1
|
Elfiky A, El-Guendy N, Badr AM, Mohammed MA, Wahab AHAA. The role of FOXA1 and miR-212-3p in molecular modulation of doxorubicin resistance in liver cancer. Med Oncol 2025; 42:160. [PMID: 40216647 PMCID: PMC11991990 DOI: 10.1007/s12032-025-02686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
TACE (Transarterial Chemoembolization) is an essential current treatment for liver cancer. Resistance to doxorubicin, the chemotherapeutic component of TACE, poses a serious problem in this treatment, necessitating a deeper understanding of the underlying resistance mechanisms. Upregulation of the Forkhead box A1 transcription regulator in our model of doxorubicin-resistant liver cancer cell line suggested a role in resistance. To better understand the role of FOXA1 in resistance to doxorubicin, we inhibited its expression using siRNA or its miRNA-212-3p inhibitor then studied the effect on the cancer cell lines survival using SRB assay. The expression of several downstream epithelial-mesenchymal transition genes, namely SLUG, TWIST, CDH1 (E-Cadherin), was determined using quantitative real-time PCR. Our results showed a significant upregulation of FOXA1 and downregulation of miRNA-212-3p in doxorubicin-resistant cells. Manipulation of FOXA1 and miRNA-212-3p expressions restored sensitive cell characteristics. In addition, inhibition of FOXA1 increased apoptosis induction in resistant cells. Changes detected in the tested EMT genes point to progression toward more aggressive behavior in the doxorubicin-resistant liver cancer cell line that was reversed with inhibition of FOXA1. Our results suggest a possible role of FOXA1 and miRNA-212-3p in the development of resistance to chemotherapeutic drugs in liver cancer and the possibility of their use as prognostic and/or therapeutic targets.
Collapse
Affiliation(s)
- Ammar Elfiky
- Medical Biochemistry and Molecular Biology at Cancer Biology Department National Cancer Institute, Cairo University, Giza, Egypt
| | - Nadia El-Guendy
- Medical Biochemistry and Molecular Biology at Cancer Biology Department National Cancer Institute, Cairo University, Giza, Egypt
| | - Abeer Mahmoud Badr
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohammed Aly Mohammed
- Medical Biochemistry and Molecular Biology at Cancer Biology Department National Cancer Institute, Cairo University, Giza, Egypt
| | - Abdel Hady A Abdel Wahab
- Medical Biochemistry and Molecular Biology at Cancer Biology Department National Cancer Institute, Cairo University, Giza, Egypt.
| |
Collapse
|
2
|
Gao T, Fan M, Zeng Z, Peng L, Qian CN, Zhao X, Huang B. Multi-Omics Analysis of Survival-Related Splicing Factors and Identifies CRNKL1 as a Therapeutic Target in Esophageal Cancer. Genes (Basel) 2025; 16:379. [PMID: 40282339 PMCID: PMC12027253 DOI: 10.3390/genes16040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Background: RNA alternative splicing represents a pivotal regulatory mechanism of eukaryotic gene expression, wherein splicing factors (SFs) serve as key regulators. Aberrant SF expression drives oncogenic splice variant production, thereby promoting tumorigenesis and malignant progression. However, the biological functions and potential targets of SFs remain largely underexplored. Methods: Through multi-omics analysis, we identified survival-related splicing factors (SFs) in esophageal cancer and elucidated their biological regulatory networks. To further investigate their downstream splicing targets, we combined alternative splicing events resulting from SF knockdown with those specific to esophageal cancer. Finally, these splicing events were validated through full-length RNA sequencing and confirmed in cancer cells and clinical specimens. Result: We identified six SFs that are highly expressed in esophageal cancer and correlate with poor prognosis. Further analysis revealed that these factors are significantly associated with immune infiltration, cancer stemness, tumor heterogeneity, and drug resistance. CRNKL1 was identified as a hub SFs. The target genes and pathways regulated by these SFs showed substantial overlap, suggesting their coordinated roles in promoting cancer stemness and metastasis. Specifically, alternative splicing of key markers, such as CD44 and CTTN, was regulated by most of these SFs and correlated with poor prognosis. Conclusions: Our study unveils six survival-related SFs that contribute to the aggressiveness of esophageal cancer and CTTN and CD44 alternative splicing may act as common downstream effectors of survival-related SFs. This study provides mechanistic insights into SF-mediated tumorigenesis and highlight novel therapeutic vulnerabilities in esophageal cancer.
Collapse
Affiliation(s)
- Tianrui Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (T.G.); (M.F.); (L.P.)
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Meiling Fan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (T.G.); (M.F.); (L.P.)
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhongyuan Zeng
- Lab Teaching & Management Center, Institute of Life Science and Laboratory of Tissue and Cell Biology, Chongqing Medical University, Chongqing 400016, China;
| | - Lixia Peng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (T.G.); (M.F.); (L.P.)
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chao-Nan Qian
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou 510060, China;
| | - Xia Zhao
- Department of Microbiology, Army Medical University, Chongqing 400038, China
| | - Bijun Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (T.G.); (M.F.); (L.P.)
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
3
|
Lang Y, Zhong C, Guo L, Liu Z, Zuo D, Chen X, Ding L, Huang B, Li B, Yuan Y, Niu Y, Qiu J, Qian C. Monoacylglycerol acyltransferase-2 inhibits colorectal carcinogenesis in APC min+/- mice. iScience 2024; 27:110205. [PMID: 39055928 PMCID: PMC11269928 DOI: 10.1016/j.isci.2024.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/18/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Monoacylglycerol acyltransferase-2 (MOGAT2), encodes MOGAT enzyme in the re-synthesis of triacylglycerol and protects from metabolism disorders. While, its precise involvement in colorectal cancer (CRC) progression remains inadequately understood. Our study demonstrated that knockout of Mogat2 in Apcmin/+ mice expedited intestinal tumor growth and progression, indicating that Mogat2 plays a tumor-suppressing role in CRC. Mechanically, Mogat2 deletion resulted in a significant alter the gut microbiota, while Fecal Microbiota Transplantation (FMT) experiments demonstrated that the gut microbiota in Mogat2 deleted mice promoted tumor growth. Furthermore, we identified Mogat2 as a functional regulator suppressing CRC cell proliferation and tumor growth by inhibiting the NF-κB signaling pathway in vivo. Collectively, these results provide novel insights into the protective double roles of Mogat2, inhibiting of NF-κB pathway and keeping gut microbiota homeostasis in colorectal cancer, which may help the development of novel cancer treatments for CRC.
Collapse
Affiliation(s)
- Yanhong Lang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Chengrui Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Lingling Guo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Zhijie Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Dinglan Zuo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Xi Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Liuyan Ding
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Bijun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Binkui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Yunfei Yuan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Yi Niu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jiliang Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P.R. China
| | - Chaonan Qian
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P.R. China
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, 9 Ciji Road, Huangpu District, Guangzhou 510555, P.R. China
| |
Collapse
|
4
|
Guan Y, Han L, Luo HY, Yu BB, Huang ST. Short-term OS as a surrogate endpoint for 5-year OS in nasopharyngeal carcinoma in non-endemic area. World J Surg Oncol 2024; 22:180. [PMID: 38987785 PMCID: PMC11238357 DOI: 10.1186/s12957-024-03460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE To address this evidence gap and validate short-term OS at less than 5 years as a reliable surrogate endpoint for 5-year OS. METHODS We analyzed data from the Surveillance, Epidemiology, and End Results (SEER) database, focusing on non-metastatic NPC patients diagnosed between 2010 and 2015. Patients were categorized into radiotherapy and chemoradiotherapy groups. RESULTS This retrospective study examined 2,047 non-metastatic NPC patients. Among them, 217 received radiotherapy, and 1,830 received chemoradiotherapy. Our analysis results indicated that the 4-year OS may serve as a reliable surrogate endpoint for patients with AJCC clinical stage I (80 vs. 78%, P = 0.250), regardless of the treatment received. Specifically, in the radiotherapy group, patients with stage I, T0-T1, and N0 NPC showed similar OS rates at 4 and 5 years (83 vs. 82%, P = 1.000; 78 vs. 76%, P = 0.250; 78 vs. 77%, P = 0.500, respectively). Similarly, patients with stage II-IV, T2-T4, and N1-3 NPC showed no significant difference in OS rates between 3 and 5 years (57 vs. 51%, P = 0.063; 52 vs. 46%, P = 0.250; 54 vs. 46%, P = 0.125, respectively) in the radiotherapy group. In the chemoradiotherapy group, only the 3-year OS rate did not significantly differ from that at 5 years in stage I patients (79vs. 72%, P = 0.063). CONCLUSIONS Our study suggests that short-term surrogate endpoints may be valuable for evaluating 5-year OS outcomes in NPC patients in non-endemic areas.
Collapse
Affiliation(s)
- Ying Guan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China.
| | - Lu Han
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, 530199, China
| | - Han-Yin Luo
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Bin-Bin Yu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Shi-Ting Huang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| |
Collapse
|
5
|
Wang MD, Li HT, Peng LX, Mei Y, Zheng LS, Li CZ, Meng DF, Lang YH, Xu L, Peng XS, Liu ZJ, Xie DH, Guo LL, Ma MG, Ding LY, Huang BJ, Cao Y, Qian CN. TSPAN1 inhibits metastasis of nasopharyngeal carcinoma via suppressing NF-kB signaling. Cancer Gene Ther 2024; 31:454-463. [PMID: 38135697 DOI: 10.1038/s41417-023-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Nasopharyngeal carcinoma (NPC) originates in the epithelial cells of the nasopharynx and is a common malignant tumor in southern China and Southeast Asia. Metastasis of NPC remains the main cause of death for NPC patients even though the tumor is sensitive to radiotherapy and chemotherapy. Here, we found that the transmembrane protein tetraspanin1 (TSPAN1) potently inhibited the in vitro migration and invasion, as well as, the in vivo metastasis of NPC cells via interacting with the IKBB protein. In addition, TSPAN1 was essential in preventing the overactivation of the NF-kB pathway in TSPAN1 overexpressing NPC cells. Furthermore, reduced TSPAN1 expression was associated with NPC metastasis and the poor prognosis of NPC patients. These results uncovered the suppressive role of TSPAN1 against NF-kB signaling in NPC cells for preventing NPC metastasis. Its therapeutic value warrants further investigation.
Collapse
Affiliation(s)
- Ming-Dian Wang
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hui-Ting Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yan Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Li-Sheng Zheng
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, P. R. China
| | - Chang-Zhi Li
- Medical School, Pingdingshan University, Pingdingshan, Henan Province, 467021, P. R. China
| | - Dong-Fang Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, P. R. China
| | - Yan-Hong Lang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Liang Xu
- Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Xing-Si Peng
- Department of radiation oncology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, P. R. China
| | - Zhi-Jie Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiotherapy, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - De-Huan Xie
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ling-Ling Guo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Mao-Guang Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China
| | - Liu-Yan Ding
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Yun Cao
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Guangzhou Concord Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
6
|
Li CZ, Qiang YY, Liu ZJ, Zheng LS, Peng LX, Mei Y, Meng DF, Wei WW, Chen DW, Xu L, Lang YH, Xie P, Peng XS, Wang MD, Guo LL, Shu DT, Ding LY, Lin ST, Luo FF, Wang J, Li SS, Huang BJ, Chen JD, Qian CN. Ulinastatin inhibits the metastasis of nasopharyngeal carcinoma by involving uPA/uPAR signaling. Drug Dev Res 2023; 84:1468-1481. [PMID: 37534761 DOI: 10.1002/ddr.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Distant metastasis is the primary reason for treatment failure in patients with nasopharyngeal carcinoma (NPC). In this study, we investigated the effect of ulinastatin (UTI) on NPC metastasis and its underlying mechanism. Highly-metastatic NPC cell lines S18 and 58F were treated with UTI and the effect on cell proliferation, migration, and invasion were determined by MTS and Transwell assays. S18 cells with luciferase-expressing (S18-1C3) were injected into the left hind footpad of nude mice to establish a model of spontaneous metastasis from the footpad to popliteal lymph node (LN). The luciferase messenger RNA (mRNA) was measured by quantitative polymerase chain reaction (qPCR), and the metastasis inhibition rate was calculated. Key molecular members of the UTI-related uPA, uPAR, and JAT/STAT3 signaling pathways were detected by qPCR and immunoblotting. UTI suppressed the migration and infiltration of S18 and 5-8F cells and suppressed the metastasis of S18 cells in vivo without affecting cell proliferation. uPAR expression decreased from 24 to 48 h after UTI treatment. The antimetastatic effect of UTI is partly due to the suppression of uPA and uPAR. UTI partially suppresses NPC metastasis by downregulating the expression of uPA and uPAR.
Collapse
Affiliation(s)
- Chang-Zhi Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Medical School, Pingdingshan University, Pingdingshan, China
| | - Yuan-Yuan Qiang
- Ningxia Key Laboratory for Cerebrocranical Disease, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhi-Jie Liu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiotherapy, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Li-Sheng Zheng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong-Fang Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Wen Wei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dong-Wen Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Xu
- Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Hong Lang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ping Xie
- Department of Radiation Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xing-Si Peng
- Department of Radiation Oncology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ming-Dian Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ling-Ling Guo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Di-Tian Shu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liu-Yan Ding
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Ting Lin
- The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Fei-Fei Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sha-Sha Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangzhou Concord Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
8
|
Comparison of intratumor and local immune response between MV X-ray FLASH and conventional radiotherapies. Clin Transl Radiat Oncol 2022; 38:138-146. [DOI: 10.1016/j.ctro.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
|
9
|
Huang YM, Wang LQ, Liu Y, Tang FQ, Zhang WL. Integrated analysis of bulk and single-cell RNA sequencing reveals the interaction of PKP1 and tumor-infiltrating B cells and their therapeutic potential for nasopharyngeal carcinoma. Front Genet 2022; 13:935749. [PMID: 36186467 PMCID: PMC9515358 DOI: 10.3389/fgene.2022.935749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy is an individualized therapeutic strategy for nasopharyngeal carcinoma (NPC). However, few molecular targets are clinically satisfactory. This work aimed to integrate bulk and single-cell RNA sequencing data to identify novel biomarkers involved in NPC. We performed differentially expressed gene (DEG) analysis, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and immune cell infiltration analysis prior to correlation analysis of the identified genes and immune cells and further assessed the prognostic effects of the biomarkers and immune cells in NPC. As a result, PKP1, a potential molecular biomarker associated with immune infiltration, and tumor-infiltrating lymphocyte-B cells (TIL-Bs) were identified as promising therapeutic targets for NPC. Importantly, immunohistochemistry (IHC) validated that PKP1 protein expression was mainly found in NPC cells rather than noncancerous cells. In addition, the tumor microenvironment (TME) of NPC was characterized by the infiltration of more dendritic cells (DCs) and γδT cells but fewer B cells. Our results suggest that the interaction of PKP1 and TIL-B cells is involved in NPC development. It is possible that TIL-B cells produce immunoglobulin G (IgG) to tumor antigens, such as PKP1, or viral antigens, including EBV and HPV, to execute antitumor ability through DC and T cells. In response, NPC cells express proteins such as PKP1 (absent in normal nasopharynx) to induce myeloid-derived suppressor cell (MDSC) expansion, which subsequently impairs the proliferation of B cells and results in B-cell death by generating iNOS and NOX2. In summary, our findings provide a potential therapeutic strategy for NPC by disrupting the interaction of PKP1 and TIL-Bs in the TME.
Collapse
Affiliation(s)
- Yu-Mei Huang
- Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Laboratory of Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, Hunan, China
| | - Lin-Qian Wang
- Clinical Laboratory of Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, Hunan, China
| | - Ying Liu
- Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fa-Qing Tang
- Clinical Laboratory of Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, Hunan, China
| | - Wen-Ling Zhang
- Department of Clinical Laboratory, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|