1
|
Brorsen LF, McKenzie JS, Pinto FE, Glud M, Hansen HS, Haedersdal M, Takats Z, Janfelt C, Lerche CM. Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning. Exp Dermatol 2024; 33:e15141. [PMID: 39036889 DOI: 10.1111/exd.15141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI-MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.
Collapse
Affiliation(s)
- Lauritz F Brorsen
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - James S McKenzie
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Fernanda E Pinto
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Martin Glud
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Harald S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zoltan Takats
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Catharina M Lerche
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Mohtasham N, Zarepoor M, Shooshtari Z, Hesari KK, Mohajertehran F. Genes involved in metastasis in oral squamous cell carcinoma: A systematic review. Health Sci Rep 2024; 7:e1977. [PMID: 38665153 PMCID: PMC11043498 DOI: 10.1002/hsr2.1977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 04/28/2024] Open
Abstract
Background and Aims Oral squamous cell carcinoma is the most prevalent malignancy in the oral cavity, with a significant mortality rate. In oral squamous cell carcinoma patients, the survival rate could decrease because of delayed diagnosis. Thus, prevention, early diagnosis, and appropriate treatment can effectively increase the survival rate in patients. In this systematic review, we discussed the role of different genes in oral squamous cell carcinoma metastasis. Herein, we aimed to summarize clinical results, regarding the potential genes that promote oral squamous cell carcinoma metastasis. Methods This systematic review was carried out under the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. An electronic search for all relevant articles published in English between January 2018 and April 2022 was performed using Scopus, PubMed, and Google Scholar search engines. All original studies published in English were included, and we excluded studies that were in a non-English language. Results A total of 4682 articles were found, of which 14 were relevant and detected significant genes in oral squamous cell carcinoma progression. These findings investigated the overexpression of interferon-induced proteins with tetratricopeptide repeats 1 and 3 (IFIT1, IFT3), high-mobility group A2 (HMGA2), transformed growth factor-beta-induced, lectin galactoside-binding soluble 3 binding protein (LGALS3BP), bromodomain containing 4, COP9 signaling complex 6, heterogeneous nuclear ribonucleoproteins A2B1 (HNRNPA2B1), 5'-3' exoribonuclease 2 (XRN2), cystatin-A (CSTA), fibroblast growth factors 8 (FGF8), forkhead box P3, cadherin-3, also known as P-cadherin and Wnt family member 5A, ubiquitin-specific-processing protease 7, and retinoic acid receptor responder protein 2 genes lead to promote metastasis in oral squamous cell carcinoma. Overexpression of some genes (IFIT1, 3, LGALS3BP, HMGA2, HNRNPA2B1, XRN2, CSTA, and FGF8) was proven to be correlated with poor survival rates in oral squamous cell carcinoma patients. Conclusion Studies suggest that metastatic genes indicate a poor prognosis for oral squamous cell carcinoma patients. Detecting these metastatic genes in oral squamous cell carcinoma patients may be of predictive value and can also facilitate assessing oral squamous cell carcinoma development and its response to treatment.
Collapse
Affiliation(s)
- Nooshin Mohtasham
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial PathologySchool of Dentistry, Mashhad University of Medical SciencesMashhadIran
- Oral and Maxillofacial Diseases Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Marzieh Zarepoor
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Zahra Shooshtari
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| | - Kiana Kamyab Hesari
- Doctor of Veterinary Medicine StudentSciences and Research UniversityTehranIran
| | - Farnaz Mohajertehran
- Dental Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
- Department of Oral and Maxillofacial PathologySchool of Dentistry, Mashhad University of Medical SciencesMashhadIran
- Oral and Maxillofacial Diseases Research CenterFaculty of Dentistry of Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Ramos T, Parekh M, Meleady P, O’Sullivan F, Stewart RMK, Kaye SB, Hamill K, Ahmad S. Specific decellularized extracellular matrix promotes the plasticity of human ocular surface epithelial cells. Front Med (Lausanne) 2022; 9:974212. [PMID: 36457571 PMCID: PMC9705355 DOI: 10.3389/fmed.2022.974212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2023] Open
Abstract
The ocular surface is composed of two phenotypically and functionally different epithelial cell types: corneal and the conjunctival epithelium. Upon injury or disease, ocular surface homeostasis is impaired resulting in migration of conjunctival epithelium on to the corneal surface. This can lead to incomplete transdifferentiation toward corneal epithelial-like cells in response to corneal basement membrane cues. We show that corneal extracellular matrix (ECM) proteins induce conjunctival epithelial cells to express corneal associated markers losing their conjunctival associated phenotype at both, mRNA and protein level. Corneal epithelial cells behave the same in the presence of conjunctival ECM proteins, expressing markers associated with conjunctival epithelium. This process of differentiation is accompanied by an intermediate step of cell de-differentiation as an up-regulation in the expression of epithelial stem cell markers is observed. In addition, analysis of ECM proteins by laminin screening assays showed that epithelial cell response is laminin-type dependent, and cells cultured on laminin-511 showed lower levels of lineage commitment. The phosphorylation and proteolysis levels of proteins mainly involved in cell growth and differentiation showed lower modifications in cells with lower lineage commitment. These observations showed that the ECM proteins may serve as tools to induce cell differentiation, which may have potential applications for the treatment of ocular surface injuries.
Collapse
Affiliation(s)
- Tiago Ramos
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Mohit Parekh
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
| | - Paula Meleady
- Primary Department, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Finbarr O’Sullivan
- Primary Department, National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Rosalind M. K. Stewart
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- Department of Ophthalmology, Aberdeen Royal Infirmary, Aberdeen, United Kingdom
| | - Stephen B. Kaye
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - Kevin Hamill
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
| | - Sajjad Ahmad
- Department of Eye and Vision Science, University of Liverpool, Liverpool, United Kingdom
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London, London, United Kingdom
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- External Eye Disease Service, Moorfields Eye Hospital, London, United Kingdom
| |
Collapse
|
4
|
Lausecker F, Lennon R, Randles MJ. The kidney matrisome in health, aging, and disease. Kidney Int 2022; 102:1000-1012. [PMID: 35870643 DOI: 10.1016/j.kint.2022.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Dysregulated extracellular matrix is the hallmark of fibrosis, and it has a profound impact on kidney function in disease. Furthermore, perturbation of matrix homeostasis is a feature of aging and is associated with declining kidney function. Understanding these dynamic processes, in the hope of developing therapies to combat matrix dysregulation, requires the integration of data acquired by both well-established and novel technologies. Owing to its complexity, the extracellular proteome, or matrisome, still holds many secrets and has great potential for the identification of clinical biomarkers and drug targets. The molecular resolution of matrix composition during aging and disease has been illuminated by cutting-edge mass spectrometry-based proteomics in recent years, but there remain key questions about the mechanisms that drive altered matrix composition. Basement membrane components are particularly important in the context of kidney function; and data from proteomic studies suggest that switches between basement membrane and interstitial matrix proteins are likely to contribute to organ dysfunction during aging and disease. Understanding the impact of such changes on physical properties of the matrix, and the subsequent cellular response to altered stiffness and viscoelasticity, is of critical importance. Likewise, the comparison of proteomic data sets from multiple organs is required to identify common matrix biomarkers and shared pathways for therapeutic intervention. Coupled with single-cell transcriptomics, there is the potential to identify the cellular origin of matrix changes, which could enable cell-targeted therapy. This review provides a contemporary perspective of the complex kidney matrisome and draws comparison to altered matrix in heart and liver disease.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Randles
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| |
Collapse
|
5
|
Humphries JD, Zha J, Burns J, Askari JA, Below CR, Chastney MR, Jones MC, Mironov A, Knight D, O'Reilly DA, Dunne MJ, Garrod DR, Jorgensen C, Humphries MJ. Pancreatic ductal adenocarcinoma cells employ integrin α6β4 to form hemidesmosomes and regulate cell proliferation. Matrix Biol 2022; 110:16-39. [PMID: 35405272 DOI: 10.1016/j.matbio.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis due to its aggressive progression, late detection and lack of druggable driver mutations, which often combine to result in unsuitability for surgical intervention. Together with activating mutations of the small GTPase KRas, which are found in over 90% of PDAC tumours, a contributory factor for PDAC tumour progression is formation of a rigid extracellular matrix (ECM) and associated desmoplasia. This response leads to aberrant integrin signalling, and accelerated proliferation and invasion. To identify the integrin adhesion systems that operate in PDAC, we analysed a range of pancreatic ductal epithelial cell models using 2D, 3D and organoid culture systems. Proteomic analysis of isolated integrin receptor complexes from human pancreatic ductal epithelial (HPDE) cells predominantly identified integrin α6β4 and hemidesmosome components, rather than classical focal adhesion components. Electron microscopy, together with immunofluorescence, confirmed the formation of hemidesmosomes by HPDE cells, both in 2D and 3D culture systems. Similar results were obtained for the human PDAC cell line, SUIT-2. Analysis of HPDE cell secreted proteins and cell-derived matrices (CDM) demonstrated that HPDE cells secrete a range of laminin subunits and form a hemidesmosome-specific, laminin 332-enriched ECM. Expression of mutant KRas (G12V) did not affect hemidesmosome composition or formation by HPDE cells. Cell-ECM contacts formed by mouse and human PDAC organoids were also assessed by electron microscopy. Organoids generated from both the PDAC KPC mouse model and human patient-derived PDAC tissue displayed features of acinar-ductal cell polarity, and hemidesmosomes were visible proximal to prominent basement membranes. Furthermore, electron microscopy identified hemidesmosomes in normal human pancreas. Depletion of integrin β4 reduced cell proliferation in both SUIT-2 and HPDE cells, reduced the number of SUIT-2 cells in S-phase, and induced G1 cell cycle arrest, suggesting a requirement for α6β4-mediated adhesion for cell cycle progression and growth. Taken together, these data suggest that laminin-binding adhesion mechanisms in general, and hemidesmosome-mediated adhesion in particular, may be under-appreciated in the context of PDAC. Proteomic data are available via ProteomeXchange with the identifiers PXD027803, PXD027823 and PXD027827.
Collapse
Affiliation(s)
- Jonathan D Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Junzhe Zha
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jessica Burns
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Janet A Askari
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Christopher R Below
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Cheshire SK10 4TG, UK
| | - Megan R Chastney
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Matthew C Jones
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Aleksandr Mironov
- Electron Microscopy Core Facility (RRID: SCR_021147), Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - David Knight
- Biological Mass Spectrometry Core Facility (RRID: SCR_020987), Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Derek A O'Reilly
- Department of Hepatobiliary and Pancreatic Surgery, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK; Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Mark J Dunne
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - David R Garrod
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Claus Jorgensen
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Cheshire SK10 4TG, UK
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
6
|
Tadijan A, Humphries JD, Samaržija I, Stojanović N, Zha J, Čuljak K, Tomić M, Paradžik M, Nestić D, Kang H, Humphries MJ, Ambriović-Ristov A. The Tongue Squamous Carcinoma Cell Line Cal27 Primarily Employs Integrin α6β4-Containing Type II Hemidesmosomes for Adhesion Which Contribute to Anticancer Drug Sensitivity. Front Cell Dev Biol 2021; 9:786758. [PMID: 34977030 PMCID: PMC8716755 DOI: 10.3389/fcell.2021.786758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins are heterodimeric cell surface glycoproteins used by cells to bind to the extracellular matrix (ECM) and regulate tumor cell proliferation, migration and survival. A causative relationship between integrin expression and resistance to anticancer drugs has been demonstrated in different tumors, including head and neck squamous cell carcinoma. Using a Cal27 tongue squamous cell carcinoma model, we have previously demonstrated that de novo expression of integrin αVβ3 confers resistance to several anticancer drugs (cisplatin, mitomycin C and doxorubicin) through a mechanism involving downregulation of active Src, increased cell migration and invasion. In the integrin αVβ3 expressing Cal27-derived cell clone 2B1, αVβ5 expression was also increased, but unrelated to drug resistance. To identify the integrin adhesion complex (IAC) components that contribute to the changes in Cal27 and 2B1 cell adhesion and anticancer drug resistance, we isolated IACs from both cell lines. Mass spectrometry (MS)-based proteomics analysis indicated that both cell lines preferentially, but not exclusively, use integrin α6β4, which is classically found in hemidesmosomes. The anticancer drug resistant cell clone 2B1 demonstrated an increased level of α6β4 accompanied with increased deposition of a laminin-332-containing ECM. Immunofluorescence and electron microscopy demonstrated the formation of type II hemidesmosomes by both cell types. Furthermore, suppression of α6β4 expression in both lines conferred resistance to anticancer drugs through a mechanism independent of αVβ3, which implies that the cell clone 2B1 would have been even more resistant had the upregulation of α6β4 not occurred. Taken together, our results identify a key role for α6β4-containing type II hemidesmosomes in regulating anticancer drug sensitivity.
Collapse
Affiliation(s)
- Ana Tadijan
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jonathan D. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Junzhe Zha
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kristina Čuljak
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marija Tomić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mladen Paradžik
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Nestić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, South Korea
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
7
|
Parekh M, Ramos T, O’Sullivan F, Meleady P, Ferrari S, Ponzin D, Ahmad S. Human corneal endothelial cells from older donors can be cultured and passaged on cell-derived extracellular matrix. Acta Ophthalmol 2021; 99:e512-e522. [PMID: 32914525 DOI: 10.1111/aos.14614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/09/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the effect of culturing human corneal endothelial cells (HCEnCs) from older donors on extracellular matrix (ECM) derived from human corneal endothelial cell line (HCEC-12). METHODS HCEC-12 cells were cultured on lab-tek chamber slides for 9 days. Upon confluence, the cells were ruptured using ammonium hydroxide leaving the released ECM on the slide surface which was visualized using scanning electron microscope (SEM). HCEnCs from old aged donor tissues (n = 40) were isolated and cultured on either fibronectin-collagen (FNC) or HCEC-12 ECM at passage (P) 0. At subsequent passages (P1 and P2), cells were sub-cultured on FNC and ECM separately. Live/dead analysis and tight junction using ZO-1 staining were used to record percentage viability and morphological changes. The protein composition of HCEC-12 ECM was then analysed using liquid chromatography-mass spectrometry. RESULTS SEM images showed long fibrillar-like structures and a fully laid ECM upon confluence. HCEnCs cultured from older donor tissues on this ECM showed significantly better proliferation and morphometric characteristics at subsequent passages. Out of 1307 proteins found from the HCEC-12 derived ECM, 93 proteins were evaluated to be matrix oriented out of which 20 proteins were exclusively found to be corneal endothelial specific. CONCLUSIONS ECM derived from HCEC-12 retains protein and growth factors that stimulate the growth of HCEnCs. As the current clinical trials are from younger donors that are not available routinely for cell culture, HCEnCs from older donors can be cultured on whole ECM and passaged successfully.
Collapse
Affiliation(s)
- Mohit Parekh
- Institute of Ophthalmology University College London London UK
| | - Tiago Ramos
- Institute of Ophthalmology University College London London UK
| | | | | | | | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto Onlus Venice Italy
| | - Sajjad Ahmad
- Institute of Ophthalmology University College London London UK
- Moorfields Eye Hospital NHS Foundation Trust London UK
| |
Collapse
|
8
|
Xu Y, Jiang E, Shao Z, Shang Z. Long Noncoding RNAs in the Metastasis of Oral Squamous Cell Carcinoma. Front Oncol 2021; 10:616717. [PMID: 33520725 PMCID: PMC7845733 DOI: 10.3389/fonc.2020.616717] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide. Metastasis is the main cause of the death of OSCC patients. Long noncoding RNAs (lncRNAs), one of the key factors affecting OSCC metastasis, are a subtype of RNA with a length of more than 200 nucleotides that has little or no coding potential. In recent years, the important role played by lncRNAs in biological processes, such as chromatin modification, transcription regulation, RNA stability regulation, and mRNA translation, has been gradually revealed. More and more studies have shown that lncRNAs can regulate the metastasis of various tumors including OSCC at epigenetic, transcriptional, and post-transcriptional levels. In this review, we mainly discussed the role and possible mechanisms of lncRNAs in OSCC metastasis. Most lncRNAs act as oncogenes and only a few lncRNAs have been shown to inhibit OSCC metastasis. Besides, we briefly introduced the research status of cancer-associated fibroblasts-related lncRNAs in OSCC metastasis. Finally, we discussed the research prospects of lncRNAs-mediated crosstalk between OSCC cells and the tumor microenvironment in OSCC metastasis, especially the potential research value of exosomes and lymphangiogenesis. In general, lncRNAs are expected to be used for screening, treatment, and prognosis monitoring of OSCC metastasis, but more work is still required to better understand the biological function of lncRNAs.
Collapse
Affiliation(s)
- Yuming Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Makuloluwa AK, Stewart RMK, Kaye SB, Williams RL, Hamill KJ. Mass Spectrometry Reveals α-2-HS-Glycoprotein as a Key Early Extracellular Matrix Protein for Conjunctival Cells. Invest Ophthalmol Vis Sci 2020; 61:44. [PMID: 32232343 PMCID: PMC7401837 DOI: 10.1167/iovs.61.3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose To determine the composition of extracellular matrix (ECM) proteins secreted by a conjunctival epithelial cell line and to identify components that aid conjunctival epithelial cell culture. Methods Human conjunctival epithelial cell line (HCjE-Gi) cells were cultured in serum-free media and their ECM isolated using ammonium hydroxide. Growth characteristics were evaluated for fresh HCjE-Gi cells plated onto ECMs obtained from 3- to 28-day cell cultures. Mass spectrometry was used to characterize the ECM composition over 42 culture days. Cell adhesion and growth on pre-adsorbed fibronectin and α-2-HS-glycoprotein (α-2-HS-GP) were investigated. Results Day 3 ECM provided the best substrate for cell growth compared to ECM obtained from 5- to 28-day cell cultures. Mass spectrometry identified a predominantly laminin 332 matrix throughout the time course, with progressive changes to matrix composition over time: proportional decreases in matrix-bound growth factors and increases in proteases. Fibronectin and α-2-HS-GP were 5- and 200-fold enriched as a proportion of the early ECM relative to the late ECM, respectively. Experiments on these proteins in isolation demonstrated that fibronectin supported rapid cell adhesion, whereas fibronectin and α-2-HS-GP both supported enhanced cell growth compared to tissue culture polystyrene. Conclusions These data reveal α-2-HS-GP as a candidate protein to enhance the growth of conjunctival epithelial cells and raise the possibility of exploiting these findings for targeted improvement to synthetic tissue engineered conjunctival substrates.
Collapse
|
10
|
Pal-Ghosh S, Tadvalkar G, Lieberman VR, Guo X, Zieske JD, Hutcheon A, Stepp MA. Transient Mitomycin C-treatment of human corneal epithelial cells and fibroblasts alters cell migration, cytokine secretion, and matrix accumulation. Sci Rep 2019; 9:13905. [PMID: 31554858 PMCID: PMC6761181 DOI: 10.1038/s41598-019-50307-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022] Open
Abstract
A single application of Mitomycin C (MMC) is used clinically in ophthalmology to reduce scarring and enhance wound resolution after surgery. Here we show in vitro that a 3-hour MMC treatment of primary and telomerase immortalized human corneal limbal epithelial (HCLE) cells impacts their migration and adhesion. Transient MMC treatment induces HCLE expression of senescence associated secretory factors, cytokine secretion, and deposition of laminin 332 for several days. Transient MMC treatment also reduces migration and deposition of transforming growth factor-β1 (TGFβ1)-stimulated collagen by corneal fibroblasts. Using conditioned media from control and MMC treated cells, we demonstrate that factors secreted by MMC-treated corneal epithelial cells attenuate collagen deposition by HCFs whereas those secreted by MMC-treated HCFs do not. These studies are the first to probe the roles played by corneal epithelial cells in reducing collagen deposition by corneal fibroblasts in response to MMC.
Collapse
Affiliation(s)
- Sonali Pal-Ghosh
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I St. NW, Washington, DC, 20037, USA
| | - Gauri Tadvalkar
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I St. NW, Washington, DC, 20037, USA
| | - Verna Rose Lieberman
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I St. NW, Washington, DC, 20037, USA
| | - Xiaoqing Guo
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114-2500, USA
| | - James D Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114-2500, USA
| | - Audrey Hutcheon
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St, Boston, MA, 02114-2500, USA
| | - Mary Ann Stepp
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I St. NW, Washington, DC, 20037, USA. .,George Washington University School of Medicine and Health Sciences, Department of Ophthalmology, 2300 I St. NW, Washington, DC, 20037, USA.
| |
Collapse
|
11
|
Schütz R, Rawlings A, Wandeler E, Jackson E, Trevisan S, Monneuse J, Bendik I, Massironi M, Imfeld D. Bio-derived hydroxystearic acid ameliorates skin age spots and conspicuous pores. Int J Cosmet Sci 2019; 41:240-256. [PMID: 30955220 PMCID: PMC6852045 DOI: 10.1111/ics.12529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
INTRODUCTION We report on the preparation and efficacy of 10-hydroxystearic acid (HSA) that improves facial age spots and conspicuous pores. METHODS The hydration of oleic acid into HSA was catalyzed by the oleate hydratase from Escherichia coli. Following treatment with HSA, collagen type I and type III was assessed in primary human dermal fibroblasts together with collagen type III, p53 protein levels and sunburn cells (SBC) after UVB irradiation (1 J cm-2 ) by immunohistochemistry on human ex vivo skin. UVB-induced expression of matrix metalloprotease-1 (MMP-1) was determined from full thickness skin by RT-qPCR. Modification of the fibroblast secretome by HSA was studied by mass-spectrometry-based proteomics. In a full-face, double blind, vehicle-controlled trial HSA was assessed for its effects on conspicuous facial pore size and degree of pigmentation of age spots in Caucasian women over an 8-week period. RESULTS HSA was obtained in enantiomeric pure, high yield (≥80%). Collagen type I and type III levels were dose-dependently increased (96% and 244%; P < 0.01) in vitro and collagen type III in ex vivo skin by +57% (P < 0.01) by HSA. HSA also inhibited UVB-induced MMP-1 gene expression (83%; P < 0.01) and mitigated SBC induction (-34% vs. vehicle control) and reduced significantly UV-induced p53 up-regulation (-46% vs. vehicle control; P < 0.01) in irradiated skin. HSA modified the fibroblast secretome with significant increases in proteins associated with the WNT pathway that could reduce melanogenesis and proteins that could modify dermal fibroblast activity and keratinocyte differentiation to account for the alleviation of conspicuous pores. Docking studies in silico and EC50 determination in reporter gene assays (EC50 5.5 × 10-6 M) identified HSA as a peroxisomal proliferator activated receptor-α (PPARα) agonist. Clinically, HSA showed a statistically significant decrease of surface and volume of skin pores (P < 0.05) after 8 weeks of application and age spots became significantly less pigmented than the surrounding skin (contrast, P < 0.05) after 4 weeks. CONCLUSION HSA acts as a PPARα agonist to reduce the signs of age spots and conspicuous pores by significantly modulating the expression of p53, SBC, MMP-1 and collagen together with major changes in secreted proteins that modify keratinocyte, melanocyte and fibroblast cell behavior.
Collapse
Affiliation(s)
- R. Schütz
- DSM Nutritional Products Ltd.KaiseraugstSwitzerland
| | | | - E. Wandeler
- DSM Nutritional Products Ltd.KaiseraugstSwitzerland
| | - E. Jackson
- DSM Nutritional Products Ltd.KaiseraugstSwitzerland
| | | | | | - I. Bendik
- DSM Nutritional Products Ltd.KaiseraugstSwitzerland
| | | | - D. Imfeld
- DSM Nutritional Products Ltd.KaiseraugstSwitzerland
| |
Collapse
|
12
|
Zhang D, Lee J, Sun MB, Pei Y, Chu J, Gillette MU, Fan TM, Kilian KA. Combinatorial Discovery of Defined Substrates That Promote a Stem Cell State in Malignant Melanoma. ACS CENTRAL SCIENCE 2017; 3:381-393. [PMID: 28573199 PMCID: PMC5445527 DOI: 10.1021/acscentsci.6b00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Indexed: 06/07/2023]
Abstract
The tumor microenvironment is implicated in orchestrating cancer cell transformation and metastasis. However, specific cell-ligand interactions between cancer cells and the extracellular matrix are difficult to decipher due to a dynamic and multivariate presentation of many signaling molecules. Here we report a versatile peptide microarray platform that is capable of screening for cancer cell phenotypic changes in response to ligand-receptor interactions. Using a screen of 78 peptide combinations derived from proteins present in the melanoma microenvironment, we identify a proteoglycan binding and bone morphogenic protein 7 (BMP7) derived sequence that selectively promotes the expression of several putative melanoma initiating cell markers. We characterize signaling associated with each of these peptides in the activation of melanoma pro-tumorigenic signaling and reveal a role for proteoglycan mediated adhesion and signaling through Smad 2/3. A defined substratum that controls the state of malignant melanoma may prove useful in spatially normalizing a heterogeneous population of tumor cells for discovery of therapeutics that target a specific state and for identifying new drug targets and reagents for intervention.
Collapse
Affiliation(s)
- Douglas Zhang
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Junmin Lee
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michael B. Sun
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yi Pei
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - James Chu
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Martha U. Gillette
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Timothy M. Fan
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kristopher A. Kilian
- Department of Materials Science and Engineering, Department of Cell and Developmental
Biology, Department
of Veterinary Clinical Medicine, and Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Lennon R, Byron A, Humphries JD, Randles MJ, Carisey A, Murphy S, Knight D, Brenchley PE, Zent R, Humphries MJ. Global analysis reveals the complexity of the human glomerular extracellular matrix. J Am Soc Nephrol 2014; 25:939-51. [PMID: 24436468 DOI: 10.1681/asn.2013030233] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The glomerulus contains unique cellular and extracellular matrix (ECM) components, which are required for intact barrier function. Studies of the cellular components have helped to build understanding of glomerular disease; however, the full composition and regulation of glomerular ECM remains poorly understood. We used mass spectrometry-based proteomics of enriched ECM extracts for a global analysis of human glomerular ECM in vivo and identified a tissue-specific proteome of 144 structural and regulatory ECM proteins. This catalog includes all previously identified glomerular components plus many new and abundant components. Relative protein quantification showed a dominance of collagen IV, collagen I, and laminin isoforms in the glomerular ECM together with abundant collagen VI and TINAGL1. Protein network analysis enabled the creation of a glomerular ECM interactome, which revealed a core of highly connected structural components. More than one half of the glomerular ECM proteome was validated using colocalization studies and data from the Human Protein Atlas. This study yields the greatest number of ECM proteins relative to previous investigations of whole glomerular extracts, highlighting the importance of sample enrichment. It also shows that the composition of glomerular ECM is far more complex than previously appreciated and suggests that many more ECM components may contribute to glomerular development and disease processes. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000456.
Collapse
Affiliation(s)
- Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom;
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research and
| | | | - Michael J Randles
- Wellcome Trust Centre for Cell-Matrix Research and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Alex Carisey
- Wellcome Trust Centre for Cell-Matrix Research and
| | - Stephanie Murphy
- Wellcome Trust Centre for Cell-Matrix Research and Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - David Knight
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, and
| | - Paul E Brenchley
- Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Medicine, Veterans Affairs Hospital, Nashville, Tennessee
| | | |
Collapse
|
14
|
Zhang R, Premi S, Kilic SS, Bacchiocchi A, Halaban R, Brash DE. Clonal growth of human melanocytes using cell-free extracellular matrix. Pigment Cell Melanoma Res 2013; 26:925-7. [PMID: 24034857 PMCID: PMC4086752 DOI: 10.1111/pcmr.12159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 08/19/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Rong Zhang
- Department of Therapeutic Radiology, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Sanjay Premi
- Department of Therapeutic Radiology, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah S. Kilic
- Department of Therapeutic Radiology, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Antonella Bacchiocchi
- Department of Dermatology, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ruth Halaban
- Department of Dermatology, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas E. Brash
- Department of Therapeutic Radiology, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Autogenic feeder free system from differentiated mesenchymal progenitor cells, maintains pluripotency of the MEL-1 human embryonic stem cells. Differentiation 2013; 85:110-8. [PMID: 23722082 DOI: 10.1016/j.diff.2013.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 12/24/2022]
Abstract
Human embryonic stem cells (hESc) are known for its pluripotency and self renewal capability, thus possess great potential in regenerative medicine. However, the lack of suitable xenofree extracellular matrix substrate inhibits further applications or the use of hESc in cell-based therapy. In this study, we described a new differentiation method, which generates a homogeneous population of mesenchymal progenitor cells (hESc-MPC) from hESc via epithelial-mesenchymal transition. The extracellular matrix (ECM) proteins from hESc-MPC had in turn supported the undifferentiated expansion of hESc. Immunocytochemistry and flow cytometry characterization of hESc-MPC revealed the presence of early mesenchymal markers. Tandem mass spectometry analysis of ECM produced by hESc-MPC revealed the presence of a mixture of extracellular proteins which includes tenascin C, fibronectin, and vitronectin. The pluripotency of hESc (MEL-1) cultured on the ECM was maintained as shown by the expression of pluripotent genes (FoxD3, Oct-4, Tdgf1, Sox-2, Nanog, hTERT, Rex1), protein markers (SSEA-3, SSEA-4, TRA-1-81, TRA-1-60, Oct-4) and the ability to differentiate into cells representative of ectoderm, endoderm and mesoderm. In summary, we have established a xeno-free autogenic feeder free system to support undifferentiated expansion of hESc, which could be of clinical relevance.
Collapse
|
16
|
Global remodelling of cellular microenvironment due to loss of collagen VII. Mol Syst Biol 2013; 9:657. [PMID: 23591773 PMCID: PMC3658272 DOI: 10.1038/msb.2013.17] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/13/2013] [Indexed: 01/18/2023] Open
Abstract
Loss of collagen VII causes recessive dystrophic epidermolysis bullosa. Quantitative proteomics analysis of the extracellular matrix and secretome of human fibroblasts derived from pathologically altered skin reveals a global remodelling of the cellular microenvironment. ![]()
A global analysis of the microenvironment of human skin fibroblasts was carried out to reveal disease-related alterations in the extracellular proteome. The loss of collagen VII causes a deregulation of the basement membrane and dermal matrix proteome. Post-translational modifications of secreted proteins were altered in fibroblasts from recessive dystrophic epidermolysis bullosa samples. Metalloproteases displayed reduced activity and turnover in collagen VII-deficient cells. The mammalian cellular microenvironment is shaped by soluble factors and structural components, the extracellular matrix, providing physical support, regulating adhesion and signalling. A global, quantitative mass spectrometry strategy, combined with bioinformatics data processing, was developed to assess proteome differences in the microenvironment of primary human fibroblasts. We studied secreted proteins of fibroblasts from normal and pathologically altered skin and their post-translational modifications. The influence of collagen VII, an important structural component, which is lost in genetic skin fragility, was used as model. Loss of collagen VII had a global impact on the cellular microenvironment and was associated with proteome alterations highly relevant for disease pathogenesis including decrease in basement membrane components, increase in dermal matrix proteins, TGF-β and metalloproteases, but not higher protease activity. The definition of the proteome of fibroblast microenvironment and its plasticity in health and disease identified novel disease mechanisms and potential targets of intervention.
Collapse
|
17
|
Byron A, Humphries JD, Humphries MJ. Defining the extracellular matrix using proteomics. Int J Exp Pathol 2013; 94:75-92. [PMID: 23419153 DOI: 10.1111/iep.12011] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 09/13/2012] [Accepted: 11/16/2012] [Indexed: 12/11/2022] Open
Abstract
The cell microenvironment has a profound influence on the behaviour, growth and survival of cells. The extracellular matrix (ECM) provides not only mechanical and structural support to cells and tissues but also binds soluble ligands and transmembrane receptors to provide spatial coordination of signalling processes. The ability of cells to sense the chemical, mechanical and topographical features of the ECM enables them to integrate complex, multiparametric information into a coherent response to the surrounding microenvironment. Consequently, dysregulation or mutation of ECM components results in a broad range of pathological conditions. Characterization of the composition of ECM derived from various cells has begun to reveal insights into ECM structure and function, and mechanisms of disease. Proteomic methodologies permit the global analysis of subcellular systems, but extracellular and transmembrane proteins present analytical difficulties to proteomic strategies owing to the particular biochemical properties of these molecules. Here, we review advances in proteomic approaches that have been applied to furthering our understanding of the ECM microenvironment. We survey recent studies that have addressed challenges in the analysis of ECM and discuss major outcomes in the context of health and disease. In addition, we summarize efforts to progress towards a systems-level understanding of ECM biology.
Collapse
Affiliation(s)
- Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
18
|
The desmosomal armadillo protein plakoglobin regulates prostate cancer cell adhesion and motility through vitronectin-dependent Src signaling. PLoS One 2012; 7:e42132. [PMID: 22860065 PMCID: PMC3408445 DOI: 10.1371/journal.pone.0042132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 07/03/2012] [Indexed: 02/02/2023] Open
Abstract
Plakoglobin (PG) is an armadillo protein that associates with both classic and desmosomal cadherins, but is primarily concentrated in mature desmosomes in epithelia. While reduced levels of PG have been reported in localized and hormone refractory prostate tumors, the functional significance of these changes is unknown. Here we report that PG expression is reduced in samples of a prostate tumor tissue array and inversely correlated with advancing tumor potential in 7 PCa cell lines. Ectopically expressed PG enhanced intercellular adhesive strength, and attenuated the motility and invasion of aggressive cell lines, whereas silencing PG in less tumorigenic cells had the opposite effect. PG also regulated cell-substrate adhesion and motility through extracellular matrix (ECM)-dependent inhibition of Src kinase, suggesting that PG’s effects were not due solely to increased intercellular adhesion. PG silencing resulted in elevated levels of the ECM protein vitronectin (VN), and exposing PG-expressing cells to VN induced Src activity. Furthermore, increased VN levels and Src activation correlated with diminished expression of PG in patient tissues. Thus, PG may inhibit Src by keeping VN low. Our results suggest that loss of intercellular adhesion due to reduced PG expression might be exacerbated by activation of Src through a PG-dependent mechanism. Furthermore, PG down-regulation during PCa progression could contribute to the known VN-dependent promotion of PCa invasion and metastasis, demonstrating a novel functional interaction between desmosomal cell-cell adhesion and cell-substrate adhesion signaling axes in prostate cancer.
Collapse
|
19
|
Rashid ST, Humphries JD, Byron A, Dhar A, Askari JA, Selley JN, Knight D, Goldin RD, Thursz M, Humphries MJ. Proteomic analysis of extracellular matrix from the hepatic stellate cell line LX-2 identifies CYR61 and Wnt-5a as novel constituents of fibrotic liver. J Proteome Res 2012; 11:4052-64. [PMID: 22694338 PMCID: PMC3411196 DOI: 10.1021/pr3000927] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Activation of hepatic stellate cells (HSCs) and subsequent
uncontrolled
accumulation of altered extracellular matrix (ECM) underpin liver
fibrosis, a wound healing response to chronic injury, which can lead
to organ failure and death. We sought to catalogue the components
of fibrotic liver ECM to obtain insights into disease etiology and
aid identification of new biomarkers. Cell-derived ECM was isolated
from the HSC line LX-2, an in vitro model of liver
fibrosis, and compared to ECM from human foreskin fibroblasts (HFFs)
as a control. Mass spectrometry analyses of cell-derived ECMs identified,
with ≥99% confidence, 61 structural ECM or secreted proteins
(48 and 31 proteins for LX-2 and HFF, respectively). Gene ontology
enrichment analysis confirmed the enrichment of ECM proteins, and
hierarchical clustering coupled with protein–protein interaction
network analysis revealed a subset of proteins enriched to fibrotic
ECM, highlighting the existence of cell type-specific ECM niches.
Thirty-six proteins were enriched to LX-2 ECM as compared to HFF ECM,
of which Wnt-5a and CYR61 were validated by immunohistochemistry in
human and murine fibrotic liver tissue. Future studies will determine
if these and other components may play a role in the etiology of hepatic
fibrosis, serve as novel disease biomarkers, or open up new avenues
for drug discovery.
Collapse
Affiliation(s)
- S Tamir Rashid
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, and Department of Gastrointestinal Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hamill KJ, Hopkinson SB, Hoover P, Todorović V, Green KJ, Jones JCR. Fibronectin expression determines skin cell motile behavior. J Invest Dermatol 2012; 132:448-57. [PMID: 21956124 PMCID: PMC3252482 DOI: 10.1038/jid.2011.297] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse keratinocytes migrate significantly slower than their human counterparts in vitro on uncoated surfaces. We tested the hypothesis that this is a consequence of differences in the extracellular matrix (ECM) that cells deposit. In support of this, human keratinocyte motility was markedly reduced when plated onto the ECM of mouse skin cells, whereas the latter cells migrated faster when plated onto human keratinocyte ECM. The ECM of mouse and human keratinocytes contained similar levels of the α3 laminin subunit of laminin-332. However, mouse skin cells expressed significantly more fibronectin (FN) than human cells. To assess whether FN is a motility regulator, we used small interfering RNA (siRNA) to reduce the expression of FN in mouse keratinocytes. The treated mouse keratinocytes moved significantly more rapidly than wild-type mouse skin cells. Moreover, the FN-depleted mouse cell ECM supported increased migration of both mouse and human keratinocytes. Furthermore, the motility of human keratinocytes was slowed when plated onto FN-coated substrates or human keratinocyte ECM supplemented with FN in a dose-dependent manner. Consistent with these findings, the ECM of α3 integrin-null keratinocytes, which also migrated faster than wild-type cells, was FN deficient. Our results provide evidence that FN is a brake to skin cell migration supported by laminin-332-rich matrices.
Collapse
Affiliation(s)
- Kevin J Hamill
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
21
|
Establishment and Molecular Cytogenetic Characterization of a Cell Culture Model of Head and Neck Squamous Cell Carcinoma (HNSCC). Genes (Basel) 2010; 1:388-412. [PMID: 24710094 PMCID: PMC3966227 DOI: 10.3390/genes1030388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 09/30/2010] [Accepted: 10/28/2010] [Indexed: 02/06/2023] Open
Abstract
Cytogenetic analysis of head and neck squamous cell carcinoma (HNSCC) established several biomarkers that have been correlated to clinical parameters during the past years. Adequate cell culture model systems are required for functional studies investigating those potential prognostic markers in HNSCC. We have used a cell line, CAL 33, for the establishment of a cell culture model in order to perform functional analyses of interesting candidate genes and proteins. The cell line was cytogenetically characterized using array CGH, spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH). As a starting point for the investigation of genetic markers predicting radiosensitivity in tumor cells, irradiation experiments were carried out and radiation responses of CAL 33 have been determined. Radiosensitivity of CAL 33 cells was intermediate when compared to published data on tumor cell lines.
Collapse
|
22
|
Todorović V, Desai BV, Patterson MJS, Amargo EV, Dubash AD, Yin T, Jones JCR, Green KJ. Plakoglobin regulates cell motility through Rho- and fibronectin-dependent Src signaling. J Cell Sci 2010; 123:3576-86. [PMID: 20876660 DOI: 10.1242/jcs.070391] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously showed that the cell-cell junction protein plakoglobin (PG) not only suppresses motility of keratinocytes in contact with each other, but also, unexpectedly, of single cells. Here we show that PG deficiency results in extracellular matrix (ECM)-dependent disruption of mature focal adhesions and cortical actin organization. Plating PG⁻/⁻ cells onto ECM deposited by PG+/⁻ cells partially restored normal cell morphology and inhibited PG⁻/⁻ cell motility. In over 70 adhesion molecules whose expression we previously showed to be altered in PG⁻/⁻ cells, a substantial decrease in fibronectin (FN) in PG⁻/⁻ cells stood out. Re-introduction of PG into PG⁻/⁻ cells restored FN expression, and keratinocyte motility was reversed by plating PG⁻/⁻ cells onto FN. Somewhat surprisingly, based on previously reported roles for PG in regulating gene transcription, PG-null cells exhibited an increase, not a decrease, in FN promoter activity. Instead, PG was required for maintenance of FN mRNA stability. PG⁻/⁻ cells exhibited an increase in activated Src, one of the kinases controlled by FN, a phenotype reversed by plating PG⁻/⁻ cells on ECM deposited by PG+/⁻ keratinocytes. PG⁻/⁻ cells also exhibited Src-independent activation of the small GTPases Rac1 and RhoA. Both Src and RhoA inhibition attenuated PG⁻/⁻ keratinocyte motility. We propose a novel role for PG in regulating cell motility through distinct ECM-Src and RhoGTPase-dependent pathways, influenced in part by PG-dependent regulation of FN mRNA stability.
Collapse
Affiliation(s)
- Viktor Todorović
- Department of Pathology, 303 E. Chicago Avenue, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|