1
|
Liu M, Liu L, Lv Z, Zeng Q, Zhao J. Fear of cancer recurrence in patients with early-stage non-small cell lung cancer: A latent profile analysis. Asia Pac J Oncol Nurs 2025; 12:100663. [PMID: 40129486 PMCID: PMC11930574 DOI: 10.1016/j.apjon.2025.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Objective This study aimed to identify latent profiles of fear of cancer recurrence (FCR) among patients with early-stage non-small cell lung cancer (NSCLC) and examine the associated factors. Methods A cross-sectional survey was conducted with 677 patients with early-stage NSCLC who underwent surgical treatment at a tier-three cancer hospital in Beijing between January 2022 and August 2023. Data collection included demographic variables and assessments using the Fear of Progression Questionnaire-Short Form (FoP-Q-SF), Herth Hope Index (HHI), and Social Support Rating Scale (SSRS). Latent profile analysis was employed to classify FCR levels and identify influencing factors. Results Three distinct FCR profiles emerged: "low FCR" (27.6%), "moderate FCR" (66.2%), and "high FCR" (6.2%). Independent risk factors for moderate FCR included individuals aged 36-60 years (odds ratio [OR] = 1.871, 95% confidence interval [CI] 1.208-2.899) and a household income below 5000 yuan (OR = 1.86, 95% CI 1.059-3.267). Protective factors for moderate FCR included lower levels of education (OR = 0.505, 95% CI 0.283-0.902), religious beliefs (OR = 0.355, 95% CI 0.152-0.833), and smoking (OR = 0.461, 95% CI 0.284-0.747). High FCR was strongly associated with being 36-60 years old, lower HHI scores (OR = 11.055, 95% CI 4.441-27.522), and poor social support (OR = 3.392, 95% CI 1.385-8.308). Conclusions FCR among patients with early-stage NSCLC can be categorized into distinct profiles, with specific demographic and psychosocial factors influencing severity. Tailored nursing interventions addressing varying FCR levels are critical to improving patient care and psychological well-being.
Collapse
Affiliation(s)
| | | | | | - Qingpeng Zeng
- National Cancer Center/National Clinical Research Center for Cancer (NCRCC)/Thoracic Surgery, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Zhao
- National Cancer Center/National Clinical Research Center for Cancer (NCRCC)/Thoracic Surgery, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Wang K, Xiang J, Zhou J, Chen C, Wang Z, Qin N, Zhu M, Bi L, Gong L, Yang L, Chen Y, Xu X, Dai J, Ma H, Hu Z, Li W, Wang C, Jin G, Shen H. Development and validation of a transcription factor regulatory network-based signature for individualized prognostic risk in lung adenocarcinoma. Int J Cancer 2025; 156:2440-2451. [PMID: 39960662 DOI: 10.1002/ijc.35375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 03/17/2025]
Abstract
Despite significant progress in diagnostic and therapeutic modalities, lung adenocarcinoma (LUAD) still exhibits a high recurrence risk and a low 5-year survival rate. Reliable prognostic signatures are imperative for risk stratification in LUAD patients. This study encompassed 2740 patients from 23 LUAD cohorts, including one single-cell RNA sequencing (scRNA-seq) dataset, five bulk RNA-seq datasets, and 17 microarray datasets. Using scRNA-seq dataset, we defined a group of epithelial-specific transcription factors significantly over-represented in the epithelial-to-mesenchymal transition (EMT) gene set (enrichment ratio [ER] = 5.80, Fisher's exact test p < .001), and the corresponding target genes were significantly enriched in the cancer driver gene set (ER = 2.74, p < .001), indicating of their crucial roles in the EMT process and tumor progression. We constructed a single-cell gene pairs (scGPS) signature, composed of 3521 gene pairs derived from the epithelial cell-specific transcription factor regulatory network, to predict overall survival (OS) of LUAD. High-risk patients identified by scGPS in the discovery cohort exhibited significantly worse OS compared to low-risk patients (Hazard ratio [HR] = 1.78, 95% CI: 1.29-2.46, log-rank p = 1.80 × 10-4). The scGPS outperformed other established gene signatures and demonstrated robust prognostic stratification across various independent datasets, including microarray data and even early-stage LUAD patients. It remained an independent prognostic factor after adjusting for clinical and pathologic factors. In addition, combining scGPS with tumor stage further enhanced prognostic accuracy compared to using stage alone. The scGPS signature offers individualized prognosis estimations, showing significant potential for practical application in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Xiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingjia Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianfeng Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Jiang Y, Immadi MS, Wang D, Zeng S, On Chan Y, Zhou J, Xu D, Joshi T. IRnet: Immunotherapy response prediction using pathway knowledge-informed graph neural network. J Adv Res 2025; 72:319-331. [PMID: 39097091 DOI: 10.1016/j.jare.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) are potent and precise therapies for various cancer types, significantly improving survival rates in patients who respond positively to them. However, only a minority of patients benefit from ICI treatments. OBJECTIVES Identifying ICI responders before treatment could greatly conserve medical resources, minimize potential drug side effects, and expedite the search for alternative therapies. Our goal is to introduce a novel deep-learning method to predict ICI treatment responses in cancer patients. METHODS The proposed deep-learning framework leverages graph neural network and biological pathway knowledge. We trained and tested our method using ICI-treated patients' data from several clinical trials covering melanoma, gastric cancer, and bladder cancer. RESULTS Our results demonstrate that this predictive model outperforms current state-of-the-art methods and tumor microenvironment-based predictors. Additionally, the model quantifies the importance of pathways, pathway interactions, and genes in its predictions. A web server for IRnet has been developed and deployed, providing broad accessibility to users at https://irnet.missouri.edu. CONCLUSION IRnet is a competitive tool for predicting patient responses to immunotherapy, specifically ICIs. Its interpretability also offers valuable insights into the mechanisms underlying ICI treatments.
Collapse
Affiliation(s)
- Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Manish Sridhar Immadi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Yen On Chan
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
| | - Jing Zhou
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA; MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, USA; Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
4
|
Shi H, Xu Y, Song G, Qiu T. ADH1B regulates tumor stemness by activating the cAMP/PKA/CREB1 signaling axis to inhibit recurrence and metastasis of lung adenocarcinoma. Biochem Biophys Res Commun 2025; 760:151681. [PMID: 40157295 DOI: 10.1016/j.bbrc.2025.151681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Lung cancer remains the leading cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for approximately 85 % of cases. Despite advancements in diagnostics and therapies, tumor metastasis and drug-resistant recurrence present significant clinical challenges. This study evaluates the prognostic role of ADH1B in lung adenocarcinoma (LUAD) metastasis and recurrence. Analysis of tissue samples from 46 LUAD patients revealed that lower ADH1B expression correlates with increased metastasis and poorer overall survival. Kaplan-Meier survival analysis demonstrated that elevated ADH1B levels are significantly associated with longer overall survival and recurrence-free survival. In vitro experiments indicated that ADH1B overexpression inhibits proliferation, migration, and invasion in A549 and H1299 cell lines. Additionally, ADH1B expression was negatively correlated with tumor stemness markers, indicating its role in suppressing stem cell characteristics. Mechanistically, ADH1B activates the cAMP/PKA/CREB1 signaling pathway, enhancing SOX1 expression and inhibiting the ERK pathway, which contributes to reduced tumor stemness. In vivo studies confirmed that ADH1B overexpression decreases stem cell populations and tumor growth in xenograft models. Our findings suggest that ADH1B functions as a critical regulator of LUAD progression, with its low expression acting as a marker of poor prognosis while promoting metastasis and tumor stemness. This research identifies ADH1B as a potential therapeutic target, offering novel strategies to address the challenges of metastasis and recurrence in LUAD.
Collapse
Affiliation(s)
- Hairong Shi
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Youtao Xu
- Department of Thoracic Surgery, Jiangsu Cancer Hospital & Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, 210009, China
| | - Guoxin Song
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Tianzhu Qiu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Muhammed Y, De Sabatino M, Lazenby RA. The Heterogeneity in the Response of A549 Cells to Toyocamycin Observed Using Hopping Scanning Ion Conductance Microscopy. J Phys Chem B 2025; 129:4904-4916. [PMID: 40338629 DOI: 10.1021/acs.jpcb.4c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Scanning ion conductance microscopy (SICM) is a noninvasive topographic mapping technique used in imaging live cells, unlike electron microscopy and certain applications of fluorescence microscopy, which can disrupt cell integrity. In this study, we used SICM to track the morphological changes of the same A549 cells to uncover the cell-to-cell heterogeneity in their response to the drug. We found that toyocamycin (TOY) induced rapid reorganization of the actin cytoskeleton in A549 cells, causing them to become circular, irregular, or ellipsoidal in shape. Mapping of the dynamic changes in morphology revealed membrane blebbing and a significant decrease in volume over time. Using high-throughput SICM, we mapped the morphology of multiple single cells treated with TOY, which revealed that A549 showed characteristics of apoptosis and necrosis. The drug treatment does not significantly change the average root-mean-square (RMS) roughness of the cells. However, the drug leads to an increase in membrane height, possibly indicating early apoptotic changes. Plotting the individual RMS roughness of the cells showed a cell with an increase in roughness and the presence of pores, which is also an indication of necrosis behavior. Our results demonstrate that SICM is an effective technique for revealing the evolution of heterogeneity in single cells in their responses to anticancer drugs over time.
Collapse
Affiliation(s)
- Yusuf Muhammed
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Mia De Sabatino
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
6
|
Guo H, Zhao X, Han K, Wang Y. Mapping the Lung-Brain Axis: Causal Relationships Between Brain Network Connectivity and Respiratory Disorders. Brain Res Bull 2025:111402. [PMID: 40409599 DOI: 10.1016/j.brainresbull.2025.111402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 05/03/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND The mechanistic relationship between respiratory disorders and brain function remains poorly understood, despite growing evidence of cognitive and neurological manifestations in respiratory diseases. We aim to identify whether specific brain network connectivity patterns causally influence respiratory disease susceptibility, while respiratory conditions might reciprocally affect brain network architecture. METHODS We performed bidirectional Mendelian randomization analyses using genome-wide association studies (GWAS) of brain network connectivity from UK Biobank resting-state functional MRI data (N=31,453) and GWAS data from ten major respiratory conditions: chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), sleep apnea syndrome (SAS), lung squamous carcinoma (LUSC), lung adenocarcinoma (LUAD), small cell lung carcinoma (SCLC), hospitalized COVID-19, very severe COVID-19, and bronchiectasis. Five MR methods, inverse variance weighted (IVW) with multiplicative random-effect model, weighted median, weighted mode, MR Egger, and MR-robust adjusted profile score (MR-RAPS) were employed to ensure causal inference. RESULTS In forward analysis, five respiratory disorders - asthma, IPF, SAS, LUSC, and very severe COVID-19 - showed significant causal associations (p<1.31×10-4) with 11 rs-fMRI phenotypes, spanning multiple brain networks including the central executive, subcortical-cerebellum, motor, limbic, attention, salience, visual, and default mode networks. In reverse analysis, twelve brain functional networks demonstrated genetic associations with eight respiratory conditions (COPD, asthma, IPF, SAS, LUSC, SCLC, hospitalized COVID-19, and very severe COVID-19), predominantly involving attention, salience, default mode, visual, and central executive networks. CONCLUSIONS Our study provides preliminary genetic evidence suggesting potential causal relationships between brain network connectivity and respiratory disorders, contributing to our understanding of the lung-brain axis. While the identification of disease-specific network alterations offers promising insights, further clinical validation is needed before these findings can be translated into therapeutic interventions.
Collapse
Affiliation(s)
- Hua Guo
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xiaohan Zhao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ke Han
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Yanqing Wang
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
7
|
Chen Z, Shi H, Hu W, Yang J, Xing Y, Lv X, Wu C, Ding C, Zhao J. DRP2 promotes EMT and serves as a potential therapeutic target for LUAD treatment. Sci Rep 2025; 15:16590. [PMID: 40360616 PMCID: PMC12075839 DOI: 10.1038/s41598-025-01611-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 05/07/2025] [Indexed: 05/15/2025] Open
Abstract
LUAD, a prevalent lung cancer with high mortality, has seen increased focus on molecular targeted therapies due to patient heterogeneity. Among these prospects, dystrophin-associated protein 2 (DRP2), a critical component of the dystrophin complex, underpins membrane-associated structures vital for intercellular interactions in vertebrates. Aberrations in DRP2 function have been linked to the occurrence and development of multiple diseases, prompting an inquiry into its potential link with LUAD progression. To delve into the potential roles of DRP2 in LUAD, we initiated a comprehensive investigation. First, we analyzed DRP2 expression patterns in LUAD using bioinformatics tools. This was subsequently validated through immunohistochemical staining, quantitative PCR, and Western blot analyses. Furthermore, we assessed the functional implications of DRP2 in LUAD cells, both in vitro and in vivo, utilizing assays such as cell cycle analysis, CCK-8 proliferation assay, Colony formation assay EdU incorporation, Transwell migration test, scratch wound healing assay, flow cytometry, and mouse models for tumor xenograft and metastasis. Results showed a strong correlation between high DRP2 expression in LUAD and poorer survival. Notably, DRP2 knockdown accelerated LUAD progression via the EMT pathway. These findings highlight DRP2's crucial role in LUAD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zhimeng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Shi
- Laboratory of Cancer Molecular Genetics, Soochow University, Medical College of Soochow University, Suzhou, China
| | - Wenxuan Hu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxuan Xing
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Lv
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenzhuo Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, 899 Ping Hai Road, Suzhou, 215000, Jiangsu, China.
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Zhang W, Wang R, Guo R, Wang Y, Wang H, Li Y, Li X, Song J. The potential of secretogranin V as a prognostic biomarker in non-small cell lung cancer. Sci Rep 2025; 15:16589. [PMID: 40360599 PMCID: PMC12075651 DOI: 10.1038/s41598-025-00747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Recent studies indicate that Secretogranin V (SCG5) is aberrantly expressed in various cancers and may be linked to tumor progression and prognosis. This study aims to evaluate the potential of SCG5 as a prognostic biomarker for non-small cell lung cancer (NSCLC). We employed a combination of bioinformatics analysis, Western blotting, and immunofluorescence techniques to investigate the role of SCG5 in NSCLC. A comprehensive analysis of TCGA and GEO pan-cancer datasets revealed a consistent upregulation of SCG5 across multiple cancer types. In NSCLC, SCG5 expression was significantly higher in tumor tissues compared to normal lung tissues (p < 0.001). Kaplan-Meier survival analysis demonstrated that patients with elevated SCG5 expression exhibited lower overall survival rates, suggesting a strong association with poor prognosis. Univariate and multivariate COX regression analyses, conducted on both TCGA cases and our collected patient data, confirmed SCG5 as an independent prognostic factor for NSCLC. Furthermore, immune infiltration analysis indicated a significant correlation between SCG5 expression and various immune cell subpopulations, underscoring its potential role as a biomarker for adverse outcomes. Western blot analysis further validated the elevated levels of SCG5 in NSCLC tissues and cell lines compared to their normal counterparts. Based on our findings, we hypothesize that SCG5 may serve as a valuable biomarker for predicting the prognosis of non-small cell lung cancer, thereby guiding future research in the fields of diagnosis, progression, therapy, and prognosis of NSCLC.
Collapse
Affiliation(s)
- Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, People's Republic of China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, People's Republic of China
| | - Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, People's Republic of China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, People's Republic of China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, People's Republic of China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, People's Republic of China
| | - Xia Li
- Department of Respiratory Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, No. 606 Xindu Road, Yandu District, Yancheng, 224000, People's Republic of China.
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Medical School of Nantong University, Nantong, 226001, People's Republic of China.
- Department of Thoracic Cardiothoracic Surgery, Yancheng Third People's Hospital, Affiliated Hospital 6 of Nantong University, No. 606 Xindu Road, Yandu District, Yancheng City, Yancheng, People's Republic of China.
| |
Collapse
|
9
|
Li H, Li S, Kanamori Y, Liu S, Moroishi T. Auranofin resensitizes ferroptosis-resistant lung cancer cells to ferroptosis inducers. Biochem Biophys Res Commun 2025; 770:151992. [PMID: 40373379 DOI: 10.1016/j.bbrc.2025.151992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/23/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Lung cancer, a major cause of cancer-related mortality, has limited therapeutic options, especially for advanced cases. Ferroptosis, an iron-dependent form of cell death, is a potential therapeutic strategy for this disease; however, resistance mechanisms in the tumor microenvironment impede its effectiveness. Therefore, in this study, we aimed to investigate the efficacy of sulfasalazine (SAS), a ferroptosis inducer, and auranofin (AUR), a Food and Drug Administration-approved anti-inflammatory agent, combination to counteract ferroptosis resistance in lung cancer. SAS induced ferroptosis in vitro; however, its efficacy in vivo was limited, possibly because of factors, such as nutrient deprivation and high cell density, in the microenvironment that suppressed the activities of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of ferroptosis resistance. Screening of 2483 drugs revealed AUR as a compound resensitizing the YAP/TAZ-deficient lung cancer cells to ferroptosis. Moreover, SAS and AUR combination significantly enhanced lipid peroxidation and reactive oxygen species accumulation, further driving ferroptosis in cells. This combination effectively inhibited tumor growth and enhanced survival in a murine lung cancer model. Overall, our findings suggest that AUR potentiates ferroptosis-based therapies, serving as an effective candidate to overcome ferroptosis resistance in lung cancer.
Collapse
Affiliation(s)
- Hao Li
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Shuran Li
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yohei Kanamori
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Saisai Liu
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Division of Cellular Dynamics, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Tokyo, 113-8510, Japan.
| |
Collapse
|
10
|
Peng S, Hou X, Liu J, Huang F. Advances in polymer nanomaterials targeting cGAS-STING pathway for enhanced cancer immunotherapy. J Control Release 2025; 381:113560. [PMID: 40023225 DOI: 10.1016/j.jconrel.2025.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway has been recognized as a promising target for cancer immunotherapy. Although various STING agonists have been developed, their clinical applications are still severely impeded by various issues, such as non-specific accumulation, adverse effects, rapid clearance, etc. In recent years, the emergence of nanomaterials has profoundly revolutionized STING agonists delivery, which promote tumor-targeted delivery, boost the immunotherapeutic effects and reduce systemic toxicity of STING agonists. In particular, polymer nanomaterials possess inherent advantages including controllable structure, tunable function and degradability. These properties afford them the capacity to serve as delivery vehicles for small-molecule STING agonists. Furthermore, the superior characteristics of polymer nanomaterials can enable their utilization as a novel STING agonist to stimulate anti-tumor immunity. In this review, the molecular mechanisms of cGAS-STING pathway activation are discussed. The recent development of small-molecules STING agonists is described. Then polymer nanomaterials are discussed as carriers for STING agonists in cancer immunotherapy, including polymersomes, polymer micelles, polymer capsules, and polymer nanogels. Additionally, polymer nanomaterials are identified as a novel class of STING agonists for efficient cancer immunotherapy, encompassing both polymer materials and polymer-STING agonists conjugates. The review also presents the combination of polymer-based cGAS-STING immunotherapy with chemotherapy, radiotherapy, phototherapy (both photodynamic and photothermal), chemodynamic therapy, and other therapeutic strategies. Furthermore, the discussion highlights recent advancements targeting the cGAS-STING pathway in clinically approved polymer nanomaterials and corresponding potent innovations. Finally, the potential challenges and perspectives of polymer nanomaterials for activating cGAS-STING pathway are outlined, emphasizing the critical scientific issue and hoping to offer guidance for their clinical translation.
Collapse
Affiliation(s)
- Shiyu Peng
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Fan Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
11
|
Wu Y, Wang H, Gu Y, Zhang Y, Li G, Huang Y, Cao M, Chen X, Guan Y, Xu D, Wei W, Xie F. Head-to-head comparison of peptide-based and nanobody-based radiotracers in detecting PD-L1 expression in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07316-w. [PMID: 40338301 DOI: 10.1007/s00259-025-07316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Immunotherapy based on programmed cell death protein receptor 1 and its ligand (PD-1/PD-L1) has become an important method for treating non-small cell lung cancer (NSCLC). Peptide-based and nanobody-based PET tracers offer potential advantages in PD-L1 detection, yet their comparative tumor uptake and biodistribution remain unclear. This study aimed to evaluate and compare [68Ga]Ga-DOTA-WL12 (a peptide-based tracer) and [68Ga]Ga-NOTA-RW102 (a nanobody-based tracer) in assessing PD-L1 expression in primary and metastatic NSCLC, providing insights for future radiotracer design and theranostic applications. METHODS Ten patients diagnosed with NSCLC underwent [68Ga]Ga-DOTA-WL12 and [68Ga]Ga-NOTA-RW102 PET/CT scans, with four of these patients also receiving [18F]FDG PET/CT scans. The tracer uptakes, quantified by maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean), and target-to-background ratio (TBR), were compared between [68Ga]Ga-DOTA-WL12 and [68Ga]Ga-NOTA-RW102 PET/CT. RESULTS DOTA-WL12 and NOTA-RW102 exhibited favorable binding affinities with PD-L1, with equilibrium dissociation constant (KD) values of 0.2 nM and 0.0047 nM, respectively. Subsequent human studies revealed significant variations (P < 0.05) in the uptake of [68Ga]Ga-DOTA-WL12 and [68Ga]Ga-NOTA-RW102 across the liver (SUVmean: 20.43 ± 4.26 vs. 6.12 ± 1.36, p = 0.015), kidney (SUVmean: 2.40 ± 0.34 vs. 22.37 ± 2.88, P = 0.015), spleen (SUVmean: 2.44 ± 0.67 vs. 18.49 ± 3.90, P = 0.015), and lung background (SUVmean: 0.18 ± 0.12 vs. 1.09 ± 0.29, P = 0.015). Meanwhile, we found that the correlation between SUVmax and PD-L1 TPS was significantly stronger with [68Ga]Ga-DOTA-WL12 compared to [68Ga]Ga-NOTA-RW102 (P < 0.0001, r = 0.9471 vs. P = 0.0241, r = 0.5235). CONCLUSION The uptake of peptide-based [68Ga]Ga-DOTA-WL12 was more strongly correlated with PD-L1 TPS in primary and metastatic tumor lesions compared to [68Ga]Ga-NOTA-RW102. They also displayed different distribution, suggesting that peptide-based and nanobody-based radiotracers may have different clinical implications, particularly in radiotherapy.
Collapse
Affiliation(s)
- Yanfei Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yue Gu
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guanglei Li
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan Huang
- Rehabilitation Department, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong Xu
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Ai Y, Liu J, Li Y, Wang F, Du X, Jain RK, Lin L, Chen YW. SAMA: A Self-and-Mutual Attention Network for Accurate Recurrence Prediction of Non-Small Cell Lung Cancer Using Genetic and CT Data. IEEE J Biomed Health Inform 2025; 29:3220-3233. [PMID: 39348246 DOI: 10.1109/jbhi.2024.3471194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Accurate preoperative recurrence prediction for non-small cell lung cancer (NSCLC) is a challenging issue in the medical field. Existing studies primarily conduct image and molecular analyses independently or directly fuse multimodal information through radiomics and genomics, which fail to fully exploit and effectively utilize the highly heterogeneous cross-modal information at different levels and model the complex relationships between modalities, resulting in poor fusion performance and becoming the bottleneck of precise recurrence prediction. To address these limitations, we propose a novel unified framework, the Self-and-Mutual Attention (SAMA) Network, designed to efficiently fuse and utilize macroscopic CT images and microscopic gene data for precise NSCLC recurrence prediction, integrating handcrafted features, deep features, and gene features. Specifically, we design a Self-and-Mutual Attention Module that performs three-stage fusion: the self-enhancement stage enhances modality-specific features; the gene-guided and CT-guided cross-modality fusion stages perform bidirectional cross-guidance on the self-enhanced features, complementing and refining each modality, enhancing heterogeneous feature expression; and the optimized feature aggregation stage ensures the refined interactive features for precise prediction. Extensive experiments on both publicly available datasets from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) demonstrate that our method achieves state-of-the-art performance and exhibits broad applicability to various cancers.
Collapse
|
13
|
Tang Z, Ye J, Chen D. HHLA3 Silencing Suppresses KRAS-Mutant Non-Small-Cell Lung Cancer Cell Progression Through Triggering MYEOV-Mediated Ferroptosis. J Biochem Mol Toxicol 2025; 39:e70271. [PMID: 40262052 DOI: 10.1002/jbt.70271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/11/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
KRAS mutation is one of the most common mutational events in non-small-cell lung cancer (NSCLC). However, due to the complex signaling pathways and high biological heterogeneity of KRAS-mutant NSCLC, the current clinical treatment for patients with KRAS mutations still faces many difficulties. The oncogenic effector in KRAS-mutant NSCLC was screened using GEO data sets. CCK-8, colony formation, transwell, and flow cytometry were conducted to assess the malignant phenotype of KRAS-mutant NSCLC cells. The indicators intracellular Fe2+, ROS, GSH, and MDA levels were employed to reflect the ferroptosis of cells. The mechanism of myeloma overexpressed (MYEOV) in KRAS-mutant NSCLC was explored from the perspective of noncoding RNA (ncRNA) and validated by rescue experiments. MYEOV presented a high expression trend in KRAS-mutant NSCLC specimens. MYEOV silencing effectively repressed the malignant phenotype and promoted ferroptosis of NSCLC cells carrying KRAS mutations. Based on bioinformation analysis and a series of rescue experiments, we established the HHLA3/miR-139-5p/MYEOV regulatory network in KRAS-mutant NSCLC cells and disclosed that HHLA3 served as a molecular sponge for miR-139-5p to regulate MYEOV expression. The mechanism of MYEOV and its ncRNA network affecting the progression of KRAS-mutant NSCLC revealed in this study intends to provide a theoretical basis for KRAS-mutant NSCLC treatment.
Collapse
Affiliation(s)
- Zhimiao Tang
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Central Hospital), Jinhua, Zhejiang, China
| | - Jia Ye
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Central Hospital), Jinhua, Zhejiang, China
| | - Dong Chen
- Department of Cardiothoracic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine (Jinhua Central Hospital), Jinhua, Zhejiang, China
| |
Collapse
|
14
|
Branco H, Rodrigues CA, Oliveira J, Mendes N, Antunes C, Amorim I, Santos LL, Vasconcelos MH, Xavier CPR. Preclinical studies on the antitumor and non-toxic effect of combining pirfenidone with vinorelbine and carboplatin in non-small cell lung cancer. Int J Cancer 2025; 156:1756-1769. [PMID: 39630019 DOI: 10.1002/ijc.35276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 03/08/2025]
Abstract
Non-small cell lung cancer (NSCLC) shows limited therapeutic response to vinorelbine and carboplatin. Combining these drugs with an antifibrotic drug may enhance their antitumor effect. Pirfenidone is an antifibrotic drug whose antitumor activity has been described in different types of cancer. This work aimed to perform preclinical studies on the combination of pirfenidone with vinorelbine, or with vinorelbine plus carboplatin, in NSCLC. Our data revealed that pirfenidone sensitized three NSCLC cell lines to vinorelbine by reducing cell growth, viability and proliferation, inducing alterations in the cell cycle profile, and increasing cell death (%). Importantly, pirfenidone increased the sensitivity of the three NSCLC cell lines to the combined treatment of vinorelbine plus carboplatin. This combined drug treatment (triplet) did not induce cytotoxicity against non-tumorigenic cells. Notably, the triplet drug combination significantly reduced the growth and proliferation of A-549 xenografts in nude mice, as also reduced vimentin and collagen expression. Most interestingly, the triplet treatment exhibited a safer toxicological profile than the doublet (vinorelbine plus carboplatin) currently applied in the clinical practice. Altogether, these preclinical data support the possibility of repurposing pirfenidone in combination with vinorelbine or with vinorelbine plus carboplatin for NSCLC perioperative treatment, improving therapeutic efficacy while reducing toxicity.
Collapse
Affiliation(s)
- Helena Branco
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Catarina A Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Experimental Pathology and Therapeutics Group, IPO-Instituto Português de Oncologia, Porto, Portugal
| | - Júlio Oliveira
- Experimental Pathology and Therapeutics Group, IPO-Instituto Português de Oncologia, Porto, Portugal
| | - Nuno Mendes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- HEMS-Histology and Electron Microscopy, i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Catarina Antunes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Irina Amorim
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer Group, IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS-UP-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Lúcio L Santos
- Experimental Pathology and Therapeutics Group, IPO-Instituto Português de Oncologia, Porto, Portugal
- ICBAS-UP-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Cancer Drug Resistance Group, IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences-CESPU, Gandra, Portugal
| |
Collapse
|
15
|
Fang H, Chi X, Wang M, Liu J, Sun M, Zhang J, Zhang W. M2 macrophage-derived exosomes promote cell proliferation, migration and EMT of non-small cell lung cancer by secreting miR-155-5p. Mol Cell Biochem 2025; 480:3019-3032. [PMID: 39612105 DOI: 10.1007/s11010-024-05161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/09/2024] [Indexed: 11/30/2024]
Abstract
Tumor-associated macrophages (TAMs) are a type of highly plastic immune cells in the tumor microenvironment (TME), which can be classified into two main phenotypes: classical activated M1 macrophages and alternatively activated M2 macrophages. As previously reported, M2-polarized TAMs play critical role in promoting the progression of non-small cell lung cancer (NSCLC) via secreting exosomes, but the detailed mechanisms are still largely unknown. In the present study, the THP-1 monocytes were sequentially induced into M0 and M2-polarized macrophages, and the exosomes were obtained from M0 (M0-exos) and M2 (M2-exos) polarized macrophages, respectively, and co-cultured with NSCLC cells (H1299 and A549) to establish the exosomes-cell co-culture system in vitro. As it was determined by MTT assay, RT-qPCR and Transwell assay, in contrast with the M0-exos, M2-exos significantly promoted cell proliferation, migration and epithelial-mesenchymal transition (EMT) process in NSCLC cells. Next, through screening the contents in the exosomes, it was verified that miR-155-5p was especially enriched in the M2-exos, and M2-exos enhanced cancer aggressiveness and tumorigenesis in in vitro NSCLC cells and in vivo xenograft tumor-bearing mice models via delivering miR-155-5p. The detailed molecular mechanisms were subsequently elucidated, and it was found that miR-155-5p bound with HuR to increase the stability and expression levels of VEGFR2, which further activated the tumor-promoting PI3K/Akt/mTOR signal pathway, and M2-exos-enhanced cancer progression in NSCLC cells were apparently suppressed by downregulating VEGFR2 and PI3K inhibitor LY294002 co-treatment. Taken together, M2-polarized TAMs secreted miR-155-5p-containing exosomes to enhanced cancer aggressiveness of NSCLC by activating the VEGFR2/PI3K/Akt/mTOR pathway in a HuR-dependent manner.
Collapse
Affiliation(s)
- Hua Fang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Xiaowen Chi
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Mengyao Wang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Jing Liu
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Meiqi Sun
- Respiratory and Critical Care Medicine, The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Jiashu Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China
| | - Wei Zhang
- Respiratory and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
16
|
Dai L, Huang L, Li L, Tang L, Yao J, Shi Y, Han X. Pretreatment plasma sCD14 as a prognostic indicator in advanced non-small cell lung cancer patients undergoing immunotherapy. BMC Cancer 2025; 25:763. [PMID: 40269765 PMCID: PMC12016321 DOI: 10.1186/s12885-025-14148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND This study aims to evaluate cytokines as a prognostic biomarker in patients with advanced non-small cell lung cancer (aNSCLC) undergoing immunotherapy. METHODS A comprehensive analysis was conducted to assess the prognostic significance of sCD14 and other cytokines in aNSCLC patients receiving immune checkpoint inhibitors (ICIs) using flow fluorescence. A discovery cohort (n = 42) was used to evaluate the differential expression of 41 cytokines between durable clinical benefit (DCB) and no durable benefit (NDB) groups in Cancer Hospital, Chinese Academy of Medical Sciences (CHCAMS). The prognostic value was further validated in multiple independent cohorts, including plasma protein measurements (n = 109), multiplex immunofluorescence (mIF) (n = 22), and messenger RNA datasets (n = 403) of NSCLC in CHCAMS. RESULTS In the discovery cohort, 7 cytokines (CD14, CCL27, IL-17 A, EGF, TNFR1, GFAP, CHI3L1) exhibited differential expression between the DCB and NDB groups. Among these, CD14, CCL27, IL-17 A, and TNFR1 were significantly elevated in the DCB group, while EGF, CHI3L1, and CCL5 were higher in the NDB group. CD14 showed a high area under the curve (AUC = 0.84) for predicting clinical benefit. Functional enrichment analysis indicated that these cytokines are involved in key immune pathways, including the inflammatory response and MAPK signaling. Univariate COX for progression-free survival (PFS) analysis demonstrated prognostic value for CD14 (p < 0.001, HR = 0.054 [0.014-0.219]), CCL27 (p < 0.001, HR = 0.054 [0.015-0.196]), IL-17 A (p < 0.001, HR = 0.110 [0.041-0.298]), and CCL5 (p < 0.05, HR = 2.387 [1.023-5.570]). Validation in the CHCAMS cohort confirmed that CD14 expression, measured via mIF, was a predictor of PFS (p < 0.05). Furthermore, high CD14 expression was consistently associated with superior PFS across multiple external datasets (GSE126044, GSE135222, GSE136961, and GSE218989). CD14 expression was found to be elevated in various normal tissue types, particularly in lung adenocarcinoma and lung squamous cell carcinoma, compared to tumors, indicating its potential role in immune surveillance. CONCLUSION sCD14 is a promising prognostic biomarker for aNSCLC patients undergoing immunotherapy. Elevated plasma sCD14 levels are associated with improved PFS and a favorable immune response.
Collapse
Affiliation(s)
- Liyuan Dai
- Department of Medical Oncology, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases;National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Liling Huang
- Department of Medical Oncology, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases;National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases;National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jiarui Yao
- Department of Medical Oncology, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases;National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases;National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Key Technologies for Early Clinical Trial Evaluation of Innovative Drugs for Major Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
17
|
Hou Y, Xue X, Zhang Z, Mai D, Luo W, Zhou M, Liu Z, Huang Y. Genomic and clinical characterization of HER2 exon 20 mutations in non-small cell lung cancer: insights from a multicenter study in South China. BMC Cancer 2025; 25:752. [PMID: 40264034 PMCID: PMC12012961 DOI: 10.1186/s12885-025-14125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND The objective of this study was to investigate the clinical and genetic characteristics and clinical relevance of HER2 exon 20 oncogenic variants in non-small cell lung cancer (NSCLC) patients. METHODS This prospective study analyzed 51 NSCLC patients with HER2 mutations, identified via next-generation sequencing (NGS) of tissue, blood, cerebrospinal fluid, or pleural effusion samples. Patients were grouped based on the presence of exon 20 mutations (exon 20 vs. non-exon 20) and further divided based on whether they had received prior anti-tumor treatments (baseline vs. non-baseline). Clinical and genetic data, treatment responses were analyzed. Progression-free survival (PFS) and overall survival (OS) were evaluated using Kaplan-Meier methods and compared with log-rank tests. Gene ontology (GO) analysis was performed to uncover the biological significance of the mutated genes. RESULTS In a cohort of 651 NSCLC patients, 51 (7.83%) harbored HER2 alterations, including 20 (3.08%) with exon 20 mutations. The median age of the HER2-altered subgroup was 58.5 years. Adenocarcinoma was the most prevalent subtype (96.1%), and most patients presented at stage IV (72.5%). The most common metastatic sites were the lungs (68.6%), lymph nodes (52.9%), and brain (43.1%). Among the HER2 mutated patients, 20 (39.3%) had exon 20 mutations. Exon 20 mutations were more prevalent in the non-baseline group (55.0% vs. 29.0%, P = 0.049) and males (75.0%, P = 0.025). These mutations were associated with a higher rate of metastasis to the lungs, lymph nodes (P < 0.001). Patients with exon 20 mutations demonstrated poorer overall survival (OS) outcomes (P = 0.048). No significant differences were observed in age, smoking history, histological subtype, or TNM stage at diagnosis between groups. The majority of exon 20 mutations were in-frame indel mutations (92.0%), with the most common specific mutation being p.Y772_A775dup (70%). Gene Ontology (GO) analysis linked exon 20 mutations to unregulated protein kinase activity and anoikis. CONCLUSIONS Our study found that NSCLC patients with HER2 exon 20 oncogenic variants have a higher risk of metastasis and drug resistance, leading to worse outcomes than non-exon 20 mutations. This highlights the urgent need for targeted therapies aimed at exon 20 insertions to improve survival and treatment outcomes in this subgroup.
Collapse
Affiliation(s)
- Yating Hou
- Department of Oncology, Maoming People's Hospital, 101 Weimin Road, Maoming, 525000, Guangdong, China
| | - Xingyang Xue
- Department of Thoracic Surgery and Oncology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Zhuoyun Zhang
- Department of Oncology, Maoming People's Hospital, 101 Weimin Road, Maoming, 525000, Guangdong, China
| | - Dahai Mai
- Department of Oncology, Maoming People's Hospital, 101 Weimin Road, Maoming, 525000, Guangdong, China
| | - Wei Luo
- Department of Oncology, Maoming People's Hospital, 101 Weimin Road, Maoming, 525000, Guangdong, China
| | - Mingyu Zhou
- Department of Oncology, Maoming People's Hospital, 101 Weimin Road, Maoming, 525000, Guangdong, China
| | - Zichuan Liu
- Internal Medicine Section 2, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China.
| | - Yisheng Huang
- Department of Oncology, Maoming People's Hospital, 101 Weimin Road, Maoming, 525000, Guangdong, China.
| |
Collapse
|
18
|
Zhang Z, Li L, Ge Y, Chen A, Diao S, Yang Y, Chen Q, Zhou Y, Shao J, Meng F, Yu L, Tian M, Qian X, Lin Z, Xie C, Liu B, Li R. Verteporfin-Mediated In Situ Nanovaccine Based on Local Conventional-Dose Hypofractionated Radiotherapy Enhances Antitumor and Immunomodulatory Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413387. [PMID: 40231790 DOI: 10.1002/advs.202413387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Indexed: 04/16/2025]
Abstract
In situ radiotherapy is the most successful cytotoxic therapy available for the treatment of solid tumors, while high-dose radiotherapy per fraction is not yet widely and reliably used. To some extent, the major considerations of the disappointing results are on the risk of high-dose irradiation-induced damage to the surrounding normal tissues and the difficulty in distant metastasis control. To break these restraints, a gelatinase-responsive amphiphilic methoxypolyethyleneglycol-PVGLIG-polycaprolactone (mPEG-PVGLIG-PCL) nanoparticles' loading verteporfin (N@VP), a special photosensitizer that can also be excited by X-rays to produce cytotoxic singlet oxygen and greatly enhance radiotherapy efficacy, is prepared in this study. Herein, it is shown that the formed N@VP combined with conventional-dose radiation therapy (RT, 2 Gy (gray, a radiation dose unit)) can realize an antitumor effect no less than high-dose RT (8 Gy) and minimize radiation dose necessary to achieve local tumor control. Moreover, this radiosensitive nanosystem can exert excellent systemic antitumor immunity and abscopal effect, providing a preferable "in situ vaccine" strategy based on conventional-dose RT to achieve efficient systemic management of distant tumor metastasis. When combined with immunotherapy, this novel strategy for radiosensitization results in better immunotherapy sensitivity by stimulating significant immunogenic tumor cell death and synergistic antitumor immune responses.
Collapse
Affiliation(s)
- Zhifan Zhang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yuchen Ge
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Anni Chen
- Nanjing International Hospital, Medical School of Nanjing University, Nanjing, 210019, China
| | - Shanchao Diao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yueling Yang
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Qianyue Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Yingling Zhou
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Jie Shao
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Manman Tian
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, 210061, China
| | - Chen Xie
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| | - Rutian Li
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Clinical Cancer Institute, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
19
|
Liu Y, Lao X, Wong MC, Song M, Zhao Y, Ma Y, Bai Q, Hao J. Intelligent Point-of-Care Biosensing Platform Based on Luminescent Nanoparticles and Microfluidic Biochip with Machine Vision Algorithm Analysis. NANO-MICRO LETTERS 2025; 17:215. [PMID: 40227357 PMCID: PMC11996743 DOI: 10.1007/s40820-025-01745-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
Realizing the point-of-care tumor markers biodetection with good convenience and high sensitivity possesses great significance for prompting cancer monitoring and screening in biomedical study field. Herein, the quantum dots luminescence and microfluidic biochip with machine vision algorithm-based intelligent biosensing platform have been designed and manufactured for point-of-care tumor markers diagnostics. The employed quantum dots with excellent photoluminescent performance are modified with specific antibody as the optical labeling agents for the designed sandwich structure immunoassay. The corresponding biosensing investigations of the designed biodetection platform illustrate several advantages involving high sensitivity (~ 0.021 ng mL-1), outstanding accessibility, and great integrability. Moreover, related test results of human-sourced artificial saliva samples demonstrate better detection capabilities compared with commercially utilized rapid test strips. Combining these infusive abilities, our elaborate biosensing platform is expected to exhibit potential applications for the future point-of-care tumor markers diagnostic area.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Xinyue Lao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Man-Chung Wong
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Menglin Song
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Yifei Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Yingjin Ma
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Qianqian Bai
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China.
- Research Centre for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, 999077, Hong Kong, People's Republic of China.
| |
Collapse
|
20
|
Li H, Jin X, Li W, Ren F, Li T, Li X, Yu H, Fu D, Song Z, Xu S. Construction of a circRNA-miRNA-mRNA Regulatory Network for the Immune Regulation of Lung Adenocarcinoma. Biol Proced Online 2025; 27:13. [PMID: 40211126 PMCID: PMC11983969 DOI: 10.1186/s12575-025-00275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Recent research has highlighted the significance of circular RNAs (circRNAs) as pivotal regulators in the progression of tumors and the therapeutic response in non-small cell lung cancer (NSCLC). These circRNAs function through a sponge mechanism, interacting with microRNAs (miRNAs) to modulate mRNA expression levels. Nevertheless, the precise role of the circRNA-miRNA-mRNA regulatory network in immune regulation within lung adenocarcinoma (LUAD) remains inadequately understood. METHODS AND MATERIALS We utilized microarray datasets from the GEO NCBI database (GSE101586) to identify differentially expressed circRNAs (DEcircRNAs) in LUAD. CircBank was employed to predict the target miRNAs of DEcircRNAs, which were subsequently intersected with miRNAs from the GSE36681 database. The identified miRNAs were then predicted to target mRNAs using miRDB and miWalk, and intersections with immune-related genes from the IMMPORT database were analyzed. Protein-protein interaction (PPI) networks were constructed using Cytoscape software. The DAVID functional annotation tool was utilized to explore potential biological processes, molecular functions, and KEGG pathways associated with LUAD. Gene expression and Kaplan-Meier survival analyses were conducted to establish a key regulatory network and to assess immune cell infiltration and Pearson correlation for significant target genes. Finally, we selected the most significantly upregulated circRNA with differential expression for validation through in vitro experiments. RESULTS Our analysis identified a total of 7 upregulated and 42 downregulated circRNAs, along with 10 significant miRNAs and 20 target mRNAs. KEGG enrichment analysis indicated that these components are primarily enriched in the ErbB signaling pathway. Furthermore, Gene Ontology (GO) analysis revealed significant enrichment in responses to organic substances, cytokine-mediated signaling pathways, cellular responses to cytokines, responses to chemical stimuli, steroid hormone receptor activity, ErbB-3 class receptor binding, oxysterol binding, signal receptor activity, and molecular transducer activity. Notable core mRNAs identified included OAS1, VIPR1, and PIK3R1. Subsequently, we constructed a regulatory network comprising 6 DEcircRNAs, 3 DEmiRNAs, and 3 DEmRNAs. Through ssGSEA and CIBERSORT analyses, we observed significant differences in immune cell infiltration levels between the NSCLC cohort and the control group. Knocking down the expression of hsa_circ_0079557 significantly inhibited the viability, proliferation, migration, and invasion of LUAD cells. CONCLUSION We have established a circRNA-miRNA-mRNA regulatory network that offers novel insights into the molecular mechanisms governing immune regulation in LUAD. Future research should aim to translate these findings into clinical applications to enhance patient outcomes.
Collapse
Affiliation(s)
- Hanyi Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Jin
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Haochuan Yu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dianxun Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
21
|
Ke ZY, Fu T, Wang XC, Ma X, Yin HH, Wang WX, Liu YJ, Liang AL. CHK1 inhibition overcomes gemcitabine resistance in non-small cell lung cancer cell A549. Mol Cell Oncol 2025; 12:2488537. [PMID: 40226818 PMCID: PMC11988257 DOI: 10.1080/23723556.2025.2488537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
The purpose of the study is mainly to investigate anti proliferation of non-small cell lung cancer A549 cells and its mechanism by inhibition of CHK1 expression combined with gemcitabine. The mRNA and protein levels of genes were analyzed by RT-qPCR and Western blot, respectively. Cell viability was detected by CCK-8 assay and clone formation assay. The detection of the cell cycle was used by Annexin V/7-amino-actinomycin D apoptosis detection kit. Analysis of DNA damage was done by immunofluorescence and alkaline comet assay. The results showed that inhibition of CHK1 and gemcitabine combination significantly reduced the proliferation ability of the two cell lines. We also revealed the degradation of full-length PARP and reduced Bcl-2/Bax ratio on increased apoptosis. Inhibition of CHK1 expression leads to DNA damage, induces phosphorylation of γ-H2AX, and affects the repair of homologous recombination ability through Rad51. Mechanistically, gemcitabine increased phosphorylation-ATR and phosphorylation-CHK1, indicating activation of the DNA repair system and ATR-CHK1-CDC25A pathway. Inhibition of CHK1 resulted in increased synthesis of CDK2/Cyclin A2 and CDK2/Cyclin E1 complexes, and more cells entered the subsequent cell cycle, leading to S phase arrest and mitotic catastrophe. We identified inhibition of CHK1 as a potential treatment for NSCLC and confirmed that inhibition of this kinase could overcome acquired gemcitabine resistance.
Collapse
Affiliation(s)
- Zhi-Yin Ke
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Tian Fu
- Department of Clinical Laboratory, Zhanjiang Central Hospital, Zhanjiang, China
| | - Xue-Chun Wang
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Xuan Ma
- Department of Clinical Laboratory, Xinle City Hospital, Shijiazhuang, China
| | - Hai-Han Yin
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Wen-Xuan Wang
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Yong-Jun Liu
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| | - Ai-Ling Liang
- Department of Biochemistry and Molecular Biology & Department of Clinical Biochemistry, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnosis, Guangdong Medical University, Dongguan, China
| |
Collapse
|
22
|
Tagore S, Caprio L, Amin AD, Bestak K, Luthria K, D'Souza E, Barrera I, Melms JC, Wu S, Abuzaid S, Wang Y, Jakubikova V, Koch P, Brodtman DZ, Bawa B, Deshmukh SK, Ebel L, Ibarra-Arellano MA, Jaiswal A, Gurjao C, Biermann J, Shaikh N, Ramaradj P, Georgis Y, Lagos GG, Ehrlich MI, Ho P, Walsh ZH, Rogava M, Politis MG, Biswas D, Cottarelli A, Rizvi N, Shu CA, Herzberg B, Anandasabapathy N, Sledge G, Zorn E, Canoll P, Bruce JN, Rizvi NA, Taylor AM, Saqi A, Hibshoosh H, Schwartz GK, Henick BS, Chen F, Schapiro D, Shah P, Izar B. Single-cell and spatial genomic landscape of non-small cell lung cancer brain metastases. Nat Med 2025; 31:1351-1363. [PMID: 40016452 DOI: 10.1038/s41591-025-03530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/19/2025] [Indexed: 03/01/2025]
Abstract
Brain metastases frequently develop in patients with non-small cell lung cancer (NSCLC) and are a common cause of cancer-related deaths, yet our understanding of the underlying human biology is limited. Here we performed multimodal single-nucleus RNA and T cell receptor, single-cell spatial and whole-genome sequencing of brain metastases and primary tumors of patients with treatment-naive NSCLC. Chromosomal instability (CIN) is a distinguishing genomic feature of brain metastases compared with primary tumors, which we validated through integrated analysis of molecular profiling and clinical data in 4,869 independent patients, and a new cohort of 12,275 patients with NSCLC. Unbiased analyses revealed transcriptional neural-like programs that strongly enriched in cancer cells from brain metastases, including a recurring, CINhigh cell subpopulation that preexists in primary tumors but strongly enriched in brain metastases, which was also recovered in matched single-cell spatial transcriptomics. Using multiplexed immunofluorescence in an independent cohort of treatment-naive pairs of primary tumors and brain metastases from the same patients with NSCLC, we validated genomic and tumor-microenvironmental findings and identified a cancer cell population characterized by neural features strongly enriched in brain metastases. This comprehensive analysis provides insights into human NSCLC brain metastasis biology and serves as an important resource for additional discovery.
Collapse
Affiliation(s)
- Somnath Tagore
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Lindsay Caprio
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Amit Dipak Amin
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kresimir Bestak
- Institute for Computational Biomedicine, Faculty of Medicine, University Hospital Heidelberg and Heidelberg University, Heidelberg, Germany
| | - Karan Luthria
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Edridge D'Souza
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Irving Barrera
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Johannes C Melms
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | - Sinan Abuzaid
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yiping Wang
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Viktoria Jakubikova
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Peter Koch
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - D Zack Brodtman
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Banpreet Bawa
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | | | - Leon Ebel
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Miguel A Ibarra-Arellano
- Institute for Computational Biomedicine, Faculty of Medicine, University Hospital Heidelberg and Heidelberg University, Heidelberg, Germany
| | - Abhinav Jaiswal
- Department of Dermatology, Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | - Carino Gurjao
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jana Biermann
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Neha Shaikh
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Priyanka Ramaradj
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Yohanna Georgis
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Galina G Lagos
- Lifespan Cancer Institute, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Matthew I Ehrlich
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Patricia Ho
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Zachary H Walsh
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Meri Rogava
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle Garlin Politis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Devanik Biswas
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Azzurra Cottarelli
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Nikhil Rizvi
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Catherine A Shu
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Benjamin Herzberg
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology, Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA
| | | | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
| | - Naiyer A Rizvi
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Synthekine Inc., Menlo Park, CA, USA
| | - Alison M Taylor
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anjali Saqi
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hanina Hibshoosh
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gary K Schwartz
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Brian S Henick
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Denis Schapiro
- Institute for Computational Biomedicine, Faculty of Medicine, University Hospital Heidelberg and Heidelberg University, Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Spatial Profiling Center (TPSC), Heidelberg, Germany
| | - Parin Shah
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Benjamin Izar
- Division of Hematology/Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Systems Biology, Program for Mathematical Genomics, Columbia University, New York, NY, USA.
- Vagelos College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
23
|
Xu W, Yang H, Xu K, Zhu A, Hall SRR, Jia Y, Zhao B, Zhang E, Liu G, Xu J, Marti TM, Peng R, Dorn P, Niu Y, Pan X, Zhang Y, Yao F. Transitional CXCL14 + cancer-associated fibroblasts enhance tumour metastasis and confer resistance to EGFR-TKIs, revealing therapeutic vulnerability to filgotinib in lung adenocarcinoma. Clin Transl Med 2025; 15:e70281. [PMID: 40162549 PMCID: PMC11955843 DOI: 10.1002/ctm2.70281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND The heterogeneity of cancer-associated fibroblasts (CAFs) has become a crucial focus in understanding cancer biology and treatment response, revealing distinct subpopulations with specific roles in tumor pathobiology. CAFs have also been shown to promote resistance in lung cancer cells to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs). However, the specific CAF subsets responsible for driving tumor advancement and resistance to EGFR-TKIs in lung adenocarcinoma (LUAD) remain poorly understood. METHODS We integrate multiple scRNA-seq datasets to identify cell subclusters most relevant to tumor stage, patient survival, and EGFR-TKIs response. Additionally, in vitro and in vivo experiments, clinical tissue sample immunohistochemistry and patient plasma ELISA experiments are performed to validate key findings in independent LUAD cohorts. RESULTS By analyzing multiple scRNA-seq and spatial transcriptomic datasets, we identified a unique subset of CXCL14+ myofibroblastic CAFs (myCAFs), emerging during the early differentiation phase of pan-cancer invasiveness-associated THBS2⁺ POSTN⁺ COL11A1⁺ myCAFs. Notably, plasma levels of CXCL14 in LUAD patients correlate significantly with tumor stage. Mechanistically, this subset enhances tumor aggressiveness through epithelial-to-mesenchymal transition and angiogenesis. Among standard treatment regimens, transitional CXCL14+ myCAFs specifically confer resistance to EGFR-TKIs, while showing no significant impact on chemotherapy or immunotherapy outcomes. Through a pharmacological screen of FDA-approved drugs, we identified Filgotinib as an effective agent to counteract the EGFR-TKIs resistance conferred by this CAF subset. CONCLUSIONS In summary, our study highlights the role of the differentiated stage from transitional CXCL14+ myCAFs to invasiveness-associated myCAFs in driving tumor progression and therapy resistance in LUAD, positioning Filgotinib as a promising targeted therapy for this process. These insights may enhance patient stratification and inform precision treatment strategies in LUAD. KEY POINTS Single-cell analysis identifies transitional CXCL14+ myofibroblastic cancer-associated fibroblasts (myCAFs) predominantly exist in the advanced-stage lung adenocarcinoma (LUAD). Transitional CXCL14+ myCAFs fuel metastasis by promoting epithelial-mesenchymal transition (EMT) and angiogenesis on the spatial level. CXCL14 is a potential diagnostic marker for LUAD patients and predict the occurrence of metastasis. Transitional CXCL14+ myCAFs induce the resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and JAK1 inhibitor, filgotinib could reverse the effect.
Collapse
Affiliation(s)
- Weijiao Xu
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haitang Yang
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ke Xu
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Anshun Zhu
- Department of Thoracic Surgery, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
| | - Sean R. R. Hall
- Department of General Thoracic SurgeryInselspital, Bern University HospitalBernSwitzerland
- Department of BioMedical Research (DBMR)University of BernBernSwitzerland
- Present address:
Iovance Biotherapeutics, Inc.San CarlosCAUSA
| | - Yunxuan Jia
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Baicheng Zhao
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Enshuo Zhang
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gang Liu
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jianlin Xu
- Department of Respiratory MedicineShanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Thomas M. Marti
- Department of General Thoracic SurgeryInselspital, Bern University HospitalBernSwitzerland
- Department of BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Ren‐Wang Peng
- Department of General Thoracic SurgeryInselspital, Bern University HospitalBernSwitzerland
- Department of BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Patrick Dorn
- Department of General Thoracic SurgeryInselspital, Bern University HospitalBernSwitzerland
- Department of BioMedical Research (DBMR)University of BernBernSwitzerland
| | - Yongliang Niu
- Department of Respiratory and Critical Care MedicineNo. 2 People`s Hospital of Fuyang City, Fuyang Infectious Disease Clinical College of Anhui Medical UniversityFuyangChina
| | - Xufeng Pan
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yajuan Zhang
- Shanghai Institute of Thoracic OncologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Yao
- Department of Thoracic SurgeryShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Thoracic Surgery, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
24
|
Mokhtari RB, Sampath D, Eversole P, Yu Lin MO, Bosykh DA, Boopathy GTK, Sivakumar A, Wang CC, Kumar R, Sheng JYP, Karasik E, Foster BA, Yu H, Ling X, Wu W, Li F, Ohler ZW, Brainson CF, Goodrich DW, Hong W, Chakraborty S. An Agrin-YAP/TAZ Rigidity Sensing Module Drives EGFR-Addicted Lung Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413443. [PMID: 40165020 DOI: 10.1002/advs.202413443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/12/2025] [Indexed: 04/02/2025]
Abstract
Despite epidermal growth factor receptor (EGFR) is a pivotal oncogene for several cancers, including lung adenocarcinoma (LUAD), how it senses extracellular matrix (ECM) rigidity remain elusive in the context of the increasing role of tissue rigidity on various hallmarks of cancer development. Here it is shown that EGFR dictates tumorigenic agrin expression in lung cancer cell lines, genetically engineered EGFR-driven mouse models, and human specimens. Agrin expression confers substrate stiffness-dependent oncogenic attributes to EGFR-reliant cancer cells. Mechanistically, agrin mechanoactivates EGFR through epidermal growth factor (EGF)-dependent and independent modes, thereby sensitizing its activity toward localized cancer cell-ECM adherence and bulk rigidity by fostering interactions with integrin β1. Notably, a feed-forward loop linking agrin-EGFR rigidity response to YAP-TEAD mechanosensing is essential for tumorigenesis. Together, the combined inhibition of EGFR-YAP/TEAD may offer a strategy to reduce lung tumorigenesis by disrupting agrin-EGFR mechanotransduction, uncovering a therapeutic vulnerability for EGFR-addicted lung cancers.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Divyaleka Sampath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Paige Eversole
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Melissa Ong Yu Lin
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Aravind Sivakumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Cheng-Chun Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ramesh Kumar
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Joe Yeong Poh Sheng
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Han Yu
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Xiang Ling
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wenjie Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892-1088, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 265 Elm and Carlton Streets, Buffalo, NY, 14263, USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Program of Developmental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
25
|
Ruzzolini J, Anceschi C, Albino M, Balica E, Muzzi B, Sangregorio C, Frediani E, Formica N, Margheri F, Chillà A, Fibbi G, Laurenzana A. Targeted Cancer Therapy with Gold-Iron Oxide Nanourchins: Inducing Oxidative Stress, Paraptosis, and Sensitizing Tumor Cells to Cisplatin. Antioxidants (Basel) 2025; 14:422. [PMID: 40298738 PMCID: PMC12024049 DOI: 10.3390/antiox14040422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/30/2025] Open
Abstract
Nanotechnology has revolutionized cancer therapy by enabling targeted drug delivery and overcoming limitations associated with conventional chemotherapy. In this study, we explored the anticancer potential of gold-iron oxide (Au-Fe3O4@PEG) nanourchins (NUs), a class of nanoparticles with unique shape, surface features, and plasmonic properties. We tested NUs on several cancer cell lines, including A375 (melanoma), MCF7 (breast), A549 (lung), and MIA PaCa-2 (pancreatic), and observed significant dose-dependent cytotoxicity, with A549 cells exhibiting the highest resistance. Our findings also demonstrate that NUs induce oxidative stress, disrupt mitochondrial function, and activate autophagic and paraptotic cell death pathways in A549 lung cancer cells. Additionally, we explored the potential of NUs to enhance the efficacy of platinum-based chemotherapy, specifically cisplatin, in A549. The results provide valuable insights into the therapeutic potential of NUs in the context of cancer treatment, particularly for overcoming drug resistance and enhancing the effectiveness of conventional chemotherapy.
Collapse
Affiliation(s)
- Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Cecilia Anceschi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Martin Albino
- Institute of Chemistry of Organometallic Compounds—C.N.R., 50019 Florence, Italy; (M.A.); (B.M.); (C.S.)
- Department of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Florence, Italy;
| | - Elena Balica
- Department of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Florence, Italy;
| | - Beatrice Muzzi
- Institute of Chemistry of Organometallic Compounds—C.N.R., 50019 Florence, Italy; (M.A.); (B.M.); (C.S.)
| | - Claudio Sangregorio
- Institute of Chemistry of Organometallic Compounds—C.N.R., 50019 Florence, Italy; (M.A.); (B.M.); (C.S.)
- Department of Chemistry ‘Ugo Schiff’ & INSTM, University of Florence, 50019 Florence, Italy;
| | - Elena Frediani
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Noemi Formica
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (C.A.); (E.F.); (N.F.); (F.M.); (A.C.); (G.F.)
| |
Collapse
|
26
|
Cregg J, Edwards AV, Chang S, Lee BJ, Knox JE, Tomlinson ACA, Marquez A, Liu Y, Freilich R, Aay N, Wang Y, Jiang L, Jiang J, Wang Z, Flagella M, Wildes D, Smith JAM, Singh M, Wang Z, Gill AL, Koltun ES. Discovery of Daraxonrasib (RMC-6236), a Potent and Orally Bioavailable RAS(ON) Multi-selective, Noncovalent Tri-complex Inhibitor for the Treatment of Patients with Multiple RAS-Addicted Cancers. J Med Chem 2025; 68:6064-6083. [PMID: 40056080 DOI: 10.1021/acs.jmedchem.4c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Oncogenic RAS mutations are among the most common in human cancers. To target the active, GTP-bound state of RAS(ON) directly, we employed an innovative tri-complex inhibitor (TCI) modality. Formation of a complex with an intracellular chaperone protein CypA, an inhibitor, and a target protein RAS blocks effector binding, inhibiting downstream RAS signaling and tumor cell proliferation. Herein, we describe the structure-guided SAR journey that led to the discovery of daraxonrasib (RMC-6236), a noncovalent, potent tri-complex inhibitor of multiple RAS mutant and wild-type (WT) variants. This orally bioavailable bRo5 macrocyclic molecule occupies a unique composite binding pocket comprising CypA and SWI/SWII regions of RAS(ON). To achieve broad-spectrum RAS isoform activity, we deployed an SAR campaign that focused on interactions with residues conserved between mutants and WT RAS isoforms. Concurrent optimization of potency and drug-like properties led to the discovery of daraxonrasib (RMC-6236), currently in clinical evaluation in RAS mutant advanced solid tumors (NCT05379985; NCT06040541; NCT06162221; NCT06445062; NCT06128551).
Collapse
Affiliation(s)
- James Cregg
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Anne V Edwards
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Stephanie Chang
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Bianca J Lee
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - John E Knox
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | | | - Abby Marquez
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Yang Liu
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Rebecca Freilich
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Naing Aay
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Yingyun Wang
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Lingyan Jiang
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Jingjing Jiang
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Zhican Wang
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Michael Flagella
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - David Wildes
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | | | - Mallika Singh
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Zhengping Wang
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Adrian L Gill
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| | - Elena S Koltun
- Revolution Medicines, Inc., Redwood City, California 94063, United States
| |
Collapse
|
27
|
Gao Q, Wu H, Li Z, Yang Z, Li L, Sun X, Wu Q, Sui X. Synergistic Strategies for Lung Cancer Immunotherapy: Combining Phytochemicals and Immune-Checkpoint Inhibitors. Phytother Res 2025. [PMID: 40122686 DOI: 10.1002/ptr.8482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 03/25/2025]
Abstract
Lung cancer remains one of the most widespread and deadliest malignant tumors globally, with a particularly high mortality rate among all cancers. Recently, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has emerged as a crucial treatment strategy for lung cancer patients, following surgical intervention, radiotherapy, chemotherapy, and targeted drug therapies. However, the therapeutic limitations are caused owing to their low response rate and undesirable side effects such as immune-related pneumonitis. Therefore, developing new strategies to improve the efficacy of ICIs while minimizing immune-related adverse events will be crucial for cancer immunotherapy. The tumor immune microenvironment plays a significant role in the success of lung cancer immunotherapy, and the immunosuppressive characteristics of the immune microenvironment are one of the major obstacles to the poor immunotherapeutic effect. Phytochemicals, naturally occurring compounds in plants, have shown promise in enhancing cancer immunotherapy by remodeling the immunosuppressive microenvironment, offering the potential to increase the efficacy of ICIs. Therefore, this review summarizes the associated mechanisms of phytochemicals remodeling the immunosuppressive microenvironment in lung cancer. Additionally, the review will focus on the synergistic effects of combining phytochemicals with ICIs, aiming to improve anticancer efficacy and reduce side effects, which may hopefully offer novel strategies to overcome current limitations in immunotherapy.
Collapse
Affiliation(s)
- Quan Gao
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Hao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Yang
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Lin Li
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Xueni Sun
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Qibiao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Xinbing Sui
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
28
|
Lan J, Wang H, Xin E, Xue B, Tang K, Miao S, Chen Y, Xiao Z, Xie J, Shao L, Chen S, Zheng X, Zheng X. Development of a PET-CT Based Radiomics Model for Preoperative Prediction of the Novel IASLC Grading and Prognosis in Patients with Clinical Stage I Pure Solid Invasive Lung Adenocarcinoma. Acad Radiol 2025:S1076-6332(25)00119-9. [PMID: 40121117 DOI: 10.1016/j.acra.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/25/2025]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a fluorine-18-fludeoxyglucose (18F-FDG) PET/CT-based radiomics nomogram for preoperative prediction of the International Association for the Study of Lung Cancer (IASLC) grading and recurrence-free survival (RFS) in patients with clinical stage I pure-solid invasive lung adenocarcinoma (LADC). MATERIALS AND METHODS: 418 patients with clinical stage I pure-solid invasive LADC who underwent preoperative 18F-FDG PET/CT examination were retrospectively enrolled. All patients were separated into the low-grade group (grade I and II; n=315) and the high-grade group (grade III; n=103) according to the IASLC grading system, and the cohort was randomly divided into a training set (n=292) and a testing set (n=126) at a ratio of 7:3. Radiomics features were extracted from CT and PET images in regions of the entire tumor. Multivariate analysis identified the independent predictors for IASLC grading and RFS. The Radscore, along with clinical and radiological features were combined to establish a predictive nomogram. RESULTS The ultimate Radiomics model, achieving AUCs of 0.838 and 0.768 in the training and testing sets. The multivariate logistic regression showed that higher maximum standard uptake value (SUVmax), cavity presence are the independent risk factors for IASLC grading. The integrated nomogram showed superior prediction performance than CT model (p=0.001) and PET model (p=0.028) in the training set. Furthermore, both pathological grade and preoperatively predictive IASLC grade derived by nomogram significantly stratified patients for RFS, with 5-year survival rates showing marked differences between low-grade and high-grade LADC (p<0.001). CONCLUSION The preoperative PET/CT-based radiomics nomogram represents a potential biomarker for predicting IASLC grade and RFS in patients with clinical stage I pure-solid invasive LADC.
Collapse
Affiliation(s)
- Junping Lan
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Hanzhe Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Enhui Xin
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China (E.X.)
| | - Beihui Xue
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Kun Tang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (K.T.)
| | - Shouliang Miao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Yimin Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Zhe Xiao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Jiageng Xie
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Linfeng Shao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Shulan Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Xiangwu Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.)
| | - Xuan Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (J.L., H.W., B.X., S.M., Y.C., Z.X., J.X., L.S., S.C., X.Z., X.Z.).
| |
Collapse
|
29
|
Liu Z, Yang Z, Wu J, Zhang W, Sun Y, Zhang C, Bai G, Yang L, Fan H, Chen Y, Zhang L, Jiang B, Liu X, Ma X, Tang W, Liu C, Qu Y, Yan L, Zhao D, Wu Y, He S, Xu L, Peng L, Chen X, Zhou B, Zhao L, Zhao Z, Tan F, Zhang W, Yi D, Li X, Gao Q, Zhang G, Wang Y, Yang M, Fu H, Guo Y, Hu X, Cai Q, Qi L, Bo Y, Peng H, Tian Z, She Y, Zou C, Zhu L, Cheng S, Zhang Y, Zhong W, Chen C, Gao S, Zhang Z. A single-cell atlas reveals immune heterogeneity in anti-PD-1-treated non-small cell lung cancer. Cell 2025:S0092-8674(25)00291-0. [PMID: 40147443 DOI: 10.1016/j.cell.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/20/2024] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
Anti-PD-(L)1 treatment is standard for non-small cell lung cancer (NSCLC), but patients show variable responses to the same regimen. The tumor immune microenvironment (TIME) is associated with immunotherapy response, yet the heterogeneous underlying therapeutic outcomes remain underexplored. We applied single-cell RNA and TCR sequencing (scRNA/TCR-seq) to analyze surgical tumor samples from 234 NSCLC patients post-neoadjuvant chemo-immunotherapy. Analyses revealed five distinct TIME subtypes with varying major pathological response (MPR) rates. MPR patients had elevated levels of FGFBP2+ NK/NK-like T cells, memory B cells, or effector T cells, while non-MPR patients showed higher CCR8+ Tregs. T cell clonal expansion analyses unveiled heterogeneity in non-MPR patients, marked by varying expansions of Tex-relevant cells and CCR8+ Tregs. Precursor exhausted T cells (Texp cells) correlated with recurrence-free survival, identifying a patient subgroup with reduced recurrence risk despite lack of MPR. Our study dissects TIME heterogeneity in response to chemoimmunotherapy, offering insights for NSCLC management.
Collapse
Affiliation(s)
- Zedao Liu
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenjie Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yuxuan Sun
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chao Zhang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), The First Department of Thoracic Surgery, Peking University Cancer Hospital and Institute, Peking University School of Oncology, Beijing, China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hongtao Fan
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yawen Chen
- National Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Benyuan Jiang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaoyan Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoshi Ma
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen 518020, China
| | - Wei Tang
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chang Liu
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yang Qu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lixu Yan
- Department of Pathology, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yilong Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Shun He
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Long Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Lishan Peng
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liang Zhao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhangyi Zhao
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wanting Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dingcheng Yi
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | | | - Qianqian Gao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Minglei Yang
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo 315010, China
| | - Honghao Fu
- Department of General Thoracic Surgery, Jining First People's Hospital, Affiliated Hospital of Shandong First Medical University, Jining 272000, China
| | - Yongjun Guo
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xueda Hu
- Analytical Biosciences Limited, Beijing, China
| | - Qingyuan Cai
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lu Qi
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206, China
| | - Yufei Bo
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Peng
- National Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhigang Tian
- National Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Chang Zou
- School of Medicine, Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University), Shenzhen 518020, China.
| | - Linnan Zhu
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China.
| | - Sijin Cheng
- Changping Laboratory, Beijing 102206, China; Chongqing Medical University, Chongqing, China.
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Zhongyuan Cell Therapy and Immunotherapy Laboratory, Zhengzhou 450000, China.
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing 100871, China; Chongqing Medical University, Chongqing, China.
| |
Collapse
|
30
|
Zhang J, He P, Wang W, Wang Y, Yang H, Hu Z, Song Y, Chang J, Yu B. Structure-Based Design of New LSD1/EGFR L858R/T790M Dual Inhibitors for Treating EGFR Mutant NSCLC Cancers. J Med Chem 2025; 68:5954-5972. [PMID: 40015914 DOI: 10.1021/acs.jmedchem.5c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Epigenetic changes, such as LSD1 dysregulation, contribute to acquired resistance in EGFR mutant NSCLCs and reduce the effectiveness of current therapeutics. To address the challenges, we herein reported the structure-based design of new LSD1/EGFR dual inhibitors, of which ZJY-54 represents the shortlisted lead compound with high potency, selectivity, and unique dual modes of action (namely irreversibly binding to EGFR but reversibly binding to LSD1). ZJY-54 effectively inhibited growth in both parent- and TKI-resistant NSCLC cells. In H1975 cells, ZJY-54 induced accumulation of H3K4me2 and H3K9me2, as well as inhibited phosphorylation of EGFR signaling. ZJY-54 showed favorable PK profiles and effectively inhibited tumor growth in the H1975 xenograft model. ZJY-54 represents the best-in-class LSD1/EGFR dual inhibitor and warrants further preclinical development for treating NSCLCs. These findings highlight the therapeutic potential of LSD1/EGFR dual inhibitors in drug-resistant cancers where EGFR and LSD1 were dysregulated.
Collapse
Affiliation(s)
- Jingya Zhang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengxing He
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yuxing Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Han Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoxin Hu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
31
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
32
|
Ding M, Zhao J, Li X. Hsa_circ_0006006 is a potential biomarker for prognosis and cisplatin resistance in non-small cell lung cancer. Hereditas 2025; 162:32. [PMID: 40055838 PMCID: PMC11889802 DOI: 10.1186/s41065-025-00392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/14/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Platinum-based drugs, such as cisplatin (DDP), are the standard treatment, yet drug resistance has become a key challenge. Previous studies have shown that hsa_circ_0006006 promotes non small cell lung cancer (NSCLC) progression. This study aimed to reveal the role of specific circRNAs in DDP resistance in NSCLC and their potential clinical applications. METHODS CircRNA sequencing data of three NSCLC tissue and three normal tissue samples were extracted from the GEO database based on conditions that matched the microarray expression profiles of circRNAs from human NSCLC lung samples and matched neighboring samples and raw matrix data and platform annotation data, and differential expression analysis was performed using the R language. Log2 Fold change > 1 and P < 0.05 were labeled as differential genes. Serum samples were collected from 31 NSCLC patients and 21 DDP-resistant NSCLC patients. The Kaplan-Meier method was used to detect the correlation between circRNA levels and survival prognosis of NSCLC patients. The relationship between circRNAs and clinicopathological characteristics of patients was assessed by chi-square test. RT-qPCR was performed to detect the expression of key circRNAs associated with DDP drug resistance. circRNAs were analyzed by ROC curves to assess the diagnostic potential. A549 cells and A549/DDP cells were cultured to verify the effect of up- and down-regulation of hsa_circ_0006006 on DDP drug resistance in NSCLC cells using colony formation assay and flow cytometry. RESULTS Abnormally elevated hsa_circ_0006006 expression was closely associated with NSCLC survival prognosis as well as DDP resistance (p < 0.05) with good diagnostic efficacy (AUC for NSCLC = 0.91, p < 0.01; AUC for DDP resistant = 0.80, p = 0.00). This was further validated in the analysis of clinical samples (p < 0.05). Knockdown of hsa_circ_0006006 significantly reduced DDP resistance in NSCLC cells, while overexpression of hsa_circ_0006006 had the opposite effect (p < 0.05). CONCLUSION NSCLC survival prognosis is associated with aberrant expression of hsa_circ_0006006, which regulates NSCLC cell proliferation and apoptosis and thus promotes DDP drug resistance. These findings provide potential targets for patient prognosis and assessment of biomarkers of response to DDP therapies that can be used to aid in early diagnosis and prognostic assessment, as well as new options for the future development of relevant small-molecule inhibitors or nucleic acid drugs.
Collapse
Affiliation(s)
- Min Ding
- Department of Oncology, Wuhan Third Hospital·Tongren Hospital of Wuhan University, Wuhan City, Hubei Province, 430060, China
| | - Jing Zhao
- Department of Pathology, The First Affiliated Hospital of Naval Military Medical University, Shanghai City, 200433, China
| | - XiaoNa Li
- Department of Pharmacy, Gaoling Hospital, No. 555 Shanglin 2nd Road, Gaoling District, Xi'an City, Shannxi Province, 710200, China.
| |
Collapse
|
33
|
Eiamart W, Wonganan P, Tadtong S, Samee W. Panduratin A from Boesenbergia rotunda Effectively Inhibits EGFR/STAT3/Akt Signaling Pathways, Inducing Apoptosis in NSCLC Cells with Wild-Type and T790M Mutations in EGFR. Int J Mol Sci 2025; 26:2350. [PMID: 40076971 PMCID: PMC11900324 DOI: 10.3390/ijms26052350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is a challenging disease, with the epidermal growth factor receptor (EGFR) being a key target for new, effective treatments crucial for the signaling pathways regulating cancer cell survival. Targeting EGFR-mediated signaling offers promising strategies to improve NSCLC therapies, particularly in overcoming resistance in EGFR-mutant lung cancer. In this study, we investigated the anticancer effects of panduratin A, a naturally occurring flavonoid from Boesenbergia rotunda, on human NSCLC cell lines expressing both wild-type EGFR (A549) and mutant EGFR (H1975) using in vitro experiments and molecular docking approaches. Cytotoxicity screening revealed that panduratin A exhibits potent effects on both A549 (IC50 of 6.03 ± 0.21 µg/mL) and H1975 (IC50 of 5.58 ± 0.15 µg/mL) cell lines while demonstrating low toxicity to normal MRC5 lung cells (12.96 ± 0.36 µg/mL). Furthermore, western blotting and flow cytometric analyses indicated that panduratin A induces apoptosis by inhibiting p-EGFR and its downstream effectors, p-STAT3 and p-Akt, in lung cancer cells. Additionally, the docking study showed lower binding energy between panduratin A and the target proteins, comparable to that of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs). The ADMET prediction also highlighted panduratin A's exceptional drug-like properties. This study concludes that panduratin A shows significant promise as an anti-lung cancer candidate for NSCLC, offering an economical and effective strategy.
Collapse
Affiliation(s)
- Wanna Eiamart
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
- Chula Pharmacokinetic Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyanuch Wonganan
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Sarin Tadtong
- Department of Pharmacognosy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| | - Weerasak Samee
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand;
| |
Collapse
|
34
|
Zhang W, Wang R, Guo R, Yi Z, Wang Y, Wang H, Li Y, Li X, Song J. The multiple biological activities of hyperoside: from molecular mechanisms to therapeutic perspectives in neoplastic and non-neoplastic diseases. Front Pharmacol 2025; 16:1538601. [PMID: 40098612 PMCID: PMC11911483 DOI: 10.3389/fphar.2025.1538601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
In recent years, hyperoside (quercetin 3-O-β-D-galactopyranoside) has garnered significant attention due to its diverse biological effects, which include vasoprotective, antioxidant, anti-inflammatory, and anti-tumor properties. Notably, hyperoside has shown remarkable potential in cancer therapy by targeting multiple mechanisms; it induces apoptosis, inhibits proliferation, blocks angiogenesis, and reduces the metastatic potential of cancer cells. Furthermore, hyperoside enhances the sensitivity of cancer cells to chemotherapy by modulating key signaling pathways. Beyond neoplastic diseases, hyperoside also presents promising therapeutic applications in managing non-cancerous conditions such as diabetes, Alzheimer's disease, and pulmonary fibrosis. This review comprehensively examines the molecular mechanisms underlying hyperoside's anti-cancer effects and highlights its role in the treatment of cancers, including lung and colorectal cancers. Additionally, it explores the latest research on hyperoside's potential in addressing non-neoplastic conditions, such as pulmonary fibrosis, diabetes, and Parkinson's disease. By summarizing current findings, this review underscores the unique therapeutic value of hyperoside and its potential as a multifunctional treatment in both neoplastic and non-neoplastic contexts.
Collapse
Affiliation(s)
- Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Zhongquan Yi
- Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
35
|
Huang X, Arjsri P, Srisawad K, Umsumarng S, Yodkeeree S, Dejkriengkraikul P. Targeting MAPK Signaling: Loureirins A and B from Dracaena Loureiri Inhibit Epithelial-Mesenchymal Transition and Invasion in Non-Small Cell Lung Cancer Cell Lines. Life (Basel) 2025; 15:396. [PMID: 40141741 PMCID: PMC11943645 DOI: 10.3390/life15030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
Metastasis remains the leading cause of death among patients with non-small cell lung cancer (NSCLC), emphasizing the urgent need for safer and more effective therapeutic options. Mitogen-activated protein kinase (MAPK) pathways play a crucial role in regulating EMT, migration, and invasion in NSCLC. Targeting these molecular mechanisms has become a key strategy in inhibiting NSCLC metastasis. Loureirin A and Loureirin B, flavonoids derived from the Thai traditional herb Dracaena loureiri, have shown potential pharmacological effects; however, their roles in NSCLC metastasis remain unexplored. This study aimed to elucidate the mechanisms by which Loureirin A and Loureirin B suppress EMT, migration, and invasion in NSCLC cells via the MAPK signaling pathway. The sulforhodamine B (SRB) assay showed that Loureirin A and Loureirin B, at concentrations ranging from 0 to 140 μM, were non-toxic to both A549 and H1299 cells. Additionally, Loureirins A and B exhibited no cytotoxic effects on primary human dermal fibroblast cells and did not induce hemolysis in red blood cells (RBCs). The wound-healing and trans-well assays were used to evaluate the anti-migratory and anti-invasion properties of Loureirin A and Loureirin B in NSCLC cell lines. Gelatin zymography was employed to investigate the activity of MMP-2 (gelatinase A) and MMP-9 (gelatinase B), while Western blot analysis was used to examine the expression of EMT markers and invasive proteins, and the phosphorylation of MAPK signaling molecules. Our results demonstrate that both Loureirin A and Loureirin B significantly suppressed the migration and invasion of A549 and H1299 cells. These compounds suppressed the activity of matrix metalloproteinases MMP-2 and MMP-9 and downregulated the expression of key invasive proteins including uPA, uPAR, and MT1-MMP. Additionally, they effectively suppressed the expression of EMT markers such as N-cadherin, Vimentin, and Fibronectin. Mechanistically, Loureirin A and Loureirin B inhibited the MAPK signaling pathway by downregulating the phosphorylation of ERK, JNK, and p38 proteins. In conclusion, these findings demonstrate that Loureirin A and Loureirin B exhibit potent anti-invasive properties and no cytotoxic effect on NSCLC cell lines, suggesting their potential as promising candidates for anti-cancer drug development. Furthermore, they may pave the way for the exploration of combination therapies with other anti-cancer drugs for clinical translation.
Collapse
Affiliation(s)
- Xiaomin Huang
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sonthaya Umsumarng
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (X.H.); (P.A.); (K.S.); (S.Y.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
36
|
Bi L, Wang X, Li J, Li W, Wang Z. Epigenetic modifications in early stage lung cancer: pathogenesis, biomarkers, and early diagnosis. MedComm (Beijing) 2025; 6:e70080. [PMID: 39991629 PMCID: PMC11843169 DOI: 10.1002/mco2.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
The integration of liquid biopsy with epigenetic markers offers significant potential for early lung cancer detection and personalized treatment. Epigenetic alterations, including DNA methylation, histone modifications, and noncoding RNA changes, often precede genetic mutations and are critical in cancer progression. In this study, we explore how liquid biopsy, combined with epigenetic markers, can provide early detection of lung cancer, potentially predicting onset up to 4 years before clinical diagnosis. We discuss the challenges of targeting epigenetic regulators, which could disrupt cellular balance if overexploited, and the need for maintaining key gene expressions in therapeutic applications. This review highlights the promise and challenges of using liquid biopsy and epigenetic markers for early-stage lung cancer diagnosis, with a focus on optimizing treatment strategies for personalized and precision medicine.
Collapse
Affiliation(s)
- Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xin Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jiayi Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease‐related Molecular Network, State Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital, Sichuan UniversityChengduSichuanChina
- Institute of Respiratory Health, Frontiers Science Center for Disease‐Related Molecular NetworkWest China Hospital, Sichuan UniversityChengduSichuanChina
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan UniversityChengduSichuanChina
- The Research Units of West China, Chinese Academy of Medical SciencesWest China HospitalChengduSichuanChina
| |
Collapse
|
37
|
Garcia-Diaz A, Moyano-Rodríguez MJ, Garrido-Navas MDC, de Miguel-Perez D, Expósito-Hernández J, Alcázar-Navarrete B, Ortuño F, Landeira D, Romero PJ, Garcia-Moreno A, Lorente JA, Lopez-Hidalgo J, Bayarri-Lara C, Serrano MJ. Resectable Non-Small Cell Lung Cancer Heterogeneity and Recurrence Assessed by Tissue Next-Generation Sequencing Genotyping and Circulating Tumor Cell EZH2 Characterization. Arch Bronconeumol 2025; 61:156-165. [PMID: 39414465 DOI: 10.1016/j.arbres.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) is the most common type of lung neoplasm. Despite surgical resection, it has a high relapse rate, accounting for 30-55% of all cases. Next-generation sequencing (NGS) based on a customized gene panel and the analysis of circulating tumor cells (CTCs) can help identify heterogeneity, stratify high-risk patients, and guide treatment decisions. In this descriptive study involving a small prospective cohort, we focus on the phenotypic characterization of CTCs, particularly concerning EZH2 expression (a member of the Polycomb Repression Complex 2), as well as on the mutation profiles of the tissue using a customized gene panel and their association with poor outcomes in NSCLC. METHODS Isolation and characterization of EZH2 on CTCs were evaluated before surgical resection (CTC1) and one month after surgery (CTC2) in resectable NSCLC patients. Targeted NGS was performed using a customized 50-gene panel on tissue samples from a subset of patients. RESULTS 76 patients with resectable NSCLC were recruited. The top mutated genes in the cohort included TP53, FLT1, MUC5AC, EGFR, and NLRP3. Pair of genes that had mutually exclusive mutations was TP53-RIN3, and pairs of genes with co-occurring mutations were CD163-TLR4, FGF10-FOXP2, ADAMTSL3-FLT1, ADAMTSL3-MUC5AC and MUC5AC-NLRP3. CTCs decreased significantly between the two time points CTC1 and CTC2 (p<0.0001), and CTCs+ patients with high EZH2 expression had an 87% increased risk of death (p=0.018). CONCLUSIONS Integrating molecular profiling of tumors and CTC characterization can provide valuable insights into tumor heterogeneity and improve patient stratification for resectable NSCLC.
Collapse
Affiliation(s)
- Abel Garcia-Diaz
- GENYO Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, Granada, Spain
| | | | - María Del Carmen Garrido-Navas
- GENYO Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, Granada, Spain
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Jose Expósito-Hernández
- IBS Granada, Instituto de Investigacion Biosanitaria de Granada, Granada, Spain; Comprehensive Oncology Division, Virgen de las Nieves University Hospital, Granada, Spain
| | | | - Francisco Ortuño
- Department of Computer Engineering, Automation and Robotics, University of Granada, Granada, Spain
| | - David Landeira
- GENYO Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, Granada, Spain
| | - Pedro J Romero
- Department of Medicine School of Medicine, University of Granada, Granada, Spain
| | - Adrian Garcia-Moreno
- GENYO Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, Granada, Spain
| | - Jose A Lorente
- GENYO Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, Granada, Spain
| | - Javier Lopez-Hidalgo
- IBS Granada, Instituto de Investigacion Biosanitaria de Granada, Granada, Spain; Molecular Pathology Lab, Pathology Service, Virgen de las Nieves University Hospital, Granada, Spain
| | - Clara Bayarri-Lara
- Department of Thoracic Surgery, Virgen de las Nieves University Hospital, Granada, Spain.
| | - Maria Jose Serrano
- GENYO Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, Granada, Spain; IBS Granada, Instituto de Investigacion Biosanitaria de Granada, Granada, Spain; Molecular Pathology Lab, Pathology Service, Virgen de las Nieves University Hospital, Granada, Spain.
| |
Collapse
|
38
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
39
|
Mei S, Wang X, Zhao M, Huang Q, Huang Y, Su M, Zhang X, Wang X, Hao X, Wang T, Wu Y, Ma Y, Wang J, Zhang P, Zheng Y. Resolving the spatial and cellular architecture of intra-tumor heterogeneity by multi-region dissection of lung adenocarcinoma. J Genet Genomics 2025:S1673-8527(25)00051-7. [PMID: 39993622 DOI: 10.1016/j.jgg.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Although the spatial characteristics within the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) have been identified, the mechanisms by which these factors promote LUAD progression and immune evasion remain unclear. Using spatial transcriptomics (ST) and single-cell RNA-sequencing (scRNA-seq) data from multi-regional LUAD biopsies consisting of tumor core, tumor edge, and normal area, we sought to delineate the spatial heterogeneity and driving factors of cell colocalization. Two cancer cell sub-clusters (Cancer_c1 and Cancer_c2), associated with LUAD initiation and metastasis, respectively, exhibit distinct spatial distributions and immune cell colocalizations. In particular, Cancer_c1, enriched within the tumor core, could directly interact with B cells or indirectly recruit B cells through macrophages. Conversely, Cancer_c2 enriched within the tumor edge exhibits colocalization with CD8+ T cells. Collectively, our work elucidates the spatial distribution of cancer cell subtypes and their interaction with immune cells in the core and edge of LUAD, providing insights for developing therapeutic strategies for cancer intervention.
Collapse
Affiliation(s)
- Song Mei
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolei Wang
- Department of Pathology, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong 250100, China
| | - Mengmeng Zhao
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Qing Huang
- Department of Thoracic Surgery, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong 250100, China
| | - Yixuan Huang
- Beijing ClouDNA Technology Co., Ltd., Beijing 100080, China
| | - Mingming Su
- Beijing ClouDNA Technology Co., Ltd., Beijing 100080, China
| | - Xinlei Zhang
- Beijing ClouDNA Technology Co., Ltd., Beijing 100080, China
| | - Xu Wang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Xueyu Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Tianning Wang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yanhua Wu
- Department of Lab Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong 250100, China
| | - Yuanhui Ma
- Department of Pathology, Shandong Public Health Clinical Center, Shandong University, Jinan, Shandong 250100, China
| | - Jingnan Wang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China.
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
40
|
Zhang C, Wu BZ, Thu KL. Targeting Kinesins for Therapeutic Exploitation of Chromosomal Instability in Lung Cancer. Cancers (Basel) 2025; 17:685. [PMID: 40002279 PMCID: PMC11853690 DOI: 10.3390/cancers17040685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
New therapeutic approaches that antagonize tumour-promoting phenotypes in lung cancer are needed to improve patient outcomes. Chromosomal instability (CIN) is a hallmark of lung cancer characterized by the ongoing acquisition of genetic alterations that include the gain and loss of whole chromosomes or segments of chromosomes as well as chromosomal rearrangements during cell division. Although it provides genetic diversity that fuels tumour evolution and enables the acquisition of aggressive phenotypes like immune evasion, metastasis, and drug resistance, too much CIN can be lethal because it creates genetic imbalances that disrupt essential genes and induce severe proteotoxic and metabolic stress. As such, sustaining advantageous levels of CIN that are compatible with survival is a fine balance in cancer cells, and potentiating CIN to levels that exceed a tolerable threshold is a promising treatment strategy for inherently unstable tumours like lung cancer. Kinesins are a superfamily of motor proteins with many members having functions in mitosis that are critical for the correct segregation of chromosomes and, consequently, maintaining genomic integrity. Accordingly, inhibition of such kinesins has been shown to exacerbate CIN. Therefore, inhibiting mitotic kinesins represents a promising strategy for amplifying CIN to lethal levels in vulnerable cancer cells. In this review, we describe the concept of CIN as a therapeutic vulnerability and comprehensively summarize studies reporting the clinical and functional relevance of kinesins in lung cancer, with the goal of outlining how kinesin inhibition, or "targeting kinesins", holds great potential as an effective strategy for treating lung cancer.
Collapse
Affiliation(s)
- Christopher Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Benson Z. Wu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
41
|
Zhang J, Zi R, Hu P, Jiang Z, Lv Y, Zhang H, Zhao Y, Wang Y, Zhao L. COL7A1 indicates crucial potential as a basal membrane-related prognostic biomarker and therapeutic target in lung adenocarcinoma. Front Pharmacol 2025; 16:1543193. [PMID: 40028167 PMCID: PMC11868062 DOI: 10.3389/fphar.2025.1543193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer. Basal membrane (BM) is important to the invasive processes of LUAD. Our object is to explore hub BM-related genes in LUAD. Methods The gene expression data of LUAD were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. The weighted gene co-expression network analysis and differentially expressed gene analysis were used to identify candidates. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were used to evaluate their functions. Univariate Cox regression analysis was used to evaluate the prognostic value, and multivariate Cox regression analysis was used to verify its independence as a prognostic risk factor. The qPCR and Western blot were performed to ascertain the hub gene expression. The survival curve of two groups was drawn using Kaplan-Meier method. The hub gene-related immune characteristics were analyzed in independent cohorts by ESTIMATE and CIBERSORT methods. Results We successfully identified COL7A1 as a BM-related prognostic biomarker in LUAD, with elevated expression compared to controls, and associated with poor prognosis. Functional enrichment analysis revealed it was involved in pathways related to cell proliferation and inflammation like ECM-receptor interaction. Time-dependent ROC analysis results showed that the AUC of COL7A1 in predicting 1-, 3-, and 5-year survival all exceeded 0.78. Immune infiltration characteristic analysis showed that the higher COL7A1 expression group exhibited lower ESTIMATE scores and higher TIDE scores. Discussion Our study identified COL7A1 as a reliable BM-related prognostic biomarker, providing a new reference for the mechanistic understanding and target therapy of LUAD.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Rui Zi
- The First Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ping Hu
- The First Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zongying Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ye Lv
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Haixia Zhang
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yanjiao Zhao
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yan Wang
- The Third Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
42
|
Oh G, Gi Y, Lee J, Kim H, Wu HG, Park JM, Choi E, Shin D, Yoon M, Lee B, Son J. Hybrid Approach to Classifying Histological Subtypes of Non-small Cell Lung Cancer (NSCLC): Combining Radiomics and Deep Learning Features from CT Images. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01442-5. [PMID: 39953259 DOI: 10.1007/s10278-025-01442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/15/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
This study aimed to develop a hybrid model combining radiomics and deep learning features derived from computed tomography (CT) images to classify histological subtypes of non-small cell lung cancer (NSCLC). We analyzed CT images and radiomics features from 235 patients with NSCLC, including 110 with adenocarcinoma (ADC) and 112 with squamous cell carcinoma (SCC). The dataset was split into a training set (75%) and a test set (25%). External validation was conducted using the NSCLC-Radiomics database, comprising 24 patients each with ADC and SCC. A total of 1409 radiomics and 8192 deep features underwent principal component analysis (PCA) and ℓ2,1-norm minimization for feature reduction and selection. The optimal feature sets for classification included 27 radiomics features, 20 deep features, and 55 combined features (30 deep and 25 radiomics). The average area under the receiver operating characteristic curve (AUC) for radiomics, deep, and combined features were 0.6568, 0.6689, and 0.7209, respectively, across the internal and external test sets. Corresponding average accuracies were 0.6013, 0.6376, and 0.6564. The combined model demonstrated superior performance in classifying NSCLC subtypes, achieving higher AUC and accuracy in both test datasets. These results suggest that the proposed hybrid approach could enhance the accuracy and reliability of NSCLC subtype classification.
Collapse
Affiliation(s)
- Geon Oh
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
- Proton Therapy Center, National Cancer Center, Goyang, Republic of Korea
| | - Yongha Gi
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
| | - Jeongshim Lee
- Department of Radiation Oncology, Inha University Hospital, 27, Inhang-Ro, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Hunjung Kim
- Department of Radiation Oncology, Inha University Hospital, 27, Inhang-Ro, Jung-Gu, Incheon, 22332, Republic of Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea
| | - Eunae Choi
- Department of Radiological Science, Daegu Catholic University, Gyeongsan, Gyeongsangbuk-Do, Korea
| | - Dongho Shin
- Proton Therapy Center, National Cancer Center, Goyang, Republic of Korea
| | - Myonggeun Yoon
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
| | - Boram Lee
- Department of Radiation Oncology, Inha University Hospital, 27, Inhang-Ro, Jung-Gu, Incheon, 22332, Republic of Korea.
| | - Jaeman Son
- Department of Radiation Oncology, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Zhao Y, Wu S, Cao G, Song P, Lan CG, Zhang L, Sang YH. Mitochondrial carrier homolog 2 is important for mitochondrial functionality and non-small cell lung cancer cell growth. Cell Death Dis 2025; 16:95. [PMID: 39948081 PMCID: PMC11825924 DOI: 10.1038/s41419-025-07419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/13/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025]
Abstract
Discovering new molecular targets for non-small cell lung cancer (NSCLC) is critically important. Enhanced mitochondrial function can promote NSCLC progression by enabling metabolic reprogramming, resistance to apoptosis, and increased cell proliferation. Mitochondrial carrier homolog 2 (MTCH2), located in the outer mitochondrial membrane, is pivotal in regulating mitochondrial activities. This study examines MTCH2 expression and its functional role in NSCLC. Bioinformatic analysis showed that MTCH2 is overexpressed in NSCLC tissues, correlating with poor prognosis and other key clinical parameters of the patients. In addition, single-cell sequencing data revealed higher MTCH2 expression levels in cancer cells of NSCLC tumor mass. Moreover, MTCH2 is also upregulated in locally-treated NSCLC tissues and multiple primary/established human NSCLC cells. In various NSCLC cells, silencing MTCH2 via targeted shRNA or knockout (KO) using the CRISPR/Cas9 method significantly hindered cell proliferation, migration and invasion, while inducing apoptosis. MTCH2 knockdown or KO robustly impaired mitochondrial function, as indicated by reduced mitochondrial respiration, decreased complex I activity, lower ATP levels, lower mitochondrial membrane potential (mitochondrial depolarization), and increased reactive oxygen species (ROS) production. Conversely, ectopic overexpression of MTCH2 in primary NSCLC cells enhanced mitochondrial complex I activity and ATP production, promoting cell proliferation and migration. In vivo, the intratumoral injection of MTCH2 shRNA adeno-associated virus (aav) impeded the growth of subcutaneous xenografts of primary NSCLC cells in nude mice. In MTCH2 shRNA aav-injected NSCLC xenograft tissues, there was decreases in MTCH2 expression, mitochondrial complex I activity, ATP content, and the glutathione (GSH)/glutathione disulfide (GSSG) ratio, but increase in thiobarbituric acid reactive substances (TBAR) activity. Additionally, MTCH2 silencing led to reduced Ki-67 staining but increased apoptosis in NSCLC xenografts. Collectively, these findings demonstrate that overexpressed MTCH2 promotes NSCLC cell growth potentially through the maintenance of mitochondrial hyper-function, highlighting MTCH2 as a novel and promising therapeutic target for treating this disease.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Siyang Wu
- Respiratory Intensive Care Unit, Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, China
| | - Guohong Cao
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, China
| | - Peidong Song
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang-Gong Lan
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Baise, China.
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| | - Lin Zhang
- Department of Thoracic Surgery, Suzhou Ninth People's Hospital Affiliated to Soochow University, Suzhou, China.
| | - Yong-Hua Sang
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
44
|
Wu D, Huang Y, Wang B, Zheng Q, Wang T, Zhou J, Mei J. A clinical model to predict brain metastases in resected early-stage non-small cell lung cancer. BMC Cancer 2025; 25:236. [PMID: 39934713 PMCID: PMC11816532 DOI: 10.1186/s12885-025-13609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Despite the rising diagnosis of early-stage non-small cell lung cancer (NSCLC), there remains a limited understanding of the risk factors associated with postoperative brain metastases in early-stage NSCLC. Our goal was to identify the risk factors and construct a predictive model for postoperative brain metastases in this population. METHODS This study retrospectively enrolled patients with resected stage I-II NSCLC at the Department of Thoracic Surgery, West China Hospital from January 2015 to January 2021. Risk factors were identified through univariable and multivariable Cox regression analyses, followed by the construction of a nomogram. Evaluation of the model involved metrics such as the area under the curve (AUC), C-index, and calibration curves. To ensure reliability, internal validation was performed through bootstrap resampling. RESULTS This study included 2106 patients, among whom 67 (3.18%) patients were diagnosed with postoperative brain metastases. Multivariable Cox regression analysis revealed that higher pT and pN stages, along with specific histological subtypes, particularly solid/micropapillary predominant adenocarcinoma, were identified as independent risk factors for brain metastases. The performance of the nomogram in the training set exhibited AUC values of 0.759, 0.788, and 0.782 for predicting 1-year, 2-year, and 3-year occurrences, respectively. Bootstrap resampling validated its reliability, with C-index values of 0.758, 0.799, and 0.792 for the respective timeframes. Calibration curves affirmed consistency of the model. CONCLUSIONS A nomogram was developed to predict the likelihood of postoperative brain metastases in individuals with early-stage NSCLC. The tool aids in identifying high-risk patients and facilitating timely interventions.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Yuchen Huang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Beinuo Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Quan Zheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Tengyong Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, China
| | - Jian Zhou
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, China.
| | - Jiandong Mei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
45
|
Ji Y, Zhang H, Gong FL, Liang JL, Wang SF, Sang YH, Zheng MF. The expression and functional role of proline-rich 15 in non-small cell lung cancer. Cell Death Dis 2025; 16:83. [PMID: 39929816 PMCID: PMC11811231 DOI: 10.1038/s41419-025-07373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025]
Abstract
Proline-rich 15 (PRR15) is a protein primarily known for its role in placental development. This study investigates the expression, functional significance, and underlying mechanisms of PRR15 in non-small cell lung cancer (NSCLC). Our findings demonstrate significantly elevated PRR15 expression in NSCLC tissues compared to normal lung parenchyma, with higher expression correlating with adverse clinical outcomes. Single-cell RNA sequencing confirmed PRR15 overexpression within the malignant tumor cell population. PRR15 expression was elevated in NSCLC tissues from locally treated patients and in a panel of primary and established NSCLC cells. PRR15 depletion using shRNA or CRISPR/Cas9-mediated knockout significantly suppressed proliferation and migration, while promoting apoptosis in various NSCLC cells. Conversely, ectopic PRR15 overexpression using a lentiviral construct enhanced cell proliferation and migration. Mechanistic investigations implicated PRR15 in the activation of the Akt-mTOR signaling pathway. Inhibition of PRR15 expression via shRNA or CRISPR/Cas9-mediated knockout resulted in decreased Akt and S6K phosphorylation, while PRR15 overexpression led to augmented Akt-S6K signaling in primary human NSCLC cells. In vivo studies using xenograft models further validated the oncogenic role of PRR15, demonstrating that PRR15 knockdown suppressed tumor growth and attenuated Akt-mTOR activation. These findings collectively highlight the potential of PRR15 as a novel oncogenic driver and therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Yong Ji
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Han Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fei-Long Gong
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jia-Long Liang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Sheng-Fei Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yong-Hua Sang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ming-Feng Zheng
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
46
|
Shi Z, Hu C, Liu J, Cheng W, Chen X, Liu X, Bao Y, Tian H, Yu B, Gao F, Ye F, Jin X, Sun C, Li Q. Single-Cell Sequencing Reveals the Role of Radiation-Induced Stemness-Responsive Cancer Cells in the Development of Radioresistance. Int J Mol Sci 2025; 26:1433. [PMID: 40003899 PMCID: PMC11855645 DOI: 10.3390/ijms26041433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Increased stemness of cancer cells exacerbates radioresistance, thereby greatly limiting the efficacy of radiotherapy. In order to study the changes in cancer cell stemness during radiotherapy, we established a radioresistance model of human non-small cell lung cancer A549 cells and obtained A549 radioresistant cells (A549-RR). We sampled the cells at different time points during the modeling process and investigated the heterogeneity of each group of cells using single-cell sequencing. Cells in the early stages of fractionated irradiation were found to be significantly up-regulated in stemness, and a subpopulation of cells producing this response was screened and referred to as "radiation-induced stemness-responsive cancer cells". They were undergoing stemness response, energy metabolism reprogramming, and progressively differentiating into cells with more diverse and malignant phenotypes in order to attenuate the killing effect of radiation. Furthermore, we demonstrated that such responses might be driven by the activation of the EGFR-Hippo signaling pathway axis, which also plays a crucial role in the development of radioresistance. Our study reveals the dynamic evolution of cell subpopulation in cancer cells during fractionated radiotherapy; the early stage of irradiation can determine the destiny of the radiation-induced stemness-responsive cancer cells. The activation of stemness-like phenotypes during the development of radioresistance is not the result of dose accumulation but occurs during the early stage of radiotherapy with relatively low-dose irradiation. The degree of the radiation-induced stemness response of cancer cells mediated by the EGFR-Hippo signaling pathway might be a potential predictor of the efficacy of radiotherapy and the development of radioresistance.
Collapse
Affiliation(s)
- Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- College of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiadi Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wei Cheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaohua Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yanyu Bao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Haidong Tian
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Feifei Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (Z.S.); (C.H.); (J.L.); (W.C.); (X.C.); (X.L.); (Y.B.); (H.T.); (B.Y.); (F.G.); (F.Y.); (X.J.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Gansu Provincial Key Laboratory of Ion Beam Medicine Research, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
47
|
Li S, Zhan Y, Wang Y, Li W, Wang X, Wang H, Sun W, Cao X, Li Z, Ye F. One-step diagnosis of infection and lung cancer using metagenomic sequencing. Respir Res 2025; 26:48. [PMID: 39905469 PMCID: PMC11796122 DOI: 10.1186/s12931-025-03127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Traditional detection methods face challenges in meeting the diverse clinical needs for diagnosing both lung cancer and infections within a single test. Onco-mNGS has emerged as a promising solution capable of accurately identifying infectious pathogens and tumors simultaneously. However, critical evidence is still lacking regarding its diagnostic performance in distinguishing between pulmonary infections, tumors, and non-infectious, non-tumor conditions in real clinical settings. METHODS In this study, data were gathered from 223 participants presenting symptoms of lung infection or tumor who underwent Onco-mNGS testing. Patients were categorized into four groups based on clinical diagnoses: infection, tumor, tumor with infection, and non-infection-non-tumor. Comparisons were made across different groups, subtypes, and stages of lung cancer regarding copy number variation (CNV) patterns, microbiome compositions, and clinical detection indices. RESULTS Compared to conventional infection testing methods, Onco-mNGS demonstrates superior infection detection performance, boasting a sensitivity of 81.82%, specificity of 72.55%, and an overall accuracy of 77.58%. In lung cancer diagnosis, Onco-mNGS showcases excellent diagnostic capabilities with sensitivity, specificity, accuracy, positive predictive value, and negative predictive value reaching 88.46%, 100%, 91.41%, 100%, and 90.98%, respectively. In bronchoalveolar lavage fluid (BALF) samples, these values stand at 87.5%, 100%, 94.74%, 100%, and 91.67%, respectively. Notably, more abundant CNV mutation types and higher mutation rates were observed in adenocarcinoma (ADC) compared to squamous cell carcinoma (SCC). Concurrently, onco-mNGS data revealed specific enrichment of Capnocytophaga sputigeria in the ADC group and Candida parapsilosis in the SCC group. These species exhibited significant correlations with C reaction protein (CRP) and CA153 values. Furthermore, Haemophilus influenzae was enriched in the early-stage SCC group and significantly associated with CRP values. CONCLUSIONS Onco-mNGS has exhibited exceptional efficiencies in the detection and differentiation of infection and lung cancer. This study provides a novel technological option for achieving single-step precise and swift detection of lung cancer.
Collapse
Affiliation(s)
- Shaoqiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yangqing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Yan Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Weilong Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xidong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Haoru Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Wenjun Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China
| | - Xuefang Cao
- MatriDx Biotechnology Co., Ltd, Hangzhou, 311112, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China.
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, People's Republic of China.
| |
Collapse
|
48
|
Yao Y, Chen C, Li B, Gao W. Targeting HVEM-GPT2 axis: a novel approach to T cell activation and metabolic reprogramming in non-small cell lung cancer therapy. Cancer Immunol Immunother 2025; 74:101. [PMID: 39904774 PMCID: PMC11794847 DOI: 10.1007/s00262-025-03949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND The modulation of tumor microenvironments through immune checkpoint pathways is pivotal for the development of effective cancer immunotherapies. This study aims to explore the role of HVEM in non-small cell lung cancer (NSCLC) microenvironment. METHODS The lung cancer datasets for this study were directly downloaded from The Cancer Genome Atlas (TCGA). Single-cell data were sourced from the Tumor Immune Single-cell Hub (TISCH). Multiplex immunohistochemistry (mIHC) was used to explore the cellular composition and spatial distribution of HVEM in lung cancer immune microenvironment. The immune microenvironment of HVEM KO mice bearing mouse lung cancer cell was also evaluated. Co-cultured system and phenotype assays facilitated the examination of Jurkat T cells' effect on A549 and H1299 lung cancer cells. Quantitative PCR and Western blotting determined gene and protein expression, respectively, cellular respiration was measured through oxygen consumption rate (OCR) assays. Lung cancer cells co-cultured with Jurkat T cells were xenografted into nude mice to evaluate tumor growth and metastatic potential. Next, RNA-seq, COIP, Dual-luciferase reporter experiment, and CHIP-seq were used to explore the potential underlying mechanism. RESULTS In our study, we investigated the role of HVEM in the microenvironment of NSCLC and its implications in immunotherapy. Crucially, HVEM, part of the tumor necrosis factor receptor superfamily, influences T cell activation, potentially impacting immunotherapeutic outcomes. Using the TIDE algorithm, our results showcased a link between HVEM levels and immune dysfunction in NSCLC patients. Delving deeper into the NSCLC microenvironment, we found HVEM predominantly expressed in T cell subpopulations. CD8 + HVEM + and CD4 + HVEM + indicated better prognosis in lung adenocarcinoma tissue microarray using multiplex immunohistochemistry. Activated T cells, particularly from the Jurkat cell line, significantly inhibited NSCLC progression, reducing both proliferation and invasion capabilities of A549 and H1299 lung cancer cell lines. In vivo models reinforced these observations. Manipulating HVEM expression revealed its essential role in T cell survival and activation. In addition, animal experiments revealed the importance of HVEM in maintaining activated peripheral immunity and inflamed local tumor microenvironment. Furthermore, our data suggest that HVEM is pivotal in T cell metabolic reprogramming, transitioning from oxidative phosphorylation to aerobic glycolysis. RNA sequencing illuminated a potential relationship between HVEM and GPT2, an enzyme tied to amino acid metabolism and cellular energetics. Subsequent experiments confirmed that HVEM's influence on T cell activation and metabolism is potentially mediated through its regulation of GPT2. In addition, GATA1 was validated to regulate HVEM expression in activated Jurkat T cells. CONCLUSIONS Our study establishes that HVEM significantly influences T cell functionality and NSCLC cell dynamics, pinpointing the HVEM-GPT2 axis as a promising target for NSCLC therapy.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Animals
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/drug therapy
- Mice
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Tumor Microenvironment/immunology
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Mice, Nude
- Xenograft Model Antitumor Assays
- Mice, Knockout
- Cell Line, Tumor
- Metabolic Reprogramming
Collapse
Affiliation(s)
- Yuanshan Yao
- Department of Thoracic Surgery, HuaDong hospital affiliated to Fudan University, Shanghai, China
| | - Chunji Chen
- Department of Thoracic Surgery, HuaDong hospital affiliated to Fudan University, Shanghai, China
- Thoracic Surgery, Shanghai chest hospital, Shanghai, 200041, China
| | - Bin Li
- Thoracic Surgery, Shanghai chest hospital, Shanghai, 200041, China
| | - Wen Gao
- Department of Thoracic Surgery, HuaDong hospital affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Wu H, Sun X, Li K, Li J, Jiang H, Yan D, Lin Y, Ding Y, Lu Y, Zhu X, Chen X, Li X, Liang G, Xu H. Pyruvate Kinase M2-Responsive Release of Paclitaxel and Indoleamine 2,3-Dioxygenase Inhibitor for Immuno-Chemotherapy of Nonsmall Cell Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409790. [PMID: 39716923 PMCID: PMC11831488 DOI: 10.1002/advs.202409790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Indexed: 12/25/2024]
Abstract
Paclitaxel (PTX) is a first-line chemotherapeutic drug for non-small cell lung cancer (NSCLC) but it can induce indoleamine 2,3-dioxygenase (IDO) activation, which severely lowers down its immuno-chemotherapeutic effect. To address this issue, a smart peptide hydrogelator Nap-Phe-Phe-Phe-Lys-Ser-Thr-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-T), which co-assembles with PTX and an IDO inhibitor GDC0919 to form a hydrogel GP@Gel Nap-T, is rationally designed. Upon specific phosphorylation by pyruvate kinase M2 (PKM2), an overexpressed biomarker of NSCLC, Nap-T is gradually converted to Nap-Phe-Phe-Phe-Lys-Ser-Thr(H2PO3)-Gly-Gly-Lys-Ala-Pro-Arg-OH (Nap-Tp), leading to dehydrogelation and sustained release of PTX and GDC0919 within NSCLC tissues. The released PTX exerts chemotherapy on NSCLC cells as well as immunogenic cell death induction, while GDC0919 promotes the immuno-chemotherapeutic effect of PTX through IDO inhibition. We find that GP@Gel Nap-T enhances the infiltration of tumor-infiltrating immune cells and reduces the number of immunosuppressive cells in either tumor tissues or tumor-draining lymph nodes, thus enhancing the immuno-chemotherapy of PTX toward NSCLC. With this PKM2-responsive drug release strategy, the smart peptide hydrogel platform might be applied for NSCLC treatment in clinic in near future.
Collapse
Affiliation(s)
- Haisi Wu
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing211189China
| | - Kaiming Li
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Jinyu Li
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Hui Jiang
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Dan Yan
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Ya Lin
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Yan Ding
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Yawen Lu
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
| | - Xiaole Zhu
- Department of EmergencyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Xufeng Chen
- Department of EmergencyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Xiaolin Li
- Department of Geriatric GastroenterologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing211189China
| | - Huae Xu
- Department of PharmaceuticsSchool of PharmacyNanjing Medical UniversityNanjing211166China
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215002China
| |
Collapse
|
50
|
Liu G, Nyaw SF, Mok TSK, Curcio H, Cortot AB, Kam TY, Descourt R, Chik YK, Cheema P, Gwinnutt JM, Churchill EN, Nyborn J, Curran E, Savell A, Yin Y, Chong K, Tanaka‐Chambers Y, Kretz J, Cadranel J. Patterns of Treatment and Real-World Outcomes of Patients With Non-small Cell Lung Cancer With EGFR Exon 20 Insertion Mutations Receiving Mobocertinib: The EXTRACT Study. Cancer Med 2025; 14:e70369. [PMID: 39861957 PMCID: PMC11761427 DOI: 10.1002/cam4.70369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes. METHODS A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423). The inclusion criteria were: ≥ 18 years old; diagnosis of stage IIIB-IV NSCLC with EGFR ex20ins between January 1, 2017 and November 30, 2021; received mobocertinib. Data on demographics, clinical parameters, treatment patterns, mobocertinib exposure, real-world outcomes, and adverse events (AEs) were collected. Results are also reported by Asian/Non-Asian races. RESULTS Overall, 105 patients were enrolled (median [IQR] age at initial diagnosis: 64.0 years [56, 71]; women: 62.9%). The most common first-line of therapy (LoT) was chemotherapy; the most common second LoT was EGFR tyrosine kinase inhibitors. Most patients received mobocertinib during LoT two and three (74.3%); the maximum dose was 160 mg/day for 67.6% of the cohort (mean [SD] daily dose: 130.6 mg [36.68]). The median real-world progression-free survival (PFS) on mobocertinib was 4.76 months (95% CI: 3.98, 6.21). The overall response rate and disease control rate were 20.0% and 48.6%, respectively (median duration of response: 8.34 months [95% CI: 3.61, 9.49]). The median overall survival (OS) was 26.28 months (95% CI: 20.21, 36.44). Asian patients had numerically superior PFS and OS compared with non-Asian patients. Regarding safety analysis, 73 patients (69.5%) experienced any AE. The most common AE was diarrhea (any grade) (52 patients; 49.5%). CONCLUSIONS These data illustrate the real-world effectiveness of mobocertinib.
Collapse
Affiliation(s)
- Geoffrey Liu
- Department of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada
| | - Shi Feng Nyaw
- Department of Clinical OncologyTuen Mun HospitalHong KongChina
| | - Tony S. K. Mok
- Department of Clinical OncologyThe Chinese University of Hong Kong, Prince of Wales HospitalHong KongChina
| | - Hubert Curcio
- Oncology DepartmentCentre Francois BaclesseCaenFrance
| | - Alexis B. Cortot
- Centre Hospitalier Universitaire de Lille, CNRS, INSERMInstitut Pasteur de Lille, UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesLilleFrance
| | - Tsz Yeung Kam
- Department of Clinical OncologyPamela Youde Nethersole Eastern Hospital Main BlockHong KongChina
| | | | - Yin Kwan Chik
- Department of Clinical OncologyQueen Elizabeth HospitalHong KongChina
| | - Parneet Cheema
- Oncology, William Osler Health SystemUniversity of TorontoBramptonOntarioCanada
| | | | - Eric N. Churchill
- Global Medical Affairs OncologyTakeda Pharmaceuticals U.S.A., Inc.LexingtonMassachusettsUSA
| | - Justin Nyborn
- Global Medical Affairs Oncology, Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Eileen Curran
- Global Evidence and Outcome ResearchTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Alexandra Savell
- Global Medical Affairs Oncology, Takeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Yu Yin
- Observational Research AnalyticsTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Katie Chong
- Clinical Data ManagementTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Yuka Tanaka‐Chambers
- Statistical and Quantitative SciencesTakeda Development Center Americas, Inc.LexingtonMassachusettsUSA
| | - Julian Kretz
- Medical Affairs Oncology – EUCanTakeda Pharmaceuticals International AGZurichSwitzerland
| | - Jacques Cadranel
- Pulmonology and Thoracic Oncology DepartmentAPHP Hôpital Tenon and Sorbonne UniversitéParisFrance
| |
Collapse
|