and poor therapeutic response. The lack of response in most of the TNBC patients could be attributed to the heterogeneity of the disease, highlighting the need for more effective treatments and reliable prognostic biomarkers. Targeting certain signaling pathways and their components has emerged as a promising therapeutic strategy for improving patient outcomes. In this review, we have summarized the interactions among various components of the dynamic TME in TNBC and discussed the classification of its molecular subtypes. Moreover, the purpose of this review is to compile and provide an overview of the most recent data about recently discovered novel TNBC biomarkers and targeted therapeutics that have proven successful in treating metastatic TNBC. The emergence of novel therapeutic strategies such as chemoimmunotherapy, chimeric antigen receptor (CAR)-T cells-based immunotherapy, phytometabolites-mediated natural therapy, photodynamic and photothermal approaches have made a significant positive impact and have paved the way for more effective interventions.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sonal Sharma
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Amrit Chattopadhaya
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Brijesh Kumar
- Department of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sakshi Agarwal
- Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanjeev Kumar Gupta
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Li M, Zhou S, Lv H, Cai M, Shui R, Yang W. Neoadjuvant chemotherapy response in androgen receptor-positive triple-negative breast cancer: potential predictive biomarkers and genetic alterations. Breast Cancer Res 2025; 27:41. [PMID: 40114215 PMCID: PMC11927354 DOI: 10.1186/s13058-025-01994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The aim of the present study was to investigate whether the androgen receptor (AR) status affects the efficacy of neoadjuvant chemotherapy (NACT) in triple negative breast cancer (TNBC) patients, and to elucidate the predictive biomarkers and mutations associated with pathological complete response (pCR) in AR-positive TNBC patients. METHODS The current retrospective cohort included 226 TNBC patients who underwent NACT. AR and FOXC1 were assessed by immunohistochemistry on pretreatment biopsy specimens of 226 TNBC patients from 2018 to 2022. The clinicopathological features of AR-negative, AR < 10%, and AR ≥ 10% TNBC patients were analyzed to confirm the appropriate threshold. The response was evaluated in terms of pCR and Miller-Payne (MP) grade in the subsequent mastectomy or breast conservation samples. Next-generation sequencing (NGS) was utilized to further investigate the molecular characteristics of 44 AR-positive TNBC patients. RESULTS Among the 226 TNBC patients, compared with AR-negative and AR < 10% tumors (68.58%, 155/226), AR ≥ 10% TNBC patients (31.41%, 71/226) exhibited distinct clinicopathological features, while no significant difference was detected between those with AR-negative tumors and those with AR < 10% tumors. Thus, tumors with AR ≥ 10% expression were defined as having AR positive expression. The pCR rate of AR-positive TNBCs was lower than that of AR-negative TNBC patients (12.68% vs. 34.19%, p < 0.001). In TNBC, multivariate analysis demonstrated that FOXC1 was an independent predictor of pCR (p = 0.042), whereas AR was not. The pCR rate was higher in FOXC1 positive patients than in FOXC1 negative patients (34.44% vs. 3.13%, p < 0.001). In the AR-positive TNBC subgroup, patients with FOXC1 expression had lower AR expression, higher Ki-67 expression, and higher histological grade. Compared with AR-positive TNBC patients who achieved pCR, the non-pCR patients had a greater percentage of mutations in genes involved in the PI3K/AKT/mTOR pathway. CONCLUSIONS The current study indicated that the AR-positive TNBC is correlated with lower rates of pCR after NACT. The expression of FOXC1 in TNBC patients and AR-positive TNBC patients could be utilized as a predictive marker for the efficacy of NACT. The present study provides a rationale for treating these non-pCR AR-positive TNBC tumors with PI3K/AKT/mTOR inhibitors.
Collapse
Affiliation(s)
- Ming Li
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, China
- Institute of Pathology, Fudan University, 270 Dongan Road, Shanghai, 200032, China
| | - Shuling Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, China
- Institute of Pathology, Fudan University, 270 Dongan Road, Shanghai, 200032, China
| | - Hong Lv
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, China
- Institute of Pathology, Fudan University, 270 Dongan Road, Shanghai, 200032, China
| | - Mengyuan Cai
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, China
- Institute of Pathology, Fudan University, 270 Dongan Road, Shanghai, 200032, China
| | - Ruohong Shui
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, China
- Institute of Pathology, Fudan University, 270 Dongan Road, Shanghai, 200032, China
| | - Wentao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032, China.
- Institute of Pathology, Fudan University, 270 Dongan Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Niture S, Ghosh S, Jaboin J, Seneviratne D. Tumor Microenvironment Dynamics of Triple-Negative Breast Cancer Under Radiation Therapy. Int J Mol Sci 2025; 26:2795. [PMID: 40141437 PMCID: PMC11943269 DOI: 10.3390/ijms26062795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/20/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer characterized by the absence of estrogen receptors (ER), progesterone receptors (PR), and HER2 expression. While TNBC is relatively less common, accounting for only 10-15% of initial breast cancer diagnosis, due to its aggressive nature, it carries a worse prognosis in comparison to its hormone receptor-positive counterparts. Despite significant advancements in the screening, diagnosis, and treatment of breast cancer, TNBC remains an important public health burden. Following treatment with chemotherapy, surgery, and radiation, over 40% of TNBC patients experience relapse within 3 years and achieve the least benefit from post-mastectomy radiation. The tumor microenvironment environment (TME) is pivotal in TNBC initiation, progression, immune evasion, treatment resistance, and tumor prognosis. TME is a complex network that consists of immune cells, non-immune cells, and soluble factors located in the region adjacent to the tumor that modulates the therapeutic response differentially between hormone receptor-positive breast cancer and TNBC. While the mechanisms underlying the radiation resistance of TNBC remain unclear, the immunosuppressive TME of TNBC has been implicated in chemotherapeutic resistance. Radiation therapy (RT) is known to alter the TME; however, immune changes elicited by radiation are poorly characterized to date, and whether these immune changes contribute to radiation resistance remains unknown. This review delves into the distinct characteristics of the TNBC TME, explores how RT influences TME dynamics, and examines mechanisms underlying tumor radiosensitization, radioresistance, and immune responses.
Collapse
Affiliation(s)
- Suryakant Niture
- Department of Radiation Oncology, Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK 73104, USA
| | | | | | - Danushka Seneviratne
- Department of Radiation Oncology, Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
MacGrogan G. [Apocrine lesions of the breast]. Ann Pathol 2025:S0242-6498(25)00031-8. [PMID: 40107901 DOI: 10.1016/j.annpat.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Apocrine breast lesions encompass a spectrum of histopathological abnormalities, ranging from benign apocrine metaplasia to invasive apocrine carcinomas. Their defining feature lies in cells with abundant eosinophilic cytoplasm and round nuclei with prominent nucleoli. These cells strongly express the androgen receptor while lacking estrogen receptor-alpha and progesterone receptor expression. Benign lesions, frequently associated with mammary cysts or papillomas, lack nuclear and architectural atypia. In contrast, atypical apocrine lesions exhibit significant nuclear and structural abnormalities, posing diagnostic challenges when distinguishing them from apocrine ductal or lobular carcinoma in situ. Diagnosis relies on the extent of atypia and the presence of tumor necrosis. Invasive apocrine carcinomas are rare, accounting for less than 1% of all breast cancers, and predominantly occur in postmenopausal women. Histologically, they are often grade 1 or 2 tumors. Approximately 50% exhibit HER2 amplification and overexpression. Immunohistochemically, they are characterized by positivity for FOXA1 and GATA3, and negativity for FOXC1 and SOX10, and variable expression of TRPS1. These carcinomas belong to the molecular apocrine carcinoma family, which includes HER2-enriched tumors driven by HER2 addiction and androgen receptor-positive luminal tumors, a subtype of triple-negative breast cancers. The latter are defined by androgen receptor pathway activation and are frequently associated with PI3K pathway alterations and cell cycle dysregulation, suggesting potential therapeutic targets.
Collapse
Affiliation(s)
- Gaëtan MacGrogan
- Département de biopathologie, institut Bergonié, 229, cours de l'Argonne, 33076 Bordeaux cedex, France.
| |
Collapse
|
6
|
Spurnić I, Šušnjar S, Jovanić I, Medić-Miljić N, Milovanović Z, Popović Krneta M, Bukumirić Z, Gavrilović D, Rajšić S, Marković I. The Diagnostics of Disease Relapse Within Five-Year Follow-Up and the Role of Androgen Receptor Expression in Patients with Early Triple-Negative Breast Cancer. Diagnostics (Basel) 2025; 15:692. [PMID: 40150035 PMCID: PMC11941219 DOI: 10.3390/diagnostics15060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Triple-negative breast cancer (TNBC) is characterized by the absence of the expression of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2. As there are no specific targeted therapies, TNBC patients often face an aggressive clinical course. The expression of the androgen receptor (AR) has been found in up to 30% of TNBC cases, but the association between the AR status and survival rates in TNBC remains controversial. The aim of this study was to explore the association of AR expression with the disease outcome in patients with early TNBC within a 5-year follow-up. Methods: AR expression was determined by immunohistochemistry in a cohort of 124 early-TNBC patients treated at the Institute for Oncology and Radiology of Serbia. The cut-off value used for the positive AR status was >10% tumor cells. The association of the AR status with clinicopathological factors (age, stage, tumor diameter, lymph node invasion, metastatic spread, Ki-67 score, EGFR score, and cytokeratin 5/6 score) and the disease outcome (disease-free survival-DFS-and overall survival-OS) was investigated. Results: Our analysis showed that the AR-positive status was associated with a significantly lower Ki-67 score compared to the AR-negative samples. A univariate analysis indicated that the age, tumor size, nodal status, and EGFR score significantly influenced both 5-year DFS and OS. Multivariate Cox analysis suggested that a smaller tumor size, lower nodal status, and AR expression were independent predictors of longer survival rates in TNBC patients. Conclusions: The results of this study suggest that the positive AR status may be a favorable prognostic factor in TNBC patients within the first five years after surgery.
Collapse
Affiliation(s)
- Igor Spurnić
- Surgical Oncology Clinic, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Snežana Šušnjar
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
| | - Irena Jovanić
- Department of Pathology, Institute of Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (I.J.); (N.M.-M.); (Z.M.)
| | - Nataša Medić-Miljić
- Department of Pathology, Institute of Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (I.J.); (N.M.-M.); (Z.M.)
| | - Zorka Milovanović
- Department of Pathology, Institute of Oncology and Radiology of Serbia, 11000 Belgrade, Serbia; (I.J.); (N.M.-M.); (Z.M.)
| | - Marina Popović Krneta
- Department of Nuclear Medicine, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia;
| | - Zoran Bukumirić
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
- Institute of Medical Statistics and Informatics, 11000 Belgrade, Serbia
| | - Dušica Gavrilović
- Data Center, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia;
| | - Saša Rajšić
- Department of Anesthesiology and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Ivan Marković
- Surgical Oncology Clinic, Institute for Oncology and Radiology of Serbia, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
7
|
Ushigusa T, Hirakawa N, Kajiura Y, Yoshida A, Yamauchi H, Kanomata N. Clinicopathological significance of androgen receptor expression and tumor infiltrating lymphocytes in triple-negative breast cancer: a retrospective cohort study. Breast Cancer 2025; 32:357-368. [PMID: 39729292 DOI: 10.1007/s12282-024-01662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a serious disease with limited treatment options. We explored the significance of androgen receptor (AR) expression and tumor-infiltrating lymphocytes (TILs) in predicting neoadjuvant chemotherapy (NAC) resistance in TNBC, hypothesizing that AR/TIL classification using pretreatment biopsies can identify NAC-resistant subgroups and improve the understanding of apocrine differentiation. METHODS This retrospective study included 156 consecutive patients with TNBC treated with NAC. AR immunostaining was defined positive if ≥ 1% of the tumor cell nuclei were stained. Stromal TIL levels were assessed, with high levels defined as ≥ 50%. Apocrine differentiation was detected using an anti-15-PGDH antibody. The pathological response to NAC was evaluated. RESULTS Overall, 36% (n = 56) of the patients achieved a pathological complete response (pCR). AR+/TILlow tumors had a high non-pCR rate (76%, 42/55) and were resistant to NAC. Kaplan-Meier plots showed significant differences in overall survival (OS) and distant metastasis-free survival (DMFS) among the four AR/TIL subgroups (OS: p = 0.013; DMFS: p = 0.0016). All 11 cases with some degree of apocrine differentiation were AR+/TILlow, 15-PGDH-positive, and NAC-resistant. AR+/TILlow status was significantly associated with a high likelihood of non-pCR (OR = 0.26, p = 0.009). Multivariate analysis confirmed pCR as an independent predictor of better prognosis (OS, HR = 0.13, p = 0.006; DMFS, HR = 0.15, p = 0.002), whereas AR+/TILlow status was not significantly associated with OS or DMFS. CONCLUSIONS AR/TIL classification using pretreatment biopsies identified TNBC subgroups with distinct NAC responses and prognoses. AR+/TILlow TNBC, including apocrine differentiation cases, were NAC-resistant, highlighting the need for alternative therapies.
Collapse
Affiliation(s)
- Takeshi Ushigusa
- Department of Pathology, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 1048560, Japan.
| | - Nami Hirakawa
- Department of Pathology, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 1048560, Japan
| | - Yuka Kajiura
- Department of Breast Surgery, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 1048560, Japan
| | - Atsushi Yoshida
- Department of Breast Surgery, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 1048560, Japan
| | - Hideko Yamauchi
- University of Hawai'i Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Naoki Kanomata
- Department of Pathology, St. Luke's International Hospital, 9-1, Akashi-cho, Chuo-ku, Tokyo, 1048560, Japan
| |
Collapse
|
8
|
Helal C, Djerroudi L, Ramtohul T, Laas E, Vincent-Salomon A, Jin M, Seban RD, Bieche I, Bello-Roufai D, Bidard FC, Cottu P, Loirat D, Carton M, Lerebours F, Kiavue N, Romano E, Bonneau C, Cabel L. Clinico-pathological factors predicting pathological response in early triple-negative breast cancer. NPJ Breast Cancer 2025; 11:15. [PMID: 39948122 PMCID: PMC11825670 DOI: 10.1038/s41523-025-00729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Pathological complete response (pCR) after neoadjuvant chemoimmunotherapy (NACi) is associated with improved patient outcomes in early triple-negative breast cancer (TNBC). This study aimed to identify factors associated with pCR after NACi. This cohort included all patients with stage II-III TNBC treated with NACi who underwent surgery at Institut Curie hospitals between 08/2021-06/2023. Among 208 patients, the overall pCR rate was 70% and was similar in ER < 1% (69%) and ER-low TNBC (73%, p = 0.6). In a multivariate model, Ki-67 ≥ 30% (OR 5.19 [1.73-17.3]), centralized TILs ≥ 30% (OR = 3.08 [1.42-7.04]), absence of DCIS at initial biopsy (OR = 2.56 [1.08-6.25]) and germline mutations in homologous recombination genes (OR = 9.50 [2.37-67.7]) remained strong independent predictors of pCR. These findings may guide treatment decisions in patients with TNBC undergoing NACi. Almost all patients with germline mutations in HR genes achieved pCR, supporting de-escalation trials. We suggest that ER-low tumors should be managed as TNBC tumors.
Collapse
Affiliation(s)
- Clara Helal
- Department of Medical Oncology, Institut Curie, Paris, France
| | | | | | - Enora Laas
- Department of Surgery, Institut Curie, Paris, France
| | - Anne Vincent-Salomon
- Department of Pathology, Institut Curie, Paris, France
- PSL University, Paris, France
| | - Maxime Jin
- Department of Radiology, Institut Curie, Paris, France
| | | | - Ivan Bieche
- Department of Genetic, Institut Curie, Paris, France
| | | | - Francois-Clement Bidard
- Department of Medical Oncology, Institut Curie, Paris, France
- Paris-Saclay University, UVSQ, Saint Cloud, France
| | - Paul Cottu
- Department of Medical Oncology, Institut Curie, Paris, France
- Université Paris Cité, Paris, France
| | - Delphine Loirat
- Department of Medical Oncology, Institut Curie, Paris, France
| | | | | | - Nicolas Kiavue
- Department of Medical Oncology, Institut Curie, Paris, France
| | - Emanuela Romano
- Department of Medical Oncology, Institut Curie, Paris, France
- PSL University, Paris, France
- Department of Immunology, Institut Curie, Paris, France
| | - Claire Bonneau
- Department of Surgery, Institut Curie, Paris, France
- U900-STAMPM Team, Saint Cloud, France
| | - Luc Cabel
- Department of Medical Oncology, Institut Curie, Paris, France.
| |
Collapse
|
9
|
Supplitt S, Karpinski P, Sasiadek M, Laczmanski L, Kujawa D, Matkowski R, Kasprzak P, Abrahamowska M, Maciejczyk A, Iwaneczko E, Laczmanska I. The analysis of transcriptomic signature of TNBC-searching for the potential RNA-based predictive biomarkers to determine the chemotherapy sensitivity. J Appl Genet 2025; 66:171-182. [PMID: 38722458 PMCID: PMC11761126 DOI: 10.1007/s13353-024-00876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 08/17/2024]
Abstract
Neoadjuvant chemotherapy is the foundation treatment for triple-negative breast cancer (TNBC) and frequently results in pathological complete response (pCR). However, there are large differences in clinical response and survival after neoadjuvant chemotherapy of TNBC patients. The aim was to identify genes whose expression significantly associates with the efficacy of neoadjuvant chemotherapy in patients with TNBC. Transcriptomes of 46 formalin-fixed paraffin-embedded (FFPE) tumor samples from TNBC patients were analyzed by RNA-seq by comparing 26 TNBCs with pCR versus 20 TNBCs with pathological partial remission (pPR). Subsequently, we narrowed down the list of genes to those that strongly correlated with drug sensitivity of 63 breast cancer cell lines based on Dependency Map Consortium data re-analysis. Furthermore, the list of genes was limited to those presenting specific expression in breast tumor cells as revealed in three large published single-cell RNA-seq breast cancer datasets. Finally, we analyzed which of the selected genes were significantly associated with overall survival (OS) in TNBC TCGA dataset. A total of 105 genes were significantly differentially expressed in comparison between pPR versus pCR. As revealed by PLSR analysis in breast cancer cell lines, out of 105 deregulated genes, 42 were associated with sensitivity to docetaxel, doxorubicin, paclitaxel, and/or cyclophosphamide. We found that 24 out of 42 sensitivity-associated genes displayed intermediate or strong expression in breast malignant cells using single-cell RNAseq re-analysis. Finally, 10 out of 24 genes were significantly associated with overall survival in TNBC TCGA dataset. Our RNA-seq-based findings suggest that there might be transcriptomic signature consisted of 24 genes specifically expressed in tumor malignant cells for predicting neoadjuvant response in FFPE samples from TNBC patients prior to treatment initiation. Additionally, nine out of 24 genes were potential survival predictors in TNBC. This group of 24 genes should be further investigated for its potential to be translated into a predictive test(s).
Collapse
Affiliation(s)
- Stanislaw Supplitt
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| | - Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| | - Maria Sasiadek
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics and Bioinformatics, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dorota Kujawa
- Laboratory of Genomics and Bioinformatics, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Rafal Matkowski
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Piotr Kasprzak
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
| | - Mariola Abrahamowska
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Adam Maciejczyk
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
- Department of Oncology, Wroclaw Medical University, Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Ewelina Iwaneczko
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland
| | - Izabela Laczmanska
- Lower Silesian Oncology, Pulmonology and Hematology Center, Hirszfelda Sq. 12, 53-413, Wroclaw, Poland.
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368, Wroclaw, Poland.
| |
Collapse
|
10
|
Li J, Wu Y, Li Y, Zhu H, Zhang Z, Li Y. Glutathione-Disrupting Nanotherapeutics Potentiate Ferroptosis for Treating Luminal Androgen Receptor-Positive Triple-Negative Breast Cancer. ACS NANO 2024; 18:26585-26599. [PMID: 39287044 DOI: 10.1021/acsnano.4c04322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The refractory luminal androgen receptor (LAR) subtype of triple-negative breast cancer (TNBC) patients is challenged by significant resistance to neoadjuvant chemotherapy and increased immunosuppression. Regarding the distinct upregulation of glutathione (GSH) and glutathione peroxidase 4 (GPX4) in LAR TNBC tumors, we herein designed a GSH-depleting phospholipid derivative (BPP) and propose a BPP-based nanotherapeutics of RSL-3 (GDNS), aiming to deplete intracellular GSH and repress GPX4 activity, thereby potentiating ferroptosis for treating LAR-subtype TNBC. GDNS treatment drastically downregulated the expression of GSH and GPX4, resulting in a 33.88-fold enhancement of lipid peroxidation and significant relief of immunosuppression in the 4T1 TNBC model. Moreover, GDNS and its combination with antibody against programed cell death protein 1 (antiPD-1) retarded tumor growth and produced 2.83-fold prolongation of survival in the LAR-positive TNBC model. Therefore, the GSH-disrupting GDNS represents an encouraging strategy to potentiate ferroptosis for treating refractory LAR-subtype TNBC.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yao Wu
- School of Pharmacy & Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China
| | - Yongping Li
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Hongbo Zhu
- Department of Breast Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Zhiwen Zhang
- School of Pharmacy & Key Laboratory of Smart Drug Delivery (Ministry of Education), Fudan University, Shanghai 201203, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
| |
Collapse
|
11
|
Altman JE, Olex AL, Zboril EK, Walker CJ, Boyd DC, Myrick RK, Hairr NS, Koblinski JE, Puchalapalli M, Hu B, Dozmorov MG, Chen XS, Chen Y, Perou CM, Lehmann BD, Visvader JE, Harrell JC. Single-cell transcriptional atlas of human breast cancers and model systems. Clin Transl Med 2024; 14:e70044. [PMID: 39417215 PMCID: PMC11483560 DOI: 10.1002/ctm2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Breast cancer's complex transcriptional landscape requires an improved understanding of cellular diversity to identify effective treatments. The study of genetic variations among breast cancer subtypes at single-cell resolution has potential to deepen our insights into cancer progression. METHODS In this study, we amalgamate single-cell RNA sequencing data from patient tumours and matched lymph metastasis, reduction mammoplasties, breast cancer patient-derived xenografts (PDXs), PDX-derived organoids (PDXOs), and cell lines resulting in a diverse dataset of 117 samples with 506 719 total cells. These samples encompass hormone receptor positive (HR+), human epidermal growth factor receptor 2 positive (HER2+), and triple-negative breast cancer (TNBC) subtypes, including isogenic model pairs. Herein, we delineated similarities and distinctions across models and patient samples and explore therapeutic drug efficacy based on subtype proportions. RESULTS PDX models more closely resemble patient samples in terms of tumour heterogeneity and cell cycle characteristics when compared with TNBC cell lines. Acquired drug resistance was associated with an increase in basal-like cell proportions within TNBC PDX tumours as defined with SCSubtype and TNBCtype cell typing predictors. All patient samples contained a mixture of subtypes; compared to primary tumours HR+ lymph node metastases had lower proportions of HER2-Enriched cells. PDXOs exhibited differences in metabolic-related transcripts compared to PDX tumours. Correlative analyses of cytotoxic drugs on PDX cells identified therapeutic efficacy was based on subtype proportion. CONCLUSIONS We present a substantial multimodel dataset, a dynamic approach to cell-wise sample annotation, and a comprehensive interrogation of models within systems of human breast cancer. This analysis and reference will facilitate informed decision-making in preclinical research and therapeutic development through its elucidation of model limitations, subtype-specific insights and novel targetable pathways. KEY POINTS Patient-derived xenografts models more closely resemble patient samples in tumour heterogeneity and cell cycle characteristics when compared with cell lines. 3D organoid models exhibit differences in metabolic profiles compared to their in vivo counterparts. A valuable multimodel reference dataset that can be useful in elucidating model differences and novel targetable pathways.
Collapse
Affiliation(s)
- Julia E. Altman
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Amy L. Olex
- C. Kenneth and Diane Wright Center for Clinical and Translational ResearchVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Emily K. Zboril
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of BiochemistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Carson J. Walker
- Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - David C. Boyd
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Rachel K. Myrick
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Nicole S. Hairr
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jennifer E. Koblinski
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Madhavi Puchalapalli
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Bin Hu
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Mikhail G. Dozmorov
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - X. Steven Chen
- Department of Public Health SciencesUniversity of Miami Miller School of MedicineMiamiFloridaUSA
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Yunshun Chen
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Charles M. Perou
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Brian D. Lehmann
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jane E. Visvader
- Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - J. Chuck Harrell
- Department of PathologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Massey Comprehensive Cancer CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Center for Pharmaceutical EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
12
|
Roostee S, Ehinger D, Jönsson M, Phung B, Jönsson G, Sjödahl G, Staaf J, Aine M. Tumour immune characterisation of primary triple-negative breast cancer using automated image quantification of immunohistochemistry-stained immune cells. Sci Rep 2024; 14:21417. [PMID: 39271910 PMCID: PMC11399404 DOI: 10.1038/s41598-024-72306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
The tumour immune microenvironment (TIME) in breast cancer is acknowledged with an increasing role in treatment response and prognosis. With a growing number of immune markers analysed, digital image analysis may facilitate broader TIME understanding, even in single-plex IHC data. To facilitate analyses of the latter an open-source image analysis pipeline, Tissue microarray MArker Quantification (TMArQ), was developed and applied to single-plex stainings for p53, CD3, CD4, CD8, CD20, CD68, FOXP3, and PD-L1 (SP142 antibody) in a 218-patient triple negative breast cancer (TNBC) cohort with complementary pathology scorings, clinicopathological, whole genome sequencing, and RNA-sequencing data. TMArQ's cell counts for analysed immune markers were on par with results from alternative methods and consistent with both estimates from human pathology review, different quantifications and classifications derived from RNA-sequencing as well as known prognostic patterns of immune response in TNBC. The digital cell counts demonstrated how immune markers are coexpressed in the TIME when considering TNBC molecular subtypes and DNA repair deficiency, and how combination of immune status with DNA repair deficiency status can improve the prognostic stratification in chemotherapy treated patients. These results underscore the value and potential of integrating TIME and specific tumour intrinsic alterations/phenotypes for the molecular understanding of TNBC.
Collapse
Affiliation(s)
- Suze Roostee
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 22381, Lund, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Daniel Ehinger
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
- Department of Genetics, Pathology, and Molecular Diagnostics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Mats Jönsson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Bengt Phung
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Göran Jönsson
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Gottfrid Sjödahl
- Department of Genetics, Pathology, and Molecular Diagnostics, Skåne University Hospital, Lund, Sweden
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Johan Staaf
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden.
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Medicon Village, 22381, Lund, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
| | - Mattias Aine
- Division of Oncology, Department of Clinical Sciences Lund, Lund University, Medicon Village, 22381, Lund, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
| |
Collapse
|
13
|
Bijelić A, Silovski T, Mlinarić M, Čipak Gašparović A. Peroxiporins in Triple-Negative Breast Cancer: Biomarker Potential and Therapeutic Perspectives. Int J Mol Sci 2024; 25:6658. [PMID: 38928364 PMCID: PMC11203578 DOI: 10.3390/ijms25126658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Triple-negative breast cancer (TNBC) remains one of the most challenging subtypes since it is initially characterized by the absence of specific biomarkers and corresponding targeted therapies. Advances in methodology, translational informatics, genomics, and proteomics have significantly contributed to the identification of therapeutic targets. The development of innovative treatments, such as antibody-drug conjugates and immune checkpoint inhibitors, alongside chemotherapy, has now become the standard of care. However, the quest for biomarkers defining therapy outcomes is still ongoing. Peroxiporins, which comprise a subgroup of aquaporins, which are membrane pores facilitating the transport of water, glycerol, and hydrogen peroxide, have emerged as potential biomarkers for therapy response. Research on peroxiporins reveals their involvement beyond traditional channeling activities, which is also reflected in their cellular localization and roles in cellular signaling pathways. This research on peroxiporins provides fresh insights into the mechanisms of therapy resistance in tumors, offering potential avenues for predicting treatment outcomes and tailoring successful TNBC therapies.
Collapse
Affiliation(s)
- Anita Bijelić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Tajana Silovski
- Department of Oncology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| | - Ana Čipak Gašparović
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
14
|
James N, Owusu E, Rivera G, Bandyopadhyay D. Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action. Int J Mol Sci 2024; 25:6285. [PMID: 38892472 PMCID: PMC11172743 DOI: 10.3390/ijms25116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10-15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and a higher risk of metastasis and recurrence. Still, chemotherapy is one of the widely used options for treating TNBC. This study reviewed the histological and molecular characterization of TNBC subtypes, signaling pathways that are aberrantly expressed, and small molecules targeting these pathways, as either single agents or in combination with other therapeutic agents like chemotherapeutics, immunotherapeutics, and antibody-drug conjugates; their mechanisms of action, challenges, and future perspectives were also reviewed. A detailed analytical review was carried out using the literature collected from the SciFinder, PubMed, ScienceDirect, Google Scholar, ACS, Springer, and Wiley databases. Several small molecule inhibitors were found to be therapeutics for treating TNBC. The mechanism of action and the different signaling pathways through which the small molecules exert their effects were studied, including clinical trials, if reported. These small molecule inhibitors include buparlisib, everolimus, vandetanib, apatinib, olaparib, salidroside, etc. Some of the signaling pathways involved in TNBC, including the VEGF, PARP, STAT3, MAPK, EGFR, P13K, and SRC pathways, were discussed. Due to the absence of these biomarkers, drug development for treating TNBC is challenging, with chemotherapy being the main therapeutic agent. However, chemotherapy is associated with chemoresistance and a high toxicity to healthy cells as side effects. Hence, there is a continuous demand for small-molecule inhibitors that specifically target several signaling pathways that are abnormally expressed in TNBC. We attempted to include all the recent developments in this field. Any omission is truly unintentional.
Collapse
Affiliation(s)
- Nneoma James
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Esther Owusu
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
15
|
Syrnioti A, Petousis S, Newman LA, Margioula-Siarkou C, Papamitsou T, Dinas K, Koletsa T. Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers (Basel) 2024; 16:2094. [PMID: 38893213 PMCID: PMC11171372 DOI: 10.3390/cancers16112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is characterized by distinct molecular subtypes with unique biological and clinical features. This systematic review aimed to identify articles examining the differences in the tumor immune microenvironment (TIME) across different TNBC molecular subtypes. Six studies meeting inclusion criteria were analyzed, utilizing gene expression profiling and bioinformatic analyses to classify TNBC samples into molecular subtypes, as well as immunohistochemistry and cell deconvolution methods to characterize the TIME. Results revealed significant heterogeneity in immune cell composition among TNBC subtypes, with the immunomodulatory (IM) subtype demonstrating robust immune infiltration, composed mainly of adaptive immune cells along with an increased density of CTLA-4+ and PD-1+ TILs, high PD-L1 tumor cell expression, and upregulation of FOXP3+ Tregs. A more immunosuppressive TIME with a predominance of innate immune cells and lower levels of tumor-infiltrating lymphocytes (TILs) was observed in luminal androgen receptor (LAR) tumors. In mesenchymal stem-like (MSL) tumors, the TIME was mainly composed of innate immune cells, with a high number of M2 tumor-associated macrophages (TAMs), while the BL and M tumors displayed poor adaptive and innate immune responses, indicating an "immune-cold" phenotype. Differential activation of signaling pathways, genomic diversity, and metabolic reprogramming were identified as contributors to TIME heterogeneity. Understanding this interplay is crucial for tailoring therapeutic strategies, especially regarding immunotherapy.
Collapse
Affiliation(s)
- Antonia Syrnioti
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Lisa A. Newman
- Department of Breast Surgery, New York Presbyterian-Weill Cornell Medicine, New York, NY 10065, USA;
| | - Chrysoula Margioula-Siarkou
- MSc Program in Gynaecologic Oncology and Breast Oncology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Konstantinos Dinas
- 2nd Department of Obstetrics and Gynaecology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (K.D.)
| | - Triantafyllia Koletsa
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
16
|
Xiong N, Wu H, Yu Z. Advancements and challenges in triple-negative breast cancer: a comprehensive review of therapeutic and diagnostic strategies. Front Oncol 2024; 14:1405491. [PMID: 38863622 PMCID: PMC11165151 DOI: 10.3389/fonc.2024.1405491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses significant challenges in oncology due to its aggressive nature, limited treatment options, and poorer prognosis compared to other breast cancer subtypes. This comprehensive review examines the therapeutic and diagnostic landscape of TNBC, highlighting current strategies, emerging therapies, and future directions. Targeted therapies, including PARP inhibitors, immune checkpoint inhibitors, and EGFR inhibitors, hold promise for personalized treatment approaches. Challenges in identifying novel targets, exploring combination therapies, and developing predictive biomarkers must be addressed to optimize targeted therapy in TNBC. Immunotherapy represents a transformative approach in TNBC treatment, yet challenges in biomarker identification, combination strategies, and overcoming resistance persist. Precision medicine approaches offer opportunities for tailored treatment based on tumor biology, but integration of multi-omics data and clinical implementation present challenges requiring innovative solutions. Despite these challenges, ongoing research efforts and collaborative initiatives offer hope for improving outcomes and advancing treatment strategies in TNBC. By addressing the complexities of TNBC biology and developing effective therapeutic approaches, personalized treatments can be realized, ultimately enhancing the lives of TNBC patients. Continued research, clinical trials, and interdisciplinary collaborations are essential for realizing this vision and making meaningful progress in TNBC management.
Collapse
Affiliation(s)
- Nating Xiong
- Department of Blood Transfusion, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| | - Heming Wu
- Meizhou Municipal Engineering and Technology Research Centre for Molecular Diagnostics of Major Genetic Disorders, Meizhou People’s Hospital, Meizhou, China
| | - Zhikang Yu
- Research Experiment Centre, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
- Guangdong Engineering Technological Research Centre of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, China
| |
Collapse
|
17
|
Ito T, Saito A, Kamikawa Y, Nakazawa N, Imaizumi K. AIbZIP/CREB3L4 Promotes Cell Proliferation via the SKP2-p27 Axis in Luminal Androgen Receptor Subtype Triple-Negative Breast Cancer. Mol Cancer Res 2024; 22:373-385. [PMID: 38236913 PMCID: PMC10985479 DOI: 10.1158/1541-7786.mcr-23-0629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer ranks first in incidence and fifth in cancer-related deaths among all types of cancer globally. Among breast cancer, triple-negative breast cancer (TNBC) has few known therapeutic targets and a poor prognosis. Therefore, new therapeutic targets and strategies against TNBC are required. We found that androgen-induced basic leucine zipper (AIbZIP), also known as cyclic AMP-responsive element-binding protein 3-like protein 4 (CREB3L4), which is encoded by Creb3l4, is highly upregulated in a particular subtype of TNBC, luminal androgen receptor (LAR) subtype. We analyzed the function of AIbZIP through depletion of AIbZIP by siRNA knockdown in LAR subtype TNBC cell lines, MFM223 and MDAMB453. In AIbZIP-depleted cells, the proliferation ratios of cells were greatly suppressed. Moreover, G1-S transition was inhibited in AIbZIP-depleted cells. We comprehensively analyzed the expression levels of proteins that regulate G1-S transition and found that p27 was specifically upregulated in AIbZIP-depleted cells. Furthermore, we identified that this p27 downregulation was caused by protein degradation modulated by the ubiquitin-proteasome system via F-box protein S-phase kinase-associated protein 2 (SKP2) upregulation. Our findings demonstrate that AIbZIP is a novel p27-SKP2 pathway-regulating factor and a potential molecule that contributes to LAR subtype TNBC progression. IMPLICATIONS This research shows a new mechanism for the proliferation of LAR subtype TNBC regulated by AIbZIP, that may provide novel insight into the LAR subtype TNBC progression and the molecular mechanisms involved in cell proliferation.
Collapse
Affiliation(s)
- Taichi Ito
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nayuta Nakazawa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Leon-Ferre RA, Carter JM, Zahrieh D, Sinnwell JP, Salgado R, Suman VJ, Hillman DW, Boughey JC, Kalari KR, Couch FJ, Ingle JN, Balkenhol M, Ciompi F, van der Laak J, Goetz MP. Automated mitotic spindle hotspot counts are highly associated with clinical outcomes in systemically untreated early-stage triple-negative breast cancer. NPJ Breast Cancer 2024; 10:25. [PMID: 38553444 PMCID: PMC10980681 DOI: 10.1038/s41523-024-00629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024] Open
Abstract
Operable triple-negative breast cancer (TNBC) has a higher risk of recurrence and death compared to other subtypes. Tumor size and nodal status are the primary clinical factors used to guide systemic treatment, while biomarkers of proliferation have not demonstrated value. Recent studies suggest that subsets of TNBC have a favorable prognosis, even without systemic therapy. We evaluated the association of fully automated mitotic spindle hotspot (AMSH) counts with recurrence-free (RFS) and overall survival (OS) in two separate cohorts of patients with early-stage TNBC who did not receive systemic therapy. AMSH counts were obtained from areas with the highest mitotic density in digitized whole slide images processed with a convolutional neural network trained to detect mitoses. In 140 patients from the Mayo Clinic TNBC cohort, AMSH counts were significantly associated with RFS and OS in a multivariable model controlling for nodal status, tumor size, and tumor-infiltrating lymphocytes (TILs) (p < 0.0001). For every 10-point increase in AMSH counts, there was a 16% increase in the risk of an RFS event (HR 1.16, 95% CI 1.08-1.25), and a 7% increase in the risk of death (HR 1.07, 95% CI 1.00-1.14). We corroborated these findings in a separate cohort of systemically untreated TNBC patients from Radboud UMC in the Netherlands. Our findings suggest that AMSH counts offer valuable prognostic information in patients with early-stage TNBC who did not receive systemic therapy, independent of tumor size, nodal status, and TILs. If further validated, AMSH counts could help inform future systemic therapy de-escalation strategies.
Collapse
Affiliation(s)
| | | | | | | | - Roberto Salgado
- GZA-ZNA-Hospitals, Antwerp, Belgium
- Peter Mac Callum Cancer Centre, Melbourne, Australia
| | | | | | | | | | | | | | | | | | - Jeroen van der Laak
- Radboud University Medical Center, Nijmegen, Netherlands
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | | |
Collapse
|
19
|
Park S, Choi J, Song JK, Jang B, Maeng YH. Subcellular expression pattern and clinical significance of CBX2 and CBX7 in breast cancer subtypes. Med Mol Morphol 2024; 57:11-22. [PMID: 37553450 DOI: 10.1007/s00795-023-00368-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Chromobox (CBX)2 and CBX7, members of CBX family protein, show diverse expression patterns and contrasting roles in certain cancers. We aimed to investigate the subcellular expression patterns and clinical significances of CBXs in breast cancer (BC) subtypes, which have heterogeneous clinical course and therapeutic responses. Among the subtypes, the triple-negative BC (TNBC) is a heterogeneous group that lacks specific markers. We categorized TNBC into quadruple-negative BC (QNBC) and TNBC, based on androgen receptor (AR) status, to make the groups more homogeneous. Immunohistochemistry for CBX proteins was performed on 323 primary invasive BC tissues and their clinical significances were analyzed. Cytoplasmic CBX2 (CBX2-c) was linked to adverse clinicopathological factors and TNBC and QNBC subtypes. In contrast, nuclear CBX7 (CBX7-n) was associated with favorable parameters and luminal A subtype. CBX2-c expression increased progressively from that in benign lesions to that in in situ carcinomas and invasive cancers, whereas CBX7-n and AR expressions showed sequential downregulation. AR was lower in metastatic tissues compared to matched primary cancer tissues. We speculate that the upregulation of CBX2-c and downregulation of CBX7-n could play a role in breast oncogenesis and an adverse clinical course, suggesting them as potential prognostic markers and therapeutic targets in invasive BCs.
Collapse
Affiliation(s)
- Sungjoon Park
- Department of Pathology, Jeju National University Hospital, Jeju, 63241, South Korea
| | - Jaehyuck Choi
- Department of Surgery, Jeju National University School of Medicine, Jeju, 63241, South Korea
| | - Jung-Kook Song
- Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, 63241, South Korea
| | - Bogun Jang
- Department of Pathology, Jeju National University Hospital, Jeju, 63241, South Korea
- Department of Pathology, Jeju National University School of Medicine, Aran 13-gil 15, Jeju, 63241, South Korea
| | - Young Hee Maeng
- Department of Pathology, Jeju National University Hospital, Jeju, 63241, South Korea.
- Department of Pathology, Jeju National University School of Medicine, Aran 13-gil 15, Jeju, 63241, South Korea.
| |
Collapse
|
20
|
Morrison L, Okines A. Systemic Therapy for Metastatic Triple Negative Breast Cancer: Current Treatments and Future Directions. Cancers (Basel) 2023; 15:3801. [PMID: 37568617 PMCID: PMC10417818 DOI: 10.3390/cancers15153801] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Until recently, despite its heterogenous biology, metastatic triple negative breast cancer (TNBC) was treated as a single entity, with successive lines of palliative chemotherapy being the only systemic option. Significant gene expression studies have demonstrated the diversity of TNBC, but effective differential targeting of the four main (Basal-like 1 and 2, mesenchymal and luminal androgen receptor) molecular sub-types has largely eluded researchers. The introduction of immunotherapy, currently useful only for patients with PD-L1 positive cancers, led to the stratification of first-line therapy using this immunohistochemical biomarker. Germline BRCA gene mutations can also be targeted with PARP inhibitors in both the adjuvant and metastatic settings. In contrast, the benefit of the anti-Trop-2 antibody-drug conjugate (ADC) Sacituzumab govitecan (SG) does not appear confined to patients with tumours expressing high levels of Trop-2, leading to its potential utility for any patient with an estrogen receptor (ER)-negative, HER2-negative advanced breast cancer (ABC). Most recently, low levels of HER2 expression, detected in up to 60% of TNBC, predicts benefit from the potent HER2-directed antibody-drug conjugate trastuzumab deruxtecan (T-DXd), defining an additional treatment option for this sub-group. Regrettably, despite recent advances, the median survival of TNBC continues to lag far behind the approximately 5 years now expected for patients with ER-positive or HER2-positive breast cancers. We review the data supporting immunotherapy, ADCs, and targeted agents in subgroups of patients with TNBC, and current clinical trials that may pave the way to further advances in this challenging disease.
Collapse
Affiliation(s)
| | - Alicia Okines
- Breast Unit, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
21
|
Matou-Nasri S, Aldawood M, Alanazi F, Khan AL. Updates on Triple-Negative Breast Cancer in Type 2 Diabetes Mellitus Patients: From Risk Factors to Diagnosis, Biomarkers and Therapy. Diagnostics (Basel) 2023; 13:2390. [PMID: 37510134 PMCID: PMC10378597 DOI: 10.3390/diagnostics13142390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is usually the most malignant and aggressive mammary epithelial tumor characterized by the lack of expression for estrogen receptors and progesterone receptors, and the absence of epidermal growth factor receptor (HER)2 amplification. Corresponding to 15-20% of all breast cancers and well-known by its poor clinical outcome, this negative receptor expression deprives TNBC from targeted therapy and makes its management therapeutically challenging. Type 2 diabetes mellitus (T2DM) is the most common ageing metabolic disorder due to insulin deficiency or resistance resulting in hyperglycemia, hyperinsulinemia, and hyperlipidemia. Due to metabolic and hormonal imbalances, there are many interplays between both chronic disorders leading to increased risk of breast cancer, especially TNBC, diagnosed in T2DM patients. The purpose of this review is to provide up-to-date information related to epidemiology and clinicopathological features, risk factors, diagnosis, biomarkers, and current therapy/clinical trials for TNBC patients with T2DM compared to non-diabetic counterparts. Thus, in-depth investigation of the diabetic complications on TNBC onset, development, and progression and the discovery of biomarkers would improve TNBC management through early diagnosis, tailoring therapy for a better outcome of T2DM patients diagnosed with TNBC.
Collapse
Affiliation(s)
- Sabine Matou-Nasri
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Maram Aldawood
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Post Graduate and Zoology Department, King Saud University, Riyadh 12372, Saudi Arabia
| | - Fatimah Alanazi
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNG-HA), Riyadh 11481, Saudi Arabia
- Biosciences Department, Faculty of the School for Systems Biology, George Mason University, Manassas, VA 22030, USA
| | - Abdul Latif Khan
- Tissue Biobank, KAIMRC, MNG-HA, Riyadh 11481, Saudi Arabia
- Pathology and Clinical Laboratory Medicine, King Abdulaziz Medical City (KAMC), Riyadh 11564, Saudi Arabia
| |
Collapse
|
22
|
Tang X, Thompson KJ, Kalari KR, Sinnwell JP, Suman VJ, Vedell PT, McLaughlin SA, Northfelt DW, Aspitia AM, Gray RJ, Carter JM, Weinshilboum R, Wang L, Boughey JC, Goetz MP. Integration of multiomics data shows down regulation of mismatch repair and tubulin pathways in triple-negative chemotherapy-resistant breast tumors. Breast Cancer Res 2023; 25:57. [PMID: 37226243 PMCID: PMC10207800 DOI: 10.1186/s13058-023-01656-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Patients with TNBC are primarily treated with neoadjuvant chemotherapy (NAC). The response to NAC is prognostic, with reductions in overall survival and disease-free survival rates in those patients who do not achieve a pathological complete response (pCR). Based on this premise, we hypothesized that paired analysis of primary and residual TNBC tumors following NAC could identify unique biomarkers associated with post-NAC recurrence. METHODS AND RESULTS We investigated 24 samples from 12 non-LAR TNBC patients with paired pre- and post-NAC data, including four patients with recurrence shortly after surgery (< 24 months) and eight who remained recurrence-free (> 48 months). These tumors were collected from a prospective NAC breast cancer study (BEAUTY) conducted at the Mayo Clinic. Differential expression analysis of pre-NAC biopsies showed minimal gene expression differences between early recurrent and nonrecurrent TNBC tumors; however, post-NAC samples demonstrated significant alterations in expression patterns in response to intervention. Topological-level differences associated with early recurrence were implicated in 251 gene sets, and an independent assessment of microarray gene expression data from the 9 paired non-LAR samples available in the NAC I-SPY1 trial confirmed 56 gene sets. Within these 56 gene sets, 113 genes were observed to be differentially expressed in the I-SPY1 and BEAUTY post-NAC studies. An independent (n = 392) breast cancer dataset with relapse-free survival (RFS) data was used to refine our gene list to a 17-gene signature. A threefold cross-validation analysis of the gene signature with the combined BEAUTY and I-SPY1 data yielded an average AUC of 0.88 for six machine-learning models. Due to the limited number of studies with pre- and post-NAC TNBC tumor data, further validation of the signature is needed. CONCLUSION Analysis of multiomics data from post-NAC TNBC chemoresistant tumors showed down regulation of mismatch repair and tubulin pathways. Additionally, we identified a 17-gene signature in TNBC associated with post-NAC recurrence enriched with down-regulated immune genes.
Collapse
Affiliation(s)
- Xiaojia Tang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Kevin J Thompson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Krishna R Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
| | - Jason P Sinnwell
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Vera J Suman
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Peter T Vedell
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Jodi M Carter
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Matthew P Goetz
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
23
|
Hargrove-Wiley E, Fingleton B. Sex Hormones in Breast Cancer Immunity. Cancer Res 2023; 83:12-19. [PMID: 36279153 DOI: 10.1158/0008-5472.can-22-1829] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Sex hormones, such as estrogens and androgens, regulate genomic and cellular processes that contribute to sex-specific disparities in the pathophysiology of various cancers. Sex hormones can modulate the immune signals and activities of tumor cells and tumor-associated leukocytes to support or suppress cancer progression. Therefore, hormonal differences between males and females play a crucial role in cancer immunity and in the response to therapies that exploit the intrinsic immune system to eliminate malignant cells. In this review, we summarize the impact of sex hormones in the breast cancer microenvironment, with a focus on how the hormonal environment affects tumor immunity. We also discuss the potential benefits of endocrine therapy used in combination with immunotherapy to strengthen the antitumor immune response.
Collapse
Affiliation(s)
- Ebony Hargrove-Wiley
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Barbara Fingleton
- Program in Cancer Biology, Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
24
|
Khadela A, Chavda VP, Soni S, Megha K, Pandya AJ, Vora L. Anti-Androgenic Therapies Targeting the Luminal Androgen Receptor of a Typical Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010233. [PMID: 36612226 PMCID: PMC9818775 DOI: 10.3390/cancers15010233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Triple-negative tumors are progressively delineating their existence over the extended spectrum of breast cancers, marked by intricate molecular heterogeneity, a low overall survival rate, and an unexplored therapeutic approach. Although the basal subtype transcends the group and contributes approximately 80% to triple-negative breast cancer (TNBC) cases, the exceptionally appearing mesenchymal and luminal androgen receptor (LAR) subtypes portray an unfathomable clinical course. LAR with a distinct generic profile frequently metastasizes to regional lymph nodes and bones. This subtype is minimally affected by chemotherapy and shows the lowest pathologic complete response. The androgen receptor is the only sex steroid receptor that plays a cardinal role in the progression of breast cancers and is typically overexpressed in LAR. The partial AR antagonist bicalutamide and the next-generation AR inhibitor enzalutamide are being assessed in standard protocols for the mitigation of TNBC. There arises an inevitable need to probe into the strategies that could neutralize these androgen receptors and alleviate the trajectory of concerning cancer. This paper thus focuses on reviewing literature that provides insights into the anti-androgenic elements against LAR typical TNBC that could pave the way for clinical advancements in this dynamic sphere of oncology.
Collapse
Affiliation(s)
- Avinash Khadela
- Department of Pharmacology, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
- Correspondence: (V.P.C.); (L.V.)
| | - Shruti Soni
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Kaivalya Megha
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Aanshi J. Pandya
- Pharm. D Section, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (V.P.C.); (L.V.)
| |
Collapse
|