1
|
Tang L, Yang X, He L, Zhu C, Chen Q. Preclinical advance in nanoliposome-mediated photothermal therapy in liver cancer. Lipids Health Dis 2025; 24:31. [PMID: 39891269 PMCID: PMC11783920 DOI: 10.1186/s12944-024-02429-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/31/2024] [Indexed: 02/03/2025] Open
Abstract
Liver cancer is a highly lethal malignant tumor with a high incidence worldwide. Therefore, its treatment has long been a focus of medical research. Although traditional treatment methods such as surgery, radiotherapy, and chemotherapy have increased the survival rate of patients, their efficacy remains unsatisfactory owing to the nonspecific distribution of drugs, high toxicity, and drug resistance of tumor tissues. In recent years, the application of nanotechnology in the medical field has opened a new avenue for the treatment of liver cancer. Among these treatment methods, photothermal therapy (PTT) based on nanoliposomes has attracted wide attention owing to its unique targeting and high efficiency. This article reviews the latest preclinical research progress of nanoliposome-based PTT for liver cancer and its metastasis, discusses the preclinical challenges in this field, and proposes directions for improvement, with the aim of improving the effectiveness of liver cancer treatment.
Collapse
Affiliation(s)
- Lixuan Tang
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xiao Yang
- The department of oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Liwen He
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chaogeng Zhu
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Qingshan Chen
- The department of hepatobiliary pancreatic hernia surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
2
|
Tian H, Gao X, Wei H, Ding Z, Ming Q, Wu W, Zhang X, Ren S, Li Z, Shao F, Wang C. Dismountable Protein Corona-Modified Virus-Like Manganese-Arsenic Nanomedicine Enables Safe and Targeted Delivery for Synergistic Arsenotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408361. [PMID: 39358930 DOI: 10.1002/adma.202408361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Arsenic agents have shown great potential in fighting leukemia, but are poorly known in treating solid tumors, mainly ascribing to the rapid clearance and low targeting ability. It is reported that morphology modulation can enhance the interaction between nanoparticles and cell membrane. Herein, a dismountable protein corona-modified virus-like manganese-arsenic nanomedicine (vMnAs@HR) is rationally proposed for realizing safe and targeted delivery and synergistic arsenotherapy. The virus-like manganese-arsenic nanoparticle (vMnAs) is constructed followed by modification of a temporary R848-loaded HDL (HR) protein corona. Upon intravenous injection, the HR protein corona is stable and actively targeted to tumor tissue by taking advantage of the interaction between HDL and its receptor SR-BI. Intriguingly, upon accumulated in the tumor, HR can be jettisoned and interacted with macrophages for proinflammatory phenotype modulation. The re-exposed vMnAs can efficiently enhance endocytosis by taking advantage of the rationally designed spiky morphology. Moreover, the released double-stranded DNA (dsDNA) and manganese ions during tumor cell apoptosis can cooperatively activate cyclic guanosine monophosphate adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway of DCs for systematic immune activation. It is anticipated that this morphology-transformable nanomedicine can realize safe and efficient arsenic delivery for synergistic arsenotherapy.
Collapse
Affiliation(s)
- Haina Tian
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaoyang Gao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Haiyun Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zongyao Ding
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qian Ming
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Weiwei Wu
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Zhang
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shuaiwei Ren
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhaowei Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
| | - Fengying Shao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Changlong Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
3
|
Yang S, Raza F, Li K, Qiu Y, Su J, Qiu M. Maximizing arsenic trioxide's anticancer potential: Targeted nanocarriers for solid tumor therapy. Colloids Surf B Biointerfaces 2024; 241:114014. [PMID: 38850742 DOI: 10.1016/j.colsurfb.2024.114014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kunwei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujiao Qiu
- The Wharton School and School of Nursing, University of Pennsylvania, Philadelphia 19104, USA
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Komorowicz I, Hanć A. Can arsenic do anything good? Arsenic nanodrugs in the fight against cancer - last decade review. Talanta 2024; 276:126240. [PMID: 38754186 DOI: 10.1016/j.talanta.2024.126240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Arsenic has been an element of great interest among scientists for many years as it is a widespread metalloid in our ecosystem. Arsenic is mostly recognized with negative connotations due to its toxicity. Surely, most of us know that a long time ago, arsenic trioxide was used in medicine to treat, mainly, skin diseases. However, not everyone knows about its very wide and promising use in the treatment of cancer. Initially, in the seventies, it was used to treat leukemia, but new technological possibilities and the development of nanotechnology have made it possible to use arsenic trioxide for the treatment of solid tumours. The most toxic arsenic compound - arsenic trioxide - as the basis of anticancer drugs in which they function as a component of nanoparticles is used in the fight against various types of cancer. This review aims to present the current solutions in various cancer treatment using arsenic compounds with different binding motifs and methods of preparation to create targeted nanoparticles, nanodiamonds, nanohybrids, nanodrugs, or nanovehicles.
Collapse
Affiliation(s)
- Izabela Komorowicz
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University in Poznań, 8 Uniwersytetu Poznańskiego Street, 61-614, Poznań, Poland
| |
Collapse
|
5
|
Ye M, Ye R, Wang Y, Guo M, Zhu M, Yin F, Wang Y, Lai X, Wang Y, Qi Z, Wang J, Chen D. Targeted pH-responsive biomimetic nanoparticle-mediated starvation-enhanced chemodynamic therapy combined with chemotherapy for ovarian cancer treatment. Int J Pharm 2024; 661:124426. [PMID: 38972519 DOI: 10.1016/j.ijpharm.2024.124426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
In recent years, the use of arsenic trioxide (ATO) in the context of ovarian cancer chemotherapy has attracted significant attention. However, ATO's limited biocompatibility and the occurrence of severe toxic side effects hinder its clinical application. A nanoparticle (NP) drug delivery system using ATO as a therapeutic agent is reported in this study. Achieving a synergistic effect by combining starvation therapy, chemodynamic therapy, and chemotherapy for the treatment of ovarian cancer was the ultimate goal of this system. This nanotechnology-based drug delivery system (NDDS) introduced arsenic-manganese complexes into cancer cells, leading to the subsequent release of lethal arsenic ions (As3+) and manganese ions (Mn2+). The acidic microenvironment of the tumor facilitated this process, and MR imaging offered real-time monitoring of the ATO dose distribution. Simultaneously, to produce reactive oxygen species that induced cell death through a Fenton-like reaction, Mn2+ exploited the surplus of hydrogen peroxide (H2O2) within tumor cells. Glucose oxidase-based starvation therapy further supported this mechanism, which restored H2O2 and lowered the cellular acidity. Consequently, this approach achieved self-enhanced chemodynamic therapy. Homologous targeting of the NPs was facilitated through the use of SKOV3 cell membranes that encapsulated the NPs. Hence, the use of a multimodal NDDS that integrated ATO delivery, therapy, and monitoring exhibited superior efficacy and biocompatibility compared with the nonspecific administration of ATO. This approach presents a novel concept for the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Mingzhu Ye
- Department of Gynecology and Obstetrics, Zhongshan Hospital Xiamen University, Fujian 361004, China
| | - Roumei Ye
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, China
| | - Yun Wang
- Department of Internal Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi 154007, China
| | - Mengyu Guo
- Department of Emergency, Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Maoshu Zhu
- Medical College of Guangxi University, No.100, Daxue East Road, Nanning 530004, Guangxi, China
| | - Fengyue Yin
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, China
| | - Yubo Wang
- Department of Pharmacy, Medical College of Guangxi University, Nanning 530004, China
| | - Xiaoqin Lai
- Department of Emergency, Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Yu Wang
- Department of Emergency, Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Zhongqun Qi
- Fujian Maternity and Child Health Hospital, 18 Daoshan Road, Fuzhou City, Fujian Province 350001, China'.
| | - Jinling Wang
- Department of Emergency and Critical Care Center, The Second Affiliated Hospital of Guangdong Medical University, No.12 Minyou Road, Xiashan, Zhanjiang, Guangdong 524003, China.
| | - Dengyue Chen
- School of Pharmaceutical, Xiamen University, Fujian 361102, China.
| |
Collapse
|
6
|
Li C, Shi J, Wang Y, Jiang X, Liu G, Zhang Y, Bi P, Wang X. FTIR microspectroscopic study of gastric cancer AGS cells apoptosis induced by As 2O 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123998. [PMID: 38340448 DOI: 10.1016/j.saa.2024.123998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
As2O3 has shown significant anti-gastric cancer effects, but the mechanism is still unclear. Thus, biomacromolecular changes induced by As2O3 were investigated by using human gastric cancer AGS cells as the model. Flow cytometry results confirmed that As2O3 induced AGS cells apoptosis. Fourier transform infrared (FTIR) microspectroscopy detected biomacromolecular changes during As2O3-induced AGS cells apoptosis sensitively: IR spectra showed significant changes in the lipids content and the proteins and DNA structure. Peak-area ratios indicated obvious changes in the lipids and DNA content and the proteins structure, while also showing a relatively good linear relationship between A1733/A969 and the apoptosis rate. PCA exhibited significant alteration in nucleic acids while curve fitting further revealed the changes in nucleic acids and proteins. On the whole, our study explored As2O3-induced gastric cancer cells apoptosis in depth on the basis of analyzing biomacromolecular changes, in addition, it also suggested FTIR microspectroscopy to be possibly useful in the research of apoptosis.
Collapse
Affiliation(s)
- Chao Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China; School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China; The Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230601, China
| | - Jie Shi
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yongan Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xinyao Jiang
- The First Clinical Medical College, Anhui Medical University, Hefei, Anhui 230032, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China.
| | - Yanli Zhang
- The Second Clinical Medical College, Anhui Medical University, Hefei, Anhui 230000, China
| | - Pengwei Bi
- The Second Clinical Medical College, Anhui Medical University, Hefei, Anhui 230000, China
| | - Xin Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Karami E, Mesbahi Moghaddam M, Kazemi-Lomedasht F. Use of Albumin for Drug Delivery as a Diagnostic and Therapeutic Tool. Curr Pharm Biotechnol 2024; 25:676-693. [PMID: 37550918 DOI: 10.2174/1389201024666230807161200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
Drug delivery is an important topic that has attracted the attention of researchers in recent years. Albumin nanoparticles play a significant role in drug delivery as a carrier due to their unique characteristics. Albumin is non-toxic, biocompatible, and biodegradable. Its structure is such that it can interact with different drugs, which makes the treatment of the disease faster and also reduces the side effects of the drug. Albumin nanoparticles can be used in the diagnosis and treatment of many diseases, including cancer, diabetes, Alzheimer's, etc. These nanoparticles can connect to some compounds, such as metal nanoparticles, antibodies, folate, etc. and create a powerful nanostructure for drug delivery. In this paper, we aim to investigate albumin nanoparticles in carrier format for drug delivery application. In the beginning, different types of albumin and their preparation methods were discussed, and then albumin nanoparticles were discussed in detail in diagnosing and treating various diseases.
Collapse
Affiliation(s)
- Elmira Karami
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Department of Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Liu Z, Xie H, Wang T. Erythrocyte-Cancer Hybrid Membrane-Camouflaged Prussian Blue Nanoparticles with Enhanced Photothermal Therapy in Tumors. ACS OMEGA 2023; 8:23056-23066. [PMID: 37396272 PMCID: PMC10308386 DOI: 10.1021/acsomega.3c02370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023]
Abstract
Prussian blue (PB) nanoparticles have been widely used in photothermal therapy research due to the efficient photothermal conversion ability. In this study, PB was modified with a bionic coating using a hybrid membrane of red blood cell membranes and tumor cell membranes to prepare bionic photothermal nanoparticles (PB/RHM), which can further improve the blood circulation ability and tumor targeting of the nanoparticles to achieve efficient photothermal therapy for tumor treatment. In vitro formulation characterization showed that PB/RHM was a monodisperse spherical core-shell structured nanoparticle with a diameter of 207.2 nm and effectively retained the cell membrane proteins. The in vivo biological evaluation results showed that PB/RHM could effectively accumulate into the tumor tissue, inducing a rapid temperature increase in the tumor site to 50.9 °C within 10 min, inhibiting tumor growth efficiently with a tumor inhibition rate of 93.56% and with good therapeutic safety. In summary, this paper provided a hybrid film-modified Prussian blue nanoparticle with efficient photothermal anti-tumor capacity and safety.
Collapse
Affiliation(s)
- Zhining Liu
- Ultrasound
Department, First Affiliated Hospital of
Jinzhou Medical University, Jinzhou 121001, China
| | - Huichao Xie
- College
of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Tianyi Wang
- Ultrasound
Department, First Affiliated Hospital of
Jinzhou Medical University, Jinzhou 121001, China
| |
Collapse
|
9
|
Huang D, Xu D, Chen W, Wu R, Wen Y, Liu A, Lin L, Lin X, Wang X. Fe-MnO 2 nanosheets loading dihydroartemisinin for ferroptosis and immunotherapy. Biomed Pharmacother 2023; 161:114431. [PMID: 36827713 DOI: 10.1016/j.biopha.2023.114431] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ferroptosis has emerged as a therapeutic tactic to trigger cancer cell death driven by abnormal accumulation of reactive oxygen species (ROS). However, a single ferroptosis treatment modality is often limited. In this work, a combination therapy of ferroptosis and immunotherapy for cancer was proposed. Specifically, a versatile nanodrug was designed for the multiple treatment of hepatocellular carcinoma (HCC) by loading dihydroartemisinin (DHA) on Fe3+-doped MnO2 nanosheets (Fe-MnO2/DHA). Firstly, Fe-MnO2/DHA was degraded by glutathione (GSH) in the tumor microenvironment (TME) to release Fe2+, Mn2+ and DHA, leading to aberrant ROS accumulation due to Fenton/Fenton-like reaction. Secondly, breakage of endoperoxide bridge from DHA was caused by Fe2+ to further induce oxidative stress. Thirdly, the depleted GSH promoted the inactivation of glutathione peroxidase 4 (GPX4), resulting in lipid peroxide (LPO) accumulation. The resulting LPO and ROS could induce ferroptosis and apoptosis of liver cancer cells. Furthermore, Fe-MnO2/DHA mediated three-pronged stimulation of oxidative stress, resulting in high levels of targeted immunogenic cell death (ICD). It could enhance the infiltration of CD4+ T and CD8+ T cells, and promote macrophage polarization. DHA also acted as an immunomodulator to inhibit regulatory T cells (Tregs) for systemic antitumor. Overall, Fe-MnO2/DHA presents a multi-modal therapy for HCC driven by ferroptosis, apoptosis and immune activation, significantly advancing synergistic cancer treatment.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dafen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wenxin Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ruimei Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yujuan Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xuewen Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
10
|
Gao Y, Wang K, Zhang J, Duan X, Sun Q, Men K. Multifunctional nanoparticle for cancer therapy. MedComm (Beijing) 2023; 4:e187. [PMID: 36654533 PMCID: PMC9834710 DOI: 10.1002/mco2.187] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/14/2023] Open
Abstract
Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy. Compared with nanoparticles with single functions, multifunctional nanoparticles are believed to be more aggressive and potent in the context of tumor targeting. However, the development of multifunctional nanoparticles is not simply an upgraded version of the original function, but involves a sophisticated system with a proper backbone, optimized modification sites, simple preparation method, and efficient function integration. Despite this, many well-designed multifunctional nanoparticles with promising therapeutic potential have emerged recently. Here, to give a detailed understanding and analyzation of the currently developed multifunctional nanoparticles, their platform structures with organic or inorganic backbones were systemically generalized. We emphasized on the functionalization and modification strategies, which provide additional functions to the nanoparticle. We also discussed the application combination strategies that were involved in the development of nanoformulations with functional crosstalk. This review thus provides an overview of the construction strategies and application advances of multifunctional nanoparticles.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Kaiyu Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Xingmei Duan
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuan ProvinceChina
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital of Sichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
11
|
Lu Y, Gao Y, Yang H, Hu Y, Li X. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma. Mil Med Res 2022; 9:69. [PMID: 36503490 PMCID: PMC9743634 DOI: 10.1186/s40779-022-00433-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Traditional treatments for advanced hepatocellular carcinoma (HCC), such as surgical resection, transplantation, radiofrequency ablation, and chemotherapy are unsatisfactory, and therefore the exploration of powerful therapeutic strategies is urgently needed. Immunotherapy has emerged as a promising strategy for advanced HCC treatment due to its minimal side effects and long-lasting therapeutic memory effects. Recent studies have demonstrated that icaritin could serve as an immunomodulator for effective immunotherapy of advanced HCC. Encouragingly, in 2022, icaritin soft capsules were approved by the National Medical Products Administration (NMPA) of China for the immunotherapy of advanced HCC. However, the therapeutic efficacy of icaritin in clinical practice is impaired by its poor bioavailability and unfavorable in vivo delivery efficiency. Recently, functionalized drug delivery systems including stimuli-responsive nanocarriers, cell membrane-coated nanocarriers, and living cell-nanocarrier systems have been designed to overcome the shortcomings of drugs, including the low bioavailability and limited delivery efficiency as well as side effects. Taken together, the development of icaritin-based nanomedicines is expected to further improve the immunotherapy of advanced HCC. Herein, we compared the different preparation methods for icaritin, interpreted the HCC immune microenvironment and the mechanisms underlying icaritin for treatment of advanced HCC, and discussed both the design of icaritin-based nanomedicines with high icaritin loading and the latest progress in icaritin-based nanomedicines for advanced HCC immunotherapy. Finally, the prospects to promote further clinical translation of icaritin-based nanomedicines for the immunotherapy of advanced HCC were proposed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- Institute of Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Yue Gao
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620 China
| | - Huan Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013 Jiangsu China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
| | - Xin Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804 China
- DWI-Leibniz-Institute for Interactive Materials e.V., 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
12
|
Sun J, Cheng M, Ye T, Li B, Wei Y, Zheng H, Zheng H, Zhou M, Piao JG, Li F. Nanocarrier-based delivery of arsenic trioxide for hepatocellular carcinoma therapy. Nanomedicine (Lond) 2022; 17:2037-2054. [PMID: 36789952 DOI: 10.2217/nnm-2022-0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a severe threat to human health and economic development. Despite many attempts at HCC treatment, most are inevitably affected by the genetic instability and variability of tumor cells. Arsenic trioxide (ATO) has shown to be effective in HCC. However, time-consuming challenges, especially the optimal concentration in tumor tissue and bioavailability of ATO, remain to be overcome for its transition from the bench to the bedside. To bypass these issues, nanotechnology-based delivery systems have been developed for prevention, diagnosis, monitoring and treatment in recent years. This article is a systematic overview of the latest contributions and detailed insights into ATO-loaded nanocarriers, with particular attention paid to strategies for improving the efficacy of nanocarriers of ATO.
Collapse
Affiliation(s)
- Jiang Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Mengying Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tingxian Ye
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bin Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yinghui Wei
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hangsheng Zheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Meiqi Zhou
- Department of Oncology Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Neuropharmacology & Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| |
Collapse
|
13
|
Zhao Y, Yao H, Yang K, Han S, Chen S, Li Y, Chen S, Huang K, Lian G, Li J. Arsenic Trioxide-loaded nanoparticles Enhance the Chemosensitivity of Gemcitabine in Pancreatic Cancer via Reversal of Pancreatic Stellate Cells Desmoplasia through Targeting AP4/Galectin-1 Pathway. Biomater Sci 2022; 10:5989-6002. [DOI: 10.1039/d2bm01039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pancreatic stellate cell (PSCs) constitutes the fibrotic tumor microenvironment composed of the stroma matrix, which blocks the penetration of Gemcitabine (GEM) in pancreatic adenocarcinoma (PDAC) and results in chemoresistance. We...
Collapse
|