1
|
Ma Y, Lai P, Sha Z, Li B, Wu J, Zhou X, He C, Ma X. TME-responsive nanocomposite hydrogel with targeted capacity for enhanced synergistic chemoimmunotherapy of MYC-amplified osteosarcoma. Bioact Mater 2025; 47:83-99. [PMID: 39897587 PMCID: PMC11783017 DOI: 10.1016/j.bioactmat.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
The oncogene MYC is one of the most commonly activated oncogenic proteins in human tumors, with nearly one-fourth of osteosarcoma showing MYC amplification and exhibiting the worst clinical outcomes. The clinical efficacy of single radiotherapy, chemotherapy, and immunotherapy for such osteosarcoma is poor, and the dysregulation of MYC amplification and immune-suppressive tumor microenvironment (TME) may be potential causes of anti-tumor failure. To address the above issues, we developed an injectable TME-responsive nanocomposite hydrogel to simultaneously deliver an effective MYC inhibitor (NHWD-870) and IL11Rα-targeted liposomes containing cisplatin-loaded MnO2 (Cis/Mn@Lipo-IL11). After in situ administration, NHWD-870 effectively degrades MYC and downregulates CCL2 and IL13 cytokines to trigger M1 type activation of macrophages. Meanwhile, targeted delivery of Cis/Mn@Lipo-IL11 reacts with excess intratumoral GSH to generate Mn2+ and thus inducing excess active oxygen species (ROS) production through Fenton-like reaction, along with cisplatin, thereby inducing immunogenic cell death (ICD) to promote dendritic cell maturation. Through synergistic regulation of MYC and ICD levels, the immune microenvironment was reshaped to enhance immune infiltration. In the osteosarcoma-bearing model, the nanocomposite hydrogel significantly enhanced tumor T cell infiltration, induced effective anti-tumor immunity and attenuated lung metastasis. Therefore, our results reveal a powerful strategy for targeted combination therapy of MYC-amplified osteosarcoma.
Collapse
Affiliation(s)
- Yichao Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Peng Lai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhou Sha
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bing Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiangpeng Wu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xiaojun Zhou
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
2
|
Tiwari H, Singh S, Sharma S, Gupta P, Verma A, Chattopadhaya A, Kumar B, Agarwal S, Kumar R, Gupta SK, Gautam V. Deciphering the landscape of triple negative breast cancer from microenvironment dynamics and molecular insights to biomarker analysis and therapeutic modalities. Med Res Rev 2025; 45:817-841. [PMID: 39445844 DOI: 10.1002/med.22090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/05/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Triple negative breast cancer (TNBC) displays a notable challenge in clinical oncology due to its invasive nature which is attributed to the absence of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor (HER-2). The heterogenous tumor microenvironment (TME) of TNBC is composed of diverse constituents that intricately interact to evade immune response and facilitate cancer progression and metastasis. Based on molecular gene expression, TNBC is classified into four molecular subtypes: basal-like (BL1 and BL2), luminal androgen receptor (LAR), immunomodulatory (IM), and mesenchymal. TNBC is an aggressive histological variant with adverse prognosis and poor therapeutic response. The lack of response in most of the TNBC patients could be attributed to the heterogeneity of the disease, highlighting the need for more effective treatments and reliable prognostic biomarkers. Targeting certain signaling pathways and their components has emerged as a promising therapeutic strategy for improving patient outcomes. In this review, we have summarized the interactions among various components of the dynamic TME in TNBC and discussed the classification of its molecular subtypes. Moreover, the purpose of this review is to compile and provide an overview of the most recent data about recently discovered novel TNBC biomarkers and targeted therapeutics that have proven successful in treating metastatic TNBC. The emergence of novel therapeutic strategies such as chemoimmunotherapy, chimeric antigen receptor (CAR)-T cells-based immunotherapy, phytometabolites-mediated natural therapy, photodynamic and photothermal approaches have made a significant positive impact and have paved the way for more effective interventions.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sonal Sharma
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Amrit Chattopadhaya
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Brijesh Kumar
- Department of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sakshi Agarwal
- Department of Obstetrics and Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanjeev Kumar Gupta
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
3
|
Yu J, Liu D, Yuan Y, Sun C, Su Z. Rethinking MYC inhibition: a multi-dimensional approach to overcome cancer's master regulator. Front Cell Dev Biol 2025; 13:1601975. [PMID: 40365020 PMCID: PMC12069295 DOI: 10.3389/fcell.2025.1601975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
MYC, a master regulator in oncogenesis, has long been deemed "undruggable" due to its intrinsically disordered structure. However, recent advances are overturning this view, with direct inhibitors like Omomyc (OMO-103) and PROTAC-based degraders such as WBC100 showing promising clinical progress. Complementary strategies-including BET and CDK9 inhibitors, RNA-based therapeutics, nanobodies, and engineered proteases-are expanding the therapeutic landscape. Despite challenges in specificity, toxicity, and delivery, these innovations underscore MYC's emerging druggability. Moreover, combination therapies integrating MYC inhibitors with chemotherapy, radiotherapy, or immunotherapy demonstrate synergistic potential. This article advocates for a multi-dimensional, biomarker-guided approach to MYC targeting, emphasizing rational drug combinations and continued innovation to overcome resistance and improve outcomes in MYC-driven cancers.
Collapse
Affiliation(s)
- Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, Municipal Hospital, Qingdao, China
| | - Dan Liu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, Municipal Hospital, Qingdao, China
| | - Yujian Yuan
- Qingdao Preschool Techers’ School, Qingdao, China
| | - Chunxia Sun
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, Municipal Hospital, Qingdao, China
| | - Zihan Su
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, Municipal Hospital, Qingdao, China
| |
Collapse
|
4
|
Ababneh E, Velez S, Zhao J. Immune evasion and resistance in breast cancer. Am J Cancer Res 2025; 15:1517-1539. [PMID: 40371160 PMCID: PMC12070088 DOI: 10.62347/pngt6996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 05/16/2025] Open
Abstract
Breast cancer (BC) is the most common malignancy in females with an increasing incidence in the last decade. The previously observed decline in BC mortality rates has also slowed down recently with an increase in the incidence of invasive BC. BC has various molecular subtypes. Among these subtypes, triple-negative breast cancer (TNBC) represents the most aggressive BC, with a poor prognosis. Because lack of the hormonal or human epidermal growth factor receptor 2 (HER2) receptors, TNBC is resistant to hormonal and HER2 targeted therapy effective for other BC subtypes. The good news is that TNBC has recently been considered an immunologically 'hot' tumor. Therefore, immunotherapy, particularly immune checkpoint inhibitor therapy, represents a promising therapeutic approach TNBC. However, a considerable percentage of patients with TNBC do not respond well to immunotherapy, indicating that TNBC seems to adopt several mechanisms to evade immune surveillance. Thus, it is crucial to investigate the mechanisms underlying TNBC immune evasion and resistance to immunotherapy. In this review, we examine and discuss the most recently discovered mechanisms for BC, with a particular focus on TNBC, to evade the immune surveillance via kidnapping the immune checkpoints, suppressing the immune responses in tumor microenvironment and inhibiting the tumor antigen presentation. Evaluation of these mechanisms in BC will hopefully guide future immunotherapeutic research and clinical trials.
Collapse
Affiliation(s)
- Ebaa Ababneh
- Burnett School of Biomedical Science, Medical College, University of Central Florida Orlando, FL, USA
| | - Sarah Velez
- Burnett School of Biomedical Science, Medical College, University of Central Florida Orlando, FL, USA
| | - Jihe Zhao
- Burnett School of Biomedical Science, Medical College, University of Central Florida Orlando, FL, USA
| |
Collapse
|
5
|
Tang M, Crown J, Duffy MJ. Targeting MYC for the treatment of breast cancer: use of the novel MYC-GSPT1 degrader, GT19630. Invest New Drugs 2025; 43:167-179. [PMID: 39875774 PMCID: PMC11868176 DOI: 10.1007/s10637-024-01504-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs. OBJECTIVE The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer. METHODS The antiproliferative potential of GT19630 was evaluated in 14 breast cancer cell lines representing the main molecular subtypes of breast cancer. In addition, we also investigated the effects of GT19630 on apoptosis, cell cycle progression, cell migration, and degradation of the negative immune checkpoint protein, B7-H3. RESULTS GT19630 inhibited cell proliferation, blocked cell cycle progression, promoted apoptosis, and decreased cell migration at low nanomolar concentrations in breast cancer cell lines. By contrast, previously described MYC inhibitors such as specific MYC-MAX antagonists affected these processes at micromolar concentrations. Consistent with the ability of MYC to promote immune evasion, we also found that GT19630 degraded the negative immune checkpoint inhibitor, B7-H3. CONCLUSIONS We conclude that the novel molecular glue, GT19630, is a potent mediator of endpoints associated with cancer formation/progression. Its ability to degrade B7-H3 suggests that GT19630 may also promote host immunity against cancer. To progress GT19630 as a therapy for breast cancer, our finding should now be confirmed in an animal model system.
Collapse
Affiliation(s)
- Minhong Tang
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin, Ireland
| | - Michael J Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
- Clinical Research Centre, St Vincent's University Hospital, Dublin, D04T6F4, Ireland.
| |
Collapse
|
6
|
Martinez R, Finocchiaro C, Delhaye L, Gysens F, Anckaert J, Trypsteen W, Versteven M, Lion E, Van Lint S, Vermaelen K, de Bony EJ, Mestdagh P. A co-culture model to study modulators of tumor immune evasion through scalable arrayed CRISPR-interference screens. Front Immunol 2024; 15:1444886. [PMID: 39497819 PMCID: PMC11532180 DOI: 10.3389/fimmu.2024.1444886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Cancer cells effectively evade immune surveillance, not only through the well-known PD-1/PD-L1 pathway but also via alternative mechanisms that impair patient response to immune checkpoint inhibitors. We present a novel co-culture model that pairs a reporter T-cell line with different melanoma cell lines that have varying immune evasion characteristics. We developed a scalable high-throughput lentiviral arrayed CRISPR interference (CRISPRi) screening protocol to conduct gene perturbations in both T-cells and melanoma cells, enabling the identification of genes that modulate tumor immune evasion. Our study functionally validates the co-culture model system and demonstrates the performance of the CRISPRi-screening protocol by modulating the expression of known regulators of tumor immunity. Together, our work provides a robust framework for future research aimed at systematically exploring mechanisms of tumor immune evasion.
Collapse
Affiliation(s)
- Ramiro Martinez
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Chiara Finocchiaro
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
| | - Louis Delhaye
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, Flanders Institute for Biotechnology – UGENT (VIB-UGENT), Ghent, Belgium
| | - Fien Gysens
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Wim Trypsteen
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sandra Van Lint
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Karim Vermaelen
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University, Ghent, Belgium
| | - Eric James de Bony
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- OncoRNALab, Center for Medical Genetics (CMGG), Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Boreel DF, Sandker GGW, Ansems M, van den Bijgaart RJE, Peters JPW, Span PN, Adema GJ, Heskamp S, Bussink J. MHC-I and PD-L1 Expression is Associated with Decreased Tumor Outgrowth and is Radiotherapy-inducible in the Murine Head and Neck Squamous Cell Carcinoma Model MOC1. Mol Imaging Biol 2024; 26:835-846. [PMID: 39009951 PMCID: PMC11436446 DOI: 10.1007/s11307-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
INTRODUCTION Combined radiotherapy and immune checkpoint inhibition is a potential treatment option for head and neck squamous cell carcinoma (HNSCC). Immunocompetent mouse models can help to successfully develop radio- immunotherapy combinations and to increase our understanding of the effects of radiotherapy on the tumor microenvironment for future clinical translation. Therefore, the aim of this study was to develop a homogeneous, reproducible HNSCC model originating from the Mouse Oral Cancer 1 (MOC1) HNSCC cell line, and to explore the radiotherapy-induced changes in its tumor microenvironment, using flow cytometry and PD-L1 microSPECT/CT imaging. MATERIALS AND METHODS In vivo growing tumors originating from the parental MOC1 line were used to generate single cell derived clones. These clones were screened in vitro for their ability to induce programmed cell death ligand 1 (PD-L1) and major histocompatibility complex class I (MHC-I) following IFNγ exposure. Clones with different IFNγ sensitivity were inoculated in C57BL/6 mice and assessed for tumor outgrowth. The composition of the tumor microenvironment of a stably growing (non)irradiated MOC1-derived clone was assessed by immunohistochemistry, flow cytometry and PD-L1 microSPECT/CT. RESULTS Low in vitro inducibility of MHC-I and PD-L1 by IFNγ was associated with increased tumor outgrowth of MOC1 clones in vivo. Flow cytometry analysis of cells derived from a stable in vivo growing MOC1 clone MOC1.3D5low showed expression of MHC-I and PD-L1 on several cell populations within the tumor. Upon irradiation, MHC-I and PD-L1 increased on leukocytes (CD45.2+) and cancer associated fibroblasts (CD45.2-/EpCAM-/CD90.1+). Furthermore, PD-L1 microSPECT/CT showed increased tumor uptake of radiolabeled PD-L1 antibodies with a heterogeneous spatial distribution of the radio signal, which co-localized with PD-L1+ and CD45.2+ areas. DISCUSSION PD-L1 and MHC-I inducibility by IFNγ in vitro is associated with tumor outgrowth of MOC1 clones in vivo. In tumors originating from a stably growing MOC1-derived clone, expression of these immune-related markers was induced by irradiation shown by flow cytometry on several cell populations within the tumor microenvironment such as immune cells and cancer associated fibroblasts. PD-L1 microSPECT/CT showed increased tumor uptake following radiotherapy, and autoradiography showed correlation of uptake with areas that are heavily infiltrated by immune cells. Knowledge of radiotherapy-induced effects on the tumor microenvironment in this model can help optimize timing and dosage for radio- immunotherapy combination strategies in future research.
Collapse
Affiliation(s)
- Daan F Boreel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands.
- Department of Medical Imaging, Radboudumc, Geert Grooteplein 10, Nijmegen, 6525GA, The Netherlands.
| | - Gerwin G W Sandker
- Department of Medical Imaging, Radboudumc, Geert Grooteplein 10, Nijmegen, 6525GA, The Netherlands
| | - Marleen Ansems
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Renske J E van den Bijgaart
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Johannes P W Peters
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboudumc, Geert Grooteplein 10, Nijmegen, 6525GA, The Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboudumc, Geert Grooteplein Zuid 32, 6525GA, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
9
|
Winkler J, Tan W, Diadhiou CM, McGinnis CS, Abbasi A, Hasnain S, Durney S, Atamaniuc E, Superville D, Awni L, Lee JV, Hinrichs JH, Wagner PS, Singh N, Hein MY, Borja M, Detweiler AM, Liu SY, Nanjaraj A, Sitarama V, Rugo HS, Neff N, Gartner ZJ, Oliveira Pisco A, Goga A, Darmanis S, Werb Z. Single-cell analysis of breast cancer metastasis reveals epithelial-mesenchymal plasticity signatures associated with poor outcomes. J Clin Invest 2024; 134:e164227. [PMID: 39225101 PMCID: PMC11364385 DOI: 10.1172/jci164227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Metastasis is the leading cause of cancer-related deaths. It is unclear how intratumor heterogeneity (ITH) contributes to metastasis and how metastatic cells adapt to distant tissue environments. The study of these adaptations is challenged by the limited access to patient material and a lack of experimental models that appropriately recapitulate ITH. To investigate metastatic cell adaptations and the contribution of ITH to metastasis, we analyzed single-cell transcriptomes of matched primary tumors and metastases from patient-derived xenograft models of breast cancer. We found profound transcriptional differences between the primary tumor and metastatic cells. Primary tumors upregulated several metabolic genes, whereas motility pathway genes were upregulated in micrometastases, and stress response signaling was upregulated during progression. Additionally, we identified primary tumor gene signatures that were associated with increased metastatic potential and correlated with patient outcomes. Immune-regulatory control pathways were enriched in poorly metastatic primary tumors, whereas genes involved in epithelial-mesenchymal transition were upregulated in highly metastatic tumors. We found that ITH was dominated by epithelial-mesenchymal plasticity (EMP), which presented as a dynamic continuum with intermediate EMP cell states characterized by specific genes such as CRYAB and S100A2. Elevated expression of an intermediate EMP signature correlated with worse patient outcomes. Our findings identified inhibition of the intermediate EMP cell state as a potential therapeutic target to block metastasis.
Collapse
Affiliation(s)
- Juliane Winkler
- Department of Anatomy and
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Weilun Tan
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Sophia Durney
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Elena Atamaniuc
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Daphne Superville
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | | | - Joyce V. Lee
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
| | - Johanna H. Hinrichs
- Department of Anatomy and
- Institute of Internal Medicine D, Medical Cell Biology, University Hospital Münster, Münster, Germany
| | - Patrick S. Wagner
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Namrata Singh
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Y. Hein
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Medical University of Vienna, Max Perutz Labs, Vienna, Austria
| | - Michael Borja
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | | | | | | | | | - Hope S. Rugo
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Norma Neff
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub Investigator, San Francisco, California, USA
| | | | - Andrei Goga
- Department of Cell and Tissue Biology, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| | - Spyros Darmanis
- Chan Zuckerberg Biohub SF, San Francisco, California, USA
- Genentech, South San Francisco, California, USA
| | | |
Collapse
|
10
|
Naso J, Desai A, Smith CJ, Ashara YP, Yip S, Lo YC. Predictive value and molecular correlates of MYC immunohistochemistry and copy number gain in non-small cell lung carcinomas treated with immunotherapy. Lung Cancer 2024; 195:107927. [PMID: 39173231 DOI: 10.1016/j.lungcan.2024.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Accurately predicting which patients diagnosed with non-small cell lung cancer (NSCLC) will respond to immunotherapy remains a clinical challenge. This study aims to determine the associations between MYC immunoreactivity, MYC copy number gain (CNG), driver mutations and survival following immunotherapy treatment, to provide insight into whether clinical MYC assessment may have predictive value. MATERIALS AND METHODS MYC copy number status was determined in 82 patients with NSCLC treated with immunotherapy, and MYC immunohistochemistry (IHC) was performed on 80 of these cases. MYC staining in ≥ 40 % of tumor cells was considered positive. Driver gene alterations, PD-L1 status and survival outcomes were assessed through retrospective chart review. Overall survival (OS) and progression free survival (PFS) were calculated from the date of immunotherapy initiation. RESULTS Nine (11 %) of 82 cases had MYC CNG and 56 (70 %) of the 80 immunostained cases were positive for MYC. MYC CNG was significantly associated with STK11 mutation (P=0.023), whereas positive MYC IHC was significantly associated with KRAS mutation (P=0.0076) and current/former smoking (P=0.0007). MYC CNG and positive MYC IHC were not significantly associated with each other (P=0.42), or with PD-L1 ≥ 1 % (MYC CNG: P=0.10; MYC IHC: P=0.09). Positive MYC IHC and PD-L1 ≥ 1 % were both significant predictors of OS (MYC: HR 2.7, 95 % CI 1.1-6.4, P=0.026; PD-L1: HR 0.33, 95 % CI 0.15-0.72, P=0.0055). MYC IHC positive/PD-L1 < 1 % cases had the shortest OS (median 230 versus 918 days, P=0.00069) and PFS (median 84 versus 254 days, P=0.0087). MYC CNG was not associated with OS or PFS. CONCLUSION We find that positive MYC IHC is an independent predictor of shorter OS after immunotherapy treatment, with MYC positive/PD-L1 < 1 % status predictive of particularly poor immunotherapy response. We identify positive MYC IHC as a feature of possible relevance to NSCLC treatment selection and of interest for future therapy development.
Collapse
Affiliation(s)
- Julia Naso
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aakash Desai
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Caleb J Smith
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yash P Ashara
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Stephen Yip
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Molecular Oncology, BC Cancer Agency, Vancouver, Canada; Vancouver General Hospital, Vancouver, Canada
| | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Meng M, Wu J, Feng Y, Lin L, Chen J, Pang X, Li Y, Hao K, Tian H, Chen X. A Comprehensive Strategy Based on High Clinical Translational Nanosystem for Programmable Immunotherapy of Triple Negative Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314309. [PMID: 38520284 DOI: 10.1002/adma.202314309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Triple negative breast cancer (TNBCs), known as an immunologically cold tumor, is difficult to completely eliminate with existing monotherapies, let alone metastasis and recurrence. It is urgent to design a rational combination of multiple therapies to programmatically reconstitute tumor microenvironment (TME) and reverse the immune "cold" into "hot" inflammatory tumors to improve the therapeutic effect. Hence, in this work, a multifunctional nanosystem (FeSH NPs) that integrates metal-polyphenol coordination complex as a photothermal agent and polyphenol, salvianolic acid B (SAB) as immunomodulator is designed and fabricated for synergistic photothermal-immunotherapy of TNBCs combined with anti-PD-L1 antibody. Guided by photothermal/photoacoustic dual-mode imaging, photothermal therapy (PTT) caused by FeSH NPs induces immunogenic cell death (ICD) under 808 nm laser irradiation. Subsequently, the loaded SAB is released with the addition of deferoxamine mesylate (DFO) to remodel TME, specifically TGF-β inhibition and PD-L1 upregulation, and eliminate the primary tumors. The combination of PTT and TME reprogramming by FeSH NPs further synergizes with anti-PD-L1 antibody to eradicate recurrence and inhibit metastasis of TNBCs concurrently. Given the biosafety of FeSH NPs throughout the lifecycle, this work provides a protocol with high clinical translational promise for comprehensive programmed therapeutics of immunologically cold tumors TNBCs.
Collapse
Affiliation(s)
- Meng Meng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiayan Wu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yuanji Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lin Lin
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xuan Pang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yanhui Li
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Kai Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huayu Tian
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
12
|
Lorenzo-Sanz L, Lopez-Cerda M, da Silva-Diz V, Artés MH, Llop S, Penin RM, Bermejo JO, Gonzalez-Suarez E, Esteller M, Viñals F, Espinosa E, Oliva M, Piulats JM, Martin-Liberal J, Muñoz P. Cancer cell plasticity defines response to immunotherapy in cutaneous squamous cell carcinoma. Nat Commun 2024; 15:5352. [PMID: 38914547 PMCID: PMC11196727 DOI: 10.1038/s41467-024-49718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.
Collapse
Affiliation(s)
- Laura Lorenzo-Sanz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Marta Lopez-Cerda
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Victoria da Silva-Diz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Rutgers Cancer Institute of New Jersey, Rutgers University, 08901, New Brunswick, NJ, USA
| | - Marta H Artés
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sandra Llop
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rosa M Penin
- Pathology Service, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Oriol Bermejo
- Plastic Surgery Unit, Bellvitge University Hospital/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Gonzalez-Suarez
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Molecular Oncology, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08908, Barcelona, Spain
| | - Francesc Viñals
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08908, Barcelona, Spain
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO)/IDIBELL, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Enrique Espinosa
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, Autonomous University of Madrid (UAM), 28046, Madrid, Spain
| | - Marc Oliva
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Piulats
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Purificación Muñoz
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
13
|
Yuan XN, Shao YC, Guan XQ, Liu Q, Chu MF, Yang ZL, Li H, Zhao S, Tian YH, Zhang JW, Wei L. METTL3 orchestrates glycolysis by stabilizing the c-Myc/WDR5 complex in triple-negative breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119716. [PMID: 38547933 DOI: 10.1016/j.bbamcr.2024.119716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The carcinogenic transcription factor c-Myc is the most aggressive oncogene, which drive malignant transformation and dissemination of triple-negative breast cancer (TNBC). Recruitment of many cofactors, especially WDR5, a protein that nucleates H3K4me chromatin modifying complexes, play a pivotal role in regulating c-Myc-dependent gene transcription, a critical process for c-Myc signaling to function in a variety of biological and pathological contexts. For this reason, interrupting the interaction between c-Myc and the transcription cofactor WDR5 may become the most promising new strategy for treating c-Myc driven TNBC. METHODS Immunoprecipitation and mass spectrometry (IP-MS) is used to screen proteins that bind c-Myc/WDR5 interactions. The interaction of METTL3 with c-Myc/WDR5 in breast cancer tissues and TNBC cells was detected by Co-IP and immunofluorescence. Subsequently, we further analyzed the influence of METTL3 expression on c-Myc/WDR5 protein expression and its interaction stability by Western blot and Co-IP. The correlation between METTL3 and c-Myc pathway was analyzed by ChIP-seq sequencing and METTL3 knockdown transcriptome data. The effect of METTL3 expression on c-Myc transcriptional activity was detected by ChIP-qPCR and Dual Luciferase Reporter. At the same time, the overexpression vector METTL3-MUT (m6A) was constructed, which mutated the methyltransferase active site (Aa395-398, DPPW/APPA), and further explored whether the interaction between METTL3 and c-Myc/WDR5 was independent of methyltransferase activity. In addition, we also detected the changes of METTL3 expression on TNBC's sensitivity to small molecule inhibitors such as JQ1 and OICR9429 by CCK8, Transwell and clonal formation assays. Finally, we further verified our conclusions in spontaneous tumor formation mouse MMTV-PyMT and nude mouse orthotopic transplantation tumor models. RESULTS METTL3 was found to bind mainly to c-Myc/WDR5 protein in the nucleus. It enhances the stability of c-Myc/WDR5 interaction through its methyltransferase independent mechanism, thereby enhancing the transcriptional activity of c-Myc on downstream glucose metabolism genes. Notably, the study also confirmed that METTL3 can directly participate in the transcription of glucose metabolism genes as a transcription factor, and knockdown METTL3 enhances the drug sensitivity of breast cancer cells to small molecule inhibitors JQ1 and OICR9429. The study was further confirmed by spontaneous tumor formation mouse MMTV-PyMT and nude mouse orthotopic transplantation tumor models. CONCLUSION METTL3 binds to the c-Myc/WDR5 protein complex and promotes glycolysis, which plays a powerful role in promoting TNBC progression. Our findings further broaden our understanding of the role and mechanism of action of METTL3, and may open up new therapeutic avenues for effective treatment of TNBC with high c-Myc expression.
Collapse
Affiliation(s)
- Xiao-Ning Yuan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China
| | - You-Cheng Shao
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China
| | - Xiao-Qing Guan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China
| | - Qin Liu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China
| | - Meng-Fei Chu
- Department of Human Anatomy, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China
| | - Ze-Lin Yang
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China
| | - Hui Li
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China
| | - Sai Zhao
- Department of Human Anatomy, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China
| | - Yi-Hao Tian
- Department of Human Anatomy, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China.
| | - Jing-Wei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, PR China.
| | - Lei Wei
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
14
|
Qian W, Ye J, Xia S. DNA sensing of dendritic cells in cancer immunotherapy. Front Mol Biosci 2024; 11:1391046. [PMID: 38841190 PMCID: PMC11150630 DOI: 10.3389/fmolb.2024.1391046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Dendritic cells (DCs) are involved in the initiation and maintenance of immune responses against malignant cells by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). According to recent studies, tumor cell-derived DNA molecules act as DAMPs and are recognized by DNA sensors in DCs. Once identified by sensors in DCs, these DNA molecules trigger multiple signaling cascades to promote various cytokines secretion, including type I IFN, and then to induce DCs mediated antitumor immunity. As one of the potential attractive strategies for cancer therapy, various agonists targeting DNA sensors are extensively explored including the combination with other cancer immunotherapies or the direct usage as major components of cancer vaccines. Moreover, this review highlights different mechanisms through which tumor-derived DNA initiates DCs activation and the mechanisms through which the tumor microenvironment regulates DNA sensing of DCs to promote tumor immune escape. The contributions of chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to the DNA sensing of DCs are also discussed. Finally, recent clinical progress in tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed, understanding more about DNA sensing in DCs will help to understand more about tumor immunotherapy and improve the efficacy of DC-targeted treatment in cancer.
Collapse
Affiliation(s)
- Wei Qian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- The Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Cheng B, Li C, Li J, Gong L, Liang P, Chen Y, Zhan S, Xiong S, Zhong R, Liang H, Feng Y, Wang R, Wang H, Zheng H, Liu J, Zhou C, Shao W, Qiu Y, Sun J, Xie Z, Liang Z, Yang C, Cai X, Su C, Wang W, He J, Liang W. The activity and immune dynamics of PD-1 inhibition on high-risk pulmonary ground glass opacity lesions: insights from a single-arm, phase II trial. Signal Transduct Target Ther 2024; 9:93. [PMID: 38637495 PMCID: PMC11026465 DOI: 10.1038/s41392-024-01799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 04/20/2024] Open
Abstract
Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) protein significantly improve survival in patients with advanced non-small-cell lung cancer (NSCLC), but its impact on early-stage ground-glass opacity (GGO) lesions remains unclear. This is a single-arm, phase II trial (NCT04026841) using Simon's optimal two-stage design, of which 4 doses of sintilimab (200 mg per 3 weeks) were administrated in 36 enrolled multiple primary lung cancer (MPLC) patients with persistent high-risk (Lung-RADS category 4 or had progressed within 6 months) GGOs. The primary endpoint was objective response rate (ORR). T/B/NK-cell subpopulations, TCR-seq, cytokines, exosomal RNA, and multiplexed immunohistochemistry (mIHC) were monitored and compared between responders and non-responders. Finally, two intent-to-treat (ITT) lesions (pure-GGO or GGO-predominant) showed responses (ORR: 5.6%, 2/36), and no patients had progressive disease (PD). No grade 3-5 TRAEs occurred. The total response rate considering two ITT lesions and three non-intent-to-treat (NITT) lesions (pure-solid or solid-predominant) was 13.9% (5/36). The proportion of CD8+ T cells, the ratio of CD8+/CD4+, and the TCR clonality value were significantly higher in the peripheral blood of responders before treatment and decreased over time. Correspondingly, the mIHC analysis showed more CD8+ T cells infiltrated in responders. Besides, responders' cytokine concentrations of EGF and CTLA-4 increased during treatment. The exosomal expression of fatty acid metabolism and oxidative phosphorylation gene signatures were down-regulated among responders. Collectively, PD-1 inhibitor showed certain activity on high-risk pulmonary GGO lesions without safety concerns. Such effects were associated with specific T-cell re-distribution, EGF/CTLA-4 cytokine compensation, and regulation of metabolism pathways.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianfu Li
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Longlong Gong
- Medical Department, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Peng Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Ying Chen
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Shuting Zhan
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Shan Xiong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yi Feng
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Runchen Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Haixuan Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Hongbo Zheng
- Medical Department, Genecast Biotechnology Co., Ltd, Wuxi, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Chengzhi Zhou
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Wenlong Shao
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Yuan Qiu
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jiancong Sun
- Department of Radiation Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- Department of Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Zhu Liang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chenglin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiuyu Cai
- Department of VIP Inpatient, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Wang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| |
Collapse
|
16
|
Wang R, Li G, Gao F, Xu F, Li X, Zhang J, Li J, Guan X. Ultrasound-responsive spherical nucleic acid against c-Myc/PD-L1 to enhance anti-tumoral macrophages in triple-negative breast cancer progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:698-710. [PMID: 38151609 DOI: 10.1007/s11427-023-2433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/31/2023] [Indexed: 12/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype because of its aggressive behavior and limited therapeutic targets. c-Myc is hyperactivated in the majority of TNBC tissues, however, it has been considered an "undruggable" target due to its disordered structure. Herein, we developed an ultrasound-responsive spherical nucleic acid (SNA) against c-Myc and PD-L1 in TNBC. It is a self-assembled and carrier-free system composed of a hydrophilic small-interfering RNA (siRNA) shell and a hydrophobic core made of a peptide nucleic acid (PNA)-based antisense oligonucleotide (ASO) and a sonosensitizer. We accomplished significant enrichment in the tumor by enhanced permeability and retention (EPR) effect, the controllable release of effective elements by ultrasound activation, and the combination of targeted therapy, immunotherapy and physiotherapy. Our study demonstrated significant anti-tumoral effects in vitro and in vivo. Mass cytometry showed an invigorated tumor microenvironment (TME) characterized by a significant alteration in the composition of tumor-associated macrophages (TAM) and decreased proportion of PD-1-positive (PD-1+) T effector cells after appropriate treatment of the ultrasound-responsive SNA (USNA). Further experiments verified that tumor-conditioned macrophages residing in the TME were transformed into the anti-tumoral population. Our finding offers a novel therapeutic strategy against the "undruggable" c-Myc, develops a new targeted therapy for c-Myc/PD-L1 and provides a treatment option for the TNBC.
Collapse
Affiliation(s)
- Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gaigai Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xintong Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
17
|
Ramirez CFA, Taranto D, Ando-Kuri M, de Groot MHP, Tsouri E, Huang Z, de Groot D, Kluin RJC, Kloosterman DJ, Verheij J, Xu J, Vegna S, Akkari L. Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma. Nat Commun 2024; 15:2581. [PMID: 38519484 PMCID: PMC10959959 DOI: 10.1038/s41467-024-46835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Myeloid cells are abundant and plastic immune cell subsets in the liver, to which pro-tumorigenic, inflammatory and immunosuppressive roles have been assigned in the course of tumorigenesis. Yet several aspects underlying their dynamic alterations in hepatocellular carcinoma (HCC) progression remain elusive, including the impact of distinct genetic mutations in shaping a cancer-permissive tumor microenvironment (TME). Here, in newly generated, clinically-relevant somatic female HCC mouse models, we identify cancer genetics' specific and stage-dependent alterations of the liver TME associated with distinct histopathological and malignant HCC features. Mitogen-activated protein kinase (MAPK)-activated, NrasG12D-driven tumors exhibit a mixed phenotype of prominent inflammation and immunosuppression in a T cell-excluded TME. Mechanistically, we report a NrasG12D cancer cell-driven, MEK-ERK1/2-SP1-dependent GM-CSF secretion enabling the accumulation of immunosuppressive and proinflammatory monocyte-derived Ly6Clow cells. GM-CSF blockade curbs the accumulation of these cells, reduces inflammation, induces cancer cell death and prolongs animal survival. Furthermore, GM-CSF neutralization synergizes with a vascular endothelial growth factor (VEGF) inhibitor to restrain HCC outgrowth. These findings underscore the profound alterations of the myeloid TME consequential to MAPK pathway activation intensity and the potential of GM-CSF inhibition as a myeloid-centric therapy tailored to subsets of HCC patients.
Collapse
Affiliation(s)
- Christel F A Ramirez
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel Taranto
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Masami Ando-Kuri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marnix H P de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Efi Tsouri
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Zhijie Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Daniel de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Roelof J C Kluin
- Genomics Core facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joanne Verheij
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Jing Xu
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China
| | - Serena Vegna
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Leila Akkari
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Dillen A, Bui I, Jung M, Agioti S, Zaravinos A, Bonavida B. Regulation of PD-L1 Expression by YY1 in Cancer: Therapeutic Efficacy of Targeting YY1. Cancers (Basel) 2024; 16:1237. [PMID: 38539569 PMCID: PMC10968822 DOI: 10.3390/cancers16061237] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2025] Open
Abstract
During the last decade, we have witnessed several milestones in the treatment of various resistant cancers including immunotherapeutic strategies that have proven to be superior to conventional treatment options, such as chemotherapy and radiation. This approach utilizes the host's immune response, which is triggered by cancer cells expressing tumor-associated antigens or neoantigens. The responsive immune cytotoxic CD8+ T cells specifically target and kill tumor cells, leading to tumor regression and prolongation of survival in some cancers; however, some cancers may exhibit resistance due to the inactivation of anti-tumor CD8+ T cells. One mechanism by which the anti-tumor CD8+ T cells become dysfunctional is through the activation of the inhibitory receptor programmed death-1 (PD-1) by the corresponding tumor cells (or other cells in the tumor microenvironment (TME)) that express the programmed death ligand-1 (PD-L1). Hence, blocking the PD-1/PD-L1 interaction via specific monoclonal antibodies (mAbs) restores the CD8+ T cells' functions, leading to tumor regression. Accordingly, the Food and Drug Administration (FDA) has approved several checkpoint antibodies which act as immune checkpoint inhibitors. Their clinical use in various resistant cancers, such as metastatic melanoma and non-small-cell lung cancer (NSCLC), has shown significant clinical responses. We have investigated an alternative approach to prevent the expression of PD-L1 on tumor cells, through targeting the oncogenic transcription factor Yin Yang 1 (YY1), a known factor overexpressed in many cancers. We report the regulation of PD-L1 by YY1 at the transcriptional, post-transcriptional, and post-translational levels, resulting in the restoration of CD8+ T cells' anti-tumor functions. We have performed bioinformatic analyses to further explore the relationship between both YY1 and PD-L1 in cancer and to corroborate these findings. In addition to its regulation of PD-L1, YY1 has several other anti-cancer activities, such as the regulation of proliferation and cell viability, invasion, epithelial-mesenchymal transition (EMT), metastasis, and chemo-immuno-resistance. Thus, targeting YY1 will have a multitude of anti-tumor activities resulting in a significant obliteration of cancer oncogenic activities. Various strategies are proposed to selectively target YY1 in human cancers and present a promising novel therapeutic approach for treating unresponsive cancer phenotypes. These findings underscore the distinct regulatory roles of YY1 and PD-L1 (CD274) in cancer progression and therapeutic response.
Collapse
Affiliation(s)
- Ana Dillen
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Indy Bui
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Megan Jung
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| | - Stephanie Agioti
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
| | - Apostolos Zaravinos
- Cancer Genetics, Genomic and Systems Biology Group, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (A.D.); (I.B.)
| |
Collapse
|
19
|
Asleh K, Ouellette RJ. Tumor Copy Number Alteration Burden as a Predictor for Resistance to Immune Checkpoint Blockade across Different Cancer Types. Cancers (Basel) 2024; 16:732. [PMID: 38398121 PMCID: PMC10886982 DOI: 10.3390/cancers16040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Immune checkpoint blockade (ICB) benefits only a subset of advanced cancer patients, and predictive biomarkers for immunotherapy response are needed. Recently, copy number alteration (CNA) burden has been proposed to predict ICB resistance. We assessed this finding using the publicly accessible data for 1661 ICB-treated patients whose tumors were profiled by MSK-IMPACT, an approved targeted assay in clinical care. We tested the hypothesis that the continuous increase in CNA burden is associated with poor overall survival following ICB. In addition, we hypothesized that the combinatorial biomarkers of tumor mutational burden (TMB) and CNA burden would better stratify patients for immune status and ICB response. Of the 1661 cases, 79% (n = 1307) were treated with anti PD-1/PD-L1 and the remaining 21% (n = 354) with anti CTLA-4 or the combination of both. In a multivariate analysis, increase in CNA burden was associated with poor overall survival [HR = 1.52, 95% CI (1.01-2.30), p = 0.04]. The combination of biomarkers TMB and CNA burden stratified patients into four clinically distinct subsets among which "LowTMB/HighCNA" showed the worst survival (p < 0.0001). The four patient subsets had unique CNA profiles and enriched pathways, which could predict transcriptional and phenotypic effects related to immune signaling and CD8+ T-cell abundance in the tumor microenvironment. CNA burden was associated with poor overall survival in patients receiving ICB and could improve patient stratification when incorporated with TMB. These findings may guide patient selection for immunotherapy or alternative strategies.
Collapse
Affiliation(s)
- Karama Asleh
- Department of Pathology and Laboratory Medicine, Halifax, NS B3H 1V8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 0A2, Canada;
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Rodney J. Ouellette
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 0A2, Canada;
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Dr. Georges L. Dumont University Hospital, Vitalité Health Network, Moncton, NB E1C 2Z3, Canada
| |
Collapse
|
20
|
Luo Z, Eichinger KM, Zhang A, Li S. Targeting cancer metabolic pathways for improving chemotherapy and immunotherapy. Cancer Lett 2023; 575:216396. [PMID: 37739209 PMCID: PMC10591810 DOI: 10.1016/j.canlet.2023.216396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
Recent discoveries in cancer metabolism have revealed promising metabolic targets to modulate cancer progression, drug response, and anti-cancer immunity. Combination therapy, consisting of metabolic inhibitors and chemotherapeutic or immunotherapeutic agents, offers new opportunities for improved cancer therapy. However, it also presents challenges due to the complexity of cancer metabolic pathways and the metabolic interactions between tumor cells and immune cells. Many studies have been published demonstrating potential synergy between novel inhibitors of metabolism and chemo/immunotherapy, yet our understanding of the underlying mechanisms remains limited. Here, we review the current strategies of altering the metabolic pathways of cancer to improve the anti-cancer effects of chemo/immunotherapy. We also note the need to differentiate the effect of metabolic inhibition on cancer cells and immune cells and highlight nanotechnology as an emerging solution. Improving our understanding of the complexity of the metabolic pathways in different cell populations and the anti-cancer effects of chemo/immunotherapy will aid in the discovery of novel strategies that effectively restrict cancer growth and augment the anti-cancer effects of chemo/immunotherapy.
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Anju Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
21
|
Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P, Gu X. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer 2023; 22:145. [PMID: 37660039 PMCID: PMC10474743 DOI: 10.1186/s12943-023-01850-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Immunotherapy has recently emerged as a treatment strategy which stimulates the human immune system to kill tumor cells. Tumor immunotherapy is based on immune editing, which enhances the antigenicity of tumor cells and increases the tumoricidal effect of immune cells. It also suppresses immunosuppressive molecules, activates or restores immune system function, enhances anti-tumor immune responses, and inhibits the growth f tumor cell. This offers the possibility of reducing mortality in triple-negative breast cancer (TNBC). MAIN BODY Immunotherapy approaches for TNBC have been diversified in recent years, with breakthroughs in the treatment of this entity. Research on immune checkpoint inhibitors (ICIs) has made it possible to identify different molecular subtypes and formulate individualized immunotherapy schedules. This review highlights the unique tumor microenvironment of TNBC and integrates and analyzes the advances in ICI therapy. It also discusses strategies for the combination of ICIs with chemotherapy, radiation therapy, targeted therapy, and emerging treatment methods such as nanotechnology, ribonucleic acid vaccines, and gene therapy. Currently, numerous ongoing or completed clinical trials are exploring the utilization of immunotherapy in conjunction with existing treatment modalities for TNBC. The objective of these investigations is to assess the effectiveness of various combined immunotherapy approaches and determine the most effective treatment regimens for patients with TNBC. CONCLUSION This review provides insights into the approaches used to overcome drug resistance in immunotherapy, and explores the directions of immunotherapy development in the treatment of TNBC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Yueting Hu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jingying Li
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Jiawen Bu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China
| | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| | - Xi Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
22
|
Nirala BK, Patel TD, Kurenbekova L, Shuck R, Dasgupta A, Rainusso N, Coarfa C, Yustein JT. MYC regulates CSF1 expression via microRNA 17/20a to modulate tumor-associated macrophages in osteosarcoma. JCI Insight 2023; 8:e164947. [PMID: 37279073 PMCID: PMC10371352 DOI: 10.1172/jci.insight.164947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor of childhood. Approximately 20%-30% of OSs carry amplification of chromosome 8q24, which harbors the oncogene c-MYC and correlates with a poor prognosis. To understand the mechanisms that underlie the ability of MYC to alter both the tumor and its surrounding tumor microenvironment (TME), we generated and molecularly characterized an osteoblast-specific Cre-Lox-Stop-Lox-c-MycT58A p53fl/+ knockin genetically engineered mouse model (GEMM). Phenotypically, the Myc-knockin GEMM had rapid tumor development with a high incidence of metastasis. MYC-dependent gene signatures in our murine model demonstrated significant homology to the human hyperactivated MYC OS. We established that hyperactivation of MYC led to an immune-depleted TME in OS demonstrated by the reduced number of leukocytes, particularly macrophages. MYC hyperactivation led to the downregulation of macrophage colony-stimulating factor 1, through increased microRNA 17/20a expression, causing a reduction of macrophage population in the TME of OS. Furthermore, we developed cell lines from the GEMM tumors, including a degradation tag-MYC model system, which validated our MYC-dependent findings both in vitro and in vivo. Our studies utilized innovative and clinically relevant models to identify a potentially novel molecular mechanism through which MYC regulates the profile and function of the OS immune landscape.
Collapse
Affiliation(s)
- Bikesh K. Nirala
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Tajhal D. Patel
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Lyazat Kurenbekova
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Ryan Shuck
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Atreyi Dasgupta
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Nino Rainusso
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
| | - Cristian Coarfa
- Department of Molecular & Human Genetics, and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason T. Yustein
- Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center
- Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
23
|
Zheng Y, Li S, Tang H, Meng X, Zheng Q. Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer. Front Immunol 2023; 14:1153990. [PMID: 37426654 PMCID: PMC10327275 DOI: 10.3389/fimmu.2023.1153990] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
The emergence of immunotherapy has profoundly changed the treatment model for triple-negative breast cancer (TNBC). But the heterogeneity of this disease resulted in significant differences in immunotherapy efficacy, and only some patients are able to benefit from this therapeutic modality. With the recent explosion in studies on the mechanism of cancer immunotherapy drug resistance, this article will focus on the processes of the immune response; summarize the immune evasion mechanisms in TNBC into three categories: loss of tumor-specific antigen, antigen presentation deficiency, and failure to initiate an immune response; together with the aberrant activation of a series of immune-critical signaling pathways, we will discuss how these activities jointly shape the immunosuppressive landscape within the tumor microenvironment. This review will attempt to elucidate the molecular mechanism of drug resistance in TNBC, identify potential targets that may assist in reversing drug resistance, and lay a foundation for research on identifying biomarkers for predicting immune efficacy and selection of breast cancer populations that may benefit from immunotherapy.
Collapse
Affiliation(s)
- Yiwen Zheng
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shujin Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongchao Tang
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xuli Meng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Qinghui Zheng
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Suntiparpluacha M, Chanthercrob J, Sa-nguanraksa D, Sitthikornpaiboon J, Chaiboonchoe A, Kueanjinda P, Jinawath N, Sampattavanich S. Retrospective study of transcriptomic profiling identifies Thai triple-negative breast cancer patients who may benefit from immune checkpoint and PARP inhibitors. PeerJ 2023; 11:e15350. [PMID: 37334114 PMCID: PMC10269579 DOI: 10.7717/peerj.15350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/13/2023] [Indexed: 06/20/2023] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a rare and aggressive breast cancer subtype. Unlike the estrogen receptor-positive subtype, whose recurrence risk can be predicted by gene expression-based signature, TNBC is more heterogeneous, with diverse drug sensitivity levels to standard regimens. This study explored the benefit of gene expression-based profiling for classifying the molecular subtypes of Thai TNBC patients. Methods The nCounter-based Breast 360 gene expression was used to classify Thai TNBC retrospective cohort subgroups. Their expression profiles were then compared against the previously established TNBC classification system. The differential characteristics of the tumor microenvironment and DNA damage repair signatures across subgroups were also explored. Results Thai TNBC cohort could be classified into four main subgroups, corresponding to the LAR, BL-2, and M subtypes based on Lehmann's TNBC classification. The PAM50 gene set classified most samples as basal-like subtypes except for Group 1. Group 1 exhibited similar enrichment of the metabolic and hormone response pathways to the LAR subtype. Group 2 shared pathway activation with the BL-2 subtype. Group 3 showed an increase in the EMT pathway, similar to the M subtype. Group 4 showed no correlation with Lehmann's TNBC. The tumor microenvironment (TME) analysis showed high TME cell abundance with increased expression of immune blockade genes in Group 2. Group 4 exhibited low TME cell abundance and reduced immune blockade gene expressions. We also observed distinct signatures of the DNA double-strand break repair genes in Group 1. Conclusions Our study reported unique characteristics between the four TNBC subgroups and showed the potential use of immune checkpoint and PARP inhibitors in subsets of Thai TNBC patients. Our findings warrant further clinical investigation to validate TNBC's sensitivity to these regimens.
Collapse
Affiliation(s)
- Monthira Suntiparpluacha
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jantappapa Chanthercrob
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-nguanraksa
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Juthamas Sitthikornpaiboon
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Amphun Chaiboonchoe
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Yi J, Wang L, Hu G, Zhang Y, Du J, Ding J, Ji X, Shen H, Huang H, Ye F, Liu W. CircPVT1 promotes ER-positive breast tumorigenesis and drug resistance by targeting ESR1 and MAVS. EMBO J 2023; 42:e112408. [PMID: 37009655 PMCID: PMC10183818 DOI: 10.15252/embj.2022112408] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 04/04/2023] Open
Abstract
The molecular mechanisms underlying estrogen receptor (ER)-positive breast carcinogenesis and endocrine therapy resistance remain incompletely understood. Here, we report that circPVT1, a circular RNA generated from the lncRNA PVT1, is highly expressed in ERα-positive breast cancer cell lines and tumor samples and is functionally important in promoting ERα-positive breast tumorigenesis and endocrine therapy resistance. CircPVT1 acts as a competing endogenous RNA (ceRNA) to sponge miR-181a-2-3p, promoting the expression of ESR1 and downstream ERα-target genes and breast cancer cell growth. Furthermore, circPVT1 directly interacts with MAVS protein to disrupt the RIGI-MAVS complex formation, inhibiting type I interferon (IFN) signaling pathway and anti-tumor immunity. Anti-sense oligonucleotide (ASO)-targeting circPVT1 inhibits ERα-positive breast cancer cell and tumor growth, re-sensitizing tamoxifen-resistant ERα-positive breast cancer cells to tamoxifen treatment. Taken together, our data demonstrated that circPVT1 can work through both ceRNA and protein scaffolding mechanisms to promote cancer. Thus, circPVT1 may serve as a diagnostic biomarker and therapeutic target for ERα-positive breast cancer in the clinic.
Collapse
Affiliation(s)
- Jia Yi
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation ResearchThe First Affiliated Hospital of Xiamen UniversityXiamenChina
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Lei Wang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Guo‐sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Yue‐ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Jiao Du
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Jian‐cheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Xiang Ji
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Hai‐feng Shen
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Hai‐hua Huang
- Department of Pathology, The Second Affiliated HospitalShantou University Medical CollegeShantouChina
| | - Feng Ye
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation ResearchThe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| |
Collapse
|
26
|
Alburquerque-Bejar JJ, Navajas-Chocarro P, Saigi M, Ferrero-Andres A, Morillas JM, Vilarrubi A, Gomez A, Mate JL, Munoz-Marmol AM, Romero OA, Blecua P, Davalos V, Esteller M, Pros E, Llabata P, Torres-Diz M, Esteve-Codina A, Sanchez-Cespedes M. MYC activation impairs cell-intrinsic IFNγ signaling and confers resistance to anti-PD1/PD-L1 therapy in lung cancer. Cell Rep Med 2023; 4:101006. [PMID: 37044092 PMCID: PMC10140599 DOI: 10.1016/j.xcrm.2023.101006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 03/17/2023] [Indexed: 04/14/2023]
Abstract
Elucidating the adaptive mechanisms that prevent host immune response in cancer will help predict efficacy of anti-programmed death-1 (PD1)/L1 therapies. Here, we study the cell-intrinsic response of lung cancer (LC) to interferon-γ (IFNγ), a cytokine that promotes immunoresponse and modulates programmed death-ligand 1 (PD-L1) levels. We report complete refractoriness to IFNγ in a subset of LCs as a result of JAK2 or IFNGR1 inactivation. A submaximal response affects another subset that shows constitutive low levels of IFNγ-stimulated genes (IγSGs) coupled with decreased H3K27ac (histone 3 acetylation at lysine 27) deposition and promoter hypermethylation and reduced IFN regulatory factor 1 (IRF1) recruitment to the DNA on IFNγ stimulation. Most of these are neuroendocrine small cell LCs (SCLCs) with oncogenic MYC/MYCL1/MYCN. The oncogenic activation of MYC in SCLC cells downregulates JAK2 and impairs IγSGs stimulation by IFNγ. MYC amplification tends to associate with a worse response to anti-PD1/L1 therapies. Hence alterations affecting the JAK/STAT pathway and MYC activation prevent stimulation by IFNγ and may predict anti-PD1/L1 efficacy in LC.
Collapse
Affiliation(s)
- Juan J Alburquerque-Bejar
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Pablo Navajas-Chocarro
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Maria Saigi
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Carretera de Canyet, s/n, 08916 Badalona, Barcelona, Spain
| | - Ana Ferrero-Andres
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Juan M Morillas
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Andrea Vilarrubi
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Antonio Gomez
- Biosciences Department, Faculty of Sciences and Technology (FCT), University of Vic-Central University of Catalonia (UVic-UCC), Carrer de la Sagrada Familia, 7, 08500 Vic, Barcelona, Spain
| | - José L Mate
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet, s/n, 08916 Badalona, Barcelona, Spain
| | - Ana M Munoz-Marmol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Carretera de Canyet, s/n, 08916 Badalona, Barcelona, Spain
| | - Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Pedro Blecua
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Cami de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Cami de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Cami de les Escoles s/n, 08916 Badalona, Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Calle Monforte de Lemos, 3-5, Pabellon 11, Planta baja, 28029 Madrid, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys, 23, 08010 Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Feixa Llarga, s/n, 08907 l'Hospitalet de Llobregat, Spain
| | - Eva Pros
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Paula Llabata
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Manuel Torres-Diz
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Institute of Science and Technology (BIST) and University Pompeu Fabra (UPF), Parc Cientific de Barcelona, Torre I Baldiri Reixac, 4, 08028 Barcelona, Spain
| | - Montse Sanchez-Cespedes
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias i Pujol, Ctra de Can Ruti, Camí de les Escoles s/n, 08916 Badalona, Barcelona, Spain.
| |
Collapse
|
27
|
Li J, Dong T, Wu Z, Zhu D, Gu H. The effects of MYC on tumor immunity and immunotherapy. Cell Death Discov 2023; 9:103. [PMID: 36966168 PMCID: PMC10039951 DOI: 10.1038/s41420-023-01403-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
The oncogene MYC is dysregulated in a host of human cancers, and as an important point of convergence in multitudinous oncogenic signaling pathways, it plays a crucial role in tumor immune regulation in the tumor immune microenvironment (TIME). Specifically, MYC promotes the expression of immunosuppressive factors and inhibits the expression of immune activation regulators. Undoubtedly, a therapeutic strategy that targets MYC can initiate a new era of cancer treatment. In this review, we summarize the essential role of the MYC signaling pathway in tumor immunity and the development status of MYC-related therapies, including therapeutic strategies targeting MYC and combined MYC-based immunotherapy. These studies have reported extraordinary insights into the translational application of MYC in cancer treatment and are conducive to the emergence of more effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Jiajin Li
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Tingyu Dong
- Department of Pediatrics, Second Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Zhen Wu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Dacheng Zhu
- Department of Clinical Medicine, First Clinical School of Medicine, Anhui Medical University, Hefei, China
| | - Hao Gu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
The Potential of Senescence as a Target for Developing Anticancer Therapy. Int J Mol Sci 2023; 24:ijms24043436. [PMID: 36834846 PMCID: PMC9961771 DOI: 10.3390/ijms24043436] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Senescence occurs in response to various stimuli. Senescence has attracted attention because of its potential use in anticancer therapy as it plays a tumor-suppressive role. It also promotes tumorigeneses and therapeutic resistance. Since senescence can induce therapeutic resistance, targeting senescence may help to overcome therapeutic resistance. This review provides the mechanisms of senescence induction and the roles of the senescence-associated secretory phenotype (SASP) in various life processes, including therapeutic resistance and tumorigenesis. The SASP exerts pro-tumorigenic or antitumorigenic effects in a context-dependent manner. This review also discusses the roles of autophagy, histone deacetylases (HDACs), and microRNAs in senescence. Many reports have suggested that targeting HDACs or miRNAs could induce senescence, which, in turn, could enhance the effects of current anticancer drugs. This review presents the view that senescence induction is a powerful method of inhibiting cancer cell proliferation.
Collapse
|
29
|
Yang H, Xue M, Su P, Zhou Y, Li X, Li Z, Xia Y, Zhang C, Fu M, Zheng X, Luo G, Wei T, Wang X, Ding Y, Zhu J, Zhuang T. RNF31 represses cell progression and immune evasion via YAP/PD-L1 suppression in triple negative breast Cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:364. [PMID: 36581998 PMCID: PMC9801641 DOI: 10.1186/s13046-022-02576-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Recently genome-based studies revealed that the abnormality of Hippo signaling is pervasive in TNBC and played important role in cancer progression. RING finger protein 31 (RNF31) comes to RING family E3 ubiquitin ligase. Our previously published studies have revealed RNF31 is elevated in ER positive breast cancer via activating estrogen signaling and suppressing P53 pathway. METHODS We used several TNBC cell lines and xenograft models and performed immuno-blots, QPCR, in vivo studies to investigate the function of RNF31 in TNBC progression. RESULT Here, we demonstrate that RNF31 plays tumor suppressive function in triple negative breast cancer (TNBC). RNF31 depletion increased TNBC cell proliferation and migration in vitro and in vitro. RNF31 depletion in TNBC coupled with global genomic expression profiling indicated Hippo signaling could be the potential target for RNF31 to exert its function. Further data showed that RNF31 depletion could increase the level of YAP protein, and Hippo signaling target genes expression in several TNBC cell lines, while clinical data illustrated that RNF31 expression correlated with longer relapse-free survival in TNBC patients and reversely correlated with YAP protein level. The molecular biology assays implicated that RNF31 could associate with YAP protein, facilitate YAP poly-ubiquitination and degradation at YAP K76 sites. Interestingly, RNF31 could also repress PDL1 expression and sensitive TNBC immunotherapy via inhibiting Hippo/YAP/PDL1 axis. CONCLUSIONS Our study revealed the multi-faced function of RNF31 in different subtypes of breast malignancies, while activation RNF31 could be a plausible strategy for TNBC therapeutics.
Collapse
Affiliation(s)
- Huijie Yang
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Min Xue
- grid.440265.10000 0004 6761 3768Molecular Biology Laboratory, First People’s Hospital of Shangqiu, Shangqiu, City, 476000 Henan Province People’s Republic of China
| | - Peng Su
- Department of Pathology, Shandong University Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province People’s Republic of China
| | - Yan Zhou
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Xin Li
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Zhongbo Li
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Yan Xia
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Chenmiao Zhang
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Mingxi Fu
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Xiuxia Zheng
- grid.440265.10000 0004 6761 3768Molecular Biology Laboratory, First People’s Hospital of Shangqiu, Shangqiu, City, 476000 Henan Province People’s Republic of China
| | - Guosheng Luo
- grid.412990.70000 0004 1808 322XThe Affiliated people’s Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| | - Tian Wei
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Xinxing Wang
- grid.412633.10000 0004 1799 0733Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450052 People’s Republic of China
| | - Yinlu Ding
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Jian Zhu
- grid.27255.370000 0004 1761 1174Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250033 People’s Republic of China
| | - Ting Zhuang
- grid.412990.70000 0004 1808 322XXinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China ,grid.412990.70000 0004 1808 322XThe Affiliated people’s Hospital of Xinxiang Medical University, Xinxiang, 453003 Henan Province People’s Republic of China
| |
Collapse
|
30
|
Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 15:cancers15010104. [PMID: 36612100 PMCID: PMC9817764 DOI: 10.3390/cancers15010104] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by a high rate of systemic metastasis, insensitivity to conventional treatment and susceptibility to drug resistance, resulting in a poor patient prognosis. The immune checkpoint inhibitors (ICIs) represented by antibodies of programmed death receptor 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have provided new therapeutic options for TNBC. However, the efficacy of PD-1/PD-L1 blockade monotherapy is suboptimal immune response, which may be caused by reduced antigen presentation, immunosuppressive tumor microenvironment, interplay with other immune checkpoints and aberrant activation of oncological signaling in tumor cells. Therefore, to improve the sensitivity of TNBC to ICIs, suitable patients are selected based on reliable predictive markers and treated with a combination of ICIs with other therapies such as chemotherapy, radiotherapy, targeted therapy, oncologic virus and neoantigen-based therapies. This review discusses the current mechanisms underlying the resistance of TNBC to PD-1/PD-L1 inhibitors, the potential biomarkers for predicting the efficacy of anti-PD-1/PD-L1 immunotherapy and recent advances in the combination therapies to increase response rates, the depth of remission and the durability of the benefit of TNBC to ICIs.
Collapse
|
31
|
Fang K, Xu Z, Jiang S, Yan C, Tang D, Huang Y. Integrated profiling uncovers prognostic, immunological, and pharmacogenomic features of ferroptosis in triple-negative breast cancer. Front Immunol 2022; 13:985861. [PMID: 36505498 PMCID: PMC9732280 DOI: 10.3389/fimmu.2022.985861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Ferroptosis is an iron-dependent type of regulated cell death triggered by the toxic buildup of lipid peroxides on cell membranes. Nonetheless, the implication of ferroptosis in triple-negative breast cancer (TNBC), which is the most aggressive subtype of breast carcinoma, remains unexplored. Methods Three TNBC cohorts-TCGA-TNBC, GSE58812, and METABRIC-were adopted. Consensus molecular subtyping on prognostic ferroptosis-related genes was implemented across TNBC. Ferroptosis classification-relevant genes were selected through weighted co-expression network analysis (WGCNA), and a ferroptosis-relevant scoring system was proposed through the LASSO approach. Prognostic and immunological traits, transcriptional and post-transcriptional modulation, therapeutic response, and prediction of potential small-molecule agents were conducted. Results Three disparate ferroptosis patterns were identified across TNBC, with prognostic and immunological traits in each pattern. The ferroptosis-relevant scoring system was proposed, with poorer overall survival in high-risk patients. This risk score was strongly linked to transcriptional and post-transcriptional mechanisms. The high-risk group had a higher response to anti-PD-1 blockade or sunitinib, and the low-risk group had higher sensitivity to cisplatin. High relationships of risk score with immunological features were observed across pan-cancer. Two Cancer Therapeutics Response Portal (CTRP)-derived agents (SNX-2112 and brefeldin A) and PRISM-derived agents (MEK162, PD-0325901, PD-318088, Ro-4987655, and SAR131675) were predicted, which were intended for high-risk patients. Conclusion Altogether, our findings unveil prognostic, immunological, and pharmacogenomic features of ferroptosis in TNBC, highlighting the potential clinical utility of ferroptosis in TNBC therapy.
Collapse
Affiliation(s)
- Kun Fang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China,*Correspondence: Kun Fang,
| | - Zhengjie Xu
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Suxiao Jiang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Changsheng Yan
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Desheng Tang
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Huang
- Department of Surgery, Affiliated Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
32
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
33
|
Jo H, Shim K, Jeoung D. Targeting HDAC6 to Overcome Autophagy-Promoted Anti-Cancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23179592. [PMID: 36076996 PMCID: PMC9455701 DOI: 10.3390/ijms23179592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Histone deacetylases (HDACs) regulate gene expression through the epigenetic modification of chromatin structure. HDAC6, unlike many other HDACs, is present in the cytoplasm. Its deacetylates non-histone proteins and plays diverse roles in cancer cell initiation, proliferation, autophagy, and anti-cancer drug resistance. The development of HDAC6-specific inhibitors has been relatively successful. Mechanisms of HDAC6-promoted anti-cancer drug resistance, cancer cell proliferation, and autophagy are discussed. The relationship between autophagy and anti-cancer drug resistance is discussed. The effects of combination therapy, which includes HDAC6 inhibitors, on the sensitivity of cancer cells to chemotherapeutics and immune checkpoint blockade are presented. A summary of clinical trials involving HDAC6-specific inhibitors is also presented. This review presents HDAC6 as a valuable target for developing anti-cancer drugs.
Collapse
|