1
|
Contreras L, Rodríguez-Gil A, Muntané J, de la Cruz J. Sorafenib-associated translation reprogramming in hepatocellular carcinoma cells. RNA Biol 2025; 22:1-11. [PMID: 40116042 PMCID: PMC11934173 DOI: 10.1080/15476286.2025.2483484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025] Open
Abstract
Sorafenib (Sfb) is a multikinase inhibitor regularly used for the management of patients with advanced hepatocellular carcinoma (HCC) that has been shown to increase very modestly life expectancy. We have shown that Sfb inhibits protein synthesis at the level of initiation in cancer cells. However, the global snapshot of mRNA translation following Sorafenib-treatment has not been explored so far. In this study, we performed a genome-wide polysome profiling analysis in Sfb-treated HCC cells and demonstrated that, despite global translation repression, a set of different genes remain efficiently translated or are even translationally induced. We reveal that, in response to Sfb inhibition, translation is tuned, which strongly correlates with the presence of established mRNA cis-acting elements and the corresponding protein factors that recognize them, including DAP5 and ARE-binding proteins. At the level of biological processes, Sfb leads to the translational down-regulation of key cellular activities, such as those related to the mitochondrial metabolism and the collagen synthesis, and the translational up-regulation of pathways associated with the adaptation and survival of cells in response to the Sfb-induced stress. Our findings indicate that Sfb induces an adaptive reprogramming of translation and provides valuable information that can facilitate the analysis of other drugs for the development of novel combined treatment strategies based on Sfb therapy.
Collapse
Affiliation(s)
- Laura Contreras
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Alfonso Rodríguez-Gil
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Jordi Muntané
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Zhang W, Hong X, Xiao Y, Wang H, Zeng X. Sorafenib resistance and therapeutic strategies in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2025; 1880:189310. [PMID: 40187502 DOI: 10.1016/j.bbcan.2025.189310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and lethal cancers globally. While surgical resection and liver transplantation offer potential cures for early-stage HCC, the majority of patients are diagnosed at advanced stages where such interventions are not viable. Sorafenib, a multi-target kinase inhibitor, has been a cornerstone in the treatment of advanced HCC since its approval in 2007. Despite its significant clinical impact, less than half of the treated patients derive long-term benefits due to the emergence of resistance and associated side effects. This review focuses on the role of sorafenib, an FDA-approved multi-target kinase inhibitor, in treating advanced HCC, discusses the mechanisms underlying its therapeutic effects and associated resistance, and explores additional therapeutic strategies being investigated to improve patient outcomes.
Collapse
Affiliation(s)
- Weijing Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xuechuan Hong
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaodong Zeng
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
3
|
Xu K, Wu T, Li X, Zhang X, Liu X, Ma S, Dong W, Yang J, Liu Y, Fang W, Ju Y, Chen Y, Dai C, Gong Z, He W, Huang Z, Chang L, Ma W, Xia P, Chen X, Yuan Y. ADH1C maintains the homeostasis of metabolic microenvironment to inhibit steatotic hepatocellular carcinoma. Metabolism 2025; 168:156267. [PMID: 40233847 DOI: 10.1016/j.metabol.2025.156267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Steatotic hepatocellular carcinoma (HCC) has emerged as a significant subtype of HCC. Understanding the complex tumor microenvironment in HCC is particularly important for stratifying patients and improving treatment response. In this study, we performed proteomic analysis on clinical samples of steatotic HCC and identified human-specific gene alcohol dehydrogenase 1C (ADH1C) as a key factor. ADH1C is a favorable prognostic factor in both steatotic and non-steatotic HCC. ADH1C promotes fatty acid degradation through a novel non-enzymatic function, inhibiting the development of hepatocellular carcinoma. Specifically, in vitro experiments revealed that ADH1C interacts with splicing factor retinitis pigmentosa 9 (RP9) to enhance the splicing of key transcription factor peroxisome proliferator activated receptor alpha (PPARa) pre-mRNA, which is crucial for fatty acid degradation. The regulation of the ADH1C/RP9/PPARa axis was supported by in vivo experiments and clinical relevance. This leads to a reduction in the critical metabolite palmitic acid, subsequently decreasing the palmitoylation levels of oncogenic protein TEA domain transcription factor 1 (TEAD1), thereby regulating the hippo pathway and subsequent cell proliferation inhibition. Additionally, we found that ADH1C and PPARa can serve as combined biomarkers to distinguish between patients with steatotic and non-steatotic HCC. Combination therapy targeting ADH1C and anti-programmed cell death protein 1 (PD1) enhances the response of steatotic HCC to anti- PD1 immunotherapy. Our study revealed a central role of ADH1C/PPARa in lipid metabolism and HCC suppression. Targeting lipid metabolism via ADH1C/PPARa may provide new therapeutic strategies for the treatment of liver cancer.
Collapse
Affiliation(s)
- Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Tiangen Wu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Xiaomian Li
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Xiao Zhang
- Department of Liver Surgery, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan Province, PR China.
| | - Xinyu Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Shuxian Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Wenlong Dong
- University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jialing Yang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu Province, PR China.
| | - Yingyi Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Weixian Fang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yi Ju
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yiran Chen
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, 180 Fenglin Road, Shanghai 200032, PR China.
| | - Caixia Dai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Zheng Gong
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Wenzhi He
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, PR China.
| | - Zan Huang
- College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan 430072, PR China.
| | - Lei Chang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China; Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China.
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China; Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, PR China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
4
|
Morita M, Tokumoto Y, Watanabe T, Imai Y, Yukimoto A, Shimamoto T, Yano R, Okazaki Y, Nakamura Y, Yoshida O, Miyake T, Hirooka M, Abe M, Hiasa Y. Endoplasmic reticulum stress sensor protein PERK in hepatic stellate cells promotes the progression of hepatocellular carcinoma via p38δ MAPK/IL-1β axis. Sci Rep 2025; 15:20030. [PMID: 40481076 PMCID: PMC12144300 DOI: 10.1038/s41598-025-04150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 05/26/2025] [Indexed: 06/11/2025] Open
Abstract
Palmitic acid (PA) absorption from the intestine is increased in metabolic dysfunction-associated steatohepatitis (MASH). It induces endoplasmic reticulum (ER) stress and interleukin-1 beta (IL-1β) production in hepatic stellate cells (HSCs). Protein kinase R-like endoplasmic reticulum kinase (PERK) is an ER stress sensor protein involved in HSC activation and liver fibrosis. However, its role in HSCs during hepatocellular carcinoma (HCC) progression remains unclear. This study clarified the process of IL-1β production via PERK in HSCs and explored the mechanism underlying MASH-related HCC progression. HSCs were treated with PA or transfected with PERK small-interfering RNA (siRNA) or PERK plasmid. Proliferation, scratch, and Transwell assays were performed on HCC cells cultured in the conditioned medium (CM) from HSCs. PA treatment increased PERK and IL-1β expression in HSCs. PERK knockdown decreased IL-1β expression, while its overexpression increased it in HSCs. The CM from PA-treated HSCs showed elevated IL-1β levels and enhanced HCC cells' proliferation, migration, and invasion; however, these effects were suppressed by PERK knockdown in HSCs. RNA-sequencing analysis revealed that p38δ mitogen-activated protein kinase (MAPK) is the intermediate molecule between PERK and IL-1β in HSCs. In the tumor microenvironment of MASH-related HCC, PERK in HSCs promotes HCC progression via the p38δ MAPK/IL-1β axis.
Collapse
Affiliation(s)
- Makoto Morita
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshio Tokumoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takao Watanabe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yusuke Imai
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Atsushi Yukimoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Toyoki Shimamoto
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Ryo Yano
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuki Okazaki
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoshiko Nakamura
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
5
|
Ng KYY, Teo AEK, Tan SH, Tan JJE, Tay DSH, Lee AWX, Ang AJS, Wong LWJ, Choo SP, Toh HC, Lee SY, Lee JJX, Tai DWM. Impact of Antibiotics and Chronic Medications on Efficacy of Immune Checkpoint Inhibitors in Patients With Hepatocellular Carcinoma. Asia Pac J Clin Oncol 2025; 21:256-265. [PMID: 39601254 DOI: 10.1111/ajco.14139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/29/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND AIMS The interaction of immune checkpoint inhibitors (ICI) and concomitant medications such as antibiotics, metformin, statins, beta-blockers, proton pump inhibitors (PPIs), nonsteroidal anti-inflammatory drugs (NSAIDs), and low-dose aspirin has been studied in other malignancies. Our study aims to investigate the relationship between these medications and ICI efficacy in patients with advanced hepatocellular carcinoma (aHCC). METHODS A retrospective review of patients who received at least one dose of ICIs between May 2015 and November 2019 was performed. The primary objectives were to compare the overall survival (OS) and progression-free survival (PFS) between patients with and without medication usage. Log rank test was used to assess for differences in survival. Hazard ratios were reported using Cox proportional hazard regression analysis. The data cutoff date was December 31, 2020. RESULTS A total of 168 patients were included. Median age was 69 years, 85.7% male, 60.7% ECOG 0, 78.0% Child-Pugh A liver cirrhosis, 57.7% hepatitis B etiology, 8.9% hepatitis C, and 33.3% nonviral. One hundred three patients (61.3%) received ICI monotherapy, while 38.7% received ICI in combination. Sixty-two patients (36.9%) had concomitant antibiotic usage, 26.8% metformin, 30.4% statin, 31.0% beta-blockers, 60.1% PPI, 6.5% NSAIDs, and 11.9% aspirin. Patients with aHCC receiving antibiotics did not have a shorter OS (adjusted HR [aHR] 1.40, 95% CI 0.94-2.09, p = 0.096) or shorter PFS (aHR 0.94, 95% CI 0.66-1.34, p = 0.73), as compared to those who did not receive antibiotics. However, patients with aHCC of viral hepatitis etiology receiving ICI treatment and concurrent antibiotics had shorter OS (5.5 vs. 14.2 months, aHR 1.93, 95% CI 1.17-3.17, p = 0.010) and PFS (1.1 vs. 2.6 months, aHR 2.69, 95% CI 1.28-5.65, p = 0.009), as compared to those who did not receive antibiotics. CONCLUSIONS The use of antibiotics may diminish ICI efficacy in patients with aHCC of viral hepatitis etiology, while the use of metformin, statins, beta-blockers, NSAIDs, and aspirin is not associated with significant clinical outcomes.
Collapse
Affiliation(s)
- Kennedy Yao Yi Ng
- Division of Population Health and Integrated Care, Singapore General Hospital, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Oncology Academic Program, Duke-NUS Medical School, Singapore, Singapore
| | | | - Sze Huey Tan
- Oncology Academic Program, Duke-NUS Medical School, Singapore, Singapore
- Division of Clinical Trials and Epidemiological Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Jack Jie En Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Desiree Shu Hui Tay
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ailica Wan Xin Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrea Jing Shi Ang
- Division of Internal Medicine, Singapore General Hospital, Singapore, Singapore
| | | | | | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Oncology Academic Program, Duke-NUS Medical School, Singapore, Singapore
| | - Suat Ying Lee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Oncology Academic Program, Duke-NUS Medical School, Singapore, Singapore
| | - Joycelyn Jie Xin Lee
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Oncology Academic Program, Duke-NUS Medical School, Singapore, Singapore
| | - David Wai-Meng Tai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Oncology Academic Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
6
|
Cinnamon E, Stein I, Zino E, Rabinovich S, Shovman Y, Schlesinger Y, Salame TM, Reich-Zeliger S, Albrecht T, Roessler S, Schirmacher P, Lotem M, Ben-Neriah Y, Parnas O, Pikarsky E. RORc-expressing immune cells negatively regulate tertiary lymphoid structure formation and support their pro-tumorigenic functions. J Hepatol 2025; 82:1050-1067. [PMID: 39710149 DOI: 10.1016/j.jhep.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND & AIMS RORc-expressing immune cells play important roles in inflammation, autoimmune disease and cancer. They are required for lymphoid organogenesis and have been implicated in tertiary lymphoid structure (TLS) formation. TLSs are formed in many cancer types and have been correlated with better prognosis and response to immunotherapy. In liver cancer, some TLSs are pro-tumorigenic as they harbor tumor progenitor cells and support their growth. The processes involved in TLS development and acquisition of pro- or anti-tumorigenic roles are largely unknown. This study aims to explore the role of RORc-expressing cells in TLS development in the context of inflammation-associated liver cancer. METHODS IKKβ(EE)Hep mice, exhibiting chronic liver inflammation, TLS formation and liver cancer, were crossed with RORc knockout mice to explore RORc's effect on TLS and tumor formation. TLS phenotypes were analyzed using transcriptional, proteomic, and immunohistochemical techniques. CD4, CD8, and B-cell depletions were used to assess their contribution to liver TLS and tumor formation. RESULTS RORc-expressing cells are detected within TLSs of both human patients and mice developing intrahepatic cholangiocarcinoma. In mice, these cells negatively regulate TLS formation, as excess TLSs form in their absence. CD4 cells are essential for liver TLS formation, while B cells are required for TLS formation specifically in the absence of RORc-expressing cells. Importantly, in chronically inflamed livers lacking RORc-expressing cells, TLSs become anti-tumorigenic, reducing tumor load. Anti-tumorigenic TLSs revealed enrichment of exhausted CD8 cells with effector functions, germinal center B cells and plasma cells. B cells are key in limiting tumor development, possibly via tumor-directed antibodies. CONCLUSIONS RORc-expressing cells negatively regulate B-cell responses and facilitate the pro-tumorigenic functions of hepatic TLSs. IMPACT AND IMPLICATIONS RORc-expressing immune cells play critical roles in immune regulation, yet their specific influence on tertiary lymphoid structures (TLSs) in liver pathology and cancer has not been elucidated. Our study reveals that RORc-expressing cells act as negative regulators of TLS formation and shape the immune microenvironment in a manner that promotes tumor development. In the absence of RORc-expressing cells, TLSs not only increase in number but also acquire anti-tumorigenic properties. These findings suggest that RORc-expressing cells serve as key modulators of liver immune dynamics, with potential implications for the use of RORc as a biomarker to differentiate between pro- and anti-tumorigenic immune environments and as a target for manipulating TLS abundance and phenotype in liver cancer.
Collapse
Affiliation(s)
- Einat Cinnamon
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ilan Stein
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elvira Zino
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Stav Rabinovich
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Yehuda Shovman
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yehuda Schlesinger
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Tomer-Meir Salame
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Thomas Albrecht
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yinon Ben-Neriah
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Oren Parnas
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Eli Pikarsky
- The Concern Foundation Laboratories at The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem, Israel; Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
7
|
Lurje I, Uluk D, Tacke F, Lurje G. Letter: Comparing the Efficacy of Adjuvant PD-1 Inhibitor After Curative Resection for Metabolic Dysfunction-Associated Steatotic Liver Disease Related HCC Versus Other Aetiologies-Authors' Reply. Aliment Pharmacol Ther 2025; 61:1841-1842. [PMID: 40184043 DOI: 10.1111/apt.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Isabella Lurje
- Department of Gastroenterology and Hepatology, Campus Charité Mitte and Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Deniz Uluk
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte and Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Lurje
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of Surgery, Campus Charité Mitte, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Su JY, Chen K, Liu Z, Luo M, Liu SP, Ou JJ, Su Z, Li WF, He WH, Peng N, Ma L, Xiang BD, Zhong JH. Letter: Comparison of the Efficacy of Adjuvant PD-1 Inhibitor After Curative Resection for Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Related HCC Versus Other Aetiologies. Aliment Pharmacol Ther 2025; 61:1838-1840. [PMID: 40184020 DOI: 10.1111/apt.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Jia-Yong Su
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kang Chen
- Department of General Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Liu
- Department of Hepatobiliary Surgery, Liuzhou People's Hospital, Liuzhou, China
| | - Min Luo
- Oncology Department, The Second People's Hospital of Nanning, Nanning, China
| | - Shao-Ping Liu
- Hepatobiliary Surgery Department, Guigang City People's Hospital, Guigang, China
| | - Jun-Jie Ou
- General Surgery Department, The People's Hospital of Wuzhou, Wuzhou, China
| | - Ze Su
- Hepatobiliary Pancreatic Surgery Department, The First People's Hospital of Nanning, Nanning, China
| | - Wen-Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, First People's Hospital of Yulin, Yulin, China
| | - Wen-Hai He
- Hepatobiliary Surgery Department, Lingshan County People's Hospital, Qinzhou, China
| | - Ning Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liang Ma
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bang-De Xiang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
9
|
Park E, Subasi NB, Wang X, Kmeid M, Chen A, Tooke-Barry C, Lee H. CXCR2 expression is associated with prostate-specific membrane antigen expression in hepatocellular carcinoma: reappraisal of tumor microenvironment and angiogenesis. Clin Transl Oncol 2025; 27:2544-2556. [PMID: 39636498 DOI: 10.1007/s12094-024-03789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Angiogenesis is a critical component of neoplastic progression, and inflammatory cells within the tumor microenvironment contribute to neoangiogenesis. Prostate-specific membrane antigen (PSMA) is expressed in the neovasculature of various solid tumors, including hepatocellular carcinoma (HCC). Also, CXCR2 + inflammatory cells, including CD15 + neutrophils, play crucial roles in HCC progression. We evaluated the associations between PSMA expression and CXCR2 + inflammatory cells in HCC by immunohistochemistry (IHC). METHODS CXCR2 expression and its correlation with PSMA, the PSMA/CD34 ratio, immune markers (CD3, CD15, CD68, and CD163), clinical parameters, and oncologic outcomes were evaluated in 76 HCC and background benign liver tissue. RESULTS PSMA and the PSMA/CD34 ratio showed a positive correlation with intratumoral CXCR2, but not with intratumoral CD15. Intratumoral CXCR2 + cell count was positively associated with intratumoral CD3, CD15, CD68, and CD163 expression levels. In the benign compartment, CXCR2 was significantly associated with CD15. Metabolic dysfunction-associated steatotic liver disease (MASLD) risk factors and cirrhosis had an opposite effect on CXCR2 + cell count in benign liver tissue. Higher CD15 + cell count in the benign liver was associated with decreased overall survival (OS) and recurrence-free survival (RFS). CONCLUSIONS In HCC, intratumoral CXCR2 + cell count is associated with PSMA expression. Intratumoral and benign compartments had different CXCR2 + inflammatory cell makeup. The immune microenvironment of HCC appears to differ depending on underlying risk factors. Further investigations are warranted to elucidate PSMA biology and assess the potential utility of CXCR2 IHC in PSMA-targeted theranostics.
Collapse
Affiliation(s)
- Eundong Park
- Pathology and Laboratory Medicine, Albany Medical Center, Mail Code 81, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Nusret Bekir Subasi
- Pathology and Laboratory Medicine, Albany Medical Center, Mail Code 81, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Xin Wang
- Pathology and Laboratory Medicine, Albany Medical Center, Mail Code 81, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Michel Kmeid
- Pathology and Laboratory Medicine, Albany Medical Center, Mail Code 81, 47 New Scotland Avenue, Albany, NY, 12208, USA
- Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Anne Chen
- Pathology and Laboratory Medicine, Albany Medical Center, Mail Code 81, 47 New Scotland Avenue, Albany, NY, 12208, USA
- Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Chelsea Tooke-Barry
- Pathology and Laboratory Medicine, Albany Medical Center, Mail Code 81, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Hwajeong Lee
- Pathology and Laboratory Medicine, Albany Medical Center, Mail Code 81, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| |
Collapse
|
10
|
Lin HY, Jeon AJ, Chen K, Lee CJM, Wu L, Chong SL, Anene-Nzelu CG, Foo RSY, Chow PKH. The epigenetic basis of hepatocellular carcinoma - mechanisms and potential directions for biomarkers and therapeutics. Br J Cancer 2025; 132:869-887. [PMID: 40057667 DOI: 10.1038/s41416-025-02969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 05/17/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth leading cancer worldwide and has complex pathogenesis due to its heterogeneity, along with poor prognoses. Diagnosis is often late as current screening methods have limited sensitivity for early HCC. Moreover, current treatment regimens for intermediate-to-advanced HCC have high resistance rates, no robust predictive biomarkers, and limited survival benefits. A deeper understanding of the molecular biology of HCC may enhance tumor characterization and targeting of key carcinogenic signatures. The epigenetic landscape of HCC includes complex hallmarks of 1) global DNA hypomethylation of oncogenes and hypermethylation of tumor suppressors; 2) histone modifications, altering chromatin accessibility to upregulate oncogene expression, and/or suppress tumor suppressor gene expression; 3) genome-wide rearrangement of chromatin loops facilitating distal enhancer-promoter oncogenic interactions; and 4) RNA regulation via translational repression by microRNAs (miRNAs) and RNA modifications. Additionally, it is useful to consider etiology-specific epigenetic aberrancies, especially in viral hepatitis and metabolic dysfunction-associated steatotic liver disease (MASLD), which are the main risk factors of HCC. This article comprehensively explores the epigenetic signatures in HCC, highlighting their potential as biomarkers and therapeutic targets. Additionally, we examine how etiology-specific epigenetic patterns and the integration of epigenetic therapies with immunotherapy could advance personalized HCC treatment strategies.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ah-Jung Jeon
- Department of Research and Development, Mirxes, Singapore, Singapore
| | - Kaina Chen
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chang Jie Mick Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
| | - Lingyan Wu
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | - Shay-Lee Chong
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Roger Sik-Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore.
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
11
|
Cammarota A, Rimassa L. Immunotherapy plus tyrosine-kinase inhibitors in hepatocellular carcinoma. Lancet Oncol 2025; 26:667-669. [PMID: 40349717 DOI: 10.1016/s1470-2045(25)00214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 05/14/2025]
Affiliation(s)
- Antonella Cammarota
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; Hepatobiliary Immunopathology Lab, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| |
Collapse
|
12
|
Zhong H, Liu C, Huang Z, Tan P, Chen H, Fu W. Crosstalk between Hepatic Stellate Cells and Hepatic Macrophages in Metabolic Dysfunction-Associated Steatohepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:1040-1056. [PMID: 40414682 DOI: 10.1016/j.ajpath.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/29/2025] [Accepted: 02/19/2025] [Indexed: 05/27/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease is the most prevalent liver condition worldwide. Its more severe manifestation, metabolic dysfunction-associated steatohepatitis (MASH), is accompanied by distinctive hepatocellular injury and inflammation with fibrosis. The involvement of chronic inflammation and accompanying immune cell activation in the maturation phases of MASH progression, mediated through hepatic stellate cells (HSCs), plays a central role. This review highlights the detailed molecular and cellular mechanisms of MASH, with special attention to the dynamic dialogue between HSCs and hepatic macrophages. This review will help narrow the existing gaps, with a summary of key roles HSCs and hepatic macrophages play within liver immunity to inflammation, discussing critical intercellular communication pathways as well as proposing new venues for research toward a better understanding of MASH pathobiology, which could pave ways toward breakthroughs in the clinical condition.
Collapse
Affiliation(s)
- Haoran Zhong
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chen Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peng Tan
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Biliary-Pancreatic Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
13
|
Cressman E, Stolley D, Warar S, Fowlkes NW, Fuentes D. A fundamentally new direction in embolization using reactive chemistry in a swine model. Sci Rep 2025; 15:17285. [PMID: 40389472 PMCID: PMC12089521 DOI: 10.1038/s41598-025-02376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 05/13/2025] [Indexed: 05/21/2025] Open
Abstract
Liver cancer carries a poor prognosis and incidence continues to increase. The main therapy for unresectable disease > 3 cm in diameter is Transarterial Chemoembolization. Unfortunately, overall survival for these patients has improved little in the past two decades. To address this, we propose a new approach using a chemical reaction in situ. We report here our results in a pilot study using a swine model. Domestic swine (n = 3) were treated in the liver with dichloroacetic anhydride in ethiodized oil. CT imaging was followed 24 h after the procedure by necropsy, histopathology, and mass spectrometry imaging. Animals tolerated the procedure well. Imaging showed that the solution remained stable over 24 h. Areas of coagulative necrosis were identified at histopathology. Multiplex immunofluorescence showed focal areas where antibodies did not bind. Similarly, mass spectrometry imaging showed areas of low-abundance or absent molecular ions and new molecular ions in treated areas. The data presented here provide the first direct evidence that reactive embolization results in fundamental changes in tissue architecture down to the molecular level, suggesting significant therapeutic potential. These encouraging results open a wide new field of image-guided in vivo chemistry worthy of further exploration.
Collapse
Affiliation(s)
- Erik Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Danielle Stolley
- Flow Cytometry & Cellular Imaging Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubhneet Warar
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Zhang Q, Liang Q, Xu C. Exploring the association between chemotherapy and prognosis among patients less than 50 years old with hepatocellular carcinoma: a retrospective cohort study based on the SEER database. Discov Oncol 2025; 16:682. [PMID: 40332634 PMCID: PMC12058605 DOI: 10.1007/s12672-025-02490-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND/AIM Hepatic carcinoma, including hepatocellular carcinoma (HCC), is one of the most common malignant tumors globally, with an increasing incidence among younger populations. While chemotherapy is effective for advanced HCC, its impact on the prognosis of younger patients, who typically have better physiological conditions, remains unclear. Younger patients may have different tumor biology and chemotherapy responses than older patients. This study aims to evaluate the impact of chemotherapy on the prognosis and survival rates of younger HCC patients. METHODS A retrospective analysis was conducted using the Surveillance, Epidemiology, and End Results Program (SEER) database, which provides information on cancer statistics among the US population. We selected patients diagnosed with primary HCC between 2010 and 2015. The patients were divided into two groups based on whether they received chemotherapy or not. Kaplan-Meier analyses were utilised to evaluate the impact of chemotherapy on prognosis by comparing the overall survival (OS) and cancer-specific survival (CSS) between the two groups. After performing 1:1 propensity score matching (PSM), the differences in OS and CSS were reassessed. RESULTS Before PSM, there were 1662 participants with primary HCC. After PSM, the sample was reduced to 1154 participants, with 577 individuals in each chemotherapy and non-chemotherapy group. Before PSM, there was no statistically significant difference in OS and CSS between the chemotherapy and non-chemotherapy groups (P = 0.25 and P = 0.06). After PSM, although the survival time in the chemotherapy group was slightly extended, the difference remained statistically insignificant (P = 0.09 and P = 0.38). Kaplan-Meier curves indicated no significant difference between the chemotherapy and non-chemotherapy groups, both before and after PSM, further supporting the conclusion that chemotherapy did not significantly improve survival in young patients with HCC. CONCLUSION Chemotherapy did not significantly improve survival for young patients with HCC. Treatment decisions should be approached cautiously, especially in cases with complex tumor characteristics. Future studies should explore the mechanisms of chemotherapy in younger patients and develop personalized treatment strategies to improve long-term outcomes.
Collapse
Affiliation(s)
- Qiyu Zhang
- Department of Interventional Treatment, Beijing NO.6 Hospital, No. 36, North Ertiao, Jiaodaokou, Dongcheng District, Beijing, 100009, China
| | - Qiongyu Liang
- Department of Interventional Treatment, Beijing NO.6 Hospital, No. 36, North Ertiao, Jiaodaokou, Dongcheng District, Beijing, 100009, China
| | - Chi Xu
- Department of Interventional Treatment, Beijing NO.6 Hospital, No. 36, North Ertiao, Jiaodaokou, Dongcheng District, Beijing, 100009, China.
| |
Collapse
|
15
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Pathogenesis and Systemic Treatment of Hepatocellular Carcinoma: Current Status and Prospects. Mol Cancer Ther 2025; 24:692-708. [PMID: 39417575 DOI: 10.1158/1535-7163.mct-24-0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the major threats to human health worldwide. The emergence of systemic therapeutic options has greatly improved the prognosis of patients with HCC, particularly those with advanced stages of the disease. In this review, we discussed the pathogenesis of HCC, genetic alterations associated with the development of HCC, and alterations in the tumor immune microenvironment. Then, important indicators and emerging technologies related to the diagnosis of HCC are summarized. Also, we reviewed the major advances in treatments for HCC, offering insights into future prospects for next-generation managements.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Ganne-Carrié N, Nahon P. Differences between hepatocellular carcinoma caused by alcohol and other aetiologies. J Hepatol 2025; 82:909-917. [PMID: 39710147 DOI: 10.1016/j.jhep.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Alcohol-related liver disease is the third leading cause of hepatocellular carcinoma worldwide and the leading cause in Europe. Additionally, the recent definition of metabolic dysfunction-associated steatotic liver disease with increased alcohol intake (MetALD) will enrich this population with a more nuanced phenotype, reflecting recent epidemiological trends. In these patients, the hepatocellular carcinoma diagnosis is often delayed and less frequently detected through screening programmes. Moreover, at the time of diagnosis, patients with alcohol-related hepatocellular carcinoma tend to have a poorer general condition, more severely impaired liver function, and a higher prevalence of comorbidities, leading to increased competitive mortality. However, when hepatocellular carcinoma is diagnosed during surveillance programmes in patients with alcohol-related liver disease or MetALD, the rate of allocation to first-line curative treatments is high (56%) and comparable to that of patients with virus-related hepatocellular carcinoma. As a consequence, the aetiology of the underlying cirrhosis cannot be considered an independent prognostic factor in patients with hepatocellular carcinoma. Instead, prognosis is driven by liver function, general condition, and tumour burden. This underscores the crucial role of early diagnosis through periodic surveillance in patients with alcohol- or MetALD-related cirrhosis.
Collapse
Affiliation(s)
- Nathalie Ganne-Carrié
- AP-HP, Hôpital Avicenne, Liver Unit, F-93000 Bobigny, France; University Sorbonne Paris Nord, UFR SMBH, F-93000 Bobigny, France; INSERM UMR-1168, Functional Genomics of Solid Tumours, F-75006 Paris, France.
| | - Pierre Nahon
- AP-HP, Hôpital Avicenne, Liver Unit, F-93000 Bobigny, France; University Sorbonne Paris Nord, UFR SMBH, F-93000 Bobigny, France; INSERM UMR-1168, Functional Genomics of Solid Tumours, F-75006 Paris, France
| |
Collapse
|
17
|
Huang P, Rodriguez-Matos FJ, Qi J, Trehan R, Myojin Y, Zhu XB, Greten TF, Ma C. Hepatic immune environment differences among common mouse strains in models of MASH and liver cancer. JHEP Rep 2025; 7:101380. [PMID: 40342632 PMCID: PMC12060451 DOI: 10.1016/j.jhepr.2025.101380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 05/11/2025] Open
Abstract
Background & Aims Inbred mouse strains are critical tools for studying immune regulation of metabolic dysfunction-associated steatohepatitis (MASH) and hepatocellular carcinoma (HCC). Here, we profiled mouse strain-associated hepatic immune differences, and performed mice-human cross-species immune comparisons. Methods Immune landscapes of C57BL/6, BALB/c, and FVB/N mice were compared under healthy, MASH, or HCC state using high-dimensional spectral flow cytometry (n = 4 per condition). MASH was induced by feeding methionine- and choline-deficient or Western diet + carbon tetrachloride. HCC was caused by hydrodynamic plasmid injection of MYC/sg-p53. Public mouse and human scRNA-seq datasets were used for validation and cross-species comparisons. Results In healthy mice, liver CD4+ T (24% vs. 14% vs. 34%, p <0.05) and B cells (36.5% vs. 35% vs.18%, p <0.05) varied the most among three strains. C57BL/6 mice showed TH1 dominance, whereas BALB/c and FVB/N mice had TH2 dominance (log[TH1:TH2] = 0.17, -0.31, -0.17). In MASH mice, expansion of liver myeloid cells and innate lymphocytes were commonly found, but changes of B cells (log(fold-change) = -0.38, -0.28, -0.58, p <0.05) and T subsets (e.g. CD4+ T log(fold-change) = -0.21, -0.07, -0.15, p <0.05) varied greatly among strains. MYC/sg-p53 HCC induced a consistent expansion of liver Tregs and CD8+ T cells (p <0.05), but differential shifts of liver immune landscape were seen among strains. The flow cytometry data was supported by public scRNA-seq datasets matching C57BL/6 background. Further cross-species comparison in MASH condition confirmed shared changes of adaptive lymphocytes between mice and humans. In two MASH models, BALB/c or C57BL/6 mice were more consistent to recapture loss of CD4+ T or B cells, respectively (p <0.05). Conclusions Substantial liver immune differences exist among common mouse strains. Mice can recapitulate certain human liver immune changes with strain variations. Impact and implications Our immune cell profiling study revealed that the liver immune environment can be quite different among common mouse strains both under healthy and pathologic states, such as steatohepatitis or neoplastic processes. Our results serve as a data resource for studies investigating liver immunology and provide valuable insights for the design of studies on various immune cells in the livers of mice.
Collapse
Affiliation(s)
- Patrick Huang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francisco J. Rodriguez-Matos
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Qi
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rajiv Trehan
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuta Myojin
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao Bin Zhu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI CCR Liver Cancer Program, National Institutes of Health, Bethesda, MD, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Tsakiridis EE, Ahmadi E, Gautam J, Hannah She YR, Fayyazi R, Lally JS, Wang S, Di Pastena F, Valvano CM, Del Rosso D, Biziotis OD, Meyers B, Muti P, Tsakiridis T, Steinberg GR. Salsalate improves the anti-tumor efficacy of lenvatinib in MASH-driven hepatocellular carcinoma. JHEP Rep 2025; 7:101354. [PMID: 40276482 PMCID: PMC12018114 DOI: 10.1016/j.jhepr.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 04/26/2025] Open
Abstract
Background & Aims Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of hepatocellular carcinoma (HCC) worldwide. The complex microenvironment of these tumors, characterized by metabolic dysfunction, hypoxia, steatosis, and fibrosis, limits the effectiveness of standard-of-care therapies, such as the multi-tyrosine kinase inhibitor lenvatinib (LEN). Salsalate (SAL), is a rheumatoid arthritis therapy that enhances fatty acid oxidation and reduces de novo lipogenesis, fibrosis and cell proliferation pathways. We hypothesize that addition of SAL could improve the efficacy of LEN in MASH-HCC. Methods We assessed the efficacy of combination therapy using clinically relevant concentrations of LEN and SAL in human HCC cell models, orthotopic xenograft and MASH-HCC mouse models. In addition, assays assessing fatty acid oxidation and lipogenesis, protein immunoblotting and RNA-sequencing were used to understand mechanisms involved. Results LEN + SAL synergistically suppressed the proliferation and clonogenic survival of cells (p ≤0.0001), prolonged survival in an orthotopic xenograft model (p = 0.02), and reduced angiogenesis, fibrosis, and steatosis (p ≤0.05) in a MASH-HCC model. These effects were associated with activation of AMPK and inhibition of the mTOR-HIF1α and Erk1/2 signaling pathways. RNA-sequencing analysis in both Hep3B cells and livers of the MASH-HCC mouse model revealed that SAL enhanced fatty acid oxidation and suppressed fibrosis and cell cycle progression, while LEN reduced angiogenesis with regulatory network analysis, suggesting a potential role for activating transcription factor 3 (ATF3) and ETS-proto-oncogene-1 (ETS-1). Conclusions These data indicate that combining LEN and SAL, which exert distinct effects leading to improvements in the liver microenvironment (steatosis, angiogenesis, and fibrosis) and inhibition of tumor proliferation, may have therapeutic potential for MASH-driven HCC. Impact and implications Although rates of MASH-HCC are on the rise globally, standard-of-care multi-tyrosine kinase inhibitors and immunotherapy have limited efficacy in this HCC etiology. Metabolic targeting with SAL inhibits cancer growth kinetics while also alleviating drivers of MASH by increasing fatty acid oxidation and reducing de novo lipogenesis and fibrosis. Combined LEN and SAL improved survival and MASH-HCC pathology in mouse models without adverse effects. Given that SAL is a safe, economical, and approved medication, this concept holds great translational potential that could provide a new treatment avenue for patients with unresected MASH-HCC.
Collapse
Affiliation(s)
- Evangelia E. Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Elham Ahmadi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
| | - Jaya Gautam
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Yi Ran Hannah She
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Russta Fayyazi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - James S.V. Lally
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Simon Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Fiorella Di Pastena
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Celina M. Valvano
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Daniel Del Rosso
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Olga-Demetra Biziotis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Brandon Meyers
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Paola Muti
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Theodoros Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Juravinski Cancer Center, Hamilton Health Sciences, 699 Concession Street, Hamilton, ONT, L8V 5CV, Canada
- Department of Oncology, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| | - Gregory R. Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ONT, L8S 4K1, Canada
| |
Collapse
|
19
|
Brown TJ, Amit U, Gheewala R, Ben-Josef E, Karasic TB. Evaluating the Safety and Efficacy of Adding Liver-Directed Radiation Therapy to Atezolizumab and Bevacizumab in Advanced Hepatocellular Carcinoma: A Single-Center Retrospective Cohort Analysis. Am J Clin Oncol 2025:00000421-990000000-00289. [PMID: 40304455 DOI: 10.1097/coc.0000000000001214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
OBJECTIVES Radiation therapy (RT) may potentiate an antitumor immune response when combined with immunotherapy in advanced hepatocellular carcinoma (HCC) but carries the potential risk of bowel toxicity and impaired liver function. We describe our single-center experience of adding liver-directed RT to atezolizumab and bevacizumab (A/B) in patients with advanced HCC. METHODS This was a single-center retrospective cohort study of patients with HCC naive to systemic therapy who received A/B with or without liver-directed RT from January 1, 2020 until May 1, 2023. We assessed safety outcomes, the real-world response rate (rwRR), overall survival (OS), and time-to-progression (TTP) from initiation of A/B. Time-to-event outcomes were analyzed by Kaplan-Meier methodology. Given anticipated baseline imbalances between cohorts, no formal comparisons were performed. RESULTS We identified 49 patients (n=34 control, n=15 RT) who met the inclusion criteria. The cohorts differed in the presence of ascites, baseline liver dysfunction, infection with hepatitis B, and alcoholic liver disease. Two patients in the control group (5.8%) and 1 patient in the RT group (6.7%) experienced clinically significant bleeding. One patient (6.7%) developed possible RT-induced liver disease. The rwRR in the RT group was 73.3% (11/15) compared with 17.6% (6/34) in the control group. The median OS in the RT group was 14.4 months, and 10.8 months in the control group. Median TTP was 6.4 months with RT compared with 5.8 months in the control group. CONCLUSIONS The addition of liver RT to A/B resulted in limited additional toxicity with increased response rates, although significant differences in baseline characteristics limit a full interpretation of this data. Ongoing trials and trials under development will provide informative data regarding the addition of RT to A/B, particularly to assess the impact on OS and TTP.
Collapse
Affiliation(s)
- Timothy J Brown
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX
| | - Uri Amit
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Rohi Gheewala
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Edgar Ben-Josef
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Thomas B Karasic
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
20
|
Wu Q, Yang Y, Lin S, Geller DA, Yan Y. The microenvironment in the development of MASLD-MASH-HCC and associated therapeutic in MASH-HCC. Front Immunol 2025; 16:1569915. [PMID: 40370443 PMCID: PMC12074932 DOI: 10.3389/fimmu.2025.1569915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/08/2025] [Indexed: 05/16/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a series of obesity-related metabolic liver diseases, ranging from relatively benign hepatic steatosis to metabolic-associated steatohepatitis (MASH). With the changes in lifestyle, its incidence and prevalence have risen to epidemic proportions globally. In recent years, an increasing amount of evidence has indicated that the hepatic microenvironment is involved in the pathophysiological processes of MASH-induced liver fibrosis and the formation of hepatocellular carcinoma (HCC). The hepatic microenvironment is composed of various parenchymal and non-parenchymal cells, which communicate with each other through various factors. In this review, we focus on the changes in hepatocytes, cholangiocytes, liver sinusoidal endothelial cells (LSECs), hepatic stellate cells (HSCs), Kupffer cells (KC), dendritic cells (DC), neutrophils, monocytes, T and B lymphocytes, natural killer cells (NK), natural killer T cells (NKT), mucosal-associated invariant T cells (MAIT), γδT cells, and gut microbiota during the progression of MASLD. Furthermore, we discuss promising therapeutic strategies targeting the microenvironment of MASLD-MASH-HCC.
Collapse
Affiliation(s)
- Qiulin Wu
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Yang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shixun Lin
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David A. Geller
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Yihe Yan
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
21
|
Seo ES, Lee SK, Son YM. Multifaceted functions of tissue-resident memory T cells in tumorigenesis and cancer immunotherapy. Cancer Immunol Immunother 2025; 74:184. [PMID: 40285796 PMCID: PMC12033165 DOI: 10.1007/s00262-025-04035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Tissue-resident memory T (TRM) cells are well reported as a strong protective first line of defense against foreign antigens in non-lymphoid tissues. Moreover, TRM cells have demonstrated critical protective roles in antitumor immunity, contributing to enhanced survival and tumor growth inhibition across various cancer types. However, surprisingly, recent studies suggest that TRM cells can exhibit paradoxical effects, potentially promoting tumor progression under certain conditions and leading to adverse outcomes during antitumor immune responses. Understanding the complexities of TRM cell functions will enable us to harness their potential in advancing cancer immunotherapy more effectively. Therefore, this review comprehensively investigates the dual roles of TRM cells in different tumor contexts, highlighting their protective functions in combating cancers and their unfavorable potential to exacerbate tumor development. Additionally, we explore the implications of TRM cell behaviors for future cancer treatment strategies, emphasizing the need for further research to optimize the therapeutic exploitation of TRM cells while mitigating their deleterious effects.
Collapse
Affiliation(s)
- Eun Sang Seo
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sung-Kyu Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
22
|
Li Q, Wang M, Huang X, Wang S, Li C, Li P, Xiang W, Yao L, Deng C, Zhang M, Wang J. 6-Gingerol, an active compound of ginger, attenuates NASH-HCC progression by reprogramming tumor-associated macrophage via the NOX2/Src/MAPK signaling pathway. BMC Complement Med Ther 2025; 25:154. [PMID: 40269843 PMCID: PMC12020160 DOI: 10.1186/s12906-025-04890-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/10/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis-associated hepatocellular carcinoma (NASH-HCC) accounts for an increasing proportion of HCC cases. Currently, effective pharmacological options for treating both NASH and NASH-HCC remain limited, necessitating the identification of novel therapeutic agents. Our previous studies have demonstrated that ginger can ameliorate nonalcoholic fatty liver disease (NAFLD) and prevent the occurrence of NASH. The therapeutic effects and underlying mechanisms of NASH-HCC, however, remain poorly understood. METHODS Network pharmacology, bioinformatics, single-cell RNA sequencing analysis, and molecular docking were used to identify the main active compounds, targets, and possible mechanisms of ginger in treating NASH-HCC. The anti-tumor efficacy and underlying mechanisms of the selected compound in treating NASH-HCC were validated through in vitro experimentation. RESULTS Network pharmacology, bioinformatics, and molecular docking have revealed that 6-gingerol is the main active compound of ginger in treating NASH-HCC. SRC can be an essential target gene for ginger attenuating NASH-HCC progression, while the mitogen-activated protein kinase (MAPK) signaling pathway and reactive oxygen species (ROS) play equally important roles. Single-cell RNA sequencing of the HCC patients shows that the key targets of ginger in treating NASH-HCC are distributed in tumor-associated macrophage (TAMs). It has been reported that NOX2-derived ROS in macrophages can activate Src and then regulate downstream MAPK signaling cascades. 6-Gingerol can inhibit the proliferation, migration and reduce lipid deposition of liver cancer cells in vitro. More importantly, it induces polarization TAMs to M1 and enhances proinflammatory function, which may be achieved via the NOX2/Src/MAPK signaling pathway. CONCLUSION This study proves that 6-gingerol, the primary active compound in ginger, plays a role in attenuating the progression of NASH-HCC by inhibiting the proliferation and migration of tumor cells, or reprogramming TAMs to the M1 phenotype via the NOX2/Src/MAPK signaling pathway and activating the TAM-mediated immune responses.
Collapse
Affiliation(s)
- Qiurui Li
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Meng Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xuekuan Huang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Shang Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Chunli Li
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wei Xiang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China
| | - Ling Yao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China
| | - Chengdan Deng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China
| | - Mingming Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China.
| | - Jianwei Wang
- College of Traditional Chinese Medicine, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing University of Chinese Medicine, No. 61 Puguobao Road, Bishan District, Chongqing, 402760, China.
| |
Collapse
|
23
|
Zhang YM, Wu XT, Yi JZ, Xu J, Zhang YN, Lyu N, Zhao M. Matching-Adjusted Indirect Comparison of Arterial FOLFOX and Atezolizumab-Bevacizumab in Unresectable Hepatocellular Carcinoma. Liver Cancer 2025:1-18. [PMID: 40438087 PMCID: PMC12113427 DOI: 10.1159/000545891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/10/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction A previous phase 3 FOHAIC-1 study demonstrated that hepatic arterial infusion chemotherapy (HAIC) of FOLFOX regimen displayed favorable outcomes in advanced hepatocellular carcinoma (HCC) patients, including those with high-risk features (main portal tumor invasion and >50% liver infiltration). This study aimed to compare the treatment efficacy of HAIC-FOLFOX versus atezolizumab-bevacizumab in HCC patients. Methods Individual patient data from the Chinese FOHAIC-1 study and aggregate data from the global IMbrave150 study were used to conduct an anchored matching-adjusted indirect comparison. Hazard ratios (HR) and restricted mean survival times (RMST) were calculated to assess survival differences. Landmark analysis was performed to evaluate time-sensitive treatment effects, and simulated treatment comparison (STC) was conducted as a sensitivity analysis. Rates of treatment-related adverse events (TRAEs) and TRAE-related discontinuations were also compared. Results After matching baseline characteristics, HAIC showed a numerical OS benefit (HR 0.57, 95% CI, 0.30-1.08) and similar PFS benefit (HR 0.79, 95% CI, 0.43-1.47) compared to atezolizumab-bevacizumab in the overall population. In high-risk patients, HAIC demonstrated significantly improved OS (HR 0.30, 95% CI, 0.12-0.72) and 2.89-month longer RMST compared to atezolizumab-bevacizumab (95% CI, 0.15-5.64 months). Additionally, HAIC showed superior PFS (HR 0.25, 95% CI, 0.10-0.64) and 2.88-month longer RMST over atezolizumab-bevacizumab (95% CI, 0.90-4.86). Landmark analysis in the high-risk group revealed that HAIC was associated with significant improvements in both OS (HR 0.32, 95% CI, 0.13-0.79) and PFS (HR 0.24, 95% CI, 0.09-0.63) during the 0-12 months following treatment initiation. Sensitivity analysis using the anchored STC analysis yielded consistent results. HAIC was associated with lower rates of grade 3-4 TRAEs and TRAE-related discontinuation in both the overall population and the high-risk group. Conclusion HAIC treatment provided superior survival benefits and a favorable safety profile compared to atezolizumab-bevacizumab in high-risk HCC patients.
Collapse
Affiliation(s)
- Yi-Min Zhang
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xin-Tong Wu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jun-Zhe Yi
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jie Xu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yu-Nan Zhang
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Ning Lyu
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Ming Zhao
- Department of Minimally Invasive Interventional Therapy, Liver Cancer Study and Service Group, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
24
|
Cosgrove D, Tan R, Osterland AJ, Hernandez S, Ogale S, Mahrus S, Murphy J, Wilson T, Patton G, Loaiza-Bonilla A, Singal AG. Atezolizumab Plus Bevacizumab in Patients with Unresectable Hepatocellular Carcinoma: Real-World Experience From a US Community Oncology Network. J Hepatocell Carcinoma 2025; 12:791-804. [PMID: 40271535 PMCID: PMC12015733 DOI: 10.2147/jhc.s492881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 04/25/2025] Open
Abstract
Purpose Atezolizumab plus bevacizumab (atezo-bev) is a preferred first-line (1L) systemic therapy option for unresectable hepatocellular carcinoma (uHCC). However, evidence of its effectiveness in real-world clinical practice, including in patients with impaired liver function, remains limited. Patients and Methods This retrospective observational study included adult patients who initiated 1L atezo-bev for uHCC within The US Oncology Network between 1/1/2019 and 8/31/2022 using structured and unstructured electronic health records data. Overall survival (OS) and real-world progression-free survival (rwPFS) were assessed using Kaplan-Meier methods for the overall cohort and in a subgroup of "trial-like" patients with characteristics that were consistent with those of the IMbrave150 Trial (ECOG performance status 0-1, Child-Pugh class A, albumin-bilirubin grade 1-2). Results Overall, 374 patients met eligibility criteria (mean age 68.8 years, 78.9% male, 31% Child-Pugh class B-C among reported, 18% ECOG performance status ≥2 among reported), of whom 132 patients comprised the trial-like subgroup. At a median follow-up of 5.6 months, median (95% CI) OS was 13.2 (9.5, 15.9) months and rwPFS was 6.4 (5.1, 7.7) months. In the trial-like subgroup, median (95% CI) OS was 16.5 (13.2, NR) months and rwPFS was 9.4 (5.7, 12.5) months. Conclusion Atezo-bev was used as 1L systemic therapy for HCC in a diverse patient population across US community oncology settings. Real-world effectiveness of atezo-bev among trial-like patients is comparable to that reported in the Phase 3 study. These data can help guide selection of appropriate treatment candidates and maximize the benefits of atezo-bev in routine clinical practice.
Collapse
Affiliation(s)
- David Cosgrove
- Medical Oncology, Compass Oncology/The US Oncology Network, Vancouver, WA, USA
| | | | | | | | | | | | - John Murphy
- Real-World Research, Ontada, Boston, MA, USA
| | | | | | | | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
25
|
Leoni I, Galvani G, Monti E, Vianello C, Valenti F, Pincigher L, Grolla AA, Moro M, Coada CA, Perrone A, Righi V, Marinelli S, Ravegnini G, Giovannini C, Baldassarre M, Pariali M, Ravaioli M, Cescon M, Vasuri F, Domenicali M, Negrini M, Piscaglia F, Fato R, Stefanelli C, Gramantieri L, Bergamini C, Fornari F. MiR-22/GLUT1 Axis Induces Metabolic Reprogramming and Sorafenib Resistance in Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:3808. [PMID: 40332478 PMCID: PMC12027541 DOI: 10.3390/ijms26083808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
The approval of immunotherapy has revolutionized the management of hepatocellular carcinoma (HCC) patients. However, sorafenib remains a first-line therapeutic option for advanced patients and, in particular, for patients not eligible for immune checkpoint inhibitors, but its efficacy is limited by the onset of acquired resistance, highlighting the urgent need for predictive biomarkers. This study investigates the role of miR-22 in metabolic reprogramming and its potential as a biomarker in HCC. The analysis of miR-22 expression was performed in HCC patients and preclinical models by qPCR. Functional analyses in HCC cells evaluated GLUT1 as a direct miR-22 target. Cellular and metabolic assays evaluated the miR-22/GLUT1 axis's role in metabolic changes, tumor aggressiveness, and sorafenib response. Circulating miR-22 was analyzed in sorafenib-treated HCC patients and rats. MiR-22 was downregulated in HCCs and associated with aggressive tumor features. Functionally, miR-22 modulated the HIF1A pathway, enhanced survival in stressful conditions, promoted a glycolytic shift, and enhanced cancer cell plasticity and sorafenib resistance via GLUT1 targeting. In addition, high serum miR-22 levels were associated with sorafenib resistance in HCC patients and rats. GLUT1 inhibition sensitized low miR-22-expressing HCC cells to sorafenib in preclinical models. These findings suggest that circulating miR-22 deserves attention as a predictive biomarker of sorafenib response. GLUT1 inhibition may represent a therapeutic strategy to combine with sorafenib, particularly in patients exhibiting high circulating miR-22 levels.
Collapse
Affiliation(s)
- Ilaria Leoni
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (I.L.); (G.G.); (E.M.); (C.V.); (V.R.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Giuseppe Galvani
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (I.L.); (G.G.); (E.M.); (C.V.); (V.R.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Elisa Monti
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (I.L.); (G.G.); (E.M.); (C.V.); (V.R.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Clara Vianello
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (I.L.); (G.G.); (E.M.); (C.V.); (V.R.); (C.S.)
- Centre for Applied Biomedical Research—CRBA, University of Bologna, 40138 Bologna, Italy
| | - Francesca Valenti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.V.); (L.P.); (G.R.); (R.F.)
| | - Luca Pincigher
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.V.); (L.P.); (G.R.); (R.F.)
| | - Ambra A. Grolla
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (A.A.G.); (M.M.)
| | - Marianna Moro
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, 28100 Novara, Italy; (A.A.G.); (M.M.)
| | - Camelia A. Coada
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (C.A.C.); (A.P.); (C.G.); (M.R.); (M.C.); (F.V.); (M.D.); (F.P.)
| | - Alessandro Perrone
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (C.A.C.); (A.P.); (C.G.); (M.R.); (M.C.); (F.V.); (M.D.); (F.P.)
| | - Valeria Righi
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (I.L.); (G.G.); (E.M.); (C.V.); (V.R.); (C.S.)
| | - Sara Marinelli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.M.); (L.G.)
| | - Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.V.); (L.P.); (G.R.); (R.F.)
| | - Catia Giovannini
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (C.A.C.); (A.P.); (C.G.); (M.R.); (M.C.); (F.V.); (M.D.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.M.); (L.G.)
| | - Maurizio Baldassarre
- Unit of Semiotics, Liver and Alcohol-Related Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Milena Pariali
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Matteo Ravaioli
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (C.A.C.); (A.P.); (C.G.); (M.R.); (M.C.); (F.V.); (M.D.); (F.P.)
- Hepato-Biliary Surgery and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Matteo Cescon
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (C.A.C.); (A.P.); (C.G.); (M.R.); (M.C.); (F.V.); (M.D.); (F.P.)
- Hepato-Biliary Surgery and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesco Vasuri
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (C.A.C.); (A.P.); (C.G.); (M.R.); (M.C.); (F.V.); (M.D.); (F.P.)
- Pathology Unit, Santa Maria delle Croci Hospital, 40121 Ravenna, Italy
| | - Marco Domenicali
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (C.A.C.); (A.P.); (C.G.); (M.R.); (M.C.); (F.V.); (M.D.); (F.P.)
| | - Massimo Negrini
- Department of Translational Medicine, University of Ferrara, 44100 Ferrara, Italy;
| | - Fabio Piscaglia
- Department of Medical and Surgical Sciences, Bologna University, 40138 Bologna, Italy; (C.A.C.); (A.P.); (C.G.); (M.R.); (M.C.); (F.V.); (M.D.); (F.P.)
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.M.); (L.G.)
| | - Romana Fato
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.V.); (L.P.); (G.R.); (R.F.)
| | - Claudio Stefanelli
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (I.L.); (G.G.); (E.M.); (C.V.); (V.R.); (C.S.)
| | - Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (S.M.); (L.G.)
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.V.); (L.P.); (G.R.); (R.F.)
| | - Francesca Fornari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (I.L.); (G.G.); (E.M.); (C.V.); (V.R.); (C.S.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
26
|
Kushwaha NK, Sreenath ND. From Present to Future: The Shifting Paradigm of Advanced Hepatocellular Carcinoma. JCO Oncol Pract 2025:OP2500198. [PMID: 40239127 DOI: 10.1200/op-25-00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Affiliation(s)
- Naveen Kumar Kushwaha
- Department of Surgical Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Nihanthy D Sreenath
- Department of Medical Oncology, Saroj Gupta Cancer Centre and Research Institute, Kolkata, India
| |
Collapse
|
27
|
Vithayathil M, Koku D, Campani C, Nault JC, Sutter O, Carrié NG, Aboagye EO, Sharma R. Machine learning based radiomic models outperform clinical biomarkers in predicting outcomes after immunotherapy for hepatocellular carcinoma. J Hepatol 2025:S0168-8278(25)00244-2. [PMID: 40246150 DOI: 10.1016/j.jhep.2025.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Atezolizumab plus bevacizumab (A/B) is a first-line therapy for unresectable hepatocellular carcinoma (HCC). Only a small proportion of patients respond to treatment. This study integrated radiomic and clinical data derived from routine pre-treatment imaging to predict outcomes after immunotherapy. METHODS 152 patients from two international centres receiving A/B were retrospectively reviewed. Deep learning autosegmentation generated whole liver masks from pre-treatment CTs. Radiomic features combined with clinical variables were used to predict 12-month mortality post A/B. Radiomic and integrated radiomic-clinical models were developed using 7 machine learning models in combination with 13 feature selection techniques in the Imperial College London (ICL) cohort. K-means clustering identified high- and low-risk groups and predicted overall survival (OS), progression-free survival (PFS) and response. Model performance was assessed in the independent Assistance Publique-Hôpitaux de Paris (AP-HP) cohort. RESULTS The integrated radiomic-clinical model outperformed BCLC stage (AUC 0.61, p<0.001) and ALBI grade (AUC 0.48, p<0.001) in ICL (AUC 0.89, 95% CI 0.75-0.99) and AP-HP (AUC 0.75, 95% CI 0.64-0.85) cohorts. Integrated model-stratified high-risk patients had significantly shorter median OS (ICL: 5.6 months vs. 28.2 months; p<0.001; AP-HP: 5.8 months vs. 15.7 months; p<0.001) and PFS (ICL: 2.4 months vs. 14.6 months; p<0.001; AP-HP: 2.1 months vs. 6.1 months; p=0.046). Low-risk patients had significantly higher ICI response rates compared to high-risk patients (35.6% vs. 21.4%; p=0.038). In multivariable analysis, radiomic group was the strongest predictor of OS (HR 3.22, 95% CI 1.99-5.20; p<0.001) and PFS (HR 1.82, 95% CI 1.18-2.80; p=0.010). CONCLUSION Radiomic-based models predict survival outcomes and response to immunotherapy in patients with advanced HCC. Deep learning in combination with machine learning can stratify patients and allows for precision treatment strategies. IMPACT AND IMPLICATIONS There is a lack of prognostic markers predicting survival and response after immunotherapy in hepatocellular carcinoma. This study used deep learning and machine learning to develop and validate an integrated radiomic-clinical model which can predict survival and response to atezolizumab plus bevacizumab from pre-treatment imaging. Radiomic-based machine learning models can risk-stratify advanced HCC patients receiving atezolizumab plus bevacizumab.
Collapse
Affiliation(s)
| | - Deniz Koku
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Claudia Campani
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Citẻ University, "Functional Genomics of Solid Tumours" team, Ligue Nationale Contre le Cancer accredited team, Labex OncoImmunology, Paris, France; Department of Experimental and Clinical Medicine, Internal Medicine and Hepatology Unit, University of Firenze, Florence, Italy
| | - Jean-Charles Nault
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Citẻ University, "Functional Genomics of Solid Tumours" team, Ligue Nationale Contre le Cancer accredited team, Labex OncoImmunology, Paris, France; Liver Unit, Avicenne Hospital, Paris-Seine-Saint-Denis Universitary Hospitas, AP-HP, Bobigny, France
| | - Olivier Sutter
- Diagnostic and Interventional Imaging Department, Avicenne Hospital, AP-HP, France; University of Bordeaux, IMB, UMR CNRS 5251, INRIA Project team Monc, Talence, France
| | - Nathalie Ganne Carrié
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Citẻ University, "Functional Genomics of Solid Tumours" team, Ligue Nationale Contre le Cancer accredited team, Labex OncoImmunology, Paris, France; Liver Unit, Avicenne Hospital, Paris-Seine-Saint-Denis Universitary Hospitas, AP-HP, Bobigny, France
| | - Eric O Aboagye
- Department of Surgery & Cancer, Imperial College London, London, UK
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London, London, UK.
| |
Collapse
|
28
|
Wu Q, Zhao X, Yang C, Yuan Y, Yang H, Fu Q. Efficacy and safety of radiotherapy combined with immune checkpoint inhibitors for advanced or unresectable hepatocellular carcinoma: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2025; 211:104730. [PMID: 40239829 DOI: 10.1016/j.critrevonc.2025.104730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND To evaluate the efficacy and safety of radiotherapy with immune checkpoint inhibitors (ICIs), with or without anti-vascular endothelial growth factor (anti-VEGF) agents, in the treatment of advanced or unresectable hepatocellular carcinoma (HCC). METHODS Databases including Web of Science, PubMed, Embase, Cochrane Library databases, American Society of Clinical Oncology, and European Society for Medical Oncology were systematically searched. The search included publications up to August 31, 2024. Primary outcome measures included objective response rate (ORR), disease control rate (DCR), incidence of treatment-related adverse events (TRAEs), and TRAEs (grade ≥3). RESULTS Twenty-one articles were included in this study (927 participants). Following RECIST 1.1, for external radiotherapy combined with ICIs, the ORR and DCR were 56 % (95 % CI 0.48-0.64, I2=65.91 %) and 88 % (95 % CI 0.77-0.96, I2=87.19 %), respectively; for yttrium-90 combined with ICI, they were 31 % (95 %CI 0.20-0.43, I2=0 %) and 73 % (95 %CI 0.48-0.92, I2=75.23 %), respectively. According to CTCAE criteria, for external radiotherapy combined with ICIs, the incidence of TRAEs (all grades) was 95 % (95 % CI 0.89-0.98, I2=70.79 %), and the incidence of TRAEs (grades ≥3) was 35 % (95 % CI 0.23-0.48, I2=87.54 %); for yttrium-90 combined with ICIs, they were 78 % (95 %CI 0.48-0.98, I2=88.15 %) and 22 % (95 %CI 0.04-0.47, I2=83.69 %), respectively. Subgroup analyses indicated that sequential therapy demonstrated a higher DCR than concurrent therapy, while the combination of intensity-modulated radiotherapy, ICIs, and anti-VEGF agents showed improved efficacy but was associated with increased toxicity. CONCLUSIONS Radiotherapy combined with ICI demonstrates substantial efficacy and manageable safety in advanced or unresectable HCC. Sequential therapy may enhance therapeutic effectiveness while reducing TRAEs.
Collapse
Affiliation(s)
- Qibin Wu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Xia Zhao
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Chong Yang
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China; Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Yinglin Yuan
- Department of Hepatobiliary and Pancreatic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China; Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Hongji Yang
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Qiang Fu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, China.
| |
Collapse
|
29
|
Fu L, Li S, Mei J, Li Z, Yang X, Zheng C, Li N, Lin Y, Cao C, Liu L, Huang L, Shen X, Huang Y, Yun J. BIRC2 blockade facilitates immunotherapy of hepatocellular carcinoma. Mol Cancer 2025; 24:113. [PMID: 40223121 PMCID: PMC11995630 DOI: 10.1186/s12943-025-02319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/01/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND The effectiveness of immunotherapy in hepatocellular carcinoma (HCC) is limited, however, the molecular mechanism remains unclear. In this study, we identified baculoviral IAP repeat-containing protein 2 (BIRC2) as a key regulator involved in immune evasion of HCC. METHODS Genome-wide CRISPR/Cas9 screening was conducted to identify tumor-intrinsic genes pivotal for immune escape. In vitro and in vivo models demonstrated the role of BIRC2 in protecting HCC cells from immune killing. Then the function and relevant signaling pathways of BIRC2 were explored. The therapeutic efficacy of BIRC2 inhibitor was examined in different in situ and xenograft HCC models. RESULTS Elevated expression of BIRC2 correlated with adverse prognosis and resistance to immunotherapy in HCC patients. Mechanistically, BIRC2 interacted with and promoted the ubiquitination-dependent degradation of NFκB-inducing kinase (NIK), leading to the inactivation of the non-canonical NFκB signaling pathway. This resulted in the decrease of major histocompatibility complex class I (MHC-I) expression, thereby protecting HCC cells from T cell-mediated cytotoxicity. Silencing BIRC2 using shRNA or inhibiting it with small molecules increased the sensitivity of HCC cells to immune killing. Meanwhile, BIRC2 blockade improved the function of T cells both in vitro and in vivo. Targeting BIRC2 significantly inhibited tumor growth, and enhanced the efficacy of anti-programmed death protein 1 (PD-1) therapy. CONCLUSIONS Our findings suggested that BIRC2 blockade facilitated immunotherapy of HCC by simultaneously sensitizing tumor cells to immune attack and boosting the anti-tumor immune response of T cells.
Collapse
Affiliation(s)
- Lingyi Fu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Shuo Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jie Mei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ziteng Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Chengyou Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Nai Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yansong Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Chao Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Lixuan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Liyun Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Xiujiao Shen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China.
| |
Collapse
|
30
|
Su P, Han Y, Yi J, Hou Y, Xiao Y. Research status and frontiers in liver cancer immunotherapy: a bibliometric perspective on highly cited literature. Front Oncol 2025; 15:1587252. [PMID: 40276056 PMCID: PMC12018336 DOI: 10.3389/fonc.2025.1587252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Background Liver cancer is one of the major causes of cancer-related death in the world. As a breakthrough therapy, immunotherapy had significantly improved the prognosis of patients. However, the current research status and research hotspots in the field of liver cancer immunotherapy still lack systematic review. Based on the bibliometric analysis of highly cited papers, this study intended to reveal the current research status, research hotspots and future research trends in this field. Objective The purpose of this study was to analyze the national/regional contributions, authors and institutions cooperation network, keywords clustering and keywords burst analysis of highly cited papers on liver cancer immunotherapy through bibliometrics, so as to clarify the research frontier and development direction, and provide objective data support for future research direction and clinical practice. Methods The highly cited papers on liver cancer immunotherapy from the Web of Science core collection up to February 23, 2025 were retrieved, and 232 studies were included. CiteSpace was used to build a knowledge map, analyze the distribution of years, countries, authors, institutions and cooperation networks, and identify research hotspots and emerging trends through keyword clustering and burst detection. Results The number of highly cited papers continued to increase from 2014 and reached a peak in 2022. China and the United States had the highest number of publications and the centrality of cooperation networks. The author with the highest number of papers was Llovet, Josep M, whose research direction mainly focused on immune checkpoint inhibitor combination therapy and molecular typing. The author with the highest cooperation network centrality was Duda, Dan G, whose research team focused on tumor microenvironment regulation. Harvard University and the University of Barcelona played an important central role in the institutional collaboration. Keywords analysis showed that immune checkpoint inhibitors, tumor microenvironment and combination therapy were the core of liver cancer immunotherapy. Burst keywords such as cell lung cancer, pembrolizumab, advanced melanoma, blockade, lymphocytes, etc. had revealed the research frontier of liver cancer immunotherapy research. Conclusion The research on liver cancer immunotherapy had made multi-dimensional progress, with China and the United States leading the global cooperation. The main research directions were the combination strategy of immunization, the regulation of tumor microenvironment and the exploration of novel targets. In the future, it is necessary to optimize treatment resistance solutions, integrate interdisciplinary resources, and promote the development of precision and personalized treatment.
Collapse
Affiliation(s)
- Pan Su
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yeqiong Han
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Jindong Yi
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hou
- Department of Pulmonology, Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Galvez B. Pedreira J, Woelffing P, Schwarz M, Ebner S, Rudalska R, Masberg B, Esposito A, Rashidian A, Schevchenko E, Smutna L, Pavek P, Kublbeck J, Kronenberger T, Zender L, Lämmerhofer M, Dauch D, Laufer SA. Uncovering α-Selectivity for Liver X Receptor Agonists for Lipotoxic Cancer Therapies. J Med Chem 2025; 68:7180-7196. [PMID: 40127224 PMCID: PMC11997999 DOI: 10.1021/acs.jmedchem.4c02712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/07/2025] [Accepted: 03/07/2025] [Indexed: 03/26/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent causes of cancer-related deaths worldwide. We recently showed that pharmacologically induced lipotoxicity represents a promising therapeutic strategy for the treatment of HCC. Synthetic LXRα agonists induce the production of toxic saturated fatty acids in tumor cells. When combined with DFG-out Raf inhibitors, which block fatty acid desaturation by inducing proteasomal degradation of stearoyl-CoA desaturase (SCD1), LXRα activation can trigger lipotoxicity-induced cancer cell death. However, the clinical translation of this therapeutic strategy is limited by the lack of specific LXRα agonists for clinical use. Here, we have developed a series of promising maleimide LXR agonists with increased potency for LXRα and enhanced specificity. Our agonist frontrunner 40 shows high selectivity for LXRα and strong therapeutic efficacy in HCC organoids, therefore illustrating a strong potential for advancing this lipotoxic treatment strategy to clinical application.
Collapse
Affiliation(s)
- Júlia Galvez B. Pedreira
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
| | - Pascal Woelffing
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
| | - Moritz Schwarz
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Simon Ebner
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Ramona Rudalska
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
| | - Benedikt Masberg
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Aylin Esposito
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
| | - Azam Rashidian
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Ekaterina Schevchenko
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Lucie Smutna
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Petr Pavek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Jenni Kublbeck
- School
of
Pharmacy, Faculty of Health Sciences, University
of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
- A.I. Virtanen
Institute for Molecular Sciences, University
of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
| | - Thales Kronenberger
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- School
of
Pharmacy, Faculty of Health Sciences, University
of Eastern Finland, P.O. Box 1627, Kuopio FI-70210, Finland
- Partner-site
Tuebingen, German Center for Infection Research
(DZIF), Elfriede-Aulhorn-Str.
6, Tuebingen 72076, Germany
| | - Lars Zender
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
- Tuebingen
Center for Academic Drug Discovery & Development (TüCAD2), Auf der Morgenstelle 8, Tuebingen 72076, Germany
- German
Cancer Research Consortium (DKTK), Partner Site Tuebingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Michael Lämmerhofer
- Pharmaceutical
(Bio-)Analysis, Institute of Pharmaceutical Sciences, Eberhard-Karls University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Daniel Dauch
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Department
of Medical Oncology and Pneumology, University
Hospital Tuebingen, Otfried-Mueller-Strasse
14, Tuebingen 72076, Germany
- Tuebingen
Center for Academic Drug Discovery & Development (TüCAD2), Auf der Morgenstelle 8, Tuebingen 72076, Germany
| | - Stefan A. Laufer
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, University of Tuebingen, Auf der Morgenstelle 8, Tuebingen 72076, Germany
- IFIT Cluster
of Excellence EXC 2180 ‘Image-Guided and Functionally Instructed
Tumor Therapies’, University of Tuebingen, Tuebingen 72076, Germany
- Partner-site
Tuebingen, German Center for Infection Research
(DZIF), Elfriede-Aulhorn-Str.
6, Tuebingen 72076, Germany
- Tuebingen
Center for Academic Drug Discovery & Development (TüCAD2), Auf der Morgenstelle 8, Tuebingen 72076, Germany
| |
Collapse
|
32
|
Zeng F, Zhang Q, Tsui YM, Ma H, Tian L, Husain A, Lu J, Lee JMF, Zhang VX, Li PM, Cheung GCH, Cheung TT, Ho DWH, Ng IOL. Multimodal sequencing of neoadjuvant nivolumab treatment in hepatocellular carcinoma reveals cellular and molecular immune landscape for drug response. Mol Cancer 2025; 24:110. [PMID: 40205519 PMCID: PMC11980310 DOI: 10.1186/s12943-025-02314-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
A striking characteristic of liver cancer is its extensive heterogeneity, particularly with regard to its varied response to immunotherapy. In this study, we employed multimodal sequencing approaches to explore the various aspects of neoadjuvant nivolumab treatment in liver cancer patients. We used spatially-resolved transcriptomics, single- and bulk-cell transcriptomics, and TCR clonotype analyses to examine the spatiotemporal dynamics of the effects of nivolumab. We observed a significantly higher clonal expansion of T cells in the tumors of patients who responded to the treatment, while lipid accumulation was detected in those of non-responders, likely due to inherent differences in lipid metabolic processes. Furthermore, we found a preferential enrichment of T cells, which was associated with a better drug response. Our results also indicate a functional antagonism between tumor-associated macrophages (TAMs) and CD8 cells and their spatial separation. Notably, we identified a UBASH3B/NR1I2/CEACAM1/HAVCR2 signaling axis, highlighting the intense communication among TAMs, tumor cells, and T-cells that leads to pro-tumorigenic outcomes resulting in poorer nivolumab response. In summary, using integrative multimodal sequencing investigations, combined with the multi-faceted exploration of pre- and post-treatment samples of neoadjuvant nivolumab-treated HCC patients, we identified useful mechanistic determinants of therapeutic response. We also reconstructed the spatiotemporal model that recapitulates the physiological restoration of T cell cytotoxicity by anti-PD1 blockade. Our findings could provide important biomarkers and explain the mechanistic basis differentiating the responders and non-responders.
Collapse
Grants
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- T12-704/16-R and T12-716/22-R the Hong Kong Research Grants Council Theme-based Research Scheme
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- ITC PD/17-9 Innovation and Technology Commission grant to State Key Laboratory of Liver Research
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- 17100021 & 17117019 RGC General Research Fund
- Health and Medical Research Fund (10212956 & 07182546), RGC General Research Fund
- University Development Fund of The University of Hong Kong
Collapse
Affiliation(s)
- Fanhong Zeng
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Qingyang Zhang
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Huanhuan Ma
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lu Tian
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Abdullah Husain
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jingyi Lu
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Vanilla Xin Zhang
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Po-Man Li
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Gary Cheuk-Hang Cheung
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Pokfulam, Hong Kong.
- State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
33
|
Holm E, Vermeulen I, Parween S, López-Pérez A, Cillero-Pastor B, Vandenbosch M, Remeseiro S, Hörnblad A. AMPK activator ATX-304 reduces oxidative stress and improves MASLD via metabolic switching. JCI Insight 2025; 10:e179990. [PMID: 40197369 PMCID: PMC11981618 DOI: 10.1172/jci.insight.179990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/25/2025] [Indexed: 04/10/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide for which there is only one approved treatment. Adenosine monophosphate-activated protein kinase (AMPK) is an interesting therapeutic target since it acts as a central regulator of cellular metabolism. Despite efforts to target AMPK, no direct activators have yet been approved for treatment of this disease. This study investigated the effect of the AMPK activator ATX-304 in a preclinical mouse model of progressive fatty liver disease. The data demonstrated that ATX-304 diminishes body fat mass, lowers blood cholesterol levels, and mitigates general liver steatosis and the development of liver fibrosis, but with pronounced local heterogeneities. The beneficial effects of ATX-304 treatment were accompanied by a shift in the liver metabolic program, including increased fatty acid oxidation, reduced lipid synthesis, as well as remodeling of cholesterol and lipid transport. We also observed variations in lipid distribution among liver lobes in response to ATX-304, and a shift in the zonal distribution of lipid droplets upon treatment. Taken together, our data suggested that ATX-304 holds promise as a potential treatment for MASLD.
Collapse
Affiliation(s)
- Emanuel Holm
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| | - Isabeau Vermeulen
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, Limburg, Netherlands
| | - Saba Parween
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| | - Ana López-Pérez
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, Limburg, Netherlands
- The MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Cell Biology-Inspired Tissue Engineering, Maastricht University, Maastricht, Limburg, Netherlands
| | - Michiel Vandenbosch
- Maastricht MultiModal Molecular Imaging Institute (M4i), Maastricht University, Maastricht, Limburg, Netherlands
| | - Silvia Remeseiro
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Andreas Hörnblad
- Department of Medical and Translational Biology, Umeå University, Umeå Sweden
| |
Collapse
|
34
|
Hsieh CH, Chuang PC, Liu YW. Beyond Adaptive Immunity: Trained Innate Immune Responses as a Novel Frontier in Hepatocellular Carcinoma Therapy. Cancers (Basel) 2025; 17:1250. [PMID: 40227782 PMCID: PMC11987826 DOI: 10.3390/cancers17071250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/23/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer death globally, with the majority of cases detected at advanced stages when curative options are limited. Current systemic therapies, including immune checkpoint inhibitors, demonstrate limited efficacy with durable responses in only 15-20% of patients. This poor response is largely attributed to HCC's immunosuppressive microenvironment, which blunts effective T-cell responses. By illustrating that innate immune cells can acquire memory-like characteristics through a process known as trained immunity, recent evidence has challenged the conventional belief that innate immunity is devoid of memory. This review investigates the potential of trained immunity, which is defined by the long-term functional reprogramming of innate immune cells through epigenetic, transcriptomic, and metabolic changes, to provide new therapeutic opportunities for HCC. We discuss mechanisms by which trained immunity can transform the HCC microenvironment, including enhanced inflammatory cytokine production, repolarization of tumor-associated macrophages toward anti-tumor phenotypes, increased immune cell infiltration, and improved bridging to adaptive immunity. We further evaluate emerging therapeutic strategies leveraging trained immunity principles, including BCG vaccination, β-glucan administration, cytokine-trained NK cell therapy, and innovative combination approaches. Finally, we address potential resistance mechanisms and future directions for clinical application. By integrating trained immunity into conventional immunotherapeutic regimens, we may significantly improve outcomes for HCC patients, potentially transforming advanced disease into a more manageable condition.
Collapse
Affiliation(s)
- Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan;
| | - Pei-Chin Chuang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Yueh-Wei Liu
- Department of General Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- Department of General Surgery, Kaohsiung Municipal Fong Shan Hospital—Under the Management of Chang Gung Medical Foundation, Kaohsiung 83091, Taiwan
| |
Collapse
|
35
|
Yang X, Deng B, Zhao W, Guo Y, Wan Y, Wu Z, Su S, Gu J, Hu X, Feng W, Hu C, Li J, Xu Y, Huang X, Lin Y. FABP5 + lipid-loaded macrophages process tumour-derived unsaturated fatty acid signal to suppress T-cell antitumour immunity. J Hepatol 2025; 82:676-689. [PMID: 39357545 DOI: 10.1016/j.jhep.2024.09.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND & AIMS Tumour-associated macrophages (TAMs) contribute to hepatocellular carcinoma (HCC) progression. However, while the pro-tumour and immunosuppressive roles of lipid-loaded macrophages are well established, the mechanisms by which lipid metabolism enhances the tumour-promoting effects of TAMs remain unclear. METHODS Single-cell RNA sequencing was performed on mouse and human HCC tumour samples to elucidate the landscape of HCC TAMs. Macrophages were stimulated with various long-chain unsaturated fatty acids (UFAs) to assess immunosuppressive molecule expression in vitro. Additionally, in vivo and in vitro studies were conducted using mice with macrophage-specific deficiencies in fatty acid-binding protein 5 (FABP5) or peroxisome proliferator-activated receptor γ (PPARγ). RESULTS Single-cell RNA sequencing identified a subpopulation of FABP5+ lipid-loaded TAMs characterized by enhanced immune checkpoint blocker ligands and immunosuppressive molecules in an oncogene-mutant HCC mouse model and human HCC tumours. Mechanistically, long-chain UFAs released by tumour cells activate PPARγ via FABP5, resulting in immunosuppressive properties in TAMs. FABP5 deficiency in macrophages decreases immunosuppressive molecule expression, enhances T cell-dependent antitumour immunity, diminishes HCC growth, and improves immunotherapy efficacy. CONCLUSIONS This study demonstrates that UFAs promote tumourigenesis by enhancing the immunosuppressive tumour microenvironment via FABP5-PPARγ signalling and provides a proof-of-concept for targeting this pathway to improve the efficacy of tumour immunotherapy. IMPACT AND IMPLICATIONS Despite the role of tumour-associated macrophages (TAMs) in promoting tumour progression being well established, the mechanisms by which lipid metabolism enhances the tumour-promoting effects of TAMs remain unclear. Our study reveals that FABP5-mediated unsaturated fatty acid metabolism in TAMs is crucial for modulating antitumour T-cell immunity and influencing the efficacy of immunotherapy. This finding provides novel insights into the immunomodulatory roles of FABP5+ lipid-loaded TAMs in hepatocellular carcinoma and suggests that targeting FABP5 could offer a new approach to liver cancer treatment.
Collapse
Affiliation(s)
- Xuguang Yang
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Weiwei Zhao
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yangyang Guo
- Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yaqi Wan
- Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhihao Wu
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Sheng Su
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingyan Gu
- Department of Neurosurgery, Shanghai General Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China
| | - Xiaoqian Hu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenxue Feng
- Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chencheng Hu
- Frontier Innovation Center, Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jia Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanyong Xu
- Frontier Innovation Center, Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Xiaowu Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Clinical Center for Biotherapy, Zhongshan Hospital (Xiamen), Fudan University, Shanghai, 200032, China.
| | - Yuli Lin
- Department of Immunology of Basic Medical Sciences; Shanghai Pudong Hospital, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
Ronca V, Gerussi A, Collins P, Parente A, Oo YH, Invernizzi P. The liver as a central "hub" of the immune system: pathophysiological implications. Physiol Rev 2025; 105:493-539. [PMID: 39297676 DOI: 10.1152/physrev.00004.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 01/16/2025] Open
Abstract
The purpose of this review is to describe the immune function of the liver, guiding the reader from the homeostatic tolerogenic status to the aberrant activation demonstrated in chronic liver disease. An extensive description of the pathways behind the inflammatory modulation of the healthy liver will be provided focusing on the complex immune cell network residing within the liver. The limit of tolerance will be presented in the context of organ transplantation, seizing the limits of homeostatic mechanisms that fail in accepting the graft, progressing eventually toward rejection. The triggers and mechanisms behind chronic activation in metabolic liver conditions and viral hepatitis will be discussed. The last part of the review will be dedicated to one of the greatest paradoxes for a tolerogenic organ, developing autoimmunity. Through the description of the three most common autoimmune liver diseases, the autoimmune reaction against hepatocytes and biliary epithelial cells will be dissected.
Collapse
Affiliation(s)
- Vincenzo Ronca
- Centre for Liver and Gastro Research and National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network Centre-Rare Liver, Birmingham, United Kingdom
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Paul Collins
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Alessandro Parente
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ye Htun Oo
- Centre for Liver and Gastro Research and National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Unit, Queen Elizabeth Hospital University Hospital Birmingham National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network Centre-Rare Liver, Birmingham, United Kingdom
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), IRCCS Fondazione San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
37
|
Eslam M, Fan JG, Yu ML, Wong VWS, Cua IH, Liu CJ, Tanwandee T, Gani R, Seto WK, Alam S, Young DY, Hamid S, Zheng MH, Kawaguchi T, Chan WK, Payawal D, Tan SS, Goh GBB, Strasser SI, Viet HD, Kao JH, Kim W, Kim SU, Keating SE, Yilmaz Y, Kamani L, Wang CC, Fouad Y, Abbas Z, Treeprasertsuk S, Thanapirom K, Al Mahtab M, Lkhagvaa U, Baatarkhuu O, Choudhury AK, Stedman CAM, Chowdhury A, Dokmeci AK, Wang FS, Lin HC, Huang JF, Howell J, Jia J, Alboraie M, Roberts SK, Yoneda M, Ghazinian H, Mirijanyan A, Nan Y, Lesmana CRA, Adams LA, Shiha G, Kumar M, Örmeci N, Wei L, Lau G, Omata M, Sarin SK, George J. The Asian Pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic dysfunction-associated fatty liver disease. Hepatol Int 2025; 19:261-301. [PMID: 40016576 DOI: 10.1007/s12072-024-10774-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/28/2024] [Indexed: 03/01/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects over one-fourth of the global adult population and is the leading cause of liver disease worldwide. To address this, the Asian Pacific Association for the Study of the Liver (APASL) has created clinical practice guidelines focused on MAFLD. The guidelines cover various aspects of the disease, such as its epidemiology, diagnosis, screening, assessment, and treatment. The guidelines aim to advance clinical practice, knowledge, and research on MAFLD, particularly in special groups. The guidelines are designed to advance clinical practice, to provide evidence-based recommendations to assist healthcare stakeholders in decision-making and to improve patient care and disease awareness. The guidelines take into account the burden of clinical management for the healthcare sector.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of MedicineSchool of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, Kaohsiung Medical University, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
| | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal MedicineHepatitis Research CenterGraduate Institute of Clinical Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tawesak Tanwandee
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rino Gani
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Pangeran Diponegoro Road No. 71St, Central Jakarta, 10430, Indonesia
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Dan Yock Young
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Saeed Hamid
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Payawal
- Department of Medicine, Cardinal Santos Medical Center, Mandaluyong, Philippines
| | - Soek-Siam Tan
- Department of Hepatology, Selayang Hospital, Batu Caves, Malaysia
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Hang Dao Viet
- Internal Medicine Faculty, Hanoi Medical University, Hanoi, Vietnam
| | - Jia-Horng Kao
- Graduate Institute of Clinical MedicineDepartment of Internal MedicineHepatitis Research CenterDepartment of Medical Research, National Taiwan University College of Medicine, National Taiwan University, National Taiwan University Hospital, 1 Chang-Te Street, 10002, Taipei, Taiwan
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | | | - Chia-Chi Wang
- Buddhist Tzu Chi Medical Foundation and School of Medicine, Taipei Tzu Chi Hospital, Tzu Chi University, Taipei, Taiwan
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Cairo, Egypt
| | - Zaigham Abbas
- Department of Hepatogastroenterology, Dr.Ziauddin University Hospital, Clifton, Karachi, Pakistan
| | | | | | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Undram Lkhagvaa
- Department of Health Policy, School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Oidov Baatarkhuu
- Department of Infectious Diseases, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Ashok Kumar Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | | | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - A Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Institute of Clinical Medicine, School of Medicine, Taipei Veterans General Hospital, National Yang-Ming Chiao Tung University, No. 201, Section 2, Shipai RdNo. 155, Section 2, Linong St, Beitou District, Taipei City, 112, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jess Howell
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, 3008, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, 3165, Australia
| | - Jidong Jia
- Liver Research Center, Beijing Key Laboratory of Translational Medicine On Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Stuart K Roberts
- Department of Gastroenterology and Hepatology, Central Clinical School, The Alfred, Monash University, Melbourne, Australia
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hasmik Ghazinian
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Aram Mirijanyan
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Leon A Adams
- Medical School, Faculty of Medicine and Health Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Gamal Shiha
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Necati Örmeci
- Department of Gastroenterohepatology, Istanbul Health and Technology University, Istanbul, Turkey
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - George Lau
- Humanity and Health Medical Group, Humanity and Health Clinical Trial Center, Hong Kong SAR, China
- The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| |
Collapse
|
38
|
Zhao Y, Gao L, Chen J, Wei J, Lin G, Hu K, Zhao W, Wei W, Huang W, Gao L, Yuan A, Qian K, Chen AF, Pu J. Remote limb ischemic conditioning alleviates steatohepatitis via extracellular vesicle-mediated muscle-liver crosstalk. Cell Metab 2025; 37:886-902.e7. [PMID: 40118054 DOI: 10.1016/j.cmet.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is an advanced form of liver disease with adverse outcomes. Manipulating interorgan communication is considered a promising strategy for managing metabolic disease, including steatohepatitis. Here, we report that remote limb ischemic conditioning (RIC), a clinically validated therapy for distant organ protection by transient muscle ischemia, significantly alleviated steatohepatitis in different mouse models. The beneficial effect of limb ischemic conditioning was mediated by muscle-to-liver transfer of small extracellular vesicles (sEVs) and their cargo microRNAs, leading to elevation of miR-181d-5p in the liver. Hepatic miR-181d-5p overexpression faithfully mirrored the molecular and histological benefits of limb ischemic conditioning by suppressing nuclear receptor 4A3 (NR4A3). Furthermore, circulating EVs from human volunteers undergoing limb ischemic conditioning improved steatohepatitis and transcriptomic perturbations in primary human hepatocytes and animal models. Our data underscore the translational potential of limb ischemic conditioning for steatohepatitis management and extend our understanding of muscle-liver crosstalk.
Collapse
Affiliation(s)
- Yichao Zhao
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Gao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Jianqing Chen
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Jingze Wei
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Guanqiao Lin
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewei Hu
- Graduate School of Bengbu Medical College, Bengbu, Anhui, China
| | - Wubin Zhao
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Huang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingchen Gao
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ancai Yuan
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Qian
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering, Institute of Medical Robotics and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Division of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Graduate School of Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
39
|
Zanuso V, Rimassa L, Braconi C. The rapidly evolving landscape of HCC: Selecting the optimal systemic therapy. Hepatology 2025; 81:1365-1386. [PMID: 37695554 DOI: 10.1097/hep.0000000000000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
Over the past years, there has been a remarkable advance in the systemic treatment options for advanced HCC. The overall survival has gradually increased over time, with larger benefits for patients with sensitive tumors and preserved liver function, the latter being an essential condition for the delivery of sequential lines of treatment and optimization of clinical outcomes. With the approval of new first-line agents and the introduction of immune checkpoint inhibitor-based therapies, the treatment landscape of advanced HCC is becoming wider than ever. Atezolizumab plus bevacizumab and, more recently, durvalumab plus tremelimumab have entered the clinical practice and are the current standard of care for treatment-naïve patients, surpassing sorafenib and lenvatinib monopoly. As no head-to-head comparisons are available among all the first-line treatment options, the recommendation for the most appropriate choice and sequence is patient-driven and integrates efficacy data with clinical comorbidities, background liver disease, and the safety profile of available drugs. In addition, predictive biomarkers for successful patients' stratification are yet to be available and constitute the focus of ongoing research. The treatment algorithm is likely to become even more complex since systemic therapeutic approaches are now being translated into earlier stages of the disease, with an impact on the evolution of the sequential treatment of patients with HCC.
Collapse
Affiliation(s)
- Valentina Zanuso
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| |
Collapse
|
40
|
Nair R, Somasundaram V, Kuriakose A, Krishn SR, Raben D, Salazar R, Nair P. Deciphering T-cell exhaustion in the tumor microenvironment: paving the way for innovative solid tumor therapies. Front Immunol 2025; 16:1548234. [PMID: 40236693 PMCID: PMC11996672 DOI: 10.3389/fimmu.2025.1548234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
In solid tumors, the tumor microenvironment (TME) is a complex mix of tumor, immune, stromal cells, fibroblasts, and the extracellular matrix. Cytotoxic T lymphocytes (CTLs) constitute a fraction of immune cells that may infiltrate into the TME. The primary function of these T-cells is to detect and eliminate tumor cells. However, due to the immunosuppressive factors present in the TME primarily mediated by Myeloid-Derived Suppressor Cells (MDSCs), Tumor associated macrophages (TAMs), Cancer Associated Fibroblasts (CAFs) as well as the tumor cells themselves, T-cells fail to differentiate into effector cells or become dysfunctional and are unable to eliminate the tumor. In addition, chronic antigen stimulation within the TME also leads to a phenomenon, first identified in chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, where the T-cells become exhausted and lose their effector functions. Exhausted T-cells (Tex) are characterized by the presence of remarkably conserved inhibitory receptors, transcription and signaling factors and the downregulation of key effector molecules. Tex cells have been identified in various malignancies, including melanoma, colorectal and hepatocellular cancers. Recent studies have indicated novel strategies to reverse T-cell exhaustion. These include checkpoint inhibitor blockade targeting programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin-domain containing-3 (Tim-3), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), or combinations of different immune checkpoint therapies (ICTs) or combination of ICTs with cytokine co-stimulation. In this review, we discuss aspects of T-cell dysfunction within the TME with a focus on T-cell exhaustion. We believe that gaining insight into the mechanisms of T-cell exhaustion within the TME of human solid tumors will pave the way for developing therapeutic strategies to target and potentially re-invigorate exhausted T-cells in cancer.
Collapse
Affiliation(s)
- Reshmi Nair
- Syngene International Limited, Bengaluru, India
| | | | | | | | - David Raben
- Bicara Therapeutics, Boston, MA, United States
| | | | - Pradip Nair
- Syngene International Limited, Bengaluru, India
| |
Collapse
|
41
|
Friedman SL. Fat, fibrosis, and the future: navigating the maze of MASLD/MASH. J Clin Invest 2025; 135:e186418. [PMID: 40166940 PMCID: PMC11957683 DOI: 10.1172/jci186418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
|
42
|
Uluk D, Pein J, Herda S, Schliephake F, Schneider CV, Bitar J, Dreher K, Eurich D, Zhang IW, Schaffrath L, Auer TA, Collettini F, Engelmann C, Tacke F, Pratschke J, Lurje I, Lurje G. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) Impacts Long-Term Outcomes After Curative-Intent Surgery for Hepatocellular Carcinoma. Aliment Pharmacol Ther 2025; 61:1318-1332. [PMID: 39964081 PMCID: PMC11950813 DOI: 10.1111/apt.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/18/2024] [Accepted: 01/17/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Curative surgery for hepatocellular carcinoma (HCC) includes liver resection (LR) and orthotopic liver transplantation (OLT). Due to the obesity epidemic, metabolic dysfunction-associated steatotic liver disease (MASLD) is a frequent HCC aetiology that often coincides with increased alcohol consumption, termed MetALD, or even alcohol-associated liver disease (ALD). METHODS Patients undergoing LR or OLT for HCC at Charité-Universitätsmedizin Berlin (2010-2020) were included in this retrospective cohort study investigating disease aetiology, time to recurrence (TTR), overall survival (OS) and CT-based body composition. RESULTS Out of 579 patients with HCC, 417 underwent LR and 162 OLT. Tumour aetiologies were viral n = 191 (33.0%), MASLD n = 158 (27.3%), MetALD n = 51 (8.8%), ALD n = 68 (11.7%) and other/cryptogenic n = 111 (19.2%). Patients with MASLD and MetALD had more intramuscular (p < 0.001, p = 0.015) and visceral fat (both p < 0.001) than patients with non-metabolic dysfunction aetiologies. Patients with MASLD-HCC had comparable TTR (median 26 months, [95% CI: 23-31] vs. 30 months [95% CI: 4-57], p = 0.425) but shorter OS than patients with other HCC aetiologies (63 months [95% CI: 42-84] vs. 80 months [95% CI: 60-100], hazard ratio: 1.53 [95% CI: 1.050-2.229], p = 0.026) after LR. Multivariate analysis confirmed MASLD aetiology, portal vein thrombosis and MELD score ≥ 10 as independent prognostic factors for OS in LR (adjusted p = 0.021,p < 0.001,p = 0.003), even after excluding in-hospital mortality (adjusted p = 0.016,p = 0.002,p = 0.002). Causes of death were similar in MASLD and non-MASLD aetiology. CONCLUSIONS Patients with HCC undergoing LR and meeting the new MASLD criteria have significantly shorter OS. This study provides empirical prognostic evidence for the novel MASLD/MetALD classification in a large European cohort of patients undergoing curative-intent HCC therapy.
Collapse
Affiliation(s)
- Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | - Justus Pein
- Department of Surgery, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Sophia Herda
- Department of Surgery, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Frederik Schliephake
- Department of Surgery, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | | | - Jude Bitar
- Department of Surgery, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Katharina Dreher
- Department of Surgery, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Dennis Eurich
- Department of Surgery, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Ingrid W. Zhang
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Lukas Schaffrath
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Timo A. Auer
- Department of RadiologyCharité – Universitätsmedizin BerlinBerlinGermany
| | | | - Cornelius Engelmann
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Isabella Lurje
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
- Department of Gastroenterology and Hepatology, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow KlinikumCharité‐Universitätsmedizin BerlinBerlinGermany
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
43
|
Qi WY, Zheng SH, Li SZ, Wang W, Wang QY, Liu QY, Li XK, Zhang JX, Gan DN, Ye YA, Zao XB. Immune cells in metabolic associated fatty liver disease: Global trends and hotspots (2004-2024). World J Hepatol 2025; 17:103327. [PMID: 40177204 PMCID: PMC11959657 DOI: 10.4254/wjh.v17.i3.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/07/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND The interplay between immune cells and metabolic associated fatty liver disease (MAFLD) is a critical research frontier, bridging immunology and hepatology. The bibliometric findings can guide future research and funding priorities in the field by highlighting key areas of focus and potential therapeutic targets. AIM To analyze the literature on immune cells and MAFLD, identifying research trends and future hotspots. METHODS A systematic search in the Web of Science Core Collection from January 1, 2004 to May 20, 2024, yielded 1936 articles on immune cells and MAFLD. Excluding non-research documents, the data were analyzed using R packages Cluster profiler, enrichplot, ggplot2, VOSviewer and CiteSpace. Visualizations were created for countries, institutions, authors, journals, fields, co-cited references, keywords, genes, and diseases, with gene a disease data from Citexs. RESULTS The field gained momentum in 2006, with the United States of America and China as leading contributors. Key research themes included oxidative stress, metabolic syndrome, liver fibrosis, and the role of Kupffer cells. Bioinformatics identified interleukin-6, tumor necrosis factor and signal transducer and activator of transcription 3 as central proteins in immune responses and inflammation, suggesting potential therapeutic targets for MAFLD. Clinically, these hub genes play pivotal roles in the pathogenesis of MAFLD. For instance, targeting the tumor necrosis factor signaling pathway could reduce inflammation, while modulating interleukin-6 and signal transducer and activator of transcription 3 expression may improve metabolic function, offering new strategies for MAFLD therapy. CONCLUSION This bibliometric analysis reports on the research hotspots and emerging trends in the field of immune cells and MAFLD, highlighting key proteins and potential therapeutic strategies through bioinformatics.
Collapse
Affiliation(s)
- Wen-Ying Qi
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shi-Hao Zheng
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Si-Ze Li
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Wang
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qiu-Yue Wang
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qi-Yao Liu
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao-Ke Li
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jia-Xin Zhang
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Da-Nan Gan
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yong-An Ye
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiao-Bin Zao
- Department of Spleen and Stomach Diseases, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Hepatology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
44
|
Li G, Dai Z, Guo J. Therapeutic Nanomaterials in NAFLD: Current Advances and Potential Applications in Patients with Concurrent HBV Infection. Int J Nanomedicine 2025; 20:3803-3823. [PMID: 40162335 PMCID: PMC11954402 DOI: 10.2147/ijn.s510271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Due to the high prevalence of non-alcoholic fatty liver disease (NAFLD) and chronic hepatitis B virus (HBV) infection, a significant proportion of patients suffer from both conditions simultaneously. The management of NAFLD in patients with concurrent HBV infection presents unique challenges, primarily due to the complex interplay between these two diseases. Nanomaterials have gained widespread attention due to their ability to overcome the limitations of conventional therapies. This review provides an overview of the current advances in therapeutic nanomaterials for NAFLD and explores their potential applications for personalized and effective management in patients with concurrent HBV infection. Furthermore, we discuss the challenges and future directions in the development of nanomaterials for the treatment of coexisting liver diseases.
Collapse
Affiliation(s)
- Guixin Li
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zheng Dai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Jinghui Guo
- Department of Gastroenterology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
45
|
Tang P, Zhou F. Efficacy and safety of PD-1/PD-L1 inhibitors combined with tyrosine kinase inhibitors as first-line treatment for hepatocellular carcinoma: a meta-analysis and trial sequential analysis of randomized controlled trials. Front Pharmacol 2025; 16:1535444. [PMID: 40196369 PMCID: PMC11973308 DOI: 10.3389/fphar.2025.1535444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Background The use of immune checkpoint inhibitors (ICIs) in treating hepatocellular carcinoma (HCC) has grown significantly. However, the therapeutic benefits of ICIs alone are notably modest. This meta-analysis assesses the efficacy and safety of using PD-1/PD-L1 inhibitors in conjunction with tyrosine kinase inhibitors (TKIs) for patients with advanced or unresectable HCC. Methods An extensive search of the literature was performed using databases such as PubMed, Web of Science, Embase, and the Cochrane Library, capturing randomized controlled trials (RCTs) until 16 October 2024. Efficacy was measured by progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and disease control rate (DCR). Safety was gauged through the occurrence of treatment-related adverse events (TRAEs). Hazard ratios (HRs) for PFS and OS, along with risk ratios (RRs) for ORR, DCR, and TRAEs, were calculated, each with 95% confidence intervals (CIs). Heterogeneity among studies was quantified using Cochran's Q test, I2 statistics, and 95% prediction intervals (PIs). Results This analysis incorporated 4 studies with a total of 2,174 patients. Treatment regimens combining PD-1/PD-L1 inhibitors with TKIs significantly improved PFS (HR = 0.694, 95% CI: 0.527-0.914; 95% PI: 0.228-2.114) and ORR (RR = 2.303, 95% CI: 1.360-3.902; 95% PI: 0.408-12.991) compared with first-line monotherapy or TKI monotherapy in the overall population. Subgroup analysis indicated that the improvements in PFS and OS were particularly significant among patients of Asian descent or those with hepatitis B virus (HBV) infection (all p < 0.05). While the occurrence of any grade TRAEs did not differ significantly between the two groups (RR = 1.016, 95% CI: 0.996-1.036; 95% PI: 0.941-1.097), the incidence of serious (RR = 2.068, 95% CI: 1.328-3.222; 95% PI: 0.487-8.776) and grade ≥3 TRAEs (RR = 1.287, 95% CI: 1.020-1.624; 95% PI: 0.574-2.883) increased in patients treated with the combination of PD-1/PD-L1 inhibitors and TKIs. Conclusion This study revealed that combining PD-1/PD-L1 inhibitors with TKIs in the treatment of advanced or unresectable HCC leads to superior clinical outcomes compared to first-line monotherapy or TKIs alone, particularly in patients with HBV infection and those of Asian descent. Clinicians are advised to be vigilant regarding the potential for TRAEs in clinical settings.
Collapse
Affiliation(s)
- Peng Tang
- Department of Gastroenterology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fei Zhou
- Department of Obstetrics and Gynaecology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
46
|
Zhan C, Peng C, Wei H, Wei K, Ou Y, Zhang Z. Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases. Int J Mol Sci 2025; 26:2778. [PMID: 40141420 PMCID: PMC11943347 DOI: 10.3390/ijms26062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
γδT cells, a distinct group of T lymphocytes, serve as a link between innate and adaptive immune responses. They are pivotal in the pathogenesis of various liver disorders, such as viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), liver fibrosis, autoimmune liver diseases, and hepatocellular carcinoma (HCC). Despite their importance, the functional diversity and regulatory mechanisms of γδT cells remain incompletely understood. Recent advances in high-throughput single-cell sequencing and spatial transcriptomics have revealed significant heterogeneity among γδT cell subsets, particularly Vδ1+ and Vδ2+, which exhibit distinct immunological roles. Vδ1+ T cells are mainly tissue-resident and contribute to tumor immunity and chronic inflammation, while Vδ2+ T cells, predominantly found in peripheral blood, play roles in systemic immune surveillance but may undergo dysfunction in chronic liver diseases. Additionally, γδT17 cells exacerbate inflammation in NAFLD and ALD, whereas IFN-γ-secreting γδT cells contribute to antiviral and antifibrotic responses. These discoveries have laid the foundation for the creation of innovative solutions. γδT cell-based immunotherapeutic approaches, such as adoptive cell transfer, immune checkpoint inhibition, and strategies targeting metabolic pathways. Future research should focus on harnessing γδT cells' therapeutic potential through targeted interventions, offering promising prospects for precision immunotherapy in liver diseases.
Collapse
Affiliation(s)
- Chenjie Zhan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Chunxiu Peng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Huaxiu Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Ke Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Yangzhi Ou
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Zhiyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, New Brunswick, NJ 08901-8554, USA
| |
Collapse
|
47
|
Zhang T, Niu N, Taddei T, Jain D, Zhang X. Clinicopathologic features and prognosis of steatohepatitic hepatocellular carcinoma based on varying cutoffs of tumoral steatohepatitic changes. Am J Clin Pathol 2025; 163:411-418. [PMID: 39418121 DOI: 10.1093/ajcp/aqae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVES Steatohepatitic hepatocellular carcinoma (SH-HCC) is currently recognized as a distinct histologic subtype of HCC. The prognosis and specific criteria for determining the amount of steatohepatitis required to define SH-HCC are still unclear. METHODS After excluding all recognized HCC subtypes from 505 HCC cases (2010-2019), the remaining cases were categorized as conventional HCC (CV-HCC) (n = 223). The cases classified as SH-HCC (n = 171) were further divided into groups based on the percentage of steatohepatitis: 5% or more, 30% or more, and 50% or more. RESULTS Hepatitis C virus infection was the predominant underlying liver disease in both the CV-HCC and SH-HCC groups. Metabolic dysfunction-associated steatotic liver disease (formerly nonalcoholic fatty liver disease) was more prevalent in all cases of SH-HCC with different steatohepatitic cutoffs than in cases of CV-HCC. There were no differences in the stage of fibrosis of the background liver between the CV-HCC and SH-HCC groups. SH-HCC with different cutoffs exhibited a notable increase in the presence of glycogenated nuclei, Mallory-Denk bodies, and hyaline globules in tumor cells. Survival analysis did not reveal substantial differences in overall survival between the CV-HCC and SH-HCC groups and among patients with SH-HCC with different steatohepatitis cutoffs. CONCLUSIONS The degree of intratumoral steatohepatitis in patients with SH-HCC does not appear to be a notable prognostic factor. The presence of steatohepatitis in the tumor is better recognized as 1 of the histopathologic patterns of HCC.
Collapse
Affiliation(s)
| | | | - Tamar Taddei
- Section of Digestive Diseases. Yale University School of Medicine. New Haven, CT, US
| | | | | |
Collapse
|
48
|
He Y, Lin Y, Song J, Song M, Nie X, Sun H, Xu C, Han Z, Cai J. From mechanisms to medicine: Ferroptosis as a Therapeutic target in liver disorders. Cell Commun Signal 2025; 23:125. [PMID: 40055721 PMCID: PMC11889974 DOI: 10.1186/s12964-025-02121-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/22/2025] [Indexed: 05/13/2025] Open
Abstract
In recent 10 years, ferroptosis has become a hot research direction in the scientific research community as a new way of cell death. Iron toxicity accumulation and lipotoxicity are unique features. Several studies have found that ferroptosis is involved in the regulation of the hepatic microenvironment and various hepatic metabolisms, thereby mediating the progression of related liver diseases. For example, NRF2 and FSP1, as important regulatory proteins of ferroptosis, are involved in the development of liver tumors and liver failure. In this manuscript, we present the mechanisms involved in ferroptosis, the concern of ferroptosis with the liver microenvironment and the progression of ferroptosis in various liver diseases. In addition, we summarize recent clinical advances in targeted ferroptosis therapy for related diseases. We expect that this manuscript can provide a new perspective for clinical treatment of related diseases.
Collapse
Affiliation(s)
- Yuqi He
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jinfeng Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Mingzhu Song
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Xiaoxia Nie
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Hong Sun
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Changyun Xu
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China
| | - Zhongyu Han
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| | - Juan Cai
- Department of Transfusion, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui Province, China.
| |
Collapse
|
49
|
Yang L, Li P, Zhao J, Bai Z, Zeng G, Liu X, Zou B, Li J. CAT and CXCL8 are crucial cofactors for the progression of nonalcoholic steatohepatitis to hepatocellular carcinoma, the immune infiltration and prognosis of hepatocellular carcinoma. Discov Oncol 2025; 16:272. [PMID: 40053253 PMCID: PMC11889291 DOI: 10.1007/s12672-025-02051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is a malignant tumour characterized by high morbidity and mortality. Immunotherapy is an important treatment newly approved for the treatment for advanced hepatocellular carcinoma. However, how NASH progresses to HCC and the association between the immune signature in HCC and patient prognosis remain unclear. METHODS Data from NASH and NASH-HCC patients were obtained from the GEO database. Differentially expressed genes were screened and hub genes were identified. The enrichment analysis, clustering, cibersort, ssGSEA, Xcell and immune checkpoint expression data of the samples were analysed. Survival analysis of dual genes was performed using TCGA liver cancer samples and the lasso regression model, and Cox regression analysis was conducted. Pathology specimens from 21 NASH-associated hepatocellular carcinoma patients were collected, and immunohistochemical staining was used to verify gene expression. RESULTS Compared with HCC patients with high CAT and low CXCL8 expression, those with low CAT and high CXCL8 expression had significantly higher levels of infiltration of multiple immune cell types and the common immune checkpoints CD274, PDCD1 and CTLA4. Furthermore, CAT was a protective factor, and CXCL8 was a risk factor for the prognosis of HCC patients. CONCLUSION CAT and CXCL8 might impact NASH-HCC progression. HCC patients with low CAT and high CXCL8 expression might have more extensive immune cell infiltration and stronger tumour immune escape. However, probably due to their different effects on CD8 + T cells and reactive oxygen species, increased expression of CAT contributes to improved prognosis in HCC patients, whereas increased expression of CXCL8 leads to a poor prognosis.
Collapse
Affiliation(s)
- Liang Yang
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - JiaLi Zhao
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - Zirui Bai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - Guifang Zeng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China.
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China.
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, 52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
50
|
Zhang Y, Xie M, Wen J, Liang C, Song Q, Liu W, Liu Y, Song Y, Lau HCH, Cheung AHK, Man K, Yu J, Zhang X. Hepatic TM6SF2 activates antitumour immunity to suppress metabolic dysfunction-associated steatotic liver disease-related hepatocellular carcinoma and boosts immunotherapy. Gut 2025; 74:639-651. [PMID: 39667906 PMCID: PMC12014897 DOI: 10.1136/gutjnl-2024-333154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Transmembrane 6 superfamily member 2 (TM6SF2) has a protective role against metabolic dysfunction-associated steatotic liver disease (MASLD). OBJECTIVE We aim to investigate the mechanistic role and therapeutic potential of hepatic TM6SF2 in MASLD-related hepatocellular carcinoma (HCC). DESIGN Hepatocyte-specific Tm6sf2 knockout (Tm6sf2 ∆hep) mice were fed with high-fat/high-cholesterol (HFHC) diet or diethylnitrosamine plus HFHC diet to induce MASLD-HCC. TM6SF2 function was also evaluated in orthotopic MASLD-HCC mice. Human MASLD-HCC specimens were included to evaluate clinical significance. RESULTS TM6SF2 was downregulated in tumours compared with adjacent normal tissues from MASLD-HCC patients. Hepatocyte-specific Tm6sf2 knockout exacerbated tumour formation in mice with diet-induced or diet-induced and carcinogen-induced MASLD-HCC. The tumour-promoting effect of Tm6sf2 knockout was verified in orthotopic MASLD-HCC mice, while mice bearing Tm6sf2-overexpressing tumours had opposite phenotypes. We observed the reduction of interferon-gamma (IFN-γ)+CD8+ T cells in the tumours of Tm6sf2 ∆hep mice and orthotopic Tm6sf2 knockout mice, while the tumour-suppressive effect of Tm6sf2 was abolished after depleting CD8+ T cells. The correlation between TM6SF2 and CD8+ T cells was confirmed in human MASLD-HCC tissues, inferring that TM6SF2 could promote antitumour immunity. Mechanistically, TM6SF2 directly bound to IKKβ and inhibited NF-κB signalling pathway to reduce interleukin (IL)-6 secretion, thereby activating cytotoxic CD8+ T cells. IL-6 neutralisation abolished the tumour-promoting and immunosuppressive effects of Tm6sf2 knockout in mice. Moreover, introducing Tm6sf2 by adenovirus improved immunotherapy response against MASLD-HCC in mice. CONCLUSION Hepatic TM6SF2 protects against MASLD-HCC and activates cytotoxic CD8+ T cells via NF-κB-IL-6 axis. TM6SF2 is a promising strategy for sensitising MASLD-HCC to immunotherapy.
Collapse
Affiliation(s)
- Yating Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingxu Xie
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jun Wen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Cong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guang Zhou, China
| | - Qian Song
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yali Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yang Song
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwan Man
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|