1
|
Jeyananthan P, W P N M, S M R. On integrative analysis of multi-level gene expression data in Kidney cancer subgrouping. Urologia 2025; 92:194-200. [PMID: 39673207 DOI: 10.1177/03915603241304604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
Kidney cancer is one of the most dangerous cancer mainly targeting men. In 2020, around 430, 000 people were diagnosed with this disease worldwide. It can be divided into three prime subgroups such as kidney renal cell carcinoma (KIRC), kidney renal papilliary cell carcinoma (KIRP) and kidney chromophobe (KICH). Correct identification of these subgroups on time is crucial for the initiation and determination of proper treatment. On-time identification of this disease and its subgroup can help both the clinicians and patients to improve the situation. Hence, this study checks the possibility of using multi-omics data in the kidney cancer subgrouping, whether integrating multiple omics data will increase the subgrouping accuracy or not. Four different molecular data such as genomics, proteomics, epigenomics and miRNA from The Cancer Genome Atlas (TCGA) are used in this study. As the data is in a very high dimension world, this study starts with selecting the relevant features of the study using Pearson's correlation coefficient. Those selected features are used with three different classification algorithms such as k-nearest neighbor (KNN), supporting vector machines (SVMs) and random forest. Performances are compared to see whether the integration of multi-omics data can improve the accuracy of kidney cancer subgrouping. This study shows that integration of multi-omics data can improve the performance of the kidney cancer subgrouping. The highest performance (accuracy value of 0.98±0.03) is gained by top 400 features selected from integrated multi-omics data, with support vector machines.
Collapse
Affiliation(s)
| | - Maduranga W P N
- Faculty of Engineering, University of Jaffna, Kilinochchi, Sri Lanka
| | - Rodrigo S M
- Faculty of Engineering, University of Jaffna, Kilinochchi, Sri Lanka
| |
Collapse
|
2
|
Dong L, Zhang X, Yu X, Liu G, Yang L. Proteoglycan-degrading enzymes engineered for enhanced tumor microenvironment interaction in renal cell carcinoma. Int J Biol Macromol 2025; 307:140440. [PMID: 39884611 DOI: 10.1016/j.ijbiomac.2025.140440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
This work optimized proteoglycan-degrading enzymes through targeted mutagenesis to enhance their interaction with the tumor microenvironment in Renal Cell Carcinoma (RCC). A comprehensive mutagenesis approach identified 60 key mutations significantly improving enzymatic activity, stability, and structural integrity. When compared to Wild Type (WT) enzyme, a remarkable increase in specific activity by 35 % (p < 0.001) and a considerable decrease in the Km values for hyaluronidases from 2.5 mM to 1.5 mM (p < 0.05), as a result of these modifications. Computational methods are then employed to analyze the active site of the enzymes to detect potential residues that may alter. These computational techniques include molecular docking and protein structure prediction. The structural models of the enzymes are created by utilizing homology modeling and crystallography. These models demonstrate the spatial arrangement of the amino acid enzymes. It also illustrated the specific mutations to improve the potential of enzymes to relate to the Extracellular Matrix (ECM) of tumors. The computational screening methods effectively predicted how the modifications impact enzyme catalytic efficiency and stability. The modified enzymes retained 85 % of the enzyme activity, while the WT retained 60 %. Thus, the modified enzymes demonstrated better thermal stability than WT. Vitro test analyses show that the proteoglycan breakdown was significantly reduced by 70 % (p < 0.001), and for effective proteoglycan breakdown, hyaluronidase concentration is needed. This work proposed a novel therapeutic approach called proteoglycan-degrading enzymes for the treatment of RCC. These proteoglycan-degrading enzymes are more stable and effective for treating RCC, as demonstrated in the outcomes. Customized proteoglycan-degrading enzymes make the therapy more effective. The effective breakdown of the tumor's ECM in RCC models establishes this customized proteoglycan-degrading enzyme. These enzymes are effective for this customized cancer treatment as they improve stability, activity, and interaction with the TME.
Collapse
Affiliation(s)
- Lingling Dong
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, China
| | - Xiaoli Zhang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, PR China
| | - Xiaopeng Yu
- Oncology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Gang Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lina Yang
- Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
3
|
Geng X, Shan J, Dai Y, Liu Z, Min S, Zhao S, Zhang Z, Shi K, Zhang D, Ji T, Chang B. Regulatory mechanism and prognostic value of sex hormone pathways connected with metabolism and immune signaling in clear cell renal cell carcinoma. Sci Rep 2025; 15:13482. [PMID: 40251359 PMCID: PMC12008239 DOI: 10.1038/s41598-025-97163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/02/2025] [Indexed: 04/20/2025] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) represents a major subtype of kidney cancer with variable prognosis. A comprehensive understanding of sex hormone-related pathways could potentially refine the prediction of patient outcomes in ccRCC. Patients from TCGA-KIRC (n = 528) and GSE22541 (n = 40) cohorts were analyzed. Sex-hormone-associated pathways were manually collected and calculated with the activated score, then subtypes were identified. Differential gene expression, pathway enrichment, and tumor-infiltrating immunocytes were assessed. A prognostic signature was developed using Cox analysis and LASSO regression. Immunohistochemistry (IHC) was performed to validate the protein level of key model gene in ccRCC tissues. Three distinct subtypes (C1, C2, C3) based on sex hormone pathway activation were discovered. C1 showed the most favorable prognosis (P = 0.00029). 1,094 genes were upregulated in C1 and 197 in C3. 20 risk-associated and 172 protective genes for ccRCC prognosis were identified. LASSO regression narrowed down to 33 genes for the sex-hormone-related-gene (SHAG) prognostic model. In the TCGA-KIRC cohort, the high-SHAG score group had a worse prognosis with an HR of 3.26 (95% CI: 2.334-4.555, P < 0.001). Validation in the GSE22541 cohort corroborated these findings. The nomogram incorporating the SHAG model demonstrated robust predictive accuracy higher than 0.75. IHC validation confirmed that ARHGEF17 protein levels were higher in early-stage ccRCC (stage I-II) compared to advanced-stage (stage III) tumors, supporting its prognostic relevance. The SHAG signature serves as a promising prognostic tool for ccRCC, providing insights into the role of sex hormone-related pathways in tumor progression. Further experimental and clinical validation is warranted to explore its potential in personalized therapy.
Collapse
Affiliation(s)
- Xinyu Geng
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Jiahao Shan
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750101, Chinal, China
| | - Yu Dai
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Ziwei Liu
- Clinical central laboratory, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Simin Min
- Clinical central laboratory, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Shuo Zhao
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Zhengyuan Zhang
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Kai Shi
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Duobing Zhang
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Tuo Ji
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China
| | - Baoyuan Chang
- Department of Urology, Suzhou Hospital of Anhui Medical University, Suzhou, 234000, Anhui, China.
| |
Collapse
|
4
|
Oki R, Takemura K, Urasaki T, Fujiwara R, Numao N, Yonese J, Miura Y, Yuasa T. Prevailing challenges in personalized treatment for metastatic renal cell carcinoma: a narrative review. Expert Rev Anticancer Ther 2025:1-13. [PMID: 40210604 DOI: 10.1080/14737140.2025.2491647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
INTRODUCTION The management of metastatic renal cell carcinoma (mRCC) has advanced with recent therapies, yet optimizing treatment remains challenging due to disease heterogeneity and the growing number of options. Integrating systemic and local treatments requires a multidisciplinary approach to improve outcomes. AREA COVERED This review summarizes recent developments in treatment for mRCC. Upfront immuno-oncology (IO)-based combinations have improved survival, though concerns about overtreatment and toxicity persist. While the role of cytoreductive nephrectomy (CN) has declined to some extent, it may still benefit well-selected patients. Metastasis-directed therapies, including metastasectomy and stereotactic radiotherapy, provide prognostic value, particularly for oligometastatic lesions or brain metastases. Comprehensive genomic profiling (CGP) holds promise for personalized treatment but is currently limited by the lack of actionable mutations and predictive biomarkers. EXPERT OPINION A personalized, multimodal approach is essential for optimizing mRCC management. Careful patient selection is key to balancing the benefits of treatment with the risks of toxicity. While CN and metastasis-directed therapies remain useful in select cases, advancing individualized care requires the development of validated biomarkers and broader application of CGP.
Collapse
Affiliation(s)
- Ryosuke Oki
- Department of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kosuke Takemura
- Department of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tetsuya Urasaki
- Department of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryo Fujiwara
- Department of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Noboru Numao
- Department of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Junji Yonese
- Department of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuji Miura
- Department of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Yuasa
- Department of Genitourinary Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
5
|
Rinaldi L, Senatore E, Feliciello S, Chiuso F, Insabato L, Feliciello A. Kidney cancer: From tumor biology to innovative therapeutics. Biochim Biophys Acta Rev Cancer 2025; 1880:189240. [PMID: 39674419 DOI: 10.1016/j.bbcan.2024.189240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Renal cell carcinoma (RCC) constitutes the most frequent kidney cancer of the adult population and one of the most lethal malignant tumors worldwide. RCC often presents without early symptoms, leading to late diagnosis. Prognosis varies widely based on the stage of cancer at diagnosis. In the early-stage, localized RCC has a relatively good prognosis, while advanced or metastatic RCC has a poor outcome. Obesity, smoking, genetic mutations and family history are all considered risk factors for RCC, while inherited disorders, such as Tuberous Sclerosis and von Hippel-Lindau syndrome, are causally associated with RCC development. Genetic screening, deep sequencing analysis, quantitative proteomics and immunostaining analysis on RCC tissues, biological fluids and blood samples have been employed to identify novel biomarkers, predisposing factors and therapeutic targets for RCC with important clinical implications for patient treatment. Combined approaches of gene-targeting strategies coupled to a deep functional analysis of cancer cell biology, both in vitro and in appropriate animal models of RCC, significantly contributed to identify and characterize relevant pathogenic mechanisms underlying development and progression of RCC. These studies provided also important cues for the generation of novel target-specific therapeutics that selectively restore deranged cancer cell signalling and dysfunctional immune checkpoints, positively impacting on the survival rate of treated RCC patients. In this review, we will describe the recent discoveries concerning the most relevant pathogenic mechanisms of RCC and will highlight novel therapeutic strategies that interrupt oncogenic pathways and restore immune defences in RCC patients.
Collapse
Affiliation(s)
- Laura Rinaldi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Emanuela Senatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Stella Feliciello
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Italy
| | - Francesco Chiuso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University Hospital Federico II, Naples, Italy
| | - Antonio Feliciello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
6
|
Miller JW, Johnson JS, Guske C, Mannam G, Hatoum F, Nassar M, Potez M, Fazili A, Spiess PE, Chahoud J. Immune-Based and Novel Therapies in Variant Histology Renal Cell Carcinomas. Cancers (Basel) 2025; 17:326. [PMID: 39858107 PMCID: PMC11763753 DOI: 10.3390/cancers17020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Renal cell carcinoma (RCC) is a heterogeneous disease that represents the most common type of kidney cancer. The classification of RCC is primarily based on distinct morphological and molecular characteristics, with two broad categories: clear cell RCC (ccRCC) and non-clear cell RCC (nccRCC). Clear cell RCC is the predominant subtype, representing about 70-80% of all RCC cases, while non-clear cell subtypes collectively make up the remaining 20-30%. Non-clear cell RCC encompasses many histopathological variants, each with unique biological and clinical characteristics. Additionally, any RCC subtype can undergo sarcomatoid dedifferentiation, which is associated with poor prognosis and rapid disease progression. Recent advances in molecular profiling have also led to the identification of molecularly defined variants, further highlighting the complexity of this disease. While immunotherapy has shown efficacy in some RCC variants and subpopulations, significant gaps remain in the treatment of rare subtypes. This review explores the outcomes of immunotherapy across RCC subtypes, including rare variants, and highlights opportunities for improving care through novel therapies, biomarker-driven approaches, and inclusive clinical trial designs.
Collapse
Affiliation(s)
- Justin W. Miller
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Jeffrey S. Johnson
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher Guske
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Gowtam Mannam
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Firas Hatoum
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Marine Potez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Adnan Fazili
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Guerra B, Jurcic K, van der Poel R, Cousineau SL, Doktor TK, Buchwald LM, Roffey SE, Lindegaard CA, Ferrer AZ, Siddiqui MA, Gyenis L, Andresen BS, Litchfield DW. Protein kinase CK2 sustains de novo fatty acid synthesis by regulating the expression of SCD-1 in human renal cancer cells. Cancer Cell Int 2024; 24:432. [PMID: 39726006 DOI: 10.1186/s12935-024-03611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a type of cancer characterized by a vast intracellular accumulation of lipids that are critical to sustain growth and viability of the cells in the tumour microenvironment. Stearoyl-CoA 9-desaturase 1 (SCD-1) is an essential enzyme for the synthesis of monounsaturated fatty acids and consistently overexpressed in all stages of ccRCC growth. METHODS Human clear cell renal cell carcinoma lines were treated with small-molecule inhibitors of protein kinase CK2. Effects on the expression levels of SCD-1 were investigated by RNA-sequencing, RT-qPCR, Western blot, and in vivo studies in mice. Phase-contrast microscopy, fluorescence microscopy, flow cytometry, and MALDI-mass spectrometry analysis were carried out to study the effects on endogenous lipid accumulation, induction of endoplasmic reticulum stress, rescue effects induced by exogenous MUFAs, and the identity of lipid populations. Cell proliferation and survival were investigated in real time employing the Incucyte® live-cell analysis system. Statistical significance was determined by applying the two-tailed Student's t test when comparing two groups of data whereas the two-way ANOVA, multiple Tukey's test was employed for multiple comparisons. RESULTS Here, we show that protein kinase CK2 is critical for preserving the expression of SCD-1 in ccRCC lines maintained in culture and heterotransplanted into nude mice. Consistent with this, pharmacological inhibition of CK2 leads to induction of endoplasmic reticulum stress linked to unfolded protein response activation and decreased proliferation of the cells. Both effects could be reversed by supplementing the growth medium with oleic acid indicating that these effects are specifically caused by reduced expression of SCD-1. Analysis of lipid composition by MALDI-mass spectrometry revealed that inhibition of CK2 results in a significant accumulation of the saturated palmitic- and stearic acids. CONCLUSIONS Collectively, our results revealed a previously unidentified molecular mechanism regulating the synthesis of monounsaturated fatty acids corroborating the notion that novel therapeutic approaches that include CK2 targeting, may offer a greater synergistic anti-tumour effect for cancers that are highly dependent on fatty acid metabolism.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark.
| | - Kristina Jurcic
- Department of Biochemistry, Western University, London, ON, Canada
| | - Rachelle van der Poel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | | | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Laura M Buchwald
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Scott E Roffey
- Department of Biochemistry, Western University, London, ON, Canada
| | - Caroline A Lindegaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Anna Z Ferrer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Mohammad A Siddiqui
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | - Laszlo Gyenis
- Department of Biochemistry, Western University, London, ON, Canada
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense, DK5230, Denmark
| | | |
Collapse
|
8
|
Yin F, Li F, Qi P, Zhang A. Inflammasome complex genes with clinical relevance suggest potential as therapeutic targets for anti-tumor drugs in clear cell renal cell carcinoma. Open Life Sci 2024; 19:20220980. [PMID: 39588117 PMCID: PMC11588011 DOI: 10.1515/biol-2022-0980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 11/27/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a challenging malignancy characterized by intricate biology and clinical characteristics. Despite advancements in treatment strategies, the molecular mechanisms underlying ccRCC initiation, progression, and therapeutic resistance remain elusive. Inflammasomes, multi-protein complexes involved in innate immunity and inflammation, have emerged as potential regulators in cancers. However, their involvement and mechanisms in ccRCC remain poorly understood. In this study, we conducted a systematic investigation into the expression patterns and clinical significance of inflammasome complexes in ccRCC. We found the perturbation of inflammasome complexes genes was related to patient's prognosis and other clinical characteristics. By developing an Inflammasome Complexes (IFC) score and identifying IFC subtypes with distinct clinical characteristics and oncogenic roles, our study suggested that inflammasome activation could impact tumorigenesis and modulate the tumor immune landscape, particularly its positive correlations with immunosuppressive macrophages. Furthermore, our study revealed the potential of inflammasome complex genes as predictive markers for patient responses to various anti-tumor drugs, including Osimertinib, Ulixertinib, Telomerase Inhibitor IX, and GSK2578215A. These findings have significant clinical implications and offer opportunities for guiding treatment strategies and improving patient outcomes of ccRCC.
Collapse
Affiliation(s)
- Fengchao Yin
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Urology, Shijiazhuang People’s Hospital, Shijiazhuang, Hebei, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pan Qi
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Aili Zhang
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Ishihara H, Nemoto Y, Mizoguchi S, Nishimura K, Ikeda T, Fukuda H, Yoshida K, Shimmura H, Hashimoto Y, Iizuka J, Kondo T, Takagi T. Changes in outcome of patients with advanced non-clear cell renal cell carcinoma from the tyrosine kinase inhibitor era to the immuno-oncology era. Int J Clin Oncol 2024; 29:1730-1739. [PMID: 39143429 DOI: 10.1007/s10147-024-02606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND The therapeutic benefit of immuno-oncology (IO) therapy for patients with advanced non-clear-cell renal cell carcinoma (nccRCC) remains unclear. PATIENTS AND METHODS We reviewed clinical data from 93 patients with advanced nccRCC who received first-line systemic therapy including IO combination therapy and tyrosine kinase inhibitor (TKI) monotherapy at our affiliated institutions. Patients were divided based on the period when the treatment was implemented as the standard of care into the IO and TKI eras. Survival and tumor response outcomes were compared between the IO and TKI eras. RESULTS Of the 93 patients, 50 (54%) and 43 (46%) were categorized as IO era and TKI era groups, respectively. Progression-free survival (PFS) and overall survival (OS) were significantly longer in the IO era than in the TKI era (median PFS: 8.97 vs. 4.96 months, p = 0.0152; median OS: 38.4 vs. 13.5 months, p = 0.0001). After the adjustment using other covariates, the treatment era was an independent factor for PFS (hazard ratio: 0.59, p = 0.0235) and OS (hazard ratio: 0.27, p < 0.0001). Objective response and disease control rates was not significantly different between the treatment eras (26% vs. 16.3%, p = 0.268; 62% vs. 62.8%, p = 0.594). CONCLUSION The implementation of IO therapy was significantly associated with longer survival in the nccRCC population. Further studies are needed to establish a more effective treatment strategy in this population using multiple regimens of IO combination therapy.
Collapse
Affiliation(s)
- Hiroki Ishihara
- Department of Urology, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi, Saitama, Japan.
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan.
| | - Yuki Nemoto
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
- Department of Urology, Jyoban Hospital, Uenodai 57, Joban Kamiyunagayamachi, Iwaki, Fukushima, Japan
| | - Shinsuke Mizoguchi
- Department of Urology, Saiseikai Kazo Hospital, 1680 Kamitakayanagi, Kazo, Saitama, Japan
| | - Koichi Nishimura
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, 4-33-1 Kouhoku, Adachi-ku, Tokyo, Japan
| | - Takashi Ikeda
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Hironori Fukuda
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Kazuhiko Yoshida
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Hiroaki Shimmura
- Department of Urology, Jyoban Hospital, Uenodai 57, Joban Kamiyunagayamachi, Iwaki, Fukushima, Japan
| | - Yasunobu Hashimoto
- Department of Urology, Saiseikai Kawaguchi General Hospital, 5-11-5 Nishikawaguchi, Kawaguchi, Saitama, Japan
| | - Junpei Iizuka
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| | - Tsunenori Kondo
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, 4-33-1 Kouhoku, Adachi-ku, Tokyo, Japan
| | - Toshio Takagi
- Department of Urology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
10
|
Shi WH, Liu XL, Zhou RH, Zhang GM, Chen L, Zhou YL, Jin XY, Yu L, Li YL. BAP1 loss confers sensitivity to bromodomain and extra-terminal inhibitors in renal cell carcinoma. Anticancer Drugs 2024; 35:932-942. [PMID: 39079172 DOI: 10.1097/cad.0000000000001647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
The tumor suppressor gene BRCA1 associated protein-1 (BAP1) is frequently mutated in renal cell carcinoma (RCC). BAP1 loss-of-function mutations are associated with poor survival outcomes. However, personalized therapy for BAP1-mutated RCC is currently not available. Previously, we found that BAP1 loss renders RCC cells more sensitive to bromodomain and extra-terminal (BET) inhibitors, as demonstrated in both cell culture and xenografted nude mice models. Here, we demonstrate that BAP1 loss in murine RCC cells enhances sensitivity to BET inhibitors in ectopic and orthotopic allograft models. While BAP1 deletion suppresses RCC cell survival in vitro , it does not impede tumor growth in immunocompetent murine models. Thus, the effect of BAP1 loss on the interactions between tumor cells and host microenvironment plays a predominant role in RCC growth, highlighting the importance of utilizing immunocompetent animal models to assess the efficacy of potential anticancer therapies. Mechanistically, BAP1 deletion compromises DNA repair capacity, rendering RCC cells more vulnerable to DNA damage induced by BET inhibitors. Our results indicate that BET inhibitors show promise as targeted therapy for BAP1-deficient RCC.
Collapse
Affiliation(s)
- Wen-Hui Shi
- Clinical Pharmacy Center
- Department of Pharmacy, Nanfang Hospital
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Xiao-Lian Liu
- Clinical Pharmacy Center
- Department of Pharmacy, Nanfang Hospital
| | - Run-Hua Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Gui-Ming Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Liang Chen
- Clinical Pharmacy Center
- Department of Pharmacy, Nanfang Hospital
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Yan-Ling Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Xuan-Yu Jin
- Clinical Pharmacy Center
- Department of Pharmacy, Nanfang Hospital
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Le Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Science, Southern Medical University, Guangzhou, China
| | - Yi-Lei Li
- Clinical Pharmacy Center
- Department of Pharmacy, Nanfang Hospital
| |
Collapse
|
11
|
Xu Z, Liu L, Jiang W, Qiu Y, Zhang B, Cheng J, Luo J, Guo J, Xu J. VHL missense mutation delineate aggressive clear cell renal cell carcinoma subtype with favorable immunotherapeutic response. J Immunother Cancer 2024; 12:e009963. [PMID: 39448203 PMCID: PMC11499804 DOI: 10.1136/jitc-2024-009963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND von Hippel-Lindau (VHL) harbors the highest mutational frequency in clear cell renal cell carcinoma (ccRCC). Although VHL mutational subtypes exert diverse impacts on the functionality of the VHL protein, the clinical significance of VHL mutational heterogeneity remains largely obscure. METHODS This study included a total of 1331 patients with ccRCC from localized data sets, including our localized Zhongshan Hospital (ZSHS) cohort (n=1270) and Zhongshan immune checkpoint blockade cohort (n=61), as well as 525 patients with ccRCC from two publicly available data sets with matched clinical annotation and multidimensional data. According to the putative biological effect, we subclassified VHL mutation into VHL Trunc and VHL Miss. The association of VHL status with clinical outcomes, genomic, oncogenic and immunologic characteristics was further depicted. RESULTS VHL Miss ccRCC was associated with reduced survival in the localized ZSHS and The Cancer Genome Atlas cohorts. Clinical benefit from immunotherapy was observed in VHL Miss patients in all immunotherapy cohorts. VHL Miss ccRCC exhibited hyper-activated cell cycle and nuclear factor kappa B (NF-κB) instead of canonical hypoxia inducible factor pathways, which might contribute to its proliferative morphology. Meanwhile, VHL Miss ccRCC featured an inflamed microenvironment with enriched tertiary lymphoid structures. CONCLUSIONS VHL Miss mutations delineate an aggressive ccRCC subtype with distinct clinical outcomes, likely attributed to its specific oncogenic, morphologic and immunologic features.
Collapse
Affiliation(s)
- Ziyang Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenbin Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Youqi Qiu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Boyu Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiangting Cheng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyan Luo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Zvirblyte J, Nainys J, Juzenas S, Goda K, Kubiliute R, Dasevicius D, Kincius M, Ulys A, Jarmalaite S, Mazutis L. Single-cell transcriptional profiling of clear cell renal cell carcinoma reveals a tumor-associated endothelial tip cell phenotype. Commun Biol 2024; 7:780. [PMID: 38942917 PMCID: PMC11213875 DOI: 10.1038/s42003-024-06478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent form of renal cancer, accounting for over 75% of cases. The asymptomatic nature of the disease contributes to late-stage diagnoses and poor survival. Highly vascularized and immune infiltrated microenvironment are prominent features of ccRCC, yet the interplay between vasculature and immune cells, disease progression and response to therapy remains poorly understood. Using droplet-based single-cell RNA sequencing we profile 50,236 transcriptomes from paired tumor and healthy adjacent kidney tissues. Our analysis reveals significant heterogeneity and inter-patient variability of the tumor microenvironment. Notably, we discover a previously uncharacterized vasculature subpopulation associated with epithelial-mesenchymal transition. The cell-cell communication analysis reveals multiple modes of immunosuppressive interactions within the tumor microenvironment, including clinically relevant interactions between tumor vasculature and stromal cells with immune cells. The upregulation of the genes involved in these interactions is associated with worse survival in the TCGA KIRC cohort. Our findings demonstrate the role of tumor vasculature and stromal cell populations in shaping the ccRCC microenvironment and uncover a subpopulation of cells within the tumor vasculature that is associated with an angiogenic phenotype.
Collapse
Affiliation(s)
- Justina Zvirblyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Juozas Nainys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
- Droplet Genomics, Vilnius, 10257, Lithuania
| | - Simonas Juzenas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Karolis Goda
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Raimonda Kubiliute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Darius Dasevicius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, 08406, Lithuania
| | | | - Albertas Ulys
- National Cancer Institute, Vilnius, 08660, Lithuania
| | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
- National Cancer Institute, Vilnius, 08660, Lithuania.
| | - Linas Mazutis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
| |
Collapse
|
13
|
Zheng J, Lu W, Wang C, Chen S, Zhang Q, Su C. Unfolding the mysteries of heterogeneity from a high-resolution perspective: integration analysis of single-cell multi-omics and spatial omics revealed functionally heterogeneous cancer cells in ccRCC. Aging (Albany NY) 2024; 16:10943-10971. [PMID: 38944814 PMCID: PMC11272124 DOI: 10.18632/aging.205974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/16/2024] [Indexed: 07/01/2024]
Abstract
The genomic landscape of clear cell renal cell carcinoma (ccRCC) has a considerable intra-tumor heterogeneity, which is a significant obstacle in the field of precision oncology and plays a pivotal role in metastasis, recurrence, and therapeutic resistance of cancer. The mechanisms of intra-tumor heterogeneity in ccRCC have yet to be fully established. We integrated single-cell RNA sequencing (scRNA-seq) and transposase-accessible chromatin sequencing (scATAC-seq) data from a single-cell multi-omics perspective. Based on consensus non-negative matrix factorization (cNMF) algorithm, functionally heterogeneous cancer cells were classified into metabolism, inflammatory, and EMT meta programs, with spatial transcriptomics sequencing (stRNA-seq) providing spatial information of such disparate meta programs of cancer cells. The bulk RNA sequencing (RNA-seq) data revealed high clinical prognostic values of functionally heterogeneous cancer cells of three meta programs, with transcription factor regulatory network and motif activities revealing the key transcription factors that regulate functionally heterogeneous ccRCC cells. The interactions between varying meta programs and other cell subpopulations in the microenvironment were investigated. Finally, we assessed the sensitivity of cancer cells of disparate meta programs to different anti-cancer agents. Our findings inform on the intra-tumor heterogeneity of ccRCC and its regulatory networks and offers new perspectives to facilitate the designs of rational therapeutic strategies.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Wenhao Lu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Chengbang Wang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Shaohua Chen
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Qingyun Zhang
- Department of Urology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Cheng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Center for Genomic and Personalized Medicine, Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Xu S, Ma B, Jian Y, Yao C, Wang Z, Fan Y, Ma J, Chen Y, Feng X, An J, Chen J, Wang K, Xie H, Gao Y, Li L. Development of a PAK4-targeting PROTAC for renal carcinoma therapy: concurrent inhibition of cancer cell proliferation and enhancement of immune cell response. EBioMedicine 2024; 104:105162. [PMID: 38810561 PMCID: PMC11154127 DOI: 10.1016/j.ebiom.2024.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Finding the oncogene, which was able to inhibit tumor cells intrinsically and improve the immune answers, will be the future direction for renal cancer combined treatment. Following patient sample analysis and signaling pathway examination, we propose p21-activated kinase 4 (PAK4) as a potential target drug for kidney cancer. PAK4 exhibits high expression levels in patient samples and plays a regulatory role in the immune microenvironment. METHODS Utilizing AI software for peptide drug design, we have engineered a specialized peptide proteolysis targeting chimera (PROTAC) drug with selectivity for PAK4. To address challenges related to drug delivery, we developed a nano-selenium delivery system for efficient transport of the peptide PROTAC drug, termed PpD (PAK4 peptide degrader). FINDINGS We successfully designed a peptide PROTAC drug targeting PAK4. PpD effectively degraded PAK4 with high selectivity, avoiding interference with other homologous proteins. PpD significantly attenuated renal carcinoma proliferation in vitro and in vivo. Notably, PpD demonstrated a significant inhibitory effect on tumor proliferation in a fully immunocompetent mouse model, concomitantly enhancing the immune cell response. Moreover, PpD demonstrated promising tumor growth inhibitory effects in mini-PDX and PDO models, further underscoring its potential for clinical application. INTERPRETATION This PAK4-targeting peptide PROTAC drug not only curtails renal cancer cell proliferation but also improves the immune microenvironment and enhances immune response. Our study paves the way for innovative targeted therapies in the management of renal cancer. FUNDING This work is supported by Research grants from non-profit organizations, as stated in the Acknowledgments.
Collapse
Affiliation(s)
- Shan Xu
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Chen Yao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Jian Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Xiaoyu Feng
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Jiale An
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Jiani Chen
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Hongjun Xie
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China.
| |
Collapse
|
15
|
Li Q, Zhang RX, Yang JJ, Huang HB, Feng G, Li GR. Characterization of extrachromosomal circular DNAs in plasma of patients with clear cell renal cell carcinoma. World J Urol 2024; 42:328. [PMID: 38753087 DOI: 10.1007/s00345-024-05031-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/06/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND AND PURPOSE Extrachromosomal circular DNAs (eccDNAs) have been recognized for their significant involvement in numerous biological processes. Nonetheless, the existence and molecular characteristics of eccDNA in the peripheral blood of patients diagnosed with clear cell renal cell carcinoma (ccRCC) have not yet been reported. Our aim was to identify potentially marked plasma eccDNAs in ccRCC patients. METHODS AND MATERIALS The detection of plasma eccDNA in ccRCC patients and healthy controls was performed using the Tn5-tagmentation and next-generation sequencing (NGS) method. Comparisons were made between ccRCC patients and healthy controls regarding the distribution of length, gene annotation, pattern of junctional nucleotide motif, and expression pattern of plasma eccDNA. RESULTS We found 8,568 and 8,150 plasma eccDNAs in ccRCC patients and healthy controls, respectively. There were no statistical differences in the length distribution, gene annotation, and motif signature of plasma eccDNAs between the two groups. A total of 701 differentially expressed plasma eccDNAs were identified, and 25 plasma eccDNAs with potential diagnostic value for ccRCC have been successfully screened. These up-regulated plasma eccDNAs also be indicated to originate from the genomic region of the tumor-associated genes. CONCLUSION This work demonstrates the characterization of plasma eccDNAs in ccRCC and suggests that the up-regulated plasma eccDNAs could be considered as a promising non-invasive biomarker in ccRCC.
Collapse
Affiliation(s)
- Qing Li
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Rui-Xuan Zhang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Jing-Jing Yang
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China
| | - Hou-Bao Huang
- Department of Urology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Gang Feng
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, No.2, West Zheshan Road, Wuhu, 241001, Anhui, China.
- Department of Urology, North Hospital, CHU of Saint-Etienne, 42055, Saint-Etienne, France.
| | - Guo-Rong Li
- Department of Urology, North Hospital, CHU of Saint-Etienne, 42055, Saint-Etienne, France
| |
Collapse
|
16
|
Zaccagnino A, Vynnytska‐Myronovska B, Stöckle M, Junker K. Molecular and functional characterization of reversible-sunitinib-tolerance state in human renal cell carcinoma. J Cell Mol Med 2024; 28:e18329. [PMID: 38693863 PMCID: PMC11063727 DOI: 10.1111/jcmm.18329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.
Collapse
Affiliation(s)
- Angela Zaccagnino
- Department of Urology and Pediatric UrologySaarland UniversityHomburgGermany
| | | | - Michael Stöckle
- Department of Urology and Pediatric UrologySaarland UniversityHomburgGermany
| | - Kerstin Junker
- Department of Urology and Pediatric UrologySaarland UniversityHomburgGermany
| |
Collapse
|
17
|
Scimeca M, Rovella V, Caporali S, Shi Y, Bischof J, Woodsmith J, Tisone G, Sica G, Amelio I, Melino G, Mauriello A, Bove P. Genetically driven predisposition leads to an unusually genomic unstable renal cell carcinoma. Discov Oncol 2024; 15:80. [PMID: 38512353 PMCID: PMC10957849 DOI: 10.1007/s12672-024-00894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Renal cell carcinoma originates from the lining of the proximal convoluted renal tubule and represents the most common type of kidney cancer. Risk factors and comorbidities might be associated to renal cell carcinoma, while a small fraction of 2-3% emerges from patients with predisposing cancer syndromes, typically associated to hereditary mutations in VHL, folliculin, fumarate hydratase or MET genes. Here, we report a case of renal cell carcinoma in patient with concurrent germline mutations in BRCA1 and RAD51 genes. This case displays an unusual high mutational burden and chromosomal aberrations compared to the typical profile of renal cell carcinoma. Mutational analysis on whole genome sequencing revealed an enrichment of the MMR2 mutational signature, which is indicative of impaired DNA repair capacity. Overall, the tumor displayed a profile of unusual high genomic instability which suggests a possible origin from germline predisposing mutations in the DNA repair genes BRCA1 and RAD51. While BRCA1 and RAD51 germline mutations are well-characterised in breast and ovarian cancer, their role in renal cell carcinoma is still largely unexplored. The genomic instability detected in this case of renal cell carcinoma, along with the presence of unusual mutations, might offer support to clinicians for the development of patient-tailored therapies.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Sabrina Caporali
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | | | - Giuseppe Tisone
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Giuseppe Sica
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ivano Amelio
- Division for Systems Toxicology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Pierluigi Bove
- Department of Surgery, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
18
|
Alhammadi MA, Bajbouj K, Talaat IM, Hamoudi R. The role of RNA-modifying proteins in renal cell carcinoma. Cell Death Dis 2024; 15:227. [PMID: 38503745 PMCID: PMC10951318 DOI: 10.1038/s41419-024-06479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
Gene expression is one of the most critical cellular processes. It is controlled by complex mechanisms at the genomic, epigenomic, transcriptomic, and proteomic levels. Any aberration in these mechanisms can lead to dysregulated gene expression. One recently discovered process that controls gene expression includes chemical modifications of RNA molecules by RNA-modifying proteins, a field known as epitranscriptomics. Epitranscriptomics can regulate mRNA splicing, nuclear export, stabilization, translation, or induce degradation of target RNA molecules. Dysregulation in RNA-modifying proteins has been found to contribute to many pathological conditions, such as cancer, diabetes, obesity, cardiovascular diseases, and neurological diseases, among others. This article reviews the role of epitranscriptomics in the pathogenesis and progression of renal cell carcinoma. It summarizes the molecular function of RNA-modifying proteins in the pathogenesis of renal cell carcinoma.
Collapse
Affiliation(s)
- Muna A Alhammadi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Basic Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, United States of America.
| | - Iman M Talaat
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Pathology Department, Faculty of Medicine, Alexandria University, 21131, Alexandria, Egypt.
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, NW3 2PS, United Kingdom.
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates.
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
19
|
Hamadamin PS, Maulood KA. Exploring the anticancer potential of hydrogen sulfide and BAY‑876 on clear cell renal cell carcinoma cells: Uncovering novel mutations in VHL and KDR genes among ccRCC patients. Mol Clin Oncol 2024; 20:21. [PMID: 38332991 PMCID: PMC10851183 DOI: 10.3892/mco.2024.2719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
The aim of the present study was to determine the cytotoxic effect of BAY-876 and NaSH alone or in combination with sunitinib against the 786-O cell line (renal adenocarcinoma). The IC50 of sunitinib, BAY-876 and NaSH were estimated. Cells were cultured in a 96-well plate and then different concentration of each drug alone was exposed for different incubation time; afterwards, cell cytotoxicity was measured using Cell Counting Kit-8 kit. The IC50 for each drug was used in next experiment to determine the influence of drug combinations. Furthermore, to observe the effect of mutations of few driver genes in development of clear cell renal cell carcinoma (ccRCC), direct sanger sequencing was used to find single nucleotide polymorphisms in exon 1 and exon 13 of tumor suppressor gene Von Hippel Lindau (VHL) and kinase insert domain receptor (KDR) genes respectively in ccRCC formalin fixed paraffin embedded block samples. The results revealed that the IC50 for sunitinib (after 72 h), BAY-876 (after 96 h) and NaSH (after 48 h) was 5.26, 53.56 and 692 µM respectively. The cytotoxic effect of sunitinib and BAY-876, sunitinib and NaSH combinations after 24- and 48-h incubation respectively was significantly higher (P<0.05) compared with the control group as well as to sunitinib group alone. These results proved that each of BAY-876 and NaSH have anticancer effect; thus, they could be used in future for ccRCC treatment purpose. Furthermore, direct sequencing results demonstrated unrecorded mutations of VHL and KDR genes is 43.7 and 31.5% of cases respectively. These findings confirmed the leading role of VHL gene in development of ccRCC and the crucial role of KDR gene in angiogenesis and drug resistance.
Collapse
Affiliation(s)
- Peshraw Salih Hamadamin
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan 44002, Iraq
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Kurdistan 44001, Iraq
| | - Kalthum Asaf Maulood
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan 44002, Iraq
| |
Collapse
|
20
|
Tao J, Cui J, Xu Y, Fan Y, Hong G, Zhou Q, Wang G, Li L, Han Y, Xu C, Wang W, Cai S, Zhang X. MAEL in human cancers and implications in prognostication and predicting benefit from immunotherapy over VEGFR/mTOR inhibitors in clear cell renal cell carcinoma: a bioinformatic analysis. Aging (Albany NY) 2024; 16:2090-2122. [PMID: 38301040 PMCID: PMC10911358 DOI: 10.18632/aging.205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Maelstrom (MAEL), a novel cancer/testis-associated gene, may facilitate the initiation and progression of human malignancies, warranting comprehensive investigations. Single-cell and tissue-bulk transcriptomic data demonstrated higher MAEL expression in testis (spermatogonia/spermatocyte), kidney (proximal tubular cell), and brain (neuron/astrocyte), and corresponding cancers, including testicular germ cell tumor, glioma, papillary renal cell carcinoma, and clear cell renal cell carcinoma (ccRCC). Of these cancers, only in ccRCC did MAEL expression exhibit associations with both recurrence-free survival and overall survival. High MAEL expression was associated with an anti-inflammatory tumor immune microenvironment and VEGFR/mTOR activation in ccRCC tissues and high sensitivities to VEGFR/PI3K-AKT-mTOR inhibitors in ccRCC cell lines. Consistent with these, low rather than high MAEL expression indicated remarkable progression-free survival benefits from immune checkpoint inhibitor (ICI)-based immunotherapies over VEGFR/mTOR inhibitors in two large phase III trials (JAVELIN Renal 101 and CheckMate-025). MAEL is a biologically and clinically significant determinant with potential for prognostication after nephrectomy and patient selection for VEGFR/mTOR inhibitors and immunotherapy-based treatments.
Collapse
Affiliation(s)
- Jin Tao
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinshan Cui
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Yafeng Fan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guodong Hong
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiaoxia Zhou
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | | | - Leo Li
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Yusheng Han
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, Guangdong, China
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Hong JY, Han JH, Jeong SH, Kwak C, Kim HH, Jeong CW. Polygenic risk score model for renal cell carcinoma in the Korean population and relationship with lifestyle-associated factors. BMC Genomics 2024; 25:46. [PMID: 38200428 PMCID: PMC10777500 DOI: 10.1186/s12864-024-09974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The polygenic risk score (PRS) is used to predict the risk of developing common complex diseases or cancers using genetic markers. Although PRS is used in clinical practice to predict breast cancer risk, it is more accurate for Europeans than for non-Europeans because of the sample size of training genome-wide association studies (GWAS). To address this disparity, we constructed a PRS model for predicting the risk of renal cell carcinoma (RCC) in the Korean population. RESULTS Using GWAS analysis, we identified 43 Korean-specific variants and calculated the PRS. Subsequent to plotting receiver operating characteristic (ROC) curves, we selected the 31 best-performing variants to construct an optimal PRS model. The resultant PRS model with 31 variants demonstrated a prediction rate of 77.4%. The pathway analysis indicated that the identified non-coding variants are involved in regulating the expression of genes related to cancer initiation and progression. Notably, favorable lifestyle habits, such as avoiding tobacco and alcohol, mitigated the risk of RCC across PRS strata expressing genetic risk. CONCLUSION A Korean-specific PRS model was established to predict the risk of RCC in the underrepresented Korean population. Our findings suggest that lifestyle-associated factors influencing RCC risk are associated with acquired risk factors indirectly through epigenetic modification, even among individuals in the higher PRS category.
Collapse
Affiliation(s)
- Joo Young Hong
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jang Hee Han
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hwan Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Urology, Myongji Hospital, Gyeonggi-do, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Urology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Naik P, Dudipala H, Chen YW, Rose B, Bagrodia A, McKay RR. The incidence, pathogenesis, and management of non-clear cell renal cell carcinoma. Ther Adv Urol 2024; 16:17562872241232578. [PMID: 38434237 PMCID: PMC10906063 DOI: 10.1177/17562872241232578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/18/2024] [Indexed: 03/05/2024] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer and is divided into two distinct subtypes, clear cell renal cell carcinoma (ccRCC) and non-clear cell renal cell carcinoma (nccRCC). Although many treatments exist for RCC, these are largely based on clinical trials performed in ccRCC and there are limited studies on the management of nccRCC. Non-clear cell RCC consists of multiple histological subtypes: papillary, chromophobe, translocation, medullary, collecting duct, unclassified, and other rare histologies. Due to variations in pathogenesis and therapeutic response, therapy should be tailored to specific variant histologies. For patients with localized nccRCC, surgical resection remains the gold standard. In the metastatic setting, the standard of care has yet to be clearly defined, and most guidelines recommend clinical trial participation. General therapeutic options include immunotherapy, either as monotherapy or in combination, targeted therapies such as vascular endothelial growth factor tyrosine kinase inhibitors and MET inhibitors, and chemotherapy in certain subtypes. Here we present a review of the incidence and pathogenesis of the various subtypes, as well as available clinical data to support therapeutic recommendations for these subtypes. We also highlight currently available clinical trials in nccRCC and future directions in investigating novel treatment modalities tailored to patients with variant histology.
Collapse
Affiliation(s)
- Priyanka Naik
- Undergraduate Studies, University of California, San Diego, La Jolla, CA, USA
| | - Harshitha Dudipala
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, 72 E Concord St, Boston, MA 02118, USA
| | - Yu-Wei Chen
- Department of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Brent Rose
- Department of Radiation Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Aditya Bagrodia
- Department of Urology, University of California, San Diego, La Jolla, CA, USA
| | - Rana R. McKay
- Department of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Du L, Wang B, Wu M, Chen W, Wang W, Diao W, Ding M, Chen W, Cao W, Guo H, Zhang G. LINC00926 promotes progression of renal cell carcinoma via regulating miR-30a-5p/SOX4 axis and activating IFNγ-JAK2-STAT1 pathway. Cancer Lett 2023; 578:216463. [PMID: 37866544 DOI: 10.1016/j.canlet.2023.216463] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The role of long non-coding RNA (lncRNA) in the progression of renal cell carcinoma (RCC) remains further study. Whether lncRNA may be used to predict the immunotherapy efficacy of RCC is less studied. In this study, LINC00926 was found to be mainly located in cytoplasm by FISH and RNA nuclear-cytoplasmic fractionation. Downregulation of LINC00926 in RCC cell lines inhibited the progression and metastasis of RCC cells. RNA pull-down assay and dual-luciferase reporter assay demonstrated that LINC00926 functioned as miR-30a-5p sponge to facilitate SOX4 expression. LINC00926 overexpression in BALB/c mice enhanced PD-L1 surface expression and resulted in immune escape. Mechanistic investigations showed that LINC00926 competitively bound to Lyn, leading to the inhibition of CBL-mediated ubiquitination and degradation, and stabilized Lyn, contributing to the activation of IFNγ-JAK2-STAT1 signaling pathway. Moreover, LINC00926, together with PD-L1 or PD-1 expression, may predict the overall survival in RCC patients. Therefore, LINC00926 has the potential to be a novel therapeutic target and a biomarker to predict ICB immunotherapy response in RCC.
Collapse
Affiliation(s)
- Lin Du
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Southeast University, Nanjing, 210008, Jiangsu, China; Department of Urology, The First People's Hospital of Yancheng, Yancheng, 224006, Jiangsu, China
| | - Baojun Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230039, Anhui, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Mengtong Wu
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Weixu Chen
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China
| | - Wendi Wang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Southeast University, Nanjing, 210008, Jiangsu, China
| | - Wenli Diao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Meng Ding
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Wenmin Cao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Gutian Zhang
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Southeast University, Nanjing, 210008, Jiangsu, China; Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
24
|
Rao H, Liu C, Wang A, Ma C, Xu Y, Ye T, Su W, Zhou P, Gao WQ, Li L, Ding X. SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer. Nat Commun 2023; 14:7572. [PMID: 37989747 PMCID: PMC10663509 DOI: 10.1038/s41467-023-43378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
Patients with polycystic kidney disease (PKD) encounter a high risk of clear cell renal cell carcinoma (ccRCC), a malignant tumor with dysregulated lipid metabolism. SET domain-containing 2 (SETD2) has been identified as an important tumor suppressor and an immunosuppressor in ccRCC. However, the role of SETD2 in ccRCC generation in PKD remains largely unexplored. Herein, we perform metabolomics, lipidomics, transcriptomics and proteomics within SETD2 loss induced PKD-ccRCC transition mouse model. Our analyses show that SETD2 loss causes extensive metabolic reprogramming events that eventually results in enhanced sphingomyelin biosynthesis and tumorigenesis. Clinical ccRCC patient specimens further confirm the abnormal metabolic reprogramming and sphingomyelin accumulation. Tumor symptom caused by Setd2 knockout is relieved by myriocin, a selective inhibitor of serine-palmitoyl-transferase and sphingomyelin biosynthesis. Our results reveal that SETD2 deficiency promotes large-scale metabolic reprogramming and sphingomyelin biosynthesis during PKD-ccRCC transition. This study introduces high-quality multi-omics resources and uncovers a regulatory mechanism of SETD2 on lipid metabolism during tumorigenesis.
Collapse
Affiliation(s)
- Hanyu Rao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Aiting Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Tianbao Ye
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqiong Su
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Peijun Zhou
- Division of Kidney Transplant, Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Li
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xianting Ding
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Zhou X, Sekino Y, Li HT, Fu G, Yang Z, Zhao S, Gujar H, Zu X, Weisenberger DJ, Gill IS, Tulpule V, D’souza A, Quinn DI, Han B, Liang G. SETD2 Deficiency Confers Sensitivity to Dual Inhibition of DNA Methylation and PARP in Kidney Cancer. Cancer Res 2023; 83:3813-3826. [PMID: 37695044 PMCID: PMC10843145 DOI: 10.1158/0008-5472.can-23-0401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
SETD2 deficiency alters the epigenetic landscape by causing depletion of H3K36me3 and plays an important role in diverse forms of cancer, most notably in aggressive and metastatic clear-cell renal cell carcinomas (ccRCC). Development of an effective treatment scheme targeting SETD2-compromised cancer is urgently needed. Considering that SETD2 is involved in DNA methylation and DNA repair, a combination treatment approach using DNA hypomethylating agents (HMA) and PARP inhibitors (PARPi) could have strong antitumor activity in SETD2-deficient kidney cancer. We tested the effects of the DNA HMA 5-aza-2'-dexoxydytidine (DAC), the PARPi talazoparib (BMN-673), and both in combination in human ccRCC models with or without SETD2 deficiency. The combination treatment of DAC and BMN-673 synergistically increased cytotoxicity in vitro in SETD2-deficient ccRCC cell lines but not in SETD2-proficient cell lines. DAC and BMN-673 led to apoptotic induction, increased DNA damage, insufficient DNA damage repair, and increased genomic instability. Furthermore, the combination treatment elevated immune responses, upregulated STING, and enhanced viral mimicry by activating transposable elements. Finally, the combination effectively suppressed the growth of SETD2-deficient ccRCC in in vivo mouse models. Together, these findings indicate that combining HMA and PARPi is a promising potential therapeutic strategy for treating SETD2-compromised ccRCC. SIGNIFICANCE SETD2 deficiency creates a vulnerable epigenetic status that is targetable using a DNA hypomethylating agent and PARP inhibitor combination to suppress renal cell carcinoma, identifying a precision medicine-based approach for SETD2-compromised cancers.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Xiangya Hospital, Central South University, Hunan, Changsha 410008, China
| | - Yohei Sekino
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hong-Tao Li
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guanghou Fu
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhi Yang
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California; Department of Surgery and Biomedical Engineering, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Shuqing Zhao
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California; Department of Surgery and Biomedical Engineering, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Hemant Gujar
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Hunan, Changsha 410008, China
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Inderbir S. Gill
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Varsha Tulpule
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anishka D’souza
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David I Quinn
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California; Department of Surgery and Biomedical Engineering, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Liu L, Feng Y, Guo C, Weng S, Xu H, Xing Z, Zhang Y, Wang L, Han X. Multi-center validation of an immune-related lncRNA signature for predicting survival and immune status of patients with renal cell carcinoma: an integrating machine learning-derived study. J Cancer Res Clin Oncol 2023; 149:12115-12129. [PMID: 37423959 DOI: 10.1007/s00432-023-05107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been reported to play an important role in tumor immune modification. Nonetheless, the clinical implication of immune-associated lncRNAs in renal cell carcinoma (RCC) remains to be further explored. METHODS 76 combinations of machine learning algorithms were integrated to develop and validate a machine learning-derived immune-related lncRNA signature (MDILS) in five independent cohorts (n = 801). We collected 28 published signatures and collated clinical variables for comparison with MDILS to verify its efficacy. Subsequently, molecular mechanisms, immune status, mutation landscape, and pharmacological profile were further investigated in different stratified patients. RESULTS Patients with high MDILS displayed worse overall survival than those with low MDILS. The MDILS could independently predict overall survival and convey robust performance across five cohorts. MDILS has a significantly better performance compared with traditional clinical variables and 28 published signatures. Patients with low MDILS exhibited more abundant immune infiltration and higher potency of immunotherapeutic response, while patients with high MDILS might be more sensitive to multiple chemotherapeutic drugs (e.g., sunitinib and axitinib). CONCLUSION MDILS is a robust and promising tool to facilitate clinical decision-making and precision treatment of RCC.
Collapse
Affiliation(s)
- Long Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
27
|
Shen C, Zhang DL, Cheng XL, Zhang WC, Zhao JJ. Urological Tumor: A Narrative Review of Tertiary Lymphatic Structures. Urol Int 2023; 107:841-847. [PMID: 37769625 PMCID: PMC10623398 DOI: 10.1159/000532127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs), as ectopic lymphoid-like tissues, are highly similar to secondary lymphoid organs and are not only involved in chronic inflammation and autoimmune responses but are also closely associated with tumor immunotherapy and prognosis. The complex composition of the urological tumor microenvironment not only varies greatly in response to immunotherapy, but the prognostic value of TLSs in different urological tumors remains controversial. SUMMARY We searched PubMed, Web of Science, and other full-text database systems. TLSs, kidney cancer, uroepithelial cancer, bladder cancer, and prostate cancer as keywords, relevant literature was searched from the time the library was built to 2023. Systematically explore the role and mechanism of TLSs in urological tumors. It includes the characteristics of TLSs, the role and mechanism of TLSs in urological tumors, and the clinical significance of TLSs in urological tumors. KEY MESSAGES The prognostic role of TLSs in different urological tumors was significantly different. It is not only related to its enrichment in the tumor but also highly correlated with the location of the tumor. In addition, autoimmune toxicity may be a potential barrier to its role in the formation of TLSs through induction. Therefore, studying the mechanisms of TLSs in autoimmune diseases may help in the development of antitumor target drugs.
Collapse
Affiliation(s)
- Chong Shen
- College of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Dong-Li Zhang
- College of Clinical Medicine, Hebei University of Engineering, Handan, China
| | - Xiao-Long Cheng
- Department of Urology II, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Wei-Chuan Zhang
- Department of Urology II, Affiliated Hospital of Hebei Engineering University, Handan, China
| | - Jian-Jun Zhao
- Department of Urology II, Affiliated Hospital of Hebei Engineering University, Handan, China
| |
Collapse
|
28
|
Abstract
Bromodomains are acetyl-lysine binding modules that are found in different classes of chromatin-interacting proteins. Among these are large chromatin remodeling complexes such as BAF and PBAF (variants of human SWI/SNF). Previous work has identified chemical probes targeting a subset of the bromodomains present in the BAF and PBAF complexes. Selective inhibitors of the individual bromodomains have proven challenging to discover, as the domains are highly similar. Here, elaboration of an aminopyridazine scaffold used previously to develop probes for the bromodomains of SMARCA2, SMARCA4, and the fifth bromodomain of PBRM1 yielded compounds with both potency and unusual selectivity for the second bromodomain of PBRM1. One of these, GNE-235, and its enantiomer control GNE-234 are suggested for initial cellular investigations of the function of the second bromodomain of PBRM1.
Collapse
Affiliation(s)
- Andrea G Cochran
- Department of Biological Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| | - Megan Flynn
- Department of Biological Chemistry, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
29
|
Semenescu LE, Kamel A, Ciubotaru V, Baez-Rodriguez SM, Furtos M, Costachi A, Dricu A, Tătăranu LG. An Overview of Systemic Targeted Therapy in Renal Cell Carcinoma, with a Focus on Metastatic Renal Cell Carcinoma and Brain Metastases. Curr Issues Mol Biol 2023; 45:7680-7704. [PMID: 37754269 PMCID: PMC10528141 DOI: 10.3390/cimb45090485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
The most commonly diagnosed malignancy of the urinary system is represented by renal cell carcinoma. Various subvariants of RCC were described, with a clear-cell type prevailing in about 85% of all RCC tumors. Patients with metastases from renal cell carcinoma did not have many effective therapies until the end of the 1980s, as long as hormonal therapy and chemotherapy were the only options available. The outcomes were unsatisfactory due to the poor effectiveness of the available therapeutic options, but then interferon-alpha and interleukin-2 showed treatment effectiveness, providing benefits but only for less than half of the patients. However, it was not until 2004 that targeted therapies emerged, prolonging the survival rate. Currently, new technologies and strategies are being developed to improve the actual efficacy of available treatments and their prognostic aspects. This article summarizes the mechanisms of action, importance, benefits, adverse events of special interest, and efficacy of immunotherapy in metastatic renal cell carcinoma, with a focus on brain metastases.
Collapse
Affiliation(s)
- Liliana Eleonora Semenescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania; (L.E.S.); (A.C.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
| | - Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
| | - Silvia Mara Baez-Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
| | - Mircea Furtos
- Neurosurgical Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Alexandra Costachi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania; (L.E.S.); (A.C.)
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania; (L.E.S.); (A.C.)
| | - Ligia Gabriela Tătăranu
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| |
Collapse
|
30
|
Zhao D, Dong Y, Duan M, He D, Xie Q, Peng W, Cui W, Jiang J, Cheng Y, Zhang H, Tang F, Zhang C, Gao Y, Duan C. Circadian gene ARNTL initiates circGUCY1A2 transcription to suppress non-small cell lung cancer progression via miR-200c-3p/PTEN signaling. J Exp Clin Cancer Res 2023; 42:229. [PMID: 37667322 PMCID: PMC10478228 DOI: 10.1186/s13046-023-02791-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND As a subclass of endogenous stable noncoding RNAs, circular RNAs are beginning to be appreciated for their potential as tumor therapeutics. However, the functions and mechanisms by which circRNAs exert protective functions in non-small cell lung cancer (NSCLC) remain largely elusive. METHODS The prognostic role of circGUCY1A2 was explored in lung adenocarcinoma specimens. The overexpressed and knockdown plasmids were used to evaluate the effect of circGUCY1A2 on NSCLC cell proliferation and apoptosis efficacy. Luciferase reporter system is used to prove that circGUCY1A2 could bind to miRNA. Chip-PCR was used to prove that circGUCY1A2 could be initiated by transcription factors ARNTL. Subcutaneous tumorigenicity grafts models were established to validate findings in vivo. RESULTS The expression of circGUCY1A2 were significantly reduced (P < 0.001) and negatively correlated with tumor size (P < 0.05) in non-small cell lung cancer (NSCLC). CircGUCY1A2 upregulation promoted apoptosis and inhibits cell proliferation and growth of subcutaneous tumorigenicity grafts in nude mice (P < 0.01). In addition, intra-tumor injection of pLCDH-circGUCY1A2 inhibited tumor growth in patient-derived NSCLC xenograft models (PDX). Mechanism studies showed that circGUCY1A2 could act as a sponge to competitively bind miR-200c-3p, promote PTEN expression, and thereby inhibit PI3K/AKT pathway. In addition, we found that the circadian gene ARNTL, which was reduced in NSCLC and prolonged the overall survival of patients, could bind to the promoter of circGUCY1A2, thereby increasing its expression. CONCLUSIONS This study is an original demonstration that ARNTL can inhibit the development of lung adenocarcinoma through the circGUCY1A2/miR-200c-3p/PTEN axis, and this finding provides potential targets and therapeutic approaches for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Yeping Dong
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, 310011, China
| | - Minghao Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Dan He
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Qun Xie
- Department of Ultrasonic Imaging, Affiliated Hospital of Hunan Traditional Chinese Medicine Research Institute, Changsha, 410006, Hunan, China
| | - Wei Peng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Oncology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410006, Hunan, China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Heng Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
| | - Faqing Tang
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, 410008, Hunan, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, China.
| |
Collapse
|
31
|
Méndez-Vidal MJ, Lázaro Quintela M, Lainez-Milagro N, Perez-Valderrama B, Suárez Rodriguez C, Arranz Arija JÁ, Peláez Fernández I, Gallardo Díaz E, Lambea Sorrosal J, González-del-Alba A. SEOM SOGUG clinical guideline for treatment of kidney cancer (2022). Clin Transl Oncol 2023; 25:2732-2748. [PMID: 37556095 PMCID: PMC10425490 DOI: 10.1007/s12094-023-03276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 08/10/2023]
Abstract
Renal cancer is the seventh most common cancer in men and the tenth in women. The aim of this article is to review the diagnosis, treatment, and follow-up of renal carcinoma accompanied by recommendations with new evidence and treatment algorithms. A new pathologic classification of RCC by the World Health Organization (WHO) was published in 2022 and this classification would be considered a "bridge" to a future molecular classification. For patients with localized disease, surgery is the treatment of choice with nephron-sparing surgery recommended when feasible. Adjuvant treatment with pembrolizumab is an option for intermediate-or high-risk cases, as well as patients after complete resection of metastatic disease. More data are needed in the future, including positive overall survival data. Clinical prognostic classification, preferably IMDC, should be used for treatment decision making in mRCC. Cytoreductive nephrectomy should not be deemed mandatory in individuals with intermediate-poor IMDC/MSKCC risk who require systemic therapy. Metastasectomy can be contemplated in selected subjects with a limited number of metastases or long metachronous disease-free interval. For the population of patients with metastatic ccRCC as a whole, the combination of pembrolizumab-axitinib, nivolumab-cabozantinib, or pembrolizumab-lenvatinib can be considered as the first option based on the benefit obtained in OS versus sunitinib. In cases that have an intermediate IMDC and poor prognosis, the combination of ipilimumab and nivolumab has demonstrated superior OS compared to sunitinib. As for individuals with advanced RCC previously treated with one or two antiangiogenic tyrosine-kinase inhibitors, nivolumab and cabozantinib are the options of choice. When there is progression following initial immunotherapy-based treatment, we recommend treatment with an antiangiogenic tyrosine-kinase inhibitor. While no clear sequence can be advocated, medical oncologists and patients should be aware of the recent advances and new strategies that improve survival and quality of life in the setting of metastatic RC.
Collapse
Affiliation(s)
- María José Méndez-Vidal
- Medical Oncology Department, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martin Lázaro Quintela
- Medical Oncology Department, Hospital Alvaro Cunqueiro-Complejo Hospitalario Universitario de Vigo, Pontevedra, Spain
| | - Nuria Lainez-Milagro
- Medical Oncology Department, Hospital Universitario de Navarra (HUN), Pamplona, Spain
| | | | | | | | | | | | - Julio Lambea Sorrosal
- Medical Oncology Department, Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | | |
Collapse
|
32
|
Klontzas ME, Koltsakis E, Kalarakis G, Trpkov K, Papathomas T, Sun N, Walch A, Karantanas AH, Tzortzakakis A. A pilot radiometabolomics integration study for the characterization of renal oncocytic neoplasia. Sci Rep 2023; 13:12594. [PMID: 37537362 PMCID: PMC10400617 DOI: 10.1038/s41598-023-39809-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Differentiating benign renal oncocytic tumors and malignant renal cell carcinoma (RCC) on imaging and histopathology is a critical problem that presents an everyday clinical challenge. This manuscript aims to demonstrate a novel methodology integrating metabolomics with radiomics features (RF) to differentiate between benign oncocytic neoplasia and malignant renal tumors. For this purpose, thirty-three renal tumors (14 renal oncocytic tumors and 19 RCC) were prospectively collected and histopathologically characterised. Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) was used to extract metabolomics data, while RF were extracted from CT scans of the same tumors. Statistical integration was used to generate multilevel network communities of -omics features. Metabolites and RF critical for the differentiation between the two groups (delta centrality > 0.1) were used for pathway enrichment analysis and machine learning classifier (XGboost) development. Receiver operating characteristics (ROC) curves and areas under the curve (AUC) were used to assess classifier performance. Radiometabolomics analysis demonstrated differential network node configuration between benign and malignant renal tumors. Fourteen nodes (6 RF and 8 metabolites) were crucial in distinguishing between the two groups. The combined radiometabolomics model achieved an AUC of 86.4%, whereas metabolomics-only and radiomics-only classifiers achieved AUC of 72.7% and 68.2%, respectively. Analysis of significant metabolite nodes identified three distinct tumour clusters (malignant, benign, and mixed) and differentially enriched metabolic pathways. In conclusion, radiometabolomics integration has been presented as an approach to evaluate disease entities. In our case study, the method identified RF and metabolites important in differentiating between benign oncocytic neoplasia and malignant renal tumors, highlighting pathways differentially expressed between the two groups. Key metabolites and RF identified by radiometabolomics can be used to improve the identification and differentiation between renal neoplasms.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Crete, Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Emmanouil Koltsakis
- Department of Diagnostic Radiology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Georgios Kalarakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Diagnostic Radiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- University of Crete, School of Medicine, 71500, Heraklion, Greece
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Alberta Precision Labs, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Clinical Pathology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Crete, Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Huddinge, C2:74, 14 186, Stockholm, Sweden.
| |
Collapse
|
33
|
He T, Zhang Q, Xu P, Tao W, Lin F, Liu R, Li M, Duan X, Cai C, Gu D, Zeng G, Liu Y. Extracellular vesicle-circEHD2 promotes the progression of renal cell carcinoma by activating cancer-associated fibroblasts. Mol Cancer 2023; 22:117. [PMID: 37481520 PMCID: PMC10362694 DOI: 10.1186/s12943-023-01824-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The encapsulation of circular RNAs (circRNAs) into extracellular vesicles (EVs) enables their involvement in intercellular communication and exerts an influence on the malignant advancement of various tumors. However, the regulatory role of EVs-circRNA in renal cell carcinoma (RCC) remains elusive. METHODS The in vitro and in vivo functional experiments were implemented to measure the effects of circEHD2 on the phenotype of RCC. The functional role of EVs-circEHD2 on the activation of fibroblasts was assessed by collagen contraction assay, western blotting, and enzyme-linked immunosorbent assay (ELISA). The mechanism was investigated by RNA pull-down assay, RNA immunoprecipitation, chromatin isolation by RNA purification, luciferase assay, and co-immunoprecipitation assay. RESULTS We demonstrated that circEHD2 was upregulated in RCC tissues and serum EVs of RCC patients with metastasis. Silencing circEHD2 inhibited tumor growth in vitro and in vivo. Mechanistic studies indicated that FUS RNA -binding protein (FUS) accelerated the cyclization of circEHD2, then circEHD2 interacts with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH), which acts as a bridge to recruit circEHD2 and Yes1-associated transcriptional regulator (YAP) to the promoter of SRY-box transcription factor 9 (SOX9); this results in the sustained activation of SOX9. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) regulates the package of circEHD2 into EVs, then EVs-circEHD2 transmits to fibroblasts, converting fibroblasts to cancer-associated fibroblasts (CAFs). Activated CAFs promote the metastasis of RCC by secreting pro-inflammatory cytokines such as IL-6. Furthermore, antisense oligonucleotides (ASOs) targeting circEHD2 exhibited a strong inhibition of tumor growth in vivo. CONCLUSIONS The circEHD2/YWHAH/YAP/SOX9 signaling pathway accelerates the growth of RCC. EVs-circEHD2 facilitates the metastasis of RCC by converting fibroblasts to CAFs. Our results suggest that EVs-circEHD2 may be a useful biomarker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Tao He
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Qiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Peng Xu
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Wen Tao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Fuyang Lin
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Renfei Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Mingzhao Li
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Chao Cai
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Di Gu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Guohua Zeng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China
| | - Yongda Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, 151 West Yanjiang Road, Guangzhou, 510120, China.
- Urology Key Laboratory of Guangdong Province, Guangzhou, 510120, China.
| |
Collapse
|
34
|
Zhang H, Bai L, Wu XQ, Tian X, Feng J, Wu X, Shi GH, Pei X, Lyu J, Yang G, Liu Y, Xu W, Anwaier A, Zhu Y, Cao DL, Xu F, Wang Y, Gan HL, Sun MH, Zhao JY, Qu Y, Ye D, Ding C. Proteogenomics of clear cell renal cell carcinoma response to tyrosine kinase inhibitor. Nat Commun 2023; 14:4274. [PMID: 37460463 DOI: 10.1038/s41467-023-39981-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
The tyrosine kinase inhibitor (TKI) Sunitinib is one the therapies approved for advanced renal cell carcinoma. Here, we undertake proteogenomic profiling of 115 tumors from patients with clear cell renal cell carcinoma (ccRCC) undergoing Sunitinib treatment and reveal the molecular basis of differential clinical outcomes with TKI therapy. We find that chromosome 7q gain-induced mTOR signaling activation is associated with poor therapeutic outcomes with Sunitinib treatment, whereas the aristolochic acid signature and VHL mutation synergistically caused enhanced glycolysis is correlated with better prognosis. The proteomic and phosphoproteomic analysis further highlights the responsibility of mTOR signaling for non-response to Sunitinib. Immune landscape characterization reveals diverse tumor microenvironment subsets in ccRCC. Finally, we construct a multi-omics classifier that can detect responder and non-responder patients (receiver operating characteristic-area under the curve, 0.98). Our study highlights associations between ccRCC molecular characteristics and the response to TKI, which can facilitate future improvement of therapeutic responses.
Collapse
Affiliation(s)
- Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Lin Bai
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xin-Qiang Wu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Jinwen Feng
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Xiaohui Wu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Xiaoru Pei
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Jiacheng Lyu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Guojian Yang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yang Liu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Fujiang Xu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Hua-Lei Gan
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Meng-Hong Sun
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Tissue Bank & Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of Anatomy and Neuroscience Research Institute, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Oncology, Shanghai Medical College, Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Chen Ding
- Department of Urology, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Qingdao Institute, Institutes of Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
35
|
Wang S, Wang T, Zhang X, Cheng S, Chen C, Yang G, Wang F, Wang R, Zhang Q, Yang D, Zhang Y, Liu S, Qin H, Liu Q, Liu H. The deubiquitylating enzyme USP35 restricts regulated cell death to promote survival of renal clear cell carcinoma. Cell Death Differ 2023; 30:1757-1770. [PMID: 37173391 PMCID: PMC10307860 DOI: 10.1038/s41418-023-01176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The ubiquitin-proteasome system governs a wide spectrum of cellular events and offers therapeutic opportunities for pharmacological intervention in cancer treatment. Renal clear cell carcinoma represents the predominant histological subtype and accounts for the majority of cancer death related to kidney malignancies. Through a systematic survey in the association of human ubiquitin-specific proteases with patient prognosis of renal clear cell carcinoma and subsequent phenotypic validation, we uncovered the tumor-promoting role of USP35. Biochemical characterizations confirmed the stabilizing effects of USP35 towards multiple members of the IAP family in an enzymatic activity-dependent manner. USP35 silencing led to reduced expression levels of IAP proteins, which were accompanied with increased cellular apoptosis. Further transcriptomic analysis revealed that USP35 knockdown affected the expression levels of NRF2 downstream transcripts, which were conferred by compromised NRF2 abundance. USP35 functions to maintain NRF2 levels by catalyzing its deubiquitylation and thus antagonizing degradation. NRF2 reduction imposed by USP35 silencing rendered renal clear cell carcinoma cells increased sensitivity to ferroptosis induction. Finally, induced USP35 knockdown markedly attenuated xenograft formation of renal clear cell carcinoma in nude mice. Hence, our findings reveal a number of USP35 substrates and uncover the protecting roles of USP35 against both apoptosis and ferroptosis in renal clear cell carcinoma.
Collapse
Affiliation(s)
- Shanshan Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Taishu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- National Institute of Biological Sciences, Beijing, China
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shaoxuan Cheng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Guoheng Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fuqiang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruilin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology, Dalian Medical University, Dalian, China
| | - Dian Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuyan Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Han Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
36
|
Liu Y, Zhang H, Fang Y, Tang D, Luo Z. Non-coding RNAs in renal cell carcinoma: Implications for drug resistance. Biomed Pharmacother 2023; 164:115001. [PMID: 37315433 DOI: 10.1016/j.biopha.2023.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Renal cell carcinoma (RCC) represents a malignant tumor of the urinary system. Individuals with early-stage RCC could be cured by surgical treatment, but a considerable number of cases of advanced RCC progress to drug resistance. Recently, numerous reports have demonstrated that a variety of non-coding RNAs (ncRNAs) contribute to tumor occurrence and development. ncRNAs can act as oncogenic or tumor suppressor genes to regulate proliferation, migration, drug resistance and other processes in RCC cells through a variety of signaling pathways. Considering the lack of treatment options for advanced RCC after drug resistance, ncRNAs may be a good choice as biomarkers of drug resistance in RCC and targets to overcome drug resistance. In this review, we discussed the effects of ncRNAs on drug resistance in RCC and the great potential of ncRNAs as a biomarker of or a new therapeutic method in RCC.
Collapse
Affiliation(s)
- Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Dongshan Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Zhigang Luo
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
37
|
Fotia G, Stellato M, Guadalupi V, Sepe P, Claps M, Giannatempo P, Bottiglieri A, Rametta A, Taglialatela I, Vela C, Procopio G, Verzoni E. Current Status of Predictive Biomarker Development in Metastatic Renal Cell Carcinoma. Curr Oncol Rep 2023; 25:671-677. [PMID: 37000341 DOI: 10.1007/s11912-023-01395-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE OF REVIEW In this review, we analyze the current state of research in development of new biomarkers that may be useful in managing metastatic renal cell carcinoma (mRCC) setting. RECENT FINDINGS Combining tumor-based biomarkers (gene expression profile) and blood-based biomarkers (ctDNA, cytokines) would be helpful in acquiring information regarding RCC and might be significant in the decision-making process. Renal cell carcinoma (RCC) is the sixth most frequently diagnosed neoplasm in men and tithe in women, making it responsible for 5% and 3% of all diagnosed cancers respectively. Metastatic stage represents a non-negligible percentage at diagnosis and is characterized by poor prognosis. Despite clinical features and prognostic score could guide clinicians in therapeutic approach of this disease, biomarkers predictive of response to treatment remain an unmet need.
Collapse
Affiliation(s)
- Giuseppe Fotia
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Marco Stellato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy.
| | - Valentina Guadalupi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Pierangela Sepe
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Melanie Claps
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Patrizia Giannatempo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Achille Bottiglieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Alessandro Rametta
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Ida Taglialatela
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Chiara Vela
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Giuseppe Procopio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| | - Elena Verzoni
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, Milan, Italy
| |
Collapse
|
38
|
Shankar V, Vijayalakshmi K, Nolley R, Sonn GA, Kao CS, Zhao H, Wen R, Eberlin LS, Tibshirani R, Zare RN, Brooks JD. Distinguishing Renal Cell Carcinoma From Normal Kidney Tissue Using Mass Spectrometry Imaging Combined With Machine Learning. JCO Precis Oncol 2023; 7:e2200668. [PMID: 37285559 PMCID: PMC10309512 DOI: 10.1200/po.22.00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 06/09/2023] Open
Abstract
PURPOSE Accurately distinguishing renal cell carcinoma (RCC) from normal kidney tissue is critical for identifying positive surgical margins (PSMs) during partial and radical nephrectomy, which remains the primary intervention for localized RCC. Techniques that detect PSM with higher accuracy and faster turnaround time than intraoperative frozen section (IFS) analysis can help decrease reoperation rates, relieve patient anxiety and costs, and potentially improve patient outcomes. MATERIALS AND METHODS Here, we extended our combined desorption electrospray ionization mass spectrometry imaging (DESI-MSI) and machine learning methodology to identify metabolite and lipid species from tissue surfaces that can distinguish normal tissues from clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe RCC (chRCC) tissues. RESULTS From 24 normal and 40 renal cancer (23 ccRCC, 13 pRCC, and 4 chRCC) tissues, we developed a multinomial lasso classifier that selects 281 total analytes from over 27,000 detected molecular species that distinguishes all histological subtypes of RCC from normal kidney tissues with 84.5% accuracy. On the basis of independent test data reflecting distinct patient populations, the classifier achieves 85.4% and 91.2% accuracy on a Stanford test set (20 normal and 28 RCC) and a Baylor-UT Austin test set (16 normal and 41 RCC), respectively. The majority of the model's selected features show consistent trends across data sets affirming its stable performance, where the suppression of arachidonic acid metabolism is identified as a shared molecular feature of ccRCC and pRCC. CONCLUSION Together, these results indicate that signatures derived from DESI-MSI combined with machine learning may be used to rapidly determine surgical margin status with accuracies that meet or exceed those reported for IFS.
Collapse
Affiliation(s)
- Vishnu Shankar
- Program in Immunology, Stanford University School of Medicine, Stanford, CA
| | | | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Geoffrey A. Sonn
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Chia-Sui Kao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | - Ru Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| | | | - Robert Tibshirani
- Department of Biomedical Data Science, and Statistics, Stanford University, Stanford, CA
| | | | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
39
|
Liu J, Shi Y, Zhang Y. Multi-omics identification of an immunogenic cell death-related signature for clear cell renal cell carcinoma in the context of 3P medicine and based on a 101-combination machine learning computational framework. EPMA J 2023; 14:275-305. [PMID: 37275552 PMCID: PMC10236109 DOI: 10.1007/s13167-023-00327-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023]
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is a prevalent urological malignancy associated with a high mortality rate. The lack of a reliable prognostic biomarker undermines the efficacy of its predictive, preventive, and personalized medicine (PPPM/3PM) approach. Immunogenic cell death (ICD) is a specific type of programmed cell death that is tightly associated with anti-cancer immunity. However, the role of ICD in ccRCC remains unclear. Methods Based on AddModuleScore, single-sample gene set enrichment analysis (ssGSEA), and weighted gene co-expression network (WGCNA) analyses, ICD-related genes were screened at both the single-cell and bulk transcriptome levels. We developed a novel machine learning framework that incorporated 10 machine learning algorithms and their 101 combinations to construct a consensus immunogenic cell death-related signature (ICDRS). ICDRS was evaluated in the training, internal validation, and external validation sets. An ICDRS-integrated nomogram was constructed to provide a quantitative tool for predicting prognosis in clinical practice. Multi-omics analysis was performed, including genome, single-cell transcriptome, and bulk transcriptome, to gain a more comprehensive understanding of the prognosis signature. We evaluated the response of risk subgroups to immunotherapy and screened drugs that target specific risk subgroups for personalized medicine. Finally, the expression of ICD-related genes was validated by qRT-PCR. Results We identified 131 ICD-related genes at both the single-cell and bulk transcriptome levels, of which 39 were associated with overall survival (OS). A consensus ICDRS was constructed based on a 101-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. ICDRS can also be used to predict the occurrence, development, and metastasis of ccRCC. Multivariate analysis verified it as an independent prognostic factor for OS, progression-free survival (PFS), and disease-specific survival (DSS) of ccRCC. The ICDRS-integrated nomogram provided a quantitative tool in clinical practice. Moreover, we observed distinct biological functions, mutation landscapes, and immune cell infiltration in the tumor microenvironment between the high- and low-risk groups. Notably, the immunophenoscore (IPS) score showed a significant difference between risk subgroups, suggesting a better response to immunotherapy in the high-risk group. Potential drugs targeting specific risk subgroups were also identified. Conclusion Our study constructed an immunogenic cell death-related signature that can serve as a promising tool for prognosis prediction, targeted prevention, and personalized medicine in ccRCC. Incorporating ICD into the PPPM framework will provide a unique opportunity for clinical intelligence and new management approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-023-00327-3.
Collapse
Affiliation(s)
- Jinsong Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yanjia Shi
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Yuxin Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| |
Collapse
|
40
|
Badoiu SC, Greabu M, Miricescu D, Stanescu-Spinu II, Ilinca R, Balan DG, Balcangiu-Stroescu AE, Mihai DA, Vacaroiu IA, Stefani C, Jinga V. PI3K/AKT/mTOR Dysregulation and Reprogramming Metabolic Pathways in Renal Cancer: Crosstalk with the VHL/HIF Axis. Int J Mol Sci 2023; 24:8391. [PMID: 37176098 PMCID: PMC10179314 DOI: 10.3390/ijms24098391] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Renal cell carcinoma (RCC) represents 85-95% of kidney cancers and is the most frequent type of renal cancer in adult patients. It accounts for 3% of all cancer cases and is in 7th place among the most frequent histological types of cancer. Clear cell renal cell carcinoma (ccRCC), accounts for 75% of RCCs and has the most kidney cancer-related deaths. One-third of the patients with ccRCC develop metastases. Renal cancer presents cellular alterations in sugars, lipids, amino acids, and nucleic acid metabolism. RCC is characterized by several metabolic dysregulations including oxygen sensing (VHL/HIF pathway), glucose transporters (GLUT 1 and GLUT 4) energy sensing, and energy nutrient sensing cascade. Metabolic reprogramming represents an important characteristic of the cancer cells to survive in nutrient and oxygen-deprived environments, to proliferate and metastasize in different body sites. The phosphoinositide 3-kinase-AKT-mammalian target of the rapamycin (PI3K/AKT/mTOR) signaling pathway is usually dysregulated in various cancer types including renal cancer. This molecular pathway is frequently correlated with tumor growth and survival. The main aim of this review is to present renal cancer types, dysregulation of PI3K/AKT/mTOR signaling pathway members, crosstalk with VHL/HIF axis, and carbohydrates, lipids, and amino acid alterations.
Collapse
Affiliation(s)
- Silviu Constantin Badoiu
- Department of Anatomy and Embryology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Department of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, Sector 5, 050474 Bucharest, Romania;
| | - Radu Ilinca
- Department of Medical Informatics and Biostatistics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Daniela Gabriela Balan
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Department of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania; (D.G.B.); (A.-E.B.-S.)
| | - Doina-Andrada Mihai
- Department of Diabetes, Nutrition and Metabolic Diseases, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Dr. Carol Davila Central Military Emergency University Hospital, 134 Calea Plevnei, 010825 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, “Prof. Dr. Theodor Burghele” Hospital, 050653 Bucharest, Romania
- “Prof. Dr. Theodor Burghele” Clinical Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
41
|
Radovanović M, Petrović M, Šantrić V, Milojević B, Zubelić A, Isaković A. P53 and survivin expression in renal cell carcinoma. Urol Ann 2023; 15:186-190. [PMID: 37304521 PMCID: PMC10252781 DOI: 10.4103/ua.ua_91_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 06/13/2023] Open
Abstract
Objective Mutation of p53 is detected in more than 50% of human cancers, expression of p53 has a potential prognostic value in patients with renal cell carcinoma (RCC). Survivin is a member of the inhibitor of apoptosis protein family, its overexpression is observed in many malignancies, including RCC. The aim of the study was to estimate a correlation between survivin and p53 expression in tumor samples and the histologic type of a tumor, tumor stage, tumor grade, and survival of patients. Materials and Methods Tumor samples were collected from surgical specimens of 90 patients who underwent radical or partial nephrectomy for RCC between November 2017 and July 2020. Tumors were staged according to the UICC (The Union for International Cancer Control) TNM classification system and histopathologically graded according to Fuhrman nuclear grade system. Histopathological diagnosis was confirmed with standard light microscopic evaluation, using hematoxylin and eosin staining and standard p53 and survivin antibodies. Results Positive p53 staining was observed in 36.7% of tumor specimens and 24.4% were survivin positive. There was a statistically significant correlation between p53 or survivin expression and histologic subtype of clear cell RCC as well as Type I and II of papillary RCC. There was a statistically significant correlation between p53 expression and tumor size, stage, and grade. The p53 or survivin expression was related to lower overall survival. Conclusion The results of this study suggest that p53 overexpression and survivin positivity in RCC patients could be associated with poor prognosis. Thus, these proteins could be used as prognostic markers in RCC.
Collapse
Affiliation(s)
- Milan Radovanović
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Miloš Petrović
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Veljko Šantrić
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bogomir Milojević
- Clinic of Urology, University Clinical Centre of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksa Zubelić
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
42
|
Garaycoechea JI, Quinlan C, Luijsterburg MS. Pathological consequences of DNA damage in the kidney. Nat Rev Nephrol 2023; 19:229-243. [PMID: 36702905 DOI: 10.1038/s41581-022-00671-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/27/2023]
Abstract
DNA lesions that evade repair can lead to mutations that drive the development of cancer, and cellular responses to DNA damage can trigger senescence and cell death, which are associated with ageing. In the kidney, DNA damage has been implicated in both acute and chronic kidney injury, and in renal cell carcinoma. The susceptibility of the kidney to chemotherapeutic agents that damage DNA is well established, but an unexpected link between kidney ciliopathies and the DNA damage response has also been reported. In addition, human genetic deficiencies in DNA repair have highlighted DNA crosslinks, DNA breaks and transcription-blocking damage as lesions that are particularly toxic to the kidney. Genetic tools in mice, as well as advances in kidney organoid and single-cell RNA sequencing technologies, have provided important insights into how specific kidney cell types respond to DNA damage. The emerging view is that in the kidney, DNA damage affects the local microenvironment by triggering a damage response and cell proliferation to replenish injured cells, as well as inducing systemic responses aimed at reducing exposure to genotoxic stress. The pathological consequences of DNA damage are therefore key to the nephrotoxicity of DNA-damaging agents and the kidney phenotypes observed in human DNA repair-deficiency disorders.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Catherine Quinlan
- Department of Paediatrics, University of Melbourne, Parkville, Australia
- Department of Nephrology, Royal Children's Hospital, Melbourne, Australia
- Department of Kidney Regeneration, Murdoch Children's Research Institute, Melbourne, Australia
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
43
|
Lin D, Hu B, Zhu S, Wu Y. Exploring a ferroptosis and oxidative stress-based prognostic model for clear cell renal cell carcinoma. Front Oncol 2023; 13:1131473. [PMID: 37064095 PMCID: PMC10098013 DOI: 10.3389/fonc.2023.1131473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
BackgroundFerroptosis is a newly defined cell death process triggered by increased iron load and tremendous lipid reactive oxygen species (ROS). Oxidative stress-related ferroptosis is of great important to the occurrence and progression of clear cell renal cell carcinoma (ccRCC), which is particularly susceptibility to ferroptosis agonist. Therefore, exploring the molecular features of ferroptosis and oxidative stress might guide the clinical treatment and prognosis prediction for ccRCC patients.MethodsThe differentially expressed ferroptosis and oxidative stress-associated genes (FPTOSs) between normal renal and ccRCC tissues were identified based on The Cancer Genome Atlas (TCGA) database, and those with prognostic significances were applied to develop a prognostic model and a risk scoring system (FPTOS_score). The clinical parameter, miRNA regulation, tumor mutation burden (TMB), immune cell infiltration, immunotherapy response, and drug susceptibility between two FPTOS-based risk stratifications were determined.ResultsWe have identified 5 prognosis-associated FPTOSs (ACADSB, CDCA3, CHAC1, MYCN, and TFAP2A), and developed a reliable FPTOS_socre system to distinguish patients into low- and high-risk groups. The findings implied that patients from the high-risk group performed poor prognoses, even after stratified analysis of various clinical parameters. A total of 30 miRNA-FPTOS regulatory pairs were recognized to identify the possible molecular mechanisms. Meanwhile, patients from the high-risk group exhibited higher TMB levels than those from the low-risk groups, and the predominant mutated driver genes were VHL, PBRM1 and TTN in both groups. The main infiltrating immune cells of high- and low-risk groups were CD8+ T cells and resting mast cells, respectively, and patients from the high-risk groups showed preferable drug responsiveness to anti-PD-1 immunotherapy. Eventually, potential sensitive drugs (cisplatin, BI-D1870, and docetaxel) and their enrichment pathways were identified to guide the treatment of ccRCC patients with high-risk.ConclusionOur study comprehensively analyzed the expression profiles of FPTOSs and constructed a scoring system with considerable prognostic value, which would supply novel insights into the personalized treatment strategies and prognostic evaluation of ccRCC patient.
Collapse
Affiliation(s)
- Dongxu Lin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiqing Zhu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Yue Wu,
| |
Collapse
|
44
|
An In Vitro Analysis of TKI-Based Sequence Therapy in Renal Cell Carcinoma Cell Lines. Int J Mol Sci 2023; 24:ijms24065648. [PMID: 36982721 PMCID: PMC10058472 DOI: 10.3390/ijms24065648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The tyrosine kinase inhibitor (TKI) cabozantinib might impede the growth of the sunitinib-resistant cell lines by targeting MET and AXL overexpression in metastatic renal cell carcinoma (mRCC). We studied the role of MET and AXL in the response to cabozantinib, particularly following long-term administration with sunitinib. Two sunitinib-resistant cell lines, 786-O/S and Caki-2/S, and the matching 786-O/WT and Caki-2/WT cells were exposed to cabozantinib. The drug response was cell-line-specific. The 786-O/S cells were less growth-inhibited by cabozantinib than 786-O/WT cells (p-value = 0.02). In 786-O/S cells, the high level of phosphorylation of MET and AXL was not affected by cabozantinib. Despite cabozantinib hampering the high constitutive phosphorylation of MET, the Caki-2 cells showed low sensitivity to cabozantinib, and this was independent of sunitinib pretreatment. In both sunitinib-resistant cell lines, cabozantinib increased Src-FAK activation and impeded mTOR expression. The modulation of ERK and AKT was cell-line-specific, mirroring the heterogeneity among the patients. Overall, the MET- and AXL-driven status did not affect cell responsiveness to cabozantinib in the second-line treatment. The activation of Src-FAK might counteract cabozantinib activity and contribute to tumor survival and may be considered an early indicator of therapy response.
Collapse
|
45
|
Howley R, Mansi M, Shinde J, Restrepo J, Chen B. Analysis of Renal Cell Carcinoma Cell Response to the Enhancement of 5-aminolevulinic Acid-mediated Protoporphyrin IX Fluorescence by Iron Chelator Deferoxamine †. Photochem Photobiol 2023; 99:787-792. [PMID: 35857390 PMCID: PMC10258817 DOI: 10.1111/php.13678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023]
Abstract
As a tumor photodiagnostic agent, 5-aminolevulinic acid (ALA) is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with fluorescence. ALA-PpIX fluorescence was evaluated in human renal cell carcinoma (RCC) cell lines and non-tumor HK-2 cell lines. We found that extracellular PpIX level was correlated with ABCG2 activity, illustrating its importance as a PpIX efflux transporter. Extracellular PpIX was also related to the Km of ferrochelatase (FECH) that chelates PpIX with ferrous iron to form heme. The Vmax of FECH was higher in all RCC cell lines tested than in the HK-2 cell line. TCGA dataset analysis indicates a positive correlation between FECH expression and RCC patient survival. These findings suggest FECH as an important biomarker in RCC. Effects of iron chelator deferoxamine (DFO) on the enhancement of PpIX fluorescence were assessed. DFO increased intracellular PpIX in both tumor and non-tumor cells, resulting in no gain in tumor/non-tumor fluorescence ratios. DFO appeared to increase ALA-PpIX more at 1-h than at 4-h treatment. There was an inverse correlation between ALA-PpIX fluorescence and the enhancement effect of DFO. These results suggest that enhancement of ALA-PpIX by DFO may be limited by the availability of ferrous iron in mitochondria following ALA administration.
Collapse
Affiliation(s)
- Richard Howley
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Matthew Mansi
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Janhavi Shinde
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Juliana Restrepo
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
| | - Bin Chen
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph's University, Philadelphia, PA
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
46
|
Novel imino-thiazoloquinoxaline derivatives against renal cell carcinoma: less radiation-damaging approach. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
AbstractRenal cell carcinoma (RCC) is the most fatal tumor in the urinary system. Resistance development and unmet effective responses, request new anticancer agents with better therapeutic index. Ten new imino-thiazolo-quinoxaline derivatives (5a-j) were synthesized and preliminary evaluated for downregulation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) activity taking sorafenib as a reference drug. Compounds 5d & 5h showed potent inhibition to VEGFR-2 activity at IC50 89.35 nM & 60.64 nM, respectively, then they both were further evaluated in-vitro against urinary bladder cancer cell line T-24 taking sorafenib as a reference drug. Compound 5h displayed nearly anticancer activity to sorafenib against T-24 cell line in all concentrations tested except at concentration 10 µM where it highly suppressed cell viability to 6.71 % compared to 15.15% of sorafenib. Compound 5h was then evaluated for its ameliorative efect against radiation induced renal tissue injury. Assessment of pro-angiogenic (VEGFR-2), pro-fibrotic (transforming growth factor-beta 1 (TGF-β1)) and apoptotic (caspase-3) markers, as well as histopathological examinations were performed on kidney of irradiated mice. Results showed ability of compound 5h to downregulate VEGFR-2 activity and its cytotoxic effect against RCC, in addition to mitigation of radiation induced renal tissue injury. Ethyl imino-thiazoloquinoxaline carboxylate derivative 5h showed a potential cytotoxic activity against RCC and could be considered a promosing alleviative candidate when employed post radiotherapy regimen.
Graphical Abstract
Collapse
|
47
|
Daza J, Salomé B, Okhawere K, Bane O, Meilika KN, Korn TG, Qi J, Xe H, Patel M, Brody R, Kim-Schulze S, Sfakianos JP, Lewis S, Rich JM, Zuluaga L, Badani KK, Horowitz A. Urine supernatant reveals a signature that predicts survival in clear-cell renal cell carcinoma. BJU Int 2023. [PMID: 36797809 DOI: 10.1111/bju.15989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE To profile the cell-free urine supernatant and plasma of a small cohort of clear-cell renal cell carcinoma (ccRCC) patients by measuring the relative concentrations of 92 proteins related to inflammation. Using The Cancer Genome Atlas (TCGA), we then performed a targeted mRNA analysis of genes encoding the above proteins and defined their effects on overall survival (OS). SUBJECTS/PATIENTS AND METHODS Samples were collected prospectively from ccRCC patients. A multiplex proximity extension assay was used to measure the concentrations of 92 inflammation-related proteins in cell-free urine supernatants and plasma. Transcriptomic and clinical information from ccRCC patients was obtained from TCGA. Unsupervised clustering and differential protein expression analyses were performed on protein concentration data. Targeted mRNA analysis on genes encoding significant differentially expressed proteins was performed using TCGA. Backward stepwise regression analyses were used to build a nomogram. The performance of the nomogram and clinical benefit was assessed by discrimination and calibration, and a decision curve analysis, respectively. RESULTS Unsupervised clustering analysis revealed inflammatory signatures in the cell-free urine supernatant of ccRCC patients. Backward stepwise regressions using TCGA data identified transcriptomic risk factors and risk groups associated with OS. A nomogram to predict 2-year and 5-year OS was developed using these risk factors. The decision curve analysis showed that our model was associated with a net benefit improvement compared to the treat-all/none strategies. CONCLUSION We defined four novel biomarkers using proteomic and transcriptomic data that distinguish severity of prognosis in ccRCC. We showed that these biomarkers can be used in a model to predict 2-year and 5-year OS in ccRCC across different tumour stages. This type of analysis, if validated in the future, provides non-invasive prognostic information that could inform either management or surveillance strategies for patients.
Collapse
Affiliation(s)
- Jorge Daza
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bérengère Salomé
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kennedy Okhawere
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kirolos N Meilika
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia G Korn
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingjing Qi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hui Xe
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Brody
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John P Sfakianos
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan M Rich
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Zuluaga
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ketan K Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
Wan B, Yang Y, Zhang Z. Identification of Differentially Methylated Genes Associated with Clear Cell Renal Cell Carcinoma and Their Prognostic Values. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2023; 2023:8405945. [PMID: 36793506 PMCID: PMC9925242 DOI: 10.1155/2023/8405945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Objective Renal cell carcinoma (RCC) is a heterogeneous disease comprising histologically defined subtypes among which clear cell RCC (ccRCC) accounts for 70% of all RCC cases. DNA methylation constitutes a main part of the molecular mechanism of cancer evolution and prognosis. In this study, we aim to identify differentially methylated genes related to ccRCC and their prognostic values. Methods The GSE168845 dataset was downloaded from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) between ccRCC tissues and paired tumor-free kidney tissues. DEGs were submitted to public databases for functional and pathway enrichment analysis, protein-protein interaction (PPI) analysis, promoter methylation analysis, and survival correlation analysis. Results In the setting of |log2FC| ≥ 2 and adjusted p value <0.05 during differential expression analysis of the GSE168845 dataset, 1659 DEGs between ccRCC tissues and paired tumor-free kidney tissues were sorted out. The most enriched pathways were "T cell activation" and "cytokine-cytokine receptor interaction." After PPI analysis, 22 hub genes related to ccRCC stood out, among which CD4, PTPRC, ITGB2, TYROBP, BIRC5, and ITGAM exhibited higher methylation levels, and BUB1B, CENPF, KIF2C, and MELK exhibited lower methylation levels in ccRCC tissues compared with paired tumor-free kidney tissues. Among these differentially methylated genes, TYROBP, BIRC5, BUB1B, CENPF, and MELK were significantly correlated with the survival of ccRCC patients (p < 0.001). Conclusion Our study indicates the DNA methylation of TYROBP, BIRC5, BUB1B, CENPF, and MELK may be promising results for the prognosis of ccRCC.
Collapse
Affiliation(s)
- Bin Wan
- Department of Urology, The First People's Hospital of Jiujiang, Jiujiang, Jiangxi 332000, China
| | - Yang Yang
- Department of Urology, The First People's Hospital of Jiujiang, Jiujiang, Jiangxi 332000, China
| | - Zhuo Zhang
- Department of Urology, The First People's Hospital of Jiujiang, Jiujiang, Jiangxi 332000, China
| |
Collapse
|
49
|
Li HT, Jang HJ, Rohena-Rivera K, Liu M, Gujar H, Kulchycki J, Zhao S, Billet S, Zhou X, Weisenberger DJ, Gill I, Jones PA, Bhowmick NA, Liang G. RNA mis-splicing drives viral mimicry response after DNMTi therapy in SETD2-mutant kidney cancer. Cell Rep 2023; 42:112016. [PMID: 36662621 PMCID: PMC10034851 DOI: 10.1016/j.celrep.2023.112016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Tumors with mutations in chromatin regulators present attractive targets for DNA hypomethylating agent 5-aza-2'-deoxycytidine (DAC) therapy, which further disrupts cancer cells' epigenomic fidelity and reactivates transposable element (TE) expression to drive viral mimicry responses. SETD2 encodes a histone methyltransferase (H3K36me3) and is prevalently mutated in advanced kidney cancers. Here, we show that SETD2-mutant kidney cancer cells are especially sensitive in vitro and in vivo to DAC treatment. We find that the viral mimicry response are direct consequences of mis-splicing events, such as exon inclusions or extensions, triggered by DAC treatment in an SETD2-loss context. Comprehensive epigenomic analysis reveals H3K9me3 deposition, rather than DNA methylation dynamics, across intronic TEs might contribute to elevated mis-splicing rates. Through epigenomic and transcriptomic analyses, we show that SETD2-deficient kidney cancers are prone to mis-splicing, which can be therapeutically exacerbated with DAC treatment to increase viral mimicry activation and provide synergy with combinatorial immunotherapy approaches.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - H Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Krizia Rohena-Rivera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Minmin Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hemant Gujar
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Justin Kulchycki
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Shuqing Zhao
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Sandrin Billet
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xinyi Zhou
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Inderbir Gill
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Neil A Bhowmick
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
50
|
TFEB Rearranged Renal Cell Carcinoma: Pathological and Molecular Characterization of 10 Cases, with Novel Clinical Implications: A Single Center 10-Year Experience. Biomedicines 2023; 11:biomedicines11020245. [PMID: 36830782 PMCID: PMC9952947 DOI: 10.3390/biomedicines11020245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
To report our experience with the cases of TFEB rearranged RCC, with particular attention to the clinicopathological, immunohistochemical and molecular features of these tumors and to their predictive markers of response to therapy. We have retrieved the archives of 9749 renal cell carcinomas in the Institute of Urology, Peking University and found 96 rearranged RCCs between 2013 and 2022. Among these renal tumors, ten cases meet the morphologic, immunohistochemical and FISH characterization for TFEB rearranged RCC. The 10 patients' mean and median age is 34.9 and 34 years, respectively (range 23-55 years old), and the male to female ratio is 1:1.5. Macroscopically, these tumors generally have a round shape and clear boundary. They present with variegated, grayish yellow and grayish brown cut surface. The average maximum diameter of the tumor is 8.5 cm and the median 7.7 (ranged from 3.4 to 16) cm. Microscopically, the tumor is surrounded by a thick local discontinuous pseudocapsule. All tumors exhibit two types of cells: voluminous, clear and eosinophilic cytoplasm cells arranged in solid sheet, tubular growth pattern with local cystic changes, and papillary, pseudopapillary and compact nested structures are also seen in a few cases. Non-neoplastic renal tubules are entrapped in the tumor. A biphasic "rosette-like" pattern, psammomatous calcifications, cytoplasmic vacuolization, multinucleated giant cells and rhabdomyoid phenotype can be observed in some tumors. A few tumors may be accompanied by significant pigmentation or hemorrhage and necrosis. The nucleoli are equivalent to the WHO/ISUP grades 2-4. All tumors are moderately to strongly positive for Melan-A, TFEB, Vimentin and SDHB, and negative for CK7, CAIX, CD117, EMA, SMA, Desmin and Actin. CK20 and CK8/18 are weakly positive. In addition, AE1/AE3, P504s, HMB45 and CD10 are weakly moderately positive. TFE3 is moderately expressed in half of the cases. PAX8 can be negative, weakly positive or moderately-strongly positive. The therapy predictive marker for PD-L1 (SP263) is moderately to strongly positive membranous staining in all cases. All ten tumors demonstrate a medium frequency of split TFEB fluorescent signals ranging from 30 to 50% (mean 38%). In two tumors, the coincidence of the TFEB gene copy number gains are observed (3-5 fluorescent signals per neoplastic nuclei). Follow-up is available for all patients, ranging from 4 to 108 months (mean 44.8 and median 43.4 months). All patients are alive, without tumor recurrences or metastases. We described a group of TFEB rearranged RCC identified retrospectively in a large comprehensive Grade III hospital in China. The incidence rate was about 10.4% of rearranged RCCs and 0.1% of all the RCCs that were received in our lab during the ten-year period. The gross morphology, histological features, and immunohistochemistry of TFEB rearranged RCC overlapped with other types of RCC such as TFE3 rearranged RCC, eosinophilic cystic solid RCC, or epithelioid angiomyolipoma, making the differential diagnosis challenging. The diagnosis was based on TFEB fluorescence in situ hybridization. At present, most of the cases reported in the literature have an indolent clinical behavior, and only a small number of reported cases are aggressive. For this small subset of aggressive cases, it is not clear how to plan treatment strategies, or which predictive markers could be used to assess upfront responses to therapies. Between the possible options, immunotherapy currently seems a promising strategy, worthy of further exploration. In conclusion, we described a group of TFEB rearranged RCC identified in a large, comprehensive Grade III hospital in China, in the last 10 years.
Collapse
|