1
|
Balcerzyk-Matić A, Iwanicki T, Jarosz A, Nowak T, Emich-Widera E, Kazek B, Kapinos-Gorczyca A, Kapinos M, Iwanicka J, Gawron K, Likus W, Niemiec P. Analysis of the DYNC1H1 Gene Polymorphic Variants' Association with ASD Occurrence and Clinical Phenotype of Affected Children. Genes (Basel) 2025; 16:510. [PMID: 40428333 PMCID: PMC12111019 DOI: 10.3390/genes16050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
OBJECTIVES To analyze potential associations between three polymorphisms (rs3818188, rs941793, rs2403015) of the DYNC1H1 gene and the occurrence of autism spectrum disorder as well as the clinical phenotype of affected individuals. METHODS This family-based study included 206 children diagnosed with ASD and 364 of their biological parents. To examine the potential association between three polymorphisms of the DYNC1H1 gene and ASD occurrence, a transmission disequilibrium test was performed. Additionally, associations between the studied polymorphisms and the clinical phenotype of affected individuals were analyzed using the χ2 test. RESULTS None of the polymorphisms studied showed an association with ASD in the overall patient group. However, an association between the rs3818188 polymorphic variant and ASD was observed in a subgroup of girls, with the G allele being transmitted more than 2.5 times as frequently as the A allele. Moreover, several associations between the tested variants and features related to neuromotor development, communication, and social skills were observed in univariate analysis. However, after correction for multiple comparisons, only the association between the rs2403015 polymorphism and transient increase in muscle tone during infancy remained statistically significant. CONCLUSIONS This study demonstrated an association between the rs3818188 polymorphism and ASD in a subgroup of girls. Additionally, the rs2403015 polymorphism was found to be associated with transient increase in muscle tone during infancy.
Collapse
Affiliation(s)
- Anna Balcerzyk-Matić
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland; (T.I.); (A.J.); (T.N.); (J.I.); (P.N.)
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland; (T.I.); (A.J.); (T.N.); (J.I.); (P.N.)
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland; (T.I.); (A.J.); (T.N.); (J.I.); (P.N.)
| | - Tomasz Nowak
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland; (T.I.); (A.J.); (T.N.); (J.I.); (P.N.)
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia in Katowice, Medykow Street 16, 40-752 Katowice, Poland;
| | - Beata Kazek
- Child Development Support Center Persevere, Kępowa Street 56, 40-583 Katowice, Poland;
| | - Agnieszka Kapinos-Gorczyca
- Mental Health Center Feniks, Daily Ward for Children and Adolescents, Młyńska Street 8, 44-100 Gliwice, Poland; (A.K.-G.); (M.K.)
| | - Maciej Kapinos
- Mental Health Center Feniks, Daily Ward for Children and Adolescents, Młyńska Street 8, 44-100 Gliwice, Poland; (A.K.-G.); (M.K.)
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland; (T.I.); (A.J.); (T.N.); (J.I.); (P.N.)
| | - Katarzyna Gawron
- Department of Medical Microbiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland;
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland;
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland; (T.I.); (A.J.); (T.N.); (J.I.); (P.N.)
| |
Collapse
|
2
|
Chai P, Yang J, Geohring IC, Markus SM, Wang Y, Zhang K. The mechanochemical cycle of reactive full-length human dynein 1. Nat Struct Mol Biol 2025:10.1038/s41594-025-01543-3. [PMID: 40263469 DOI: 10.1038/s41594-025-01543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025]
Abstract
Dynein-driven cargo transport has a pivotal role in diverse cellular activities, central to which is dynein's mechanochemical cycle. Here, we performed a systematic cryo-electron microscopic investigation of the conformational landscape of full-length human dynein 1 in reaction, in various nucleotide conditions, on and off microtubules. Our approach reveals over 40 high-resolution structures, categorized into eight states, providing a dynamic and comprehensive view of dynein throughout its mechanochemical cycle. The described intermediate states reveal mechanistic insights into dynein function, including a 'backdoor' phosphate release model that coordinates linker straightening, how microtubule binding enhances adenosine triphosphatase activity through a two-way communication mechanism and the crosstalk mechanism between AAA1 and the regulatory AAA3 site. Our findings also lead to a revised model for the force-generating powerstroke and reveal means by which dynein exhibits unidirectional stepping. These results improve our understanding of dynein and provide a more complete model of its mechanochemical cycle.
Collapse
Affiliation(s)
- Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jun Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Indigo C Geohring
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| | - Yue Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
- Innovation Center for Brain Medical Sciences, The Ministry of Education of the People's Republic of China, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathophysiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Barbosa DJ, Carvalho C, Costa I, Silva R. Molecular Motors in Myelination and Their Misregulation in Disease. Mol Neurobiol 2025; 62:4705-4723. [PMID: 39477877 PMCID: PMC11880050 DOI: 10.1007/s12035-024-04576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/21/2024] [Indexed: 03/05/2025]
Abstract
Molecular motors are cellular components involved in the intracellular transport of organelles and materials to ensure cell homeostasis. This is particularly relevant in neurons, where the synaptic components synthesized in the soma need to travel over long distances to their destination. They can walk on microtubules (kinesins and dyneins) or actin filaments (myosins), the major components of cell cytoskeleton. While kinesins mostly perform the anterograde transport of intracellular components toward the plus ends of microtubules located distally in cell processes, cytoplasmic dyneins allow the retrograde flux of intracellular cargo toward the minus ends of microtubules located at the cell soma. Axon myelination represents a major aspect of neuronal maturation and is essential for neuronal function, as it speeds up the transmission of electrical signals. Increasing evidence supports a role for molecular motors in the homeostatic control of myelination. This role includes the trafficking of myelin components along the processes of myelinating cells and local regulation of pathways that ensure axon wrapping. Dysfunctional control of the intracellular transport machinery has therefore been linked to several brain pathologies, including demyelinating diseases. These disorders include a broad spectrum of conditions characterized by pathological demyelination of axons within the nervous system, ultimately leading to axonal degeneration and neuronal death, with multiple sclerosis representing the most prevalent and studied condition. This review highlights the involvement of molecular motors in the homeostatic control of myelination. It also discusses studies that have yielded insights into the dysfunctional activity of molecular motors in the pathophysiology of multiple sclerosis.
Collapse
Affiliation(s)
- Daniel José Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Cátia Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| |
Collapse
|
4
|
Grapentine S, Agarwal P, Dolinsky VW, Bakovic M. Epigenome-wide methylation analysis shows phosphonoethylamine alleviates aberrant DNA methylation in NASH caused by Pcyt2 deficiency. PLoS One 2025; 20:e0320510. [PMID: 40153413 PMCID: PMC11952270 DOI: 10.1371/journal.pone.0320510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2025] [Indexed: 03/30/2025] Open
Abstract
BACKGROUND Aberrant DNA methylation can lead to the onset of pathological phenotypes and is increasingly being implicated in age-related metabolic diseases. In our preceding study we show that the heterozygous ablation of Pcyt2, the rate limiting enzyme in phosphatidylethanolamine (PE) synthesis, causes an age-dependent development of non-alcoholic steatohepatitis (NASH), and that treatment with the Pcyt2 substrate phosphonoethylamine (PEA) can attenuate phenotypic NASH pathologies. Here, we hypothesize that abnormal DNA methylation patterns underly the development of Pcyt2 + /- NASH. In this study, we conduct an epigenome-wide methylation analysis to characterize the differential methylation of Pcyt2 + /- livers and investigate whether the attenuation of NASH with PEA treatment is associated with changes in DNA methylation. RESULTS Pcyt2 + /- NASH liver experiences significant alterations in DNA methylation pattens relative to Pcyt2 + / + . Differentially methylated genes belong to pathways including PI3K-Akt signalling pathway, Foxo signalling pathway, oxidative phosphorylation and insulin signalling/secretion, indicating that epigenetic regulation underlies many of our previously established functional pathological mechanisms of Pcyt2 + /- NASH. Previously unidentified pathways during Pcyt2 deficiency are highlighted, such as cell cycle regulation and cellular senescence that may contribute to NASH development. Treatment with PEA dramatically attenuates aberrant total and protein-coding DNA methylation patterns by 96%. PEA treatment restored the methylation status of key genes involved in epigenetic modifications and induced differential methylation of genes associated with obesity and T2DM such as Adyc3, Celsr2, Fam63b. CONCLUSION The Pcyt2 + /- liver methylome and transcriptome is altered and likely underlies much of the pathology in Pcyt2 + /- NASH phenotype. The treatment with PEA significantly attenuates aberrant DNA methylation in Pcyt2 + /- liver and corrects the DNA methylation of genes involved in the pathogenesis of NASH, indicating its therapeutic potential. This analysis provides critical insight into the epigenetic basis of NASH pathophysiology and suggests diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Prasoon Agarwal
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Vernon W. Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| |
Collapse
|
5
|
Neisch AL, Pengo T, Avery AW, Li MG, Hays TS. Dynein-driven regulation of postsynaptic membrane architecture and synaptic function. J Cell Sci 2025; 138:JCS263844. [PMID: 39865922 PMCID: PMC11959486 DOI: 10.1242/jcs.263844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Cytoplasmic dynein is essential in motor neurons for retrograde cargo transport that sustains neuronal connectivity. Little, however, is known about dynein function on the postsynaptic side of the circuit. Here, we report distinct postsynaptic roles for dynein at neuromuscular junctions in Drosophila. Intriguingly, we show that dynein puncta accumulate postsynaptically at glutamatergic synaptic terminals. Moreover, Skittles (Sktl), a phosphatidylinositol 4-phosphate 5-kinase that produces phosphatidylinositol 4,5-bisphosphate (PIP2) to organize the spectrin cytoskeleton, also localizes specifically to glutamatergic synaptic terminals. Depletion of postsynaptic dynein disrupted the accumulation of Skittles and the PIP2 phospholipid, and organization of the spectrin cytoskeleton at the postsynaptic membrane. Coincidental with dynein depletion, we observed an increase in the size of ionotropic glutamate receptor (iGluR) fields and an increase in the amplitude and frequency of miniature excitatory junctional potentials. PIP2 levels did not affect iGluR clustering, nor did dynein affect the levels of iGluR subunits at the neuromuscular junction. Our observations suggest a separate, transport-independent function for dynein in iGluR cluster organization. Based on the close apposition of dynein puncta to the iGluR fields, we speculate that dynein at the postsynaptic membrane contributes to the organization of the receptor fields, hence ensuring proper synaptic transmission.
Collapse
Affiliation(s)
- Amanda L. Neisch
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam W. Avery
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Min-Gang Li
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas S. Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Möller B, Becker LL, Saffari A, Afenjar A, Coci EG, Williamson R, Ward-Melver C, Gibaud M, Sedláčková L, Laššuthová P, Libá Z, Vlčková M, William N, Klee EW, Gavrilova RH, Lévy J, Capri Y, Scavina M, Körner RW, Valivullah Z, Weiß C, Möller GM, Frazier Z, Roberts A, Gener B, Scala M, Striano P, Zara F, Thiel M, Sinnema M, Kamsteeg EJ, Donkervoort S, Duboc V, Zaafrane-Khachnaoui K, Elkhateeb N, Selim L, Margot H, Marin V, Beneteau C, Isidor B, Cogne B, Keren B, Küsters B, Beggs AH, Sveden A, Chopra M, Genetti CA, Nicolai J, Dötsch J, Koy A, Bönnemann CG, von der Hagen M, von Kleist-Retzow JC, Voermans NC, Jungbluth H, Dafsari HS. The expanding clinical and genetic spectrum of DYNC1H1-related disorders. Brain 2025; 148:597-612. [PMID: 38848546 PMCID: PMC11788221 DOI: 10.1093/brain/awae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Intracellular trafficking involves an intricate machinery of motor complexes, including the dynein complex, to shuttle cargo for autophagolysosomal degradation. Deficiency in dynein axonemal chains, as well as cytoplasmic light and intermediate chains, have been linked with ciliary dyskinesia and skeletal dysplasia. The cytoplasmic dynein 1 heavy chain protein (DYNC1H1) serves as a core complex for retrograde trafficking in neuronal axons. Dominant pathogenic variants in DYNC1H1 have been previously implicated in peripheral neuromuscular disorders (NMD) and neurodevelopmental disorders (NDD). As heavy-chain dynein is ubiquitously expressed, the apparent selectivity of heavy chain dyneinopathy for motor neuronal phenotypes remains currently unaccounted for. Here, we aimed to evaluate the full DYNC1H1-related clinical, molecular and imaging spectrum, including multisystem features and novel phenotypes presenting throughout life. We identified 47 cases from 43 families with pathogenic heterozygous variants in DYNC1H1 (aged 0-59 years) and collected phenotypic data via a comprehensive standardized survey and clinical follow-up appointments. Most patients presented with divergent and previously unrecognized neurological and multisystem features, leading to significant delays in genetic testing and establishing the correct diagnosis. Neurological phenotypes include novel autonomic features, previously rarely described behavioral disorders, movement disorders and periventricular lesions. Sensory neuropathy was identified in nine patients (median age of onset 10.6 years), of which five were only diagnosed after the second decade of life, and three had a progressive age-dependent sensory neuropathy. Novel multisystem features included primary immunodeficiency, bilateral sensorineural hearing loss, organ anomalies and skeletal manifestations, resembling the phenotypic spectrum of other dyneinopathies. We also identified an age-dependent biphasic disease course with developmental regression in the first decade and, following a period of stability, neurodegenerative progression after the second decade of life. Of note, we observed several cases in whom neurodegeneration appeared to be prompted by intercurrent systemic infections with double-stranded DNA viruses (Herpesviridae) or single-stranded RNA viruses (Ross River fever, SARS-CoV-2). Moreover, the disease course appeared to be exacerbated by viral infections regardless of age and/or severity of neurodevelopmental disorder manifestations, indicating a role of dynein in anti-viral immunity and neuronal health. In summary, our findings expand the clinical, imaging and molecular spectrum of pathogenic DYNC1H1 variants beyond motor neuropathy disorders and suggest a life-long continuum and age-related progression due to deficient intracellular trafficking. This study will facilitate early diagnosis and improve counselling and health surveillance of affected patients.
Collapse
Affiliation(s)
- Birk Möller
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Lena-Luise Becker
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute for Cell Biology and Neurobiology, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Afshin Saffari
- Heidelberg University, Medical Faculty Heidelberg, University Hospital Heidelberg, Center for Pediatrics and Adolescent Medicine, Department of Pediatrics I, Division of Child Neurology and Metabolic Medicine, 69120 Heidelberg, Germany
| | - Alexandra Afenjar
- Reference Center for Malformations and Congenital Diseases of the Cerebellum and Intellectual Disabilities of Rare Causes, Department of Genetics and Medical Embryology, Sorbonne University, Trousseau Hospital Paris, 75012 Paris, France
| | - Emanuele G Coci
- Department of Paediatrics, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | | | | | - Marc Gibaud
- Service de pédiatrie, CHU de Nantes, 44000 Nantes, France
| | - Lucie Sedláčková
- Neurogenetic Laboratory, Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Petra Laššuthová
- Neurogenetic Laboratory, Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Zuzana Libá
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Markéta Vlčková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Full Member of the ERN EpiCARE, 150 06 Prague, Czech Republic
| | - Nancy William
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55901, USA
| | - Eric W Klee
- Departments of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ralitza H Gavrilova
- Departments of Clinical Genomics and Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, 75019 Paris, France
| | - Yline Capri
- Genetics Department, AP-HP, Robert-Debré University Hospital, 75019 Paris, France
| | - Mena Scavina
- Division of Neurology, Nemours Children’s Health, Wilmington, Delaware 19803, USA
| | - Robert Walter Körner
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Zaheer Valivullah
- Center for Mendelian Genomics, Broad Institute Harvard, Cambridge, MA 02142, USA
| | - Claudia Weiß
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
- Center for Chronically Sick Children, Charité–Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Greta Marit Möller
- Berlin University of Applied Sciences and Technology, 10587 Berlin, Germany
| | - Zoë Frazier
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Amy Roberts
- Center for Cardiovascular Genetics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Blanca Gener
- Department of Genetics, Cruces University Hospital, Biobizkaia Health Research Institute, Barakaldo 48903, Spain
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Giannina Gaslini Institute, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16147 Genoa, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Moritz Thiel
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Erik-Jan Kamsteeg
- Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronique Duboc
- Department of Medical Genetics, Université Côte D’Azur, Centre Hospitalier Universitaire Nice, 06000 Nice, France
| | - Khaoula Zaafrane-Khachnaoui
- Department of Medical Genetics, Université Côte D’Azur, Centre Hospitalier Universitaire Nice, 06000 Nice, France
| | - Nour Elkhateeb
- Department of Clinical Genetics, Cambridge University Hospitals NHS Trust, Cambridge CB2 3EH, UK
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine unit, Kasr Al-Ainy School of Medicine, Cairo University, 4390330 Cairo, Egypt
| | - Laila Selim
- Department of Pediatrics, Pediatric Neurology and Metabolic Medicine unit, Kasr Al-Ainy School of Medicine, Cairo University, 4390330 Cairo, Egypt
| | - Henri Margot
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Victor Marin
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Claire Beneteau
- Department of Medical Genetics, University Hospital of Bordeaux, 33076 Bordeaux, France
| | - Bertrand Isidor
- Genetics Department, Nantes University, CHU de Nantes, 44000 Nantes, France
| | - Benjamin Cogne
- Genetics Department, Nantes University, CHU de Nantes, 44000 Nantes, France
| | - Boris Keren
- Genetic Department, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, 75013 Paris, France
| | - Benno Küsters
- Department of Pathology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Abigail Sveden
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Maya Chopra
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Casie A Genetti
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02445, USA
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Anne Koy
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maja von der Hagen
- Department of Neuropediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen-Christoph von Kleist-Retzow
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nicol C Voermans
- The Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, 6525 Nijmegen, The Netherlands
| | - Heinz Jungbluth
- Department of Paediatric Neurology—Neuromuscular Service, Evelina Children’s Hospital, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London SE1 1YR, UK
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Paediatric Neurology—Neuromuscular Service, Evelina Children’s Hospital, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King’s College London, London SE1 1YR, UK
- Max-Planck-Institute for Biology of Ageing, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
7
|
Zuev AS, Fonova EA, Demeneva VV, Zarubin AA, Podus AA, Minaycheva LI, Seitova GN, Sivokha VM, Kraeva LS, Lebedev IN. [A variant of p.Arg1623Gln of the DYNC1H1 gene in a patient with corpus callosum agenesis, polydactyly, mental development disorder, and neuromuscular system disorders]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:137-142. [PMID: 40047846 DOI: 10.17116/jnevro2025125021137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
DYNC1H1 encodes the heavy chain of dynein 1, a protein that plays a critical role in intracellular transport and is also involved in neurogenesis, bipolar spindle apparatus formation, and interaction with certain regulatory proteins. Many variants of the gene are described in various neuromuscular, psychoneurological, congenital abnormalities, and malignancies. In this clinical case, the correlation of clinical manifestations with molecular genetic changes of the DYNC1H1 gene was evaluated. A variant was identified and presented de novo in the linker domain of the protein in a patient with abnormalities of brain development (pachygyria of the temporal and frontal lobes, polymicrogyria of the occipital lobes, cerebellar agenesis), polydactylitis, mental development disorder, and involvement of the neuromuscular system, as well as congenital cataracts. In this case, a new feature is described - polydactyly - not previously described in the variant c.4868G>A (p.Arg1623Gln), which expands the range of clinical manifestations and can contribute to the understanding of the mechanisms of phenotypic heterogeneity, as well as the development of optimal diagnostic algorithms.
Collapse
Affiliation(s)
- A S Zuev
- Research Institute of Medical Genetics - Tomsk National Research Medical Center, Tomsk, Russia
| | - E A Fonova
- Research Institute of Medical Genetics - Tomsk National Research Medical Center, Tomsk, Russia
- Siberian State Medical University, Tomsk, Russia
| | - V V Demeneva
- Research Institute of Medical Genetics - Tomsk National Research Medical Center, Tomsk, Russia
| | - A A Zarubin
- Research Institute of Medical Genetics - Tomsk National Research Medical Center, Tomsk, Russia
| | - A A Podus
- Research Institute of Medical Genetics - Tomsk National Research Medical Center, Tomsk, Russia
| | - L I Minaycheva
- Research Institute of Medical Genetics - Tomsk National Research Medical Center, Tomsk, Russia
| | - G N Seitova
- Research Institute of Medical Genetics - Tomsk National Research Medical Center, Tomsk, Russia
| | - V M Sivokha
- Research Institute of Medical Genetics - Tomsk National Research Medical Center, Tomsk, Russia
| | - L S Kraeva
- Siberian State Medical University, Tomsk, Russia
| | - I N Lebedev
- Research Institute of Medical Genetics - Tomsk National Research Medical Center, Tomsk, Russia
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
8
|
Nturubika BDD, Logan J, Johnson IRD, Moore C, Li KL, Tang J, Lam G, Parkinson-Lawrence E, Williams DB, Chakiris J, Hindes M, Brooks RD, Miles MA, Selemidis S, Gregory P, Weigert R, Butler L, Ward MP, Waugh DJJ, O’Leary JJ, Brooks DA. Components of the Endosome-Lysosome Vesicular Machinery as Drivers of the Metastatic Cascade in Prostate Cancer. Cancers (Basel) 2024; 17:43. [PMID: 39796673 PMCID: PMC11718918 DOI: 10.3390/cancers17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer remains a significant global health concern, with over 1.4 million new cases diagnosed and more than 330,000 deaths each year. The primary clinical challenge that contributes to poor patient outcomes involves the failure to accurately predict and treat at the onset of metastasis, which remains an incurable stage of the disease. This review discusses the emerging paradigm that prostate cancer metastasis is driven by a dysregulation of critical molecular machinery that regulates endosome-lysosome homeostasis. Endosome and lysosome compartments have crucial roles in maintaining normal cellular function but are also involved in many hallmarks of cancer pathogenesis, including inflammation, immune response, nutrient sensing, metabolism, proliferation, signalling, and migration. Here we discuss new insight into how alterations in the complex network of trafficking machinery, responsible for the microtubule-based transport of endosomes and lysosomes, may be involved in prostate cancer progression. A better understanding of endosome-lysosome dynamics may facilitate the discovery of novel strategies to detect and manage prostate cancer metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- Bukuru Dieu-Donne Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jessica Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ian R. D. Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jingying Tang
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Giang Lam
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Emma Parkinson-Lawrence
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Desmond B. Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - James Chakiris
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Madison Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Philip Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa Butler
- South Australian ImmunoGENomics Cancer Institute, Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5000, Australia;
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mark P. Ward
- Department of Pathology, The Coombe Women and Infants University Hospital, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - David J. J. Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - Douglas A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| |
Collapse
|
9
|
Kobzeva K, Ivenkov M, Gromov R, Bushueva O. HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis. Front Biosci (Schol Ed) 2024; 16:19. [PMID: 39736019 DOI: 10.31083/j.fbs1604019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies. AIM Our objective was to examine the potential correlation between single nucleotide polymorphisms (SNPs) in genes that encode members of the Heat shock protein 90 (HSP90), small heat shock proteins (HSPB), and heat shock factors (HSF) families, and the risk and clinical characteristics of IS. METHODS 953 IS patients and 1265 controls from Central Russia were genotyped for nine SNPs in genes encoding HSP90AA1, HSFs, and HSPBs using the MassArray-4 system and probe-based polymerase chain reaction (PCR). RESULTS In smokers, SNP rs1133026 HSPB8 increased the risk of IS (risk allele A, odds ratio (OR) = 1.43, 95% Confidence Interval (CI) 1.02-2.02, p = 0.035), and rs556439 HSF2 increased the brain infarct size (risk allele A, p = 0.02). In non-smokers, SNPs rs4279640 HSF1 (protective allele T, OR = 0.58, 95% CI 0.37-0.92, p = 0.02) and rs4264324 HSP90AA1 (protective allele C, OR = 0.11, 95% CI 0.01-0.78, p = 0.001) lowered the risk of recurrent stroke; SNP rs7303637 HSPB8 increased the age of onset of IS (protective allele T, p = 0.04). In patients with body mass index (BMI) ≥25, SNPs rs556439 HSF2 (risk allele A, OR = 1.33, 95% CI 1.04-1.69, p = 0.02) and rs549302 HSF2 (risk allele G, OR = 1.34, 95% CI 1.02-1.75, p = 0.03) were linked to a higher risk of IS. CONCLUSIONS The primary molecular mechanisms through which the studied SNPs contribute to IS pathogenesis were found to be the regulation of cell death, inflammatory and oxidative stress responses.
Collapse
Affiliation(s)
- Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Maxim Ivenkov
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Rostislav Gromov
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 305041 Kursk, Russia
| |
Collapse
|
10
|
Salvador-Garcia D, Jin L, Hensley A, Gölcük M, Gallaud E, Chaaban S, Port F, Vagnoni A, Planelles-Herrero VJ, McClintock MA, Derivery E, Carter AP, Giet R, Gür M, Yildiz A, Bullock SL. A force-sensitive mutation reveals a non-canonical role for dynein in anaphase progression. J Cell Biol 2024; 223:e202310022. [PMID: 38949648 PMCID: PMC11215527 DOI: 10.1083/jcb.202310022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/29/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
The diverse roles of the dynein motor in shaping microtubule networks and cargo transport complicate in vivo analysis of its functions significantly. To address this issue, we have generated a series of missense mutations in Drosophila Dynein heavy chain. We show that mutations associated with human neurological disease cause a range of defects, including impaired cargo trafficking in neurons. We also describe a novel microtubule-binding domain mutation that specifically blocks the metaphase-anaphase transition during mitosis in the embryo. This effect is independent from dynein's canonical role in silencing the spindle assembly checkpoint. Optical trapping of purified dynein complexes reveals that this mutation only compromises motor performance under load, a finding rationalized by the results of all-atom molecular dynamics simulations. We propose that dynein has a novel function in anaphase progression that depends on it operating in a specific load regime. More broadly, our work illustrates how in vivo functions of motors can be dissected by manipulating their mechanical properties.
Collapse
Affiliation(s)
- David Salvador-Garcia
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Li Jin
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew Hensley
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Mert Gölcük
- School of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Emmanuel Gallaud
- Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Sami Chaaban
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fillip Port
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Alessio Vagnoni
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Mark A. McClintock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Emmanuel Derivery
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Andrew P. Carter
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Régis Giet
- Institut de Génétique et Développement de Rennes, Université de Rennes, Rennes, France
| | - Mert Gür
- School of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Simon L. Bullock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
11
|
Nishio H, Niba ETE, Saito T, Okamoto K, Lee T, Takeshima Y, Awano H, Lai PS. Clinical and Genetic Profiles of 5q- and Non-5q-Spinal Muscular Atrophy Diseases in Pediatric Patients. Genes (Basel) 2024; 15:1294. [PMID: 39457418 PMCID: PMC11506990 DOI: 10.3390/genes15101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a genetic disease characterized by loss of motor neurons in the spinal cord and lower brainstem. The term "SMA" usually refers to the most common form, 5q-SMA, which is caused by biallelic mutations in SMN1 (located on chromosome 5q13). However, long before the discovery of SMN1, it was known that other forms of SMA existed. Therefore, SMA is currently divided into two groups: 5q-SMA and non-5q-SMA. This is a simple and practical classification, and therapeutic drugs have only been developed for 5q-SMA (nusinersen, onasemnogene abeparvovec, risdiplam) and not for non-5q-SMA disease. METHODS We conducted a non-systematic critical review to identify the characteristics of each SMA disease. RESULTS Many of the non-5q-SMA diseases have similar symptoms, making DNA analysis of patients essential for accurate diagnosis. Currently, genetic analysis technology using next-generation sequencers is rapidly advancing, opening up the possibility of elucidating the pathology and treating non-5q-SMA. CONCLUSION Based on accurate diagnosis and a deeper understanding of the pathology of each disease, treatments for non-5q-SMA diseases may be developed in the near future.
Collapse
Affiliation(s)
- Hisahide Nishio
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Emma Tabe Eko Niba
- Laboratory of Molecular and Biochemical Research, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Toshio Saito
- Department of Neurology, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Toyonaka 560-8552, Japan;
| | - Kentaro Okamoto
- Department of Pediatrics, Ehime Prefectural Imabari Hospital, 4-5-5 Ishi-cho, Imabari 794-0006, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Hiroyuki Awano
- Organization for Research Initiative and Promotion, Research Initiative Center, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Poh-San Lai
- Department of Pediatrics, National University of Singapore, 1E Lower Kent Ridge Road, Singapore 119228, Singapore;
| |
Collapse
|
12
|
Ramos RL, De Heredia MMB, Zhang Y, Stout RF, Tindi JO, Wu L, Schwartz GJ, Botbol YM, Sidoli S, Poojari A, Rakowski-Anderson T, Shafit-Zagardo B. Patient-specific mutation of Dync1h1 in mice causes brain and behavioral deficits. Neurobiol Dis 2024; 199:106594. [PMID: 39025270 DOI: 10.1016/j.nbd.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
AIMS Cytoplasmic dynein heavy chain (DYNC1H1) is a multi-subunit protein complex that provides motor force for movement of cargo on microtubules and traffics them back to the soma. In humans, mutations along the DYNC1H1 gene result in intellectual disabilities, cognitive delays, and neurologic and motor deficits. The aim of the study was to generate a mouse model to a newly identified de novo heterozygous DYNC1H1 mutation, within a functional ATPase domain (c9052C > T(P3018S)), identified in a child with motor deficits, and intellectual disabilities. RESULTS P3018S heterozygous (HET) knockin mice are viable; homozygotes are lethal. Metabolic and EchoMRI™ testing show that HET mice have a higher metabolic rate, are more active, and have less body fat compared to wildtype mice. Neurobehavioral studies show that HET mice perform worse when traversing elevated balance beams, and on the negative geotaxis test. Immunofluorescent staining shows neuronal migration abnormalities in the dorsal and lateral neocortex with heterotopia in layer I. Neuron-subtype specific transcription factors CUX1 and CTGF identified neurons from layers II/III and VI respectively in cortical layer I, and abnormal pyramidal neurons with MAP2+ dendrites projecting downward from the pial surface. CONCLUSION The HET mice are a good model for the motor deficits seen in the child, and highlights the importance of cytoplasmic dynein in the maintenance of cortical function and dendritic orientation relative to the pial surface. Our results are discussed in the context of other dynein mutant mice and in relation to clinical presentation in humans with DYNC1H1 mutations.
Collapse
Affiliation(s)
- Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Riland Academic Health Center, Room 26, Old Westbury, NY 11568, United States of America
| | | | - Yongwei Zhang
- Cancer Center, Albert Einstein College of Medicine, 1301 Morris Park Ave, Price Building, Rm 269, Bronx, NY 10461, United States of America.
| | - Randy F Stout
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Riland Academic Health Center, Room 22, Old Westbury, NY 11568, United States of America.
| | - Jaafar O Tindi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Kennedy Center, Rm 501, 1410 Pelham Parkway S., Bronx, NY 10461, United States of America.
| | - Liching Wu
- Dept of Medicine, Albert Einstein College of Medicine, United States of America.
| | - Gary J Schwartz
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, United States of America.
| | - Yair M Botbol
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer Building, Rm 520, Bronx, NY 10461, United States of America.
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein, United States of America.
| | - Ankita Poojari
- Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, United States of America.
| | - Tammy Rakowski-Anderson
- Institute for Animal Studies, Albert Einstein College of Medicine, Van Etten Building, Room 463, Bronx, NY 10461, United States of America.
| | - Bridget Shafit-Zagardo
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer Building 514, Bronx, NY 10461, United States of America.
| |
Collapse
|
13
|
Cuccurullo C, Cerulli Irelli E, Ugga L, Riva A, D'Amico A, Cabet S, Lesca G, Bilo L, Zara F, Iliescu C, Barca D, Fung F, Helbig K, Ortiz-Gonzalez X, Schelhaas HJ, Willemsen MH, van der Linden I, Canafoglia L, Courage C, Gommaraschi S, Gonzalez-Alegre P, Bardakjian T, Syrbe S, Schuler E, Lemke JR, Vari S, Roende G, Bak M, Huq M, Powis Z, Johannesen KM, Hammer TB, Møller RS, Rabin R, Pappas J, Zupanc ML, Zadeh N, Cohen J, Naidu S, Krey I, Saneto R, Thies J, Licchetta L, Tinuper P, Bisulli F, Minardi R, Bayat A, Villeneuve N, Molinari F, Salimi Dafsari H, Moller B, Le Roux M, Houdayer C, Vecchi M, Mammi I, Fiorini E, Proietti J, Ferri S, Cantalupo G, Battaglia DI, Gambardella ML, Contaldo I, Brogna C, Trivisano M, De Dominicis A, Bova SM, Gardella E, Striano P, Coppola A. Clinical features and genotype-phenotype correlations in epilepsy patients with de novo DYNC1H1 variants. Epilepsia 2024; 65:2728-2750. [PMID: 38953796 DOI: 10.1111/epi.18054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.
Collapse
Affiliation(s)
- Claudia Cuccurullo
- Epilepsy Center, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy
- Neurology and Stroke Unit, Ospedale del Mare Hospital, Naples, Italy
| | | | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Medical Genetic Unit, Istituti di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genoa, Italy
| | | | - Sara Cabet
- Pediatric and Fetal Imaging, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, Lyon, France
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon, Bron, France
- Institut NeuroMyoGene, CNRS UMR5310, INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | - Leonilda Bilo
- Epilepsy Center, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Medical Genetic Unit, Istituti di Ricovero e Cura a Carattere Scientifico Istituto Giannina Gaslini, Genoa, Italy
| | - Catrinel Iliescu
- Department of Clinical Neurosciences, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Diana Barca
- Department of Pediatric Neurology, Expertise Center for Rare Diseases in Pediatric Neurology, member of the EpiCARE European Reference Network, "Prof. Dr. Alex. Obregia" Clinical Hospital, Bucharest, Romania
| | - France Fung
- Department of Pediatrics and Neurology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katherine Helbig
- Department of Pediatrics and Neurology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xilma Ortiz-Gonzalez
- Department of Pediatrics and Neurology, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Inge van der Linden
- Department of Neurology, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carolina Courage
- Folkhälsan Research Center, Helsinki, Finland
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Samuele Gommaraschi
- Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, Philadelphia, USA
| | - Tanya Bardakjian
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Pennsylvania, Philadelphia, USA
| | - Steffen Syrbe
- Division of Paediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Elisabeth Schuler
- Division of Paediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Johannes R Lemke
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genoa, Italy
| | - Gitte Roende
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshopitalet, Copenhagen, Denmark
| | - Mads Bak
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Mahbulul Huq
- Department of Pediatrics, Wayne State University, Detroit, Michigan, USA
| | - Zoe Powis
- Ambry Genetics, Department of Emerging Genetic Medicine, CGC 15 Argonaut, Aliso Viejo, California, USA
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Rachel Rabin
- Clinical Genetic Services, Department of Pediatrics, NYU Grossman School of Medicine, New York, New York, USA
| | - John Pappas
- Clinical Genetic Services, Department of Pediatrics, NYU Grossman School of Medicine, New York, New York, USA
| | - Mary L Zupanc
- Children's Health of Orange County, Orange, California, USA
| | - Neda Zadeh
- Genetics Center and Division of Medical Genetics, Children's Hospital of Orange County, Orange, California, USA
| | - Julie Cohen
- Department of Neurology, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sakkubai Naidu
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Russell Saneto
- Department of Neurology, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington, USA
| | - Jenny Thies
- Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Laura Licchetta
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, full member of the EpiCARE European Reference Network, Bologna, Italy
| | - Paolo Tinuper
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, full member of the EpiCARE European Reference Network, Bologna, Italy
| | - Francesca Bisulli
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, full member of the EpiCARE European Reference Network, Bologna, Italy
| | - Raffaella Minardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Allan Bayat
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Florence Molinari
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Hormos Salimi Dafsari
- Department of Pediatrics, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Department of Paediatric Neurology, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Division of Cell and Molecular Biophysics, Muscle Signaling Section, King's College London, London, UK
| | - Birk Moller
- Department of Pediatrics, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marie Le Roux
- Department of Pediatric Neurology and Neurosurgery, CHU, Angers, France
| | - Clara Houdayer
- Service de Génétique Médicale, Université d'Angers, CHU d'Angers, Inserm, CNRS, MITOVASC, SFR ICAT, Angers, France
| | | | | | - Elena Fiorini
- Child Neuropsychiatry Unit, University Hospital of Verona, full member of the EpiCARE European Reference Network, Verona, Italy
- Center for Research on Epilepsy in Pediatric Age, University Hospital of Verona, Verona, Italy
| | - Jacopo Proietti
- Child Neuropsychiatry Unit, University Hospital of Verona, full member of the EpiCARE European Reference Network, Verona, Italy
- Center for Research on Epilepsy in Pediatric Age, University Hospital of Verona, Verona, Italy
| | - Sofia Ferri
- Child Neuropsychiatry Unit, University Hospital of Verona, full member of the EpiCARE European Reference Network, Verona, Italy
| | - Gaetano Cantalupo
- Child Neuropsychiatry Unit, University Hospital of Verona, full member of the EpiCARE European Reference Network, Verona, Italy
- Center for Research on Epilepsy in Pediatric Age, University Hospital of Verona, Verona, Italy
- Innovation Biomedicine Section, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Domenica Immacolata Battaglia
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Ilaria Contaldo
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudia Brogna
- Pediatric Neurology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Neuropsychiatric Unit, ASL Avellino, Avellino, Italy
| | - Marina Trivisano
- Neurology, Epilepsy, and Movement Disorders, Bambino Gesù Children's Hospital, IRCCS, full member of the EpiCARE European Reference Network, Rome, Italy
| | | | | | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, "G. Gaslini" Institute, University of Genoa, Genoa, Italy
| | - Antonietta Coppola
- Epilepsy Center, Department of Neuroscience, Reproductive and Odontostomatological Sciences, Federico II University of Naples, Naples, Italy
| |
Collapse
|
14
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Park JG, Jeon H, Hwang KY, Cha SS, Han RT, Cho H, Lee IG. Cargo specificity, regulation, and therapeutic potential of cytoplasmic dynein. Exp Mol Med 2024; 56:827-835. [PMID: 38556551 PMCID: PMC11059388 DOI: 10.1038/s12276-024-01200-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 04/02/2024] Open
Abstract
Intracellular retrograde transport in eukaryotic cells relies exclusively on the molecular motor cytoplasmic dynein 1. Unlike its counterpart, kinesin, dynein has a single isoform, which raises questions about its cargo specificity and regulatory mechanisms. The precision of dynein-mediated cargo transport is governed by a multitude of factors, including temperature, phosphorylation, the microtubule track, and interactions with a family of activating adaptor proteins. Activating adaptors are of particular importance because they not only activate the unidirectional motility of the motor but also connect a diverse array of cargoes with the dynein motor. Therefore, it is unsurprising that dysregulation of the dynein-activating adaptor transport machinery can lead to diseases such as spinal muscular atrophy, lower extremity, and dominant. Here, we discuss dynein motor motility within cells and in in vitro, and we present several methodologies employed to track the motion of the motor. We highlight several newly identified activating adaptors and their roles in regulating dynein. Finally, we explore the potential therapeutic applications of manipulating dynein transport to address diseases linked to dynein malfunction.
Collapse
Affiliation(s)
- Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Rafael T Han
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, South Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- Department of Biological Chemistry, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
16
|
Feole M, Pozo Devoto VM, Dragišić N, Arnaiz C, Bianchelli J, Texlová K, Kovačovicova K, Novotny JS, Havas D, Falzone TL, Stokin GB. Swedish Alzheimer's disease variant perturbs activity of retrograde molecular motors and causes widespread derangement of axonal transport pathways. J Biol Chem 2024; 300:107137. [PMID: 38447793 PMCID: PMC10997842 DOI: 10.1016/j.jbc.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Experimental studies in flies, mice, and humans suggest a significant role of impaired axonal transport in the pathogenesis of Alzheimer's disease (AD). The mechanisms underlying these impairments in axonal transport, however, remain poorly understood. Here we report that the Swedish familial AD mutation causes a standstill of the amyloid precursor protein (APP) in the axons at the expense of its reduced anterograde transport. The standstill reflects the perturbed directionality of the axonal transport of APP, which spends significantly more time traveling in the retrograde direction. This ineffective movement is accompanied by an enhanced association of dynactin-1 with APP, which suggests that reduced anterograde transport of APP is the result of enhanced activation of the retrograde molecular motor dynein by dynactin-1. The impact of the Swedish mutation on axonal transport is not limited to the APP vesicles since it also reverses the directionality of a subset of early endosomes, which become enlarged and aberrantly accumulate in distal locations. In addition, it also reduces the trafficking of lysosomes due to their less effective retrograde movement. Altogether, our experiments suggest a pivotal involvement of retrograde molecular motors and transport in the mechanisms underlying impaired axonal transport in AD and reveal significantly more widespread derangement of axonal transport pathways in the pathogenesis of AD.
Collapse
Affiliation(s)
- Monica Feole
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic; Faculty of Medicine, Department of Biology, Masaryk University, Brno, Czech Republic; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK
| | - Victorio M Pozo Devoto
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic
| | - Neda Dragišić
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic
| | - Cayetana Arnaiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Julieta Bianchelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Kateřina Texlová
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic; PsychoGenics, Paramus, New Jersey, USA
| | | | - Jan S Novotny
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic; Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | | | - Tomas L Falzone
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA-CONICET-MPSP), Partner Institute of the Max Planck Society, Buenos Aires, Argentina; Instituto de Biología Celular y Neurociencia IBCN (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gorazd B Stokin
- Translational Ageing and Neuroscience Program, Centre for Translational Medicine, International Clinical Research Centre, St Anne's University Hospital, Brno, Czech Republic; Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic; Division of Neurology, University Medical Centre, Ljubljana, Slovenia; Department of Neurosciences, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
17
|
Wu WC, Liang XY, Zhang DM, Jin L, Liu ZG, Zeng XL, Zhai QX, Liao WP, He N, Meng XH. DYNC1H1 variants associated with infant-onset epilepsy without neurodevelopmental disorders. Seizure 2024; 116:119-125. [PMID: 37903666 DOI: 10.1016/j.seizure.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVES The DYNC1H1 variants are associated with abnormal brain morphology and neuromuscular disorders that are accompanied by epilepsy. This study aimed to explore the relationship between DYNC1H1 variants and epilepsy. MATERIALS AND METHODS Trios-based whole-exome sequencing was performed on patients with epilepsy. Previously reported epilepsy-related DYNC1H1 variants were systematically reviewed to analyse genotype-phenotype correlation. RESULTS The DYNC1H1 variants were identified in four unrelated cases of infant-onset epilepsy, including two de novo and two biallelic variants. Two patients harbouring de novo missense variants located in the stem and stalk domains presented with refractory epilepsies, whereas two patients harbouring biallelic variants located in the regions between functional domains had mild epilepsy with infrequent focal seizures and favourable outcomes. One patient presented with pachygyria and neurodevelopmental abnormalities, and the other three patients presented with normal development. These variants have no or low frequencies in the Genome Aggregation Database. All the missense variants were predicted to be damaging using silico tools. Previously reported epilepsy-related variants were monoallelic variants, mainly de novo missense variants, and all the patients presented with severe epileptic phenotypes or developmental delay and malformations of cortical development. Epilepsy-related variants were clustered in the dimerization and stalk domains, and generalized epilepsy-associated variants were distributed in the stem domain. CONCLUSION This study suggested that DYNC1H1 variants are potentially associated with infant-onset epilepsy without neurodevelopmental disorders, expanding the phenotypic spectrum of DYNC1H1. The genotype-phenotype correlation helps to understand the underlying mechanisms of phenotypic variation.
Collapse
Affiliation(s)
- Wu-Chen Wu
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Xiao-Yu Liang
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Dong-Ming Zhang
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Jin
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhi-Gang Liu
- Department of Pediatrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Xiao-Lu Zeng
- Department of pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Na He
- Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Xiang-Hong Meng
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| |
Collapse
|
18
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
19
|
Zhang X, Tan J, Zhang X, Pandey K, Zhong Y, Wu G, He K. Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:2407-2431. [PMID: 38454689 DOI: 10.3934/mbe.2024106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
BACKGROUND Aggrephagy is a lysosome-dependent process that degrades misfolded protein condensates to maintain cancer cell homeostasis. Despite its importance in cellular protein quality control, the role of aggrephagy in glioma remains poorly understood. OBJECTIVE To investigate the expression of aggrephagy-related genes (ARGs) in glioma and in different cell types of gliomas and to develop an ARGs-based prognostic signature to predict the prognosis, tumor microenvironment, and immunotherapy response of gliomas. METHODS ARGs were identified by searching the Reactome database. We developed the ARGs-based prognostic signature (ARPS) using data from the Cancer Genome Atlas (TCGA, n = 669) by Lasso-Cox regression. We validated the robustness of the signature in clinical subgroups and CGGA cohorts (n = 970). Gene set enrichment analysis (GSEA) was used to identify the pathways enriched in ARPS subgroups. The correlations between ARGs and macrophages were also investigated at single cell level. RESULTS A total of 44 ARGs showed heterogeneous expression among different cell types of gliomas. Five ARGs (HSF1, DYNC1H1, DYNLL2, TUBB6, TUBA1C) were identified to develop ARPS, an independent prognostic factor. GSEA showed gene sets of patients with high-ARPS were mostly enriched in cell cycle, DNA replication, and immune-related pathways. High-ARPS subgroup had higher immune cell infiltration states, particularly macrophages, Treg cells, and neutrophils. APRS had positive association with tumor mutation burden (TMB) and immunotherapy response predictors. At the single cell level, we found ARGs correlated with macrophage development and identified ARGs-mediated macrophage subtypes with distinct communication characteristics with tumor cells. VIM+ macrophages were identified as pro-inflammatory and had higher interactions with malignant cells. CONCLUSION We identified a novel signature based on ARGs for predicting glioma prognosis, tumor microenvironment, and immunotherapy response. We highlight the ARGs-mediated macrophages in glioma exhibit classical features.
Collapse
Affiliation(s)
- Xiaowei Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jiayu Tan
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinyu Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | | | - Yuqing Zhong
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guitao Wu
- Guangzhou Women and Children's Hospital, Guangzhou, China
| | - Kejun He
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
20
|
Zhou Z, Kim J, Huang AY, Nolan M, Park J, Doan R, Shin T, Miller MB, Chhouk B, Morillo K, Yeh RC, Kenny C, Neil JE, Lee CZ, Ohkubo T, Ravits J, Ansorge O, Ostrow LW, Lagier-Tourenne C, Lee EA, Walsh CA. Somatic Mosaicism in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Reveals Widespread Degeneration from Focal Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569436. [PMID: 38077003 PMCID: PMC10705414 DOI: 10.1101/2023.11.30.569436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Although mutations in dozens of genes have been implicated in familial forms of amyotrophic lateral sclerosis (fALS) and frontotemporal degeneration (fFTD), most cases of these conditions are sporadic (sALS and sFTD), with no family history, and their etiology remains obscure. We tested the hypothesis that somatic mosaic mutations, present in some but not all cells, might contribute in these cases, by performing ultra-deep, targeted sequencing of 88 genes associated with neurodegenerative diseases in postmortem brain and spinal cord samples from 404 individuals with sALS or sFTD and 144 controls. Known pathogenic germline mutations were found in 20.6% of ALS, and 26.5% of FTD cases. Predicted pathogenic somatic mutations in ALS/FTD genes were observed in 2.7% of sALS and sFTD cases that did not carry known pathogenic or novel germline mutations. Somatic mutations showed low variant allele fraction (typically <2%) and were often restricted to the region of initial discovery, preventing detection through genetic screening in peripheral tissues. Damaging somatic mutations were preferentially enriched in primary motor cortex of sALS and prefrontal cortex of sFTD, mirroring regions most severely affected in each disease. Somatic mutation analysis of bulk RNA-seq data from brain and spinal cord from an additional 143 sALS cases and 23 controls confirmed an overall enrichment of somatic mutations in sALS. Two adult sALS cases were identified bearing pathogenic somatic mutations in DYNC1H1 and LMNA, two genes associated with pediatric motor neuron degeneration. Our study suggests that somatic mutations in fALS/fFTD genes, and in genes associated with more severe diseases in the germline state, contribute to sALS and sFTD, and that mosaic mutations in a small fraction of cells in focal regions of the nervous system can ultimately result in widespread degeneration.
Collapse
Affiliation(s)
- Zinan Zhou
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Junho Kim
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - August Yue Huang
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew Nolan
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Junseok Park
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ryan Doan
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Chhouk
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Katherine Morillo
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rebecca C. Yeh
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Chao-Zong Lee
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Takuya Ohkubo
- Department of Neurology, Yokohama City Minato Red Cross Hospital, Yokohama, Kanagawa, Japan
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
21
|
Yurdakul E, Barlas Y, Ulgen KO. Circadian clock crosstalks with autism. Brain Behav 2023; 13:e3273. [PMID: 37807632 PMCID: PMC10726833 DOI: 10.1002/brb3.3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND The mechanism underlying autism spectrum disorder (ASD) remains incompletely understood, but researchers have identified over a thousand genes involved in complex interactions within the brain, nervous, and immune systems, particularly during the mechanism of brain development. Various contributory environmental effects including circadian rhythm have also been studied in ASD. Thus, capturing the global picture of the ASD-clock network in combined form is critical. METHODS We reconstructed the protein-protein interaction network of ASD and circadian rhythm to understand the connection between autism and the circadian clock. A graph theoretical study is undertaken to evaluate whether the network attributes are biologically realistic. The gene ontology enrichment analyses provide information about the most important biological processes. RESULTS This study takes a fresh look at metabolic mechanisms and the identification of potential key proteins/pathways (ribosome biogenesis, oxidative stress, insulin/IGF pathway, Wnt pathway, and mTOR pathway), as well as the effects of specific conditions (such as maternal stress or disruption of circadian rhythm) on the development of ASD due to environmental factors. CONCLUSION Understanding the relationship between circadian rhythm and ASD provides insight into the involvement of these essential pathways in the pathogenesis/etiology of ASD, as well as potential early intervention options and chronotherapeutic strategies for treating or preventing the neurodevelopmental disorder.
Collapse
Affiliation(s)
- Ekin Yurdakul
- Department of Chemical EngineeringBogazici University, Biosystems Engineering LaboratoryIstanbulTurkey
| | - Yaman Barlas
- Department of Industrial EngineeringBogazici University, Socio‐Economic System Dynamics Research Group (SESDYN)IstanbulTurkey
| | - Kutlu O. Ulgen
- Department of Chemical EngineeringBogazici University, Biosystems Engineering LaboratoryIstanbulTurkey
| |
Collapse
|
22
|
Sasazawa Y, Hattori N, Saiki S. JNK-interacting protein 4 is a central molecule for lysosomal retrograde trafficking. Bioessays 2023; 45:e2300052. [PMID: 37559169 DOI: 10.1002/bies.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Lysosomal positioning is an important factor in regulating cellular responses, including autophagy. Because proteins encoded by disease-responsible genes are involved in lysosomal trafficking, proper intracellular lysosomal trafficking is thought to be essential for cellular homeostasis. In the past few years, the mechanisms of lysosomal trafficking have been elucidated with a focus on adapter proteins linking motor proteins to lysosomes. Here, we outline recent findings on the mechanisms of lysosomal trafficking by focusing on adapter protein c-Jun NH2 -terminal kinase-interacting protein (JIP) 4, which plays a central role in this process, and other JIP4 functions and JIP family proteins. Additionally, we discuss neuronal diseases associated with aberrance in the JIP family protein. Accumulating evidence suggests that chemical manipulation of lysosomal positioning may be a therapeutic approach for these neuronal diseases.
Collapse
Affiliation(s)
- Yukiko Sasazawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
23
|
El-Agamy SE, Guillaud L, Kono K, Wu Y, Terenzio M. FMRP Long-Range Transport and Degradation Are Mediated by Dynlrb1 in Sensory Neurons. Mol Cell Proteomics 2023; 22:100653. [PMID: 37739344 PMCID: PMC10625159 DOI: 10.1016/j.mcpro.2023.100653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The fragile X messenger ribonucleoprotein 1 (FMRP) is a multifunctional RNA-binding protein implicated in human neurodevelopmental and neurodegenerative disorders. FMRP mediates the localization and activity-dependent translation of its associated mRNAs through the formation of phase-separated condensates that are trafficked by microtubule-based motors in axons. Axonal transport and localized mRNA translation are critical processes for long-term neuronal survival and are closely linked to the pathogenesis of neurological diseases. FMRP dynein-mediated axonal trafficking is still largely unexplored but likely to constitute a key process underlying FMRP spatiotemporal translational regulation. Here, we show that dynein light chain roadblock 1 (Dynlrb1), a subunit of the dynein complex, is a critical regulator of FMRP function. In sensory axons, FMRP associates with endolysosomal organelles, likely through annexin A11, and is retrogradely trafficked by the dynein complex in a Dynlrb1-dependent manner. Moreover, Dynlrb1 silencing induced FMRP granule accumulation and repressed the translation of microtubule-associated protein 1b, one of its primary mRNA targets. Our findings suggest that Dynlrb1 regulates FMRP function through the control of its transport and targeted degradation.
Collapse
Affiliation(s)
- Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Keiko Kono
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Chemical Biology Mass Spectrometry Platform (ChemBioMS), Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan.
| |
Collapse
|
24
|
Salvador-Garcia D, Jin L, Hensley A, Gölcük M, Gallaud E, Chaaban S, Port F, Vagnoni A, Planelles-Herrero VJ, McClintock MA, Derivery E, Carter AP, Giet R, Gür M, Yildiz A, Bullock SL. A force-sensitive mutation reveals a spindle assembly checkpoint-independent role for dynein in anaphase progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551815. [PMID: 37577480 PMCID: PMC10418259 DOI: 10.1101/2023.08.03.551815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The cytoplasmic dynein-1 (dynein) motor organizes cells by shaping microtubule networks and moving a large variety of cargoes along them. However, dynein's diverse roles complicate in vivo studies of its functions significantly. To address this issue, we have used gene editing to generate a series of missense mutations in Drosophila Dynein heavy chain (Dhc). We find that mutations associated with human neurological disease cause a range of defects in larval and adult flies, including impaired cargo trafficking in neurons. We also describe a novel mutation in the microtubule-binding domain (MTBD) of Dhc that, remarkably, causes metaphase arrest of mitotic spindles in the embryo but does not impair other dynein-dependent processes. We demonstrate that the mitotic arrest is independent of dynein's well-established roles in silencing the spindle assembly checkpoint. In vitro reconstitution and optical trapping assays reveal that the mutation only impairs the performance of dynein under load. In silico all-atom molecular dynamics simulations show that this effect correlates with increased flexibility of the MTBD, as well as an altered orientation of the stalk domain, with respect to the microtubule. Collectively, our data point to a novel role of dynein in anaphase progression that depends on the motor operating in a specific load regime. More broadly, our work illustrates how cytoskeletal transport processes can be dissected in vivo by manipulating mechanical properties of motors.
Collapse
Affiliation(s)
| | - Li Jin
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andrew Hensley
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Mert Gölcük
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, 34437, Turkey
| | - Emmanuel Gallaud
- Institut de Génétique et Développement de Rennes - UMR 6290, Université de Rennes, F-35000 Rennes, France
| | - Sami Chaaban
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Fillip Port
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Current address: Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alessio Vagnoni
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Current address: Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9RX, UK
| | | | - Mark A. McClintock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Emmanuel Derivery
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Andrew P. Carter
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Régis Giet
- Institut de Génétique et Développement de Rennes - UMR 6290, Université de Rennes, F-35000 Rennes, France
| | - Mert Gür
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, 34437, Turkey
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ahmet Yildiz
- Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
25
|
Christoforidou E, Simoes FA, Gordon D, Talbot K, Hafezparast M. Aberrant dynein function promotes TDP-43 aggregation and upregulation of p62 in male mice harboring transgenic human TDP-43. Amyotroph Lateral Scler Frontotemporal Degener 2023:1-10. [PMID: 37498094 DOI: 10.1080/21678421.2023.2239276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE Most TDP-43 mouse models of ALS do not display cytoplasmic mislocalisation or protein aggregation of TDP-43 in spinal motor neurons in vivo. Thus, we investigated whether a combination of defective dynein with a TDP-43 mutation could trigger TDP-43 pathology. METHODS Using immunohistochemical methods we examined the intracellular motor neuron pathology of the offspring of TDP-43WT and TDP-43M337V transgenic mice bred to heterozygous Loa mice, which carry an autosomal dominant mutation in dynein cytoplasmic 1 heavy chain 1 (Dync1h1). RESULTS These mice did not exhibit TDP-43 mislocalisation in spinal motor neurons, but the expression of mutant dynein in combination with wildtype human TDP-43 resulted in p62 upregulation and TDP-43 aggregation, thus partially recapitulating the human disease. CONCLUSIONS These findings provide new insights into the possible relationship between dynein and TDP-43 and could prove useful in future studies looking to elucidate the mechanism behind the TDP-43 pathology observed in ALS.
Collapse
Affiliation(s)
- Eleni Christoforidou
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK and
| | - Fabio A Simoes
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK and
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Majid Hafezparast
- Department of Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK and
| |
Collapse
|
26
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
27
|
Rangan KJ, Reck-Peterson SL. RNA recoding in cephalopods tailors microtubule motor protein function. Cell 2023; 186:2531-2543.e11. [PMID: 37295401 PMCID: PMC10467349 DOI: 10.1016/j.cell.2023.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/05/2023] [Accepted: 04/24/2023] [Indexed: 06/12/2023]
Abstract
RNA editing is a widespread epigenetic process that can alter the amino acid sequence of proteins, termed "recoding." In cephalopods, most transcripts are recoded, and recoding is hypothesized to be an adaptive strategy to generate phenotypic plasticity. However, how animals use RNA recoding dynamically is largely unexplored. We investigated the function of cephalopod RNA recoding in the microtubule motor proteins kinesin and dynein. We found that squid rapidly employ RNA recoding in response to changes in ocean temperature, and kinesin variants generated in cold seawater displayed enhanced motile properties in single-molecule experiments conducted in the cold. We also identified tissue-specific recoded squid kinesin variants that displayed distinct motile properties. Finally, we showed that cephalopod recoding sites can guide the discovery of functional substitutions in non-cephalopod kinesin and dynein. Thus, RNA recoding is a dynamic mechanism that generates phenotypic plasticity in cephalopods and can inform the characterization of conserved non-cephalopod proteins.
Collapse
Affiliation(s)
- Kavita J Rangan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Samara L Reck-Peterson
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
Ge WR, Fu PP, Zhang WN, Zhang B, Ding YX, Yang G. Case report: Genotype and phenotype of DYNC1H1-related malformations of cortical development: a case report and literature review. Front Neurol 2023; 14:1163803. [PMID: 37181555 PMCID: PMC10167015 DOI: 10.3389/fneur.2023.1163803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Background Mutations in the dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene are linked to malformations of cortical development (MCD), which may be accompanied by central nervous system (CNS) manifestations. Here, we present the case of a patient with MCD harboring a variant of DYNC1H1 and review the relevant literature to explore genotype-phenotype relationships. Case presentation A girl having infantile spasms, was unsuccessfully administered multiple antiseizure medications and developed drug-resistant epilepsy. Brain magnetic resonance imaging (MRI) at 14 months-of-age revealed pachygyria. At 4 years-of-age, the patient exhibited severe developmental delay and mental retardation. A de novo heterozygous mutation (p.Arg292Trp) in the DYNC1H1 gene was identified. A search of multiple databases, including PubMed and Embase, using the search strategy DYNC1H1 AND [malformations of cortical development OR seizure OR intellectual OR clinical symptoms] up to June 2022, identified 129 patients from 43 studies (including the case presented herein). A review of these cases showed that patients with DYNC1H1-related MCD had higher risks of epilepsy (odds ratio [OR] = 33.67, 95% confidence interval [CI] = 11.59, 97.84) and intellectual disability/developmental delay (OR = 52.64, 95% CI = 16.27, 170.38). Patients with the variants in the regions encoding the protein stalk or microtubule-binding domain had the most prevalence of MCD (95%). Conclusion MCD, particularly pachygyria, is a common neurodevelopmental disorder in patients with DYNC1H1 mutations. Literature searches reveales that most (95%) patients who carried mutations in the protein stalk or microtubule binding domains exhibited DYNC1H1-related MCD, whereas almost two-thirds of patients (63%) who carried mutations in the tail domain did not display MCD. Patients with DYNC1H1 mutations may experience central nervous system (CNS) manifestations due to MCD.
Collapse
Affiliation(s)
- Wen-Rong Ge
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pei-Pei Fu
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei-Na Zhang
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Zhang
- Department of Neurology and ICCTR Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ying-Xue Ding
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guang Yang
- Senior Department of Pediatrics, The Seventh Medical Center of People's Liberation Army General Hospital, Beijing, China
- Department of Pediatrics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Liu W, Cheng M, Zhu Y, Chen Y, Yang Y, Chen H, Niu X, Tian X, Yang X, Zhang Y. DYNC1H1-related epilepsy: Genotype-phenotype correlation. Dev Med Child Neurol 2023; 65:534-543. [PMID: 36175372 DOI: 10.1111/dmcn.15414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
AIM To explore the phenotypic spectrum and refine the genotype-phenotype correlation of DYNC1H1-related epilepsy. METHOD The clinical data of 15 patients with epilepsy in our cohort and 50 patients with epilepsy from 24 published studies with the DYNC1H1 variants were evaluated. RESULTS In our cohort, 13 variants were identified from 15 patients (seven males, eight females). Twelve variants were de novo and seven were new. Age at seizure onset ranged from 3 months to 4 years 5 months (median age 1 year). Common seizure types were epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. Mild-to-severe developmental delay was present in all patients. Six patients were diagnosed with West syndrome and one was diagnosed with epileptic encephalopathy with continuous spikes and waves during slow sleep (CSWS). Collectively, in our cohort and published studies, 17% had ophthalmic diseases, 31% of variants were located in the stalk domain, and 92% patients with epilepsy had a malformation of cortical development (MCD). INTERPRETATION The phenotypes of DYNC1H1-related epilepsy included multiple seizure types; the most common epileptic syndrome was West syndrome. CSWS is a new phenotype of DYNC1H1-related epilepsy. One-third of the variants in patients with epilepsy were located in the stalk domain. Most patients had a MCD and developmental delay. WHAT THIS PAPER ADDS Nearly 40% of patients with DYNC1H1 variants had epilepsy. Ninety-two percent of patients with DYNC1H1-related epilepsy had malformation of cortical development. More than 10% of patients with DYNC1H1-related epilepsy were diagnosed with West syndrome. Continuous spikes and waves during slow sleep could be a new phenotype of DYNC1H1 variants. One-third of the variants in patients with epilepsy were located in the stalk domain.
Collapse
Affiliation(s)
- Wenwei Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Miaomiao Cheng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Yi Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hui Chen
- Department of Neurology, Chengdu Women and Children's Central Hospital, Chengdu, China
| | - Xueyang Niu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaojuan Tian
- Department of Neurology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaoling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yuehua Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
30
|
Romero DM, Zaidi D, Cifuentes-Diaz C, Maillard C, Grannec G, Selloum M, Birling MC, Bahi-Buisson N, Francis F. A human dynein heavy chain mutation impacts cortical progenitor cells causing developmental defects, reduced brain size and altered brain architecture. Neurobiol Dis 2023; 180:106085. [PMID: 36933672 DOI: 10.1016/j.nbd.2023.106085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/27/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Dynein heavy chain (DYNC1H1) mutations can either lead to severe cerebral cortical malformations, or alternatively may be associated with the development of spinal muscular atrophy with lower extremity predominance (SMA-LED). To assess the origin of such differences, we studied a new Dync1h1 knock-in mouse carrying the cortical malformation p.Lys3334Asn mutation. Comparing with an existing neurodegenerative Dync1h1 mutant (Legs at odd angles, Loa, +/p.Phe580Tyr), we assessed Dync1h1's roles in cortical progenitor and especially radial glia functions during embryogenesis, and assessed neuronal differentiation. p.Lys3334Asn /+ mice exhibit reduced brain and body size. Embryonic brains show increased and disorganized radial glia: interkinetic nuclear migration occurs in mutants, however there are increased basally positioned cells and abventricular mitoses. The ventricular boundary is disorganized potentially contributing to progenitor mislocalization and death. Morphologies of mitochondria and Golgi apparatus are perturbed in vitro, with different effects also in Loa mice. Perturbations of neuronal migration and layering are also observed in p.Lys3334Asn /+ mutants. Overall, we identify specific developmental effects due to a severe cortical malformation mutation in Dync1h1, highlighting the differences with a mutation known instead to primarily affect motor function.
Collapse
Affiliation(s)
- Delfina M Romero
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Donia Zaidi
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Carmen Cifuentes-Diaz
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Camille Maillard
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR-S 1163, Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Gael Grannec
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France
| | - Mohammed Selloum
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France; CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch-Graffenstaden, France
| | - Marie-Christine Birling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France; CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch-Graffenstaden, France
| | - Nadia Bahi-Buisson
- Laboratory of Genetics and Development of the Cerebral Cortex, INSERM UMR-S 1163, Imagine Institute, Paris, France; Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France; Pediatric Neurology APHP- Necker Enfants Malades University Hospital, Paris, France.; Centre de Référence, Déficiences Intellectuelles de Causes Rares, APHP- Necker Enfants Malades University Hospital, Paris, France
| | - Fiona Francis
- INSERM UMR-S 1270, F-75005 Paris, France; Sorbonne University, F-75005 Paris, France; Institut du Fer à Moulin, F-75005 Paris, France.
| |
Collapse
|
31
|
Mei Y, Jiang Y, Zhang Z, Zhang H. Muscle and bone characteristics of a Chinese family with spinal muscular atrophy, lower extremity predominant 1 (SMALED1) caused by a novel missense DYNC1H1 mutation. BMC Med Genomics 2023; 16:47. [PMID: 36882741 PMCID: PMC9990223 DOI: 10.1186/s12920-023-01472-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy, lower extremity predominant (SMALED) is a type of non-5q spinal muscular atrophy characterised by weakness and atrophy of lower limb muscles without sensory abnormalities. SMALED1 can be caused by dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene variants. However, the phenotype and genotype of SMALED1 may overlap with those of other neuromuscular diseases, making it difficult to diagnose clinically. Additionally, bone metabolism and bone mineral density (BMD) in patients with SMALED1 have never been reported. METHODS We investigated a Chinese family in which 5 individuals from 3 generations had lower limb muscle atrophy and foot deformities. Clinical manifestations and biochemical and radiographic indices were analysed, and mutational analysis was performed by whole-exome sequencing (WES) and Sanger sequencing. RESULTS A novel mutation in exon 4 of the DYNC1H1 gene (c.587T > C, p.Leu196Ser) was identified in the proband and his affected mother by WES. Sanger sequencing confirmed that the proband and 3 affected family members were carriers of this mutation. As leucine is a hydrophobic amino acid and serine is hydrophilic, the hydrophobic interaction resulting from mutation of amino acid residue 196 could influence the stability of the DYNC1H1 protein. Leg muscle magnetic resonance imaging of the proband revealed severe atrophy and fatty infiltration, and electromyographic recordings showed chronic neurogenic impairment of the lower extremities. Bone metabolism markers and BMD of the proband were all within normal ranges. None of the 4 patients had experienced fragility fractures. CONCLUSION This study identified a novel DYNC1H1 mutation and expands the spectrum of phenotypes and genotypes of DYNC1H1-related disorders. This is the first report of bone metabolism and BMD in patients with SMALED1.
Collapse
Affiliation(s)
- Yazhao Mei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yunyi Jiang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
32
|
Abstract
Cytoplasmic dynein-1 is activated by dynactin and a cargo adaptor for processive transport along microtubules. Dynein's motility can be visualized at the single-molecule level using total internal reflection fluorescence microscopy. Our understanding of the motile behavior of the dynein/dynactin complex has been aided by advances in recombinant expression, in particular for dynein. Here, I describe the purification of recombinant dynein and cargo adaptors, and endogenous dynactin and detail a protocol for the single-molecule motility assay. In this assay, microtubules are first immobilized on a coverslip. A fluorescently labeled dynein/dynactin/cargo adaptor complex is then added, allowing for the measurement of key motility parameters as the complex walks along the microtubule.
Collapse
Affiliation(s)
- Clinton K Lau
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Chung CT, Lee NC, Fan SP, Hung MZ, Lin YH, Chen CH, Jao T. DYNC1H1 variant associated with epilepsy: Expanding the phenotypic spectrum. Epilepsy Behav Rep 2022; 21:100580. [PMID: 36636459 PMCID: PMC9829698 DOI: 10.1016/j.ebr.2022.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
DYNC1H1 variants are associated with peripheral neuronal dysfunction and brain morphology abnormalities resulting in neurodevelopmental delay. However, few studies have focused on the association between DYNC1H1 variants and epilepsy. Herein, we report a case of drug-resistant focal epilepsy associated with a pathogenic variant of DYNC1H1. We further summarized the clinical, genetic, and neuroimaging characteristics of patients with DYNC1H1 variant-associated epilepsy from the relevant literature. This report expands the phenotypic spectrum of DYNC1H1-related disorder to include early-onset epilepsy, which is frequently associated with neurodevelopmental delay and intellectual disability, malformations of cortical development, and neuromuscular, ophthalmic, and orthopedic involvement.
Collapse
Affiliation(s)
- Chi-Ting Chung
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan,Department of Neurology, National Taiwan University, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics and Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan,Department of Medical Genetics, National Taiwan University, Taipei, Taiwan,Corresponding authors at: Room 12, 15F, Clinical Research Building, National Taiwan University Hospital, No.7, Chung-Shan S. Rd., Taipei 100225, Taiwan (Tun Jao). Department of Pediatrics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan, (Ni-Chung Lee).
| | - Sung-Pin Fan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan,Department of Neurology, National Taiwan University, Taipei, Taiwan
| | - Miao-Zi Hung
- Department of Medical Genetics, National Taiwan University, Taipei, Taiwan
| | - Yen-Heng Lin
- Department of Medical Imaging, National Taiwan University, Taipei, Taiwan
| | - Chih-Hao Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan,Department of Neurology, National Taiwan University, Taipei, Taiwan
| | - Tun Jao
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan,Department of Neurology, National Taiwan University, Taipei, Taiwan,Corresponding authors at: Room 12, 15F, Clinical Research Building, National Taiwan University Hospital, No.7, Chung-Shan S. Rd., Taipei 100225, Taiwan (Tun Jao). Department of Pediatrics, National Taiwan University Hospital, 8 Chung-Shan South Road, Taipei, 10041, Taiwan, (Ni-Chung Lee).
| |
Collapse
|
34
|
Hoff KJ, Neumann AJ, Moore JK. The molecular biology of tubulinopathies: Understanding the impact of variants on tubulin structure and microtubule regulation. Front Cell Neurosci 2022; 16:1023267. [PMID: 36406756 PMCID: PMC9666403 DOI: 10.3389/fncel.2022.1023267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Abstract
Heterozygous, missense mutations in both α- and β-tubulin genes have been linked to an array of neurodevelopment disorders, commonly referred to as "tubulinopathies." To date, tubulinopathy mutations have been identified in three β-tubulin isotypes and one α-tubulin isotype. These mutations occur throughout the different genetic domains and protein structures of these tubulin isotypes, and the field is working to address how this molecular-level diversity results in different cellular and tissue-level pathologies. Studies from many groups have focused on elucidating the consequences of individual mutations; however, the field lacks comprehensive models for the molecular etiology of different types of tubulinopathies, presenting a major gap in diagnosis and treatment. This review highlights recent advances in understanding tubulin structural dynamics, the roles microtubule-associated proteins (MAPs) play in microtubule regulation, and how these are inextricably linked. We emphasize the value of investigating interactions between tubulin structures, microtubules, and MAPs to understand and predict the impact of tubulinopathy mutations at the cell and tissue levels. Microtubule regulation is multifaceted and provides a complex set of controls for generating a functional cytoskeleton at the right place and right time during neurodevelopment. Understanding how tubulinopathy mutations disrupt distinct subsets of those controls, and how that ultimately disrupts neurodevelopment, will be important for establishing mechanistic themes among tubulinopathies that may lead to insights in other neurodevelopment disorders and normal neurodevelopment.
Collapse
Affiliation(s)
| | | | - Jeffrey K. Moore
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
35
|
Kalyakulina A, Yusipov I, Bacalini MG, Franceschi C, Vedunova M, Ivanchenko M. Disease classification for whole-blood DNA methylation: Meta-analysis, missing values imputation, and XAI. Gigascience 2022; 11:giac097. [PMID: 36259657 PMCID: PMC9718659 DOI: 10.1093/gigascience/giac097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND DNA methylation has a significant effect on gene expression and can be associated with various diseases. Meta-analysis of available DNA methylation datasets requires development of a specific workflow for joint data processing. RESULTS We propose a comprehensive approach of combined DNA methylation datasets to classify controls and patients. The solution includes data harmonization, construction of machine learning classification models, dimensionality reduction of models, imputation of missing values, and explanation of model predictions by explainable artificial intelligence (XAI) algorithms. We show that harmonization can improve classification accuracy by up to 20% when preprocessing methods of the training and test datasets are different. The best accuracy results were obtained with tree ensembles, reaching above 95% for Parkinson's disease. Dimensionality reduction can substantially decrease the number of features, without detriment to the classification accuracy. The best imputation methods achieve almost the same classification accuracy for data with missing values as for the original data. XAI approaches have allowed us to explain model predictions from both populational and individual perspectives. CONCLUSIONS We propose a methodologically valid and comprehensive approach to the classification of healthy individuals and patients with various diseases based on whole-blood DNA methylation data using Parkinson's disease and schizophrenia as examples. The proposed algorithm works better for the former pathology, characterized by a complex set of symptoms. It allows to solve data harmonization problems for meta-analysis of many different datasets, impute missing values, and build classification models of small dimensionality.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, 603022 Nizhny Novgorod, Russia
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, 603022 Nizhny Novgorod, Russia
| | | | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, 603022 Nizhny Novgorod, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, 603022 Nizhny Novgorod, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
36
|
Lin W, Wang Q, Chen Y, Wang N, Ni Q, Qi C, Wang Q, Zhu Y. Identification of a 6-RBP gene signature for a comprehensive analysis of glioma and ischemic stroke: Cognitive impairment and aging-related hypoxic stress. Front Aging Neurosci 2022; 14:951197. [PMID: 36118697 PMCID: PMC9476601 DOI: 10.3389/fnagi.2022.951197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
There is mounting evidence that ischemic cerebral infarction contributes to vascular cognitive impairment and dementia in elderly. Ischemic stroke and glioma are two majorly fatal diseases worldwide, which promote each other's development based on some common underlying mechanisms. As a post-transcriptional regulatory protein, RNA-binding protein is important in the development of a tumor and ischemic stroke (IS). The purpose of this study was to search for a group of RNA-binding protein (RBP) gene markers related to the prognosis of glioma and the occurrence of IS, and elucidate their underlying mechanisms in glioma and IS. First, a 6-RBP (POLR2F, DYNC1H1, SMAD9, TRIM21, BRCA1, and ERI1) gene signature (RBPS) showing an independent overall survival prognostic prediction was identified using the transcriptome data from TCGA-glioma cohort (n = 677); following which, it was independently verified in the CGGA-glioma cohort (n = 970). A nomogram, including RBPS, 1p19q codeletion, radiotherapy, chemotherapy, grade, and age, was established to predict the overall survival of patients with glioma, convenient for further clinical transformation. In addition, an automatic machine learning classification model based on radiomics features from MRI was developed to stratify according to the RBPS risk. The RBPS was associated with immunosuppression, energy metabolism, and tumor growth of gliomas. Subsequently, the six RBP genes from blood samples showed good classification performance for IS diagnosis (AUC = 0.95, 95% CI: 0.902–0.997). The RBPS was associated with hypoxic responses, angiogenesis, and increased coagulation in IS. Upregulation of SMAD9 was associated with dementia, while downregulation of POLR2F was associated with aging-related hypoxic stress. Irf5/Trim21 in microglia and Taf7/Trim21 in pericytes from the mouse cerebral cortex were identified as RBPS-related molecules in each cell type under hypoxic conditions. The RBPS is expected to serve as a novel biomarker for studying the common mechanisms underlying glioma and IS.
Collapse
Affiliation(s)
- Weiwei Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
| | - Qiangwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
| | - Yisheng Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Brain Center, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbin Ni
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Chunhua Qi
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
- *Correspondence: Qian Wang
| | - Yongjian Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases of Zhejiang, Hangzhou, China
- College of Mathematical Medicine, Zhejiang Normal University, Jinhua, China
- Yongjian Zhu
| |
Collapse
|
37
|
Oliwa A, Joseph S, Millar E, Horrocks I, Penman D, Baptista J, Cullup T, Constantinou P, Heuchan AM, Hamilton R, Longman C. Cataract, abnormal electroretinogram and visual evoked potentials in a child with SMA-LED2 - extending the phenotype. J Neuromuscul Dis 2022; 9:803-808. [PMID: 36057830 DOI: 10.3233/jnd-220818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This case report describes a girl who presented antenatal arthrogryposis and postnatal hypotonia, generalized and respiratory weakness, joint deformities particularly affecting the lower limbs and poor swallow. By 5 months, cataracts, abnormal electroretinograms, visual evoked potentials and global developmental impairments were recognized. No causative variants were identified on targeted gene panels. After her unexpected death at 11 months, gene-agnostic trio whole exome sequencing revealed a likely pathogenic de novo BICD2 missense variant, NM_001003800.1, c.593T>C, p.(Leu198Pro), confirming the diagnosis of spinal muscular atrophy lower extremity predominant type 2 (SMA-LED2). We propose that cataracts and abnormal electroretinograms are novel features of SMA-LED2.
Collapse
Affiliation(s)
- Agata Oliwa
- Undergraduate Medical School, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shuko Joseph
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Eoghan Millar
- Department of Ophthalmology, Royal Hospital for Children, Glasgow, UK
| | - Iain Horrocks
- Fraser of Allander Neurosciences Unit, Royal Hospital for Children, Glasgow, UK
| | - Dawn Penman
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Julia Baptista
- Peninsula Medical School, Faculty of Heath, University of Plymouth, Plymouth, UK
| | - Thomas Cullup
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Panayiotis Constantinou
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Ruth Hamilton
- Department of Clinical Physics and Bioengineering, Royal Hospital for Children, NHS Greater Glasgow & Clyde, Glasgow, UK
| | - Cheryl Longman
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
38
|
De novo mutations in KIF1A-associated neuronal disorder (KAND) dominant-negatively inhibit motor activity and axonal transport of synaptic vesicle precursors. Proc Natl Acad Sci U S A 2022; 119:e2113795119. [PMID: 35917346 PMCID: PMC9371658 DOI: 10.1073/pnas.2113795119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
KIF1A is a kinesin superfamily motor protein that transports synaptic vesicle precursors in axons. Cargo binding stimulates the dimerization of KIF1A molecules to induce processive movement along microtubules. Mutations in human Kif1a lead to a group of neurodegenerative diseases called KIF1A-associated neuronal disorder (KAND). KAND mutations are mostly de novo and autosomal dominant; however, it is unknown if the function of wild-type KIF1A motors is inhibited by heterodimerization with mutated KIF1A. Here, we have established Caenorhabditis elegans models for KAND using CRISPR-Cas9 technology and analyzed the effects of human KIF1A mutation on axonal transport. In our C. elegans models, both heterozygotes and homozygotes exhibited reduced axonal transport. Suppressor screening using the disease model identified a mutation that recovers the motor activity of mutated human KIF1A. In addition, we developed in vitro assays to analyze the motility of heterodimeric motors composed of wild-type and mutant KIF1A. We find that mutant KIF1A significantly impaired the motility of heterodimeric motors. Our data provide insight into the molecular mechanism underlying the dominant nature of de novo KAND mutations.
Collapse
|
39
|
Das D, Podder S. Deregulation of ceRNA Networks in Frontal Cortex and Choroid Plexus of Brain during SARS-CoV-2 Infection Aggravates Neurological Manifestations: An Insight from Bulk and Single-Cell Transcriptomic Analyses. Adv Biol (Weinh) 2022; 6:e2101310. [PMID: 35661455 PMCID: PMC9348399 DOI: 10.1002/adbi.202101310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/20/2022] [Indexed: 01/28/2023]
Abstract
Although transcriptomic studies of SARS-CoV-2-infected brains have depicted variability in gene expression, the landscape of deregulated cell-specific regulatory circuits has not been elucidated yet. Hence, bulk and single-cell RNA-seq data are analyzed to gain detailed insights. Initially, two ceRNA networks with 19 and 3 differentially expressed (DE) hub lncRNAs are reconstructed in SARS-CoV-2 infected Frontal Cortex (FC) and Choroid Plexus (CP), respectively. Functional and pathway enrichment analyses of downstream mRNAs of deregulated ceRNA axes demonstrate impairment of neurological processes. Mapping of hub lncRNA-mRNA pairs from bulk RNA-seq with snRNA-seq data has indicated that NORAD, NEAT1, and STXBP5-AS1 are downregulated across 4, 4, and 2 FC cell types, respectively. At the same time, MIRLET7BHG and MALAT1 are upregulated in excitatory neurons of FC and neurons of CP, respectively. Here, it is hypothesized that downregulation of NORAD, NEAT1, and STXBP5-AS1, and upregulation of MIRLET7BHG and MALAT1 might deregulate respectively 51, 6, and 37, and 31 and 19 mRNAs in cell types of FC and CP. Afterward, 13 therapeutic miRNAs are traced that might safeguard against deregulated lncRNA-mRNA pairs of NORAD, NEAT1, and MIRLET7BHG in FC. This study helps to explain the plausible mechanism of post-COVID neurological manifestation and also to devise therapeutics against it.
Collapse
Affiliation(s)
- Deepyaman Das
- Department of MicrobiologyRaiganj UniversityRaiganjUttar DinajpurWest Bengal733134India
| | - Soumita Podder
- Department of MicrobiologyRaiganj UniversityRaiganjUttar DinajpurWest Bengal733134India
| |
Collapse
|
40
|
Mitchell CW, Czajewski I, van Aalten DM. Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. J Biol Chem 2022; 298:102276. [PMID: 35863433 PMCID: PMC9428853 DOI: 10.1016/j.jbc.2022.102276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/09/2023] Open
Abstract
Protein O-GlcNAcylation is a dynamic posttranslational modification that is catalyzed by the enzyme O-GlcNAc transferase (OGT) and is essential for neurodevelopment and postnatal neuronal function. Missense mutations in OGT segregate with a novel X-linked intellectual disability syndrome, the OGT congenital disorder of glycosylation (OGT-CDG). One hypothesis for the etiology of OGT-CDG is that loss of OGT activity leads to hypo-O-GlcNAcylation of as yet unidentified, specific neuronal proteins, affecting essential embryonic, and postnatal neurodevelopmental processes; however, the identity of these O-GlcNAcylated proteins is not known. Here, we used bioinformatic techniques to integrate sequence conservation, structural data, clinical data, and the available literature to identify 22 candidate proteins that convey OGT-CDG. We found using gene ontology and PANTHER database data that these candidate proteins are involved in diverse processes including Ras/MAPK signaling, translational repression, cytoskeletal dynamics, and chromatin remodeling. We also identify pathogenic missense variants at O-GlcNAcylation sites that segregate with intellectual disability. This work establishes a preliminary platform for the mechanistic dissection of the links between protein O-GlcNAcylation and neurodevelopment in OGT-CDG.
Collapse
Affiliation(s)
- Conor W. Mitchell
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ignacy Czajewski
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daan M.F. van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark,Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, United Kingdom,For correspondence: Daan M. F. van Aalten
| |
Collapse
|
41
|
Li JT, Dong SQ, Zhu DQ, Yang WB, Qian T, Liu XN, Chen XJ. Expanding the Phenotypic and Genetic Spectrum of Neuromuscular Diseases Caused by DYNC1H1 Mutations. Front Neurol 2022; 13:943324. [PMID: 35899263 PMCID: PMC9309508 DOI: 10.3389/fneur.2022.943324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives Spinal muscular atrophy with lower extremity predominance 1 (SMALED1) and Charcot–Marie-Tooth diseasetype 2O (CMT2O) are two kinds of hereditary neuromuscular diseases caused by DYNC1H1 mutations. In this study, we reported two patients with SMALED1 caused by DYNC1H1 mutations. The genotype–phenotype correlations were further analyzed by systematically reviewing previous relevant publications. Materials and Methods Two patients' with SMALED1 and their parents' clinical data were collected, and detailed clinical examinations were performed. WES was then applied, which was confirmed by Sanger sequencing. PubMed, Web of Science, CNKI, and Wanfang Data were searched, and all publications that met the inclusion criteria were carefully screened. Any individual patient without a detailed description of clinical phenotypes was excluded. Results The two patients manifested delayed motor milestones and muscle wasting of both lower extremities. The diagnosis was further confirmed as SMALED1. Genetic testing revealed heterozygous DYNC1H1 mutations c.1792C>T and c.790C>G; the latter is a novel dominant mutation. Genotype–phenotype analysis of DYNC1H1 variants and neuromuscular diseases revealed that mutations in the DYN1 region of DYNC1H1 protein were associated with a more severe phenotype, more complicated symptoms, and more CNS involvement than the DHC_N1 region. Conclusion Our study potentially expanded the knowledge of the phenotypic and genetic spectrum of neuromuscular diseases caused by DYNC1H1 mutations. The genotype–phenotype correlation may reflect the pathogenesis underlying the dyneinopathy caused by DYNC1H1 mutations.
Collapse
Affiliation(s)
- Jia-Tong Li
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Si-Qi Dong
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Dong-Qing Zhu
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Wen-Bo Yang
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Ting Qian
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Xiao-Ni Liu
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Xiang-Jun Chen
- Department of Neurology, Huashan Hospital and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- *Correspondence: Xiang-Jun Chen ; orcid.org/0000-0002-8108-9013
| |
Collapse
|
42
|
Fernández Perrone AL, Moreno Fernández P, Álvarez S, Fernández-Jaén A. DYNC1H1de novo mutation, spinal muscular atrophy and attention problems. Neurologia 2022; 37:406-409. [PMID: 34518024 DOI: 10.1016/j.nrl.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
| | - P Moreno Fernández
- Laboratorio de Electromiografía, Hospital Universitario Quirónsalud, Madrid, España
| | - S Álvarez
- Genómica y Medicina, NIMGenetics, Madrid, España
| | - A Fernández-Jaén
- Departamento de Neuropediatría, Hospital Universitario Quirónsalud, Madrid, España; Facultad de Medicina, Universidad Europea de Madrid, España.
| |
Collapse
|
43
|
Fernández Perrone A, Moreno Fernández P, Álvarez S, Fernández-Jaén A. DYNC1H1 de novo mutation, spinal muscular atrophy and attention problems. NEUROLOGÍA (ENGLISH EDITION) 2022; 37:406-409. [DOI: 10.1016/j.nrleng.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
|
44
|
Spinal muscular atrophy with predominant lower extremity (SMA-LED) with no signs other than pure motor symptoms at the intersection of multiple overlap syndrome. Brain Dev 2022; 44:294-298. [PMID: 34974950 DOI: 10.1016/j.braindev.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mutations in the cytoplasmic dynein 1 heavy chain gene (DYNC1H1) have been associated with spinal muscular atrophy with predominant lower extremity involvement (SMA-LED), Charcot-Marie-Tooth 2O (CMT2O) disease, cortical migration anomalies, and autosomal dominant mental retardation13. SMA-LED phenotype-related mutation was found in the DYNC1H1 gene in the patient who applied with the complaint of gait disturbance. METHODS Pathogenic heterozygous c.1678G > A (p.Val560Met) mutation was detected in the DYNC1H1 gene by next-generation targeted gene analysis in the patient who had no phenotypic findings except delayed motor milestones, lumbar lordosis, and lower extremity muscle weakness. The patient's creatinine phosphokinase enzyme level and brain magnetic resonance imaging (MRI) were normal. Electromyography (EMG) had pure motor findings. CONCLUSION It should be kept in mind that DYNC1H1 mutation, which we are accustomed to seeing with accompanying findings such as orthopedic and ocular dysmorphic findings, sensorineural EMG findings, and intellectual disability, can also observe with pure motor findings such as muscular dystrophy examination findings.
Collapse
|
45
|
Kumar Sharma R, Chafik A, Bertolin G. Mitochondrial transport, partitioning and quality control at the heart of cell proliferation and fate acquisition. Am J Physiol Cell Physiol 2022; 322:C311-C325. [PMID: 35044857 DOI: 10.1152/ajpcell.00256.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria are essential to cell homeostasis, and alterations in mitochondrial distribution, segregation or turnover have been linked to complex pathologies such as neurodegenerative diseases or cancer. Understanding how these functions are coordinated in specific cell types is a major challenge to discover how mitochondria globally shape cell functionality. In this review, we will first describe how mitochondrial transport and dynamics are regulated throughout the cell cycle in yeast and in mammals. Second, we will explore the functional consequences of mitochondrial transport and partitioning on cell proliferation, fate acquisition, stemness, and on the way cells adapt their metabolism. Last, we will focus on how mitochondrial clearance programs represent a further layer of complexity for cell differentiation, or in the maintenance of stemness. Defining how mitochondrial transport, dynamics and clearance are mutually orchestrated in specific cell types may help our understanding of how cells can transition from a physiological to a pathological state.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Abderrahman Chafik
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| | - Giulia Bertolin
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes), UMR 6290, Rennes, France
| |
Collapse
|
46
|
Lewis PA. Vesicular dysfunction and pathways to neurodegeneration. Essays Biochem 2021; 65:941-948. [PMID: 34897416 PMCID: PMC8709888 DOI: 10.1042/ebc20210034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
Cellular control of vesicle biology and trafficking is critical for cell viability, with disruption of these pathways within the cells of the central nervous system resulting in neurodegeneration and disease. The past two decades have provided important insights into both the genetic and biological links between vesicle trafficking and neurodegeneration. In this essay, the pathways that have emerged as being critical for neuronal survival in the human brain will be discussed - illustrating the diversity of proteins and cellular events with three molecular case studies drawn from different neurological diseases.
Collapse
Affiliation(s)
- Patrick A Lewis
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States of America
| |
Collapse
|
47
|
Pan H, Chai W, Liu X, Yu T, Sun L, Yan M. DYNC1H1 regulates NSCLC cell growth and metastasis by IFN-γ-JAK-STAT signaling and is associated with an aberrant immune response. Exp Cell Res 2021; 409:112897. [PMID: 34717919 DOI: 10.1016/j.yexcr.2021.112897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 02/07/2023]
Abstract
It is urgent to identify new biomarkers and therapeutic targets to ameliorate the clinical prognosis of patients with lung cancer. The functional significance and molecular mechanism of dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) in nonsmall cell lung cancer (NSCLC) progression is still elusive. In our current study, publicly available data and Western blotting experiments confirmed that DYNC1H1 expression was upregulated in lung cancer samples compared with noncancerous samples. Quantitative real-time PCR (qPCR) results indicated that high DYNC1H1 expression in lung cancer tissues was significantly associated with clinical tumor stage and distal metastasis; moreover, its high expression was negatively correlated with prognosis. Functional experiments demonstrated that DYNC1H1 loss of function caused a significant decrease in cell viability and cell proliferative ability, inhibition of the cell cycle, and promotion of both migration potential and invasion potential in vitro. Animal experiments by tail vein injection of lung cancer cells showed that DYNC1H1 knockdown significantly decreased lung cancer metastasis. Mechanistically, the results from a human protein array showed changes in the IFN-γ-JAK-STAT signaling pathway, and analysis of The Cancer Genome Atlas (TCGA) immune data demonstrated that disturbance of the immune microenvironment might be involved in the impaired growth and metastatic ability mediated by DYNC1H1 loss in NSCLC. DYNC1H1 might serve as a promising biological marker of prognosis and a potential clinical therapeutic target for patients with NSCLC.
Collapse
Affiliation(s)
- Hongyu Pan
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Chai
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoli Liu
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Yu
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lei Sun
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Mingxia Yan
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
48
|
Neurogenic arthrogryposis and the power of phenotyping. Neuromuscul Disord 2021; 31:1062-1069. [PMID: 34736627 DOI: 10.1016/j.nmd.2021.07.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022]
Abstract
In this article we review the commonest cause of neurogenic arthrogryposis, termed Spinal Muscular Atrophy Lower Extremity Dominant (SMALED), due to variants in DYNC1H1 and BICD2. We discuss the characteristic clinical and radiological phenotype of this disorder and how this has facilitated the identification of the genetic cause of SMALED2. We also review the similarities and differences between the human SMALED phenotype and mouse models and how this has informed our understanding of the potential mechanisms governing motor neuron loss in these disorders.
Collapse
|
49
|
Yang H, Gong P, Jiao X, Niu Y, Zhou Q, Zhang Y, Yang Z. De Novo Variants in the DYNC1H1 Gene Associated With Infantile Spasms. Front Neurol 2021; 12:733178. [PMID: 34803881 PMCID: PMC8603382 DOI: 10.3389/fneur.2021.733178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022] Open
Abstract
Objective: The DYNC1H1 gene is related to a variety of diseases, including spinal muscular atrophy with lower extremity-predominant 1, Charcot-Marie-Tooth disease type 2O, and mental retardation, autosomal dominant13 (MRD13). Some patients with DYNC1H1 variant also had epilepsy. This study aimed to detect DYNC1H1 variants in Chinese patients with infantile spasms (ISs). Methods: We reviewed clinical information, video electroencephalogram (V-EEG), and neuroimaging of a newly identified cohort of five patients with de novo DYNC1H1gene variants. Results: Five patients with four DYNC1H1variants from four families were included. All patients had epileptic spasms (ESs), the median age at seizure onset was 7.5 months (range from 5 months to 2 years 7 months), and the interictal V-EEG results were hypsarrhythmia. Four of five patients had brain magnetic resonance imaging (MRI) abnormalities. Four de novo DYNC1H1 variants were identified, including two novel variants (p.N1117K, p.M3405L) and two reported variants (p.R1962C, p.F1093S). As for the variant site, two variants are located in the tail domain, one variant is located in the motor domain, and one variant is located in the stalk domain. All patients had tried more than five kinds of antiepileptic drugs. One patient has been controlled well by vigabatrin (VGB) for 4 years, and another patient by VGB and steroids for 1.5 years. The other three patients still had frequent ESs. All patients had severe intellectual disability and development delays. Significance: IS was one of the phenotypes of DYNC1H1 variants. Most patients had non-specific brain MRI abnormality. Two of four DYNC1H1 variants were novel, expanding the variant spectrum. The IS phenotype was related to the variant's domains of DYNC1H1 variant sites. All patients were drug-refractory and showed development delays.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhixian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
50
|
Dahl TM, Reed M, Gerstner CD, Baehr W. Conditional Deletion of Cytoplasmic Dynein Heavy Chain in Postnatal Photoreceptors. Invest Ophthalmol Vis Sci 2021; 62:23. [PMID: 34807236 PMCID: PMC8626856 DOI: 10.1167/iovs.62.14.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Cytoplasmic dynein-1 (henceforth dynein) moves cargo in conjunction with dynactin toward the minus end of microtubules. The dynein heavy chain, DYNC1H1, comprises the backbone of dynein, a retrograde motor. Deletion of Dync1h1 abrogates dynein function. The purpose of this communication is to demonstrate effects of photoreceptor dynein inactivation during late postnatal development and in adult retina. Methods We mated Dync1h1F/F mice with iCre75 and Prom1-CreERT2 mice to generate conditional rod and tamoxifen-induced knockout in rods and cones, respectively. We documented retina degeneration with confocal microscopy at postnatal day (P) 10 to P30 for the iCre75 line and 1 to 4 weeks post tamoxifen induction (wPTI) for the Prom1-CreERT2 line. We performed scotopic and photopic electroretinography (ERG) at P16 to P30 in the iCre75 line and at 1-week increments in the Prom1-CreERT2 line. Results were evaluated statistically using Student's t-test, two-factor ANOVA, and Welch's ANOVA. Results Cre-induced homologous recombination of Dync1h1F/F mice truncated DYNC1H1 after exon 23. rodDync1h1-/- photoreceptors degenerated after P14, reducing outer nuclear layer (ONL) thickness and combined inner segment/outer segment (IS/OS) length significantly by P18. Scotopic ERG a-wave amplitudes decreased by P16 and were extinguished at P30. Cones were stable under rod-knockout conditions until P21 but inactive at P30. In tamDync1h1-/- photoreceptors, the IS/OS began shortening by 3wPTI and were nearly eliminated by 4wPTI. The ONL shrank significantly over this interval, indicating rapid photoreceptor degeneration following the loss of dynein. Conclusions Our results demonstrate dynein is essential for the secretory pathway, formation of outer segments, and photoreceptor maintenance.
Collapse
Affiliation(s)
- Tiffanie M Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Cecilia D Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States.,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States.,Department of Biology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|